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Abstract

We present a new particle-merging algorithm for the particle-in-cell method.

Based on the concept of the Voronoi diagram, the algorithm partitions the

phase space into smaller subsets, which consist of only particles that are in

close proximity in the phase space to each other. We show the performance of

our algorithm in the case of the two-stream instability and the magnetic shower.

Keywords: particle merging, PIC, Voronoi, clustering, two-stream instability,

magnetic shower, QED cascade

1. Introduction

For more than 60 years the particle-in-cell (PIC) technique [1] has been

used to simulate a wide variety of physical problems, ranging from electrical

discharge to particle acceleration. However, in several scenarios - in particular

field ionisation or QED cascades - the number of particles in the simulation box5

grows exponentially. Due to an overwhelming number of particles, the associ-

ated memory required can easily exceed that available on even high performance

computers and as a consequence the computational performance drops drasti-

cally.

In these situations, a particle merging algorithm (PMA) has to be imple-10

mented. The main goal of a PMA is to reduce the number of particles in a

simulation box while keeping the physical properties of the system intact after

a merging event. A straightforward PMA is to randomly pick a pair of particles
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and then merge, see for example [2]. Since it merges with no guidance, the

method is not able to preserve the phase space distribution, and so the physical15

picture is likely to be distorted after merging. The problem is that it fails to

incorporate the notion of proximity in the phase space, i.e. how similar particles

are, into its framework. In the scope of this paper, we call this PMA the blind

method.

Lapenta already proposed a scheme for merging particles (called “particle20

coalescence”) in [3] and [4]. In this method, particles are first sorted into two

bins. Then the binning process continues until the number of particles per bin is

small enough for the pairwise comparison. This type of PMA was then refined

and improved by Teunissen and Ebert [5], in which the k-d tree method was

employed to search for the nearest neighbour. Recently, a similar approach was25

also proposed by Vranic et al. [6], where the momentum space is divided into

smaller subcells for sorting particles.

We design our PMA from a different point of view, in which the algorithm

not only merges particles which are close in the phase space but also offers

users a direct control over errors introduced by a merging event. The notion30

of proximity in our algorithm is developed through the concept of the Voronoi

diagram [7], thus the name Voronoi PMA. As shown later, the quantification

of the error is realised through the coefficients of variation. The algorithm is

successfully implemented into the framework of the VLPL (Virtual Laser Plasma

Laboratory) code [8].35

The paper is organised as follows: in section 2, we briefly introduce the defini-

tion and some examples of the Voronoi diagram; the comprehensive description

of our PMA is revealed in section 3; in section 4 we test the performance of our

merging algorithm with three cases: the counter-propagating plasma blocks, the

two-stream instability, and the magnetic shower simulations; finally, we sum-40

marise the paper in section 5.
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2. Voronoi diagram

For any given set of n sites, S = {s1, s2, ..., sn} in the real d-space Rd, the

Voronoi cell Vk associated with the site sk is a set of points in Rd, such that the

distance from those points to sk is not greater than the distance to any other

site sj (j 6= k) in S [9].

Vk = {x ∈ Rd | ∀j : dist(x, sk) ≤ dist(x, sj)} for 1 ≤ i, j ≤ n. (1)

Here, dist(x, y) denotes the metric function of the distance in Rd. The Voronoi

diagram was first developed, though informally, in 1644 by Descartes. In 1908,

the Russian-Ukrainian mathematician G. F. Voronoi formally defined and stud-45

ied the general case [7]. The concept is used in many contemporary research

fields, such as geophysics, meteorology, and condensed matter physics.

Figure 1: The Voronoi diagrams with different metric functions. Each Voronoi

region is painted with a distinct colour. The black star in each region is the

Voronoi centroid.

Observing eq. (1), we see that the metric function dist(x, y) plays a vital role

in the formation of the Voronoi diagram. Different metrics will result in different

Voronoi diagrams. Moreover, in our case, different metrics also require different

implementations of the algorithm (see section 3 for more detail). Fig. 1 shows

the Voronoi diagram of a random distribution with Euclidean and Chebyshev

measures. Given two vectors p and q, the Euclidean distance is

dist(p,q) =

√∑
i

(qi − pi)2, (2)
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while the Chebyshev distance is given by

dist(p,q) = max |qi − pi|. (3)

3. Algorithm

Input: The algorithm requires two user inputs, TX and TP, which are the

tolerances for position and momentum. These parameters are employed as the50

stopping condition and appear at step 3. A merging event will take place in a

simulation cell if the particle number N of that cell is greater than the minimum

particle number Nmin.

Step 1: For every simulation cell, collect all particles (weight wi, position xi,

and momentum pi) in that cell into a set V0. This set V0 is the first Voronoi cell,

which covers the entire phase space of a simulation cell. We then calculate the

statistical average in the phase space of this set of particles V0 by the following

formulae:

W0 =
∑
i∈V0

wi, (4)

X0 =

∑
i∈V0 wixi∑
i∈V0 wi

, (5)

P0 =

∑
i∈V0 wipi∑
i∈V0 wi

. (6)

The point (X0,P0) with weight W0 is the centroid of the first Voronoi cell V0.

From now on, quantities of a Voronoi centroid are denoted by the capital letters.55

Step 2: We calculate the standard deviation of each dimension l in the

phase space with respect to the current Voronoi centroid:

σX0,l
=

√
1

W0

∑
i

wi(xi,l −X0,l)2, (7)

σP0,l
=

√
1

W0

∑
i

wi(pi,l −P0,l)2. (8)

We compute the coefficient of variation (CV) ∆ for each dimension. The CVs
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for spatial and momentum dimensions are defined as

∆X0,l
=
σX0,l

LX0,l

, (9)

∆P0,l
=
σP0,l

P0,l
. (10)

For the spatial dimensions, due to the symmetry in space the CV ∆X0 is defined

as the ratio between the standard deviation and the length LX0 of the first

Voronoi cell V0. On the other hand, since there is no such symmetry in the

momentum space, the CV ∆P0 is obtained from dividing the standard deviation

by the mean value. As the CVs are dimensionless numbers we can treat the data60

obtained from the position and momentum spaces equally (see step 4 below).

In our algorithm, the CVs represent the accuracy of the merging scheme, with

smaller CVs resulting in smaller errors due to merging.

Step 3: We compare the recently obtained CVs ∆X0
and ∆P0

with their

corresponding tolerances TX and TP. If a Voronoi cell has all six CVs less than65

or equal to the tolerances, the algorithm will mark that cell finished and stop

dividing it. On the other hand, as long as there is at least one component

whose CV does not satisfy the aforementioned requirement, the algorithm will

keep going to the next step.

Step 4: We consider the individual components of ∆X0 and ∆P0 , that is

{∆x,∆y,∆z,∆px ,∆py ,∆pz}, and find the axis k which has the largest deviation.

k = max
l

∆l, with l ∈ {x, y, z, px, py, pz}. (11)

Step 5: Make a hyperplane cut through the the Voronoi centroid perpen-70

dicular to the axis k. Denote q and Q the dynamic variables of the particles and

of the centre, respectively, on the axis k. The hyperplane cut divides the set V0
into two new independent subsets V1 and V2, whose new centroids are given by
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V1 = {i ∈ V0 : qi ≤ Q} V2 = {i ∈ V0 : qi > Q}

W1 =
∑

i∈V1 wi W2 =
∑

i∈V2 wi

X1 =
∑

i∈V1
wixi∑

i∈V1
wi

X2 =
∑

i∈V2
wixi∑

i∈V2
wi

P1 =
∑

i∈V1
wipi∑

i∈V1
wi

P2 =
∑

i∈V2
wipi∑

i∈V2
wi

Step 6: Sort the particles into their corresponding new sets. Repeat steps75

2-6 for the new sets V1 and V2 until the stopping condition is satisfied.

Step 7: If the stopping condition is met for all Voronoi cells, the algorithm

removes all particles from the simulation cell and replaces them with the Voronoi

centroids as the merged particles. The algorithm ends here.

We have several remarks on our algorithm:80

• Our Voronoi PMA is inspired by Schreiber’s adaptive k-means clustering

algorithm used in Computational Geometry [10].

• In step 1, we state that the merging process is carried out cell by cell.

However, the algorithm can be adjusted such that the first Voronoi cell

V0 contains all particles from the simulation box and starts merging from85

there. The rest of the algorithm is kept intact. However, it is likely that

the global merging approach violates the local charge conservation. In

this case, one must take into account a correction scheme in order to com-

pensate for the error caused by merging events. Which implementation is

used depends strongly on the user preference or the code framework. We90

adhere to the cell-by-cell implementation as it is readily parallelised.

• The distance measure used here (see eq. (11), step 4) can be considered as

a Chebyshev-like distance, since eq. 3 is not guaranteed for every particle

and phase space dimension. We have chosen this measure instead of a

more obvious candidate, the Euclidean measure, for the following reasons:95

1. The simplest implementation of the Euclidean measure requires the
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seeding of Voronoi centroids at the beginning of the algorithm. More-

over, the number of Voronoi centroids is kept constant throughout

the algorithm. This limitation not only reduces greatly the flexibility

of the algorithm but also cannot fit well to the dynamic situation of100

a physical problem [10]. Conversely, the Chebyshev measure requires

no seeding and suits perfectly the divide-and-sort scheme, which is

applied here.

2. In [11], the author states a rule of thumb that for a given dataset of

N points, the number of centroids is set to k ≈
√
N/2. Again, the105

number of Voronoi centroids cannot be changed once the algorithm

starts. As such, we do not follow this rule.

3. In order to use the Euclidean measure without a fixed number of

centroids, we would have to solve the problem of an unknown number

of clusters in a dataset. This can be done through the Bayesian110

information criterion [12] or the removing centroids method [13]. The

former approach is difficult to implement, while the latter tends to

be computationally intensive.

• In the momentum space, the Voronoi PMA groups particles by taking into

account both the direction and the magnitude of particles’ momenta. Due115

to the difference in the direction, it might occur that the energy is lost

after a merging event. The relative error in the total energy is observed in

Fig. 6 for the two-stream instability and Fig. 10 for the magnetic shower

below. These graphs show that the loss in energy per merging event is

extremely small. However, the merging quality can be further improved by120

introducing a mechanism to conserve energy perfectly and directly. One

can consider the Langdon-Marder corrector-scheme [14][15][16] or follow

the proposal to merge into two particles [6]. We also make a side remark

that the Langdon-Marder scheme becomes obligatory in case users want

to implement the algorithm through the global merging approach.125
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4. Simulation

Having presented the algorithm, we proceed to test its performance. To this

end, we consider three situations: counter-propagating plasma blocks, the two-

stream instability [17] [18], and the magnetic shower produced by an energetic

particle entering a strong magnetic field [19].130

Before going further, we briefly describe the implementation of the blind

method used here for comparison. We define the parameter α as the merging

fraction. A merging event will take place in a simulation cell if the number

of particles N of that cell satisfies the condition N > ceil(αN). Then, the

blind method merges particles in the current cell until the number of particles135

after merging is at maximum ceil(αN). This implementation allows the blind

method produces the same number of particles as in the Voronoi PMA for fair

comparison.

4.1. Counter-propagating Plasma Blocks

The counter-propagating plasma blocks simulation is a simple test, in which140

two blocks of non-interacting particles with uniform density distribution prop-

agate and then overlap each other. These blocks have the same momentum

magnitude but opposite propagation directions (see Fig. 2). With no merging,

there is no change to the system apart from the translation in x-direction af-

ter the blocks pass through each other. By using this test we can easily spot145

whether a given PMA preserves the phase space distributions since there is a

duration when the blocks overlap. If a merging method does not preserve, two

or more particles from the different distributions might be merged together.

Here, we compare the performance of the Voronoi PMA and the blind method.

The merging period Tmrg = 2∆t, with ∆t is the time step, is applied for both150

methods. For the Voronoi PMA, the tolerances are TX = 0.4 and TP = 0.01.

For the blind method, we deliberately choose the parameter α so as to give a

similar final number of particles as in the Voronoi PMA.

We look at the number of PIC particles appearing in the simulation (see

Fig. 3a). Starting with 12000 particles, the blind method merges into 4200155
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Figure 2: The initial configuration for the counter-propagating plasma blocks

simulation: two blocks have the same momentum magnitude but opposite prop-

agation directions. The merging event will commence when two blocks start

overlapping each other since the particle number exceeds the threshold. For

the Voronoi PMA, the threshold is Nmin = 15, and ceil(αN) for the blind

method. A good merging algorithm will leave behind no change in the phase

space distribution apart from the translation in the x-direction.

particles at the end of the simulation, while the Voronoi PMA finishes the

task with approximately 3800 particles. The numbers of particles produced

by two methods are approximately equivalent. Fig. 4 shows the phase space

distributions at the end of the simulation and figs. 3 (b,c, and d) show the

histogram. For the blind method, we see that after the blocks have passed160

through each other, there are many particles left behind between the two blocks.

The momentum space plot and the histogram shows that these particles have

zero momentum. The blind method also produces many particles with momenta

not equal to the original magnitude (150mc). As a consequence, the particle

distributions are smeared and the conservation of energy is violated. Conversely,165

the Voronoi PMA accurately preserves the phase space distributions, returning

the same result as for the case with no merging. For this test, we see that

despite the fact that it finishes the simulation with fewer particles than the

blind method, the Voronoi PMA accurately preserves the particle distributions,
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Figure 3: The number of PIC particles during the simulation (fig. a) and

the histograms for no-merge, the Voronoi PMA, and the blind method (figs.

b, c, and d respectively) in the counter-propagating plasma blocks simulation.

Despite merging into a similar number of particles, the Voronoi PMA does not

distort the momentum distribution.

while the blind method does not.170

4.2. Two-stream instability

The two-stream instability consists of two identical particle beams stream-

ing through each other. These beams propagate in the opposite directions and

a small perturbation in the charge density can change the electric field, which

in turn causes further perturbation in the density distributions. This type of175

simulation makes an illustrative example of how the algorithm manage merging

particles in a dynamic evolution of the phase space. The configuration for the

two-stream instability is listed in table 1. At the beginning of the simulation, we
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Figure 4: The phase space distributions (first row x/y, second row x/px) at

the end of the counter-propagating blocks simulation. The blind method leaves

behind many particles that have zero momentum. Meanwhile, the Voronoi PMA

reproduces the result obtained with no merging.

create two electron beams with the same initial Lorentz factor γ = 1 but oppo-

site propagation directions. Each beam has 16×104 particles and is neutralised180

by the background charge density. Purposefully, the merging algorithms are

only enabled after time t = 5λ0/c, when the instability can be visibly observed.

The merging fraction for the blind method is chosen to be α = 0.965, such that

we can have a fair comparison between two algorithms.

Wavelength λ0 = 800 nm

Simulation box 3.2λ0 × 1.0λ0

Grid steps 0.01λ0 × 0.1λ0

Time step ∆t = 0.005λ0/c

Electron initial Lorentz factor γ = 1.0

Number of CPUs 8× 1

Merging period 50∆t

11



Merging start 5λ0/c

The minimum particle number per cell

(for Voronoi PMA)

200

Tolerances (for Voronoi PMA) TX = 0.8 and TP = 0.15

Merging fraction (for the blind method) α = 0.965

Table 1: The configuration for the two-stream instability simulation.

185

The phase space distribution (x/px) for the two-stream instability is shown in

Fig. 5 at different time stamps. Similarly to the counter-propagating plasma

blocks, the blind method (the last column) produces many particles with mo-

menta approximately equal to zero, which do not appear in the original simu-

lation (the first column). This early distortion in the phase space distribution190

leads to a different instability growth at later time. On the other hand, the

Voronoi PMA (the second column) retains the phase space distribution through-

out the simulation. Moreover, in contrast to the smooth pictures obtained with-

out merging, the outcomes of the two algorithms appear grainier, since there are

lesser particles in the phase space due to merging events. Fig. 6 shows the num-195

ber of electrons and the relative error in the total energy δE = abs(E0−E)/E0.

Here, E0 is the energy of the system without merging. Observing Fig. 6a, we

see that when the merging event is enabled (at t = 5λ0/c), there is a steep fall in

the number of particles for the Voronoi PMA (the red line), falling from 32×104

to 20 × 104 particles. This abrupt drop is then followed by a short decline to200

17.8× 104 particles. At around t = 8λ0/c, there is almost no merging event till

the end of the simulation, since the number of particles per cell is already below

the threshold. On the contrary, the blind method (the green line) exhibits a

steady decline in the number of particles , reducing to 16.8 × 104 particles at

the end of the simulation. From Fig. 6b, wee see that the total energy relative205

error is rising up to 0.1 for the blind method, while the Voronoi PMA reaches

a peak at δE = 0.006 during the simulation.
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Figure 5: The phase space distributions (x/px) for the two-stream instability

simulation at different time stamps. The first column shows the original simula-

tion with 32×104 particles. The second and third columns show the simulation

with the blind and Voronoi merging method, respectively. While the outcome

produced by the blind method looks different, the Voronoi PMA follows the

evolution course as in the no-merging case.
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Figure 6: The number of PIC particles during the simulation (fig. a) and

the relative error in the total energy due to merging events for the two-stream

instability simulation. The Voronoi PMA reduces the number of particles from

32× 104 to 17.8× 104 particles and stops merging from there, since the number

of particles per cell is already below the threshold. The highest relative error in

the total energy for the Voronoi PMA is 0.006, and the blind method 0.1.

4.3. Magnetic Shower

4.3.1. Introduction

Consider an energetic particle propagating through a strong magnetic field.

Due to the interaction with the field, the particle will emit hard photons on

its course. In turn, these photons interact with the field and will decay into

energetic electron-positron pairs. The cascade of particles develops quickly and

an exponential growth of the number of particles is usually observed. This

phenomena is called the magnetic shower. The occurrence of the magnetic

shower requires both an intense field and high particle energies [19] [20]. This

condition is quantified in the quantum parameter χ [19], which is defined as

χ = γ
B

BS
. (12)

Here, γ is the particle’s Lorentz factor, B the magnetic field strength, and
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the Schwinger field BS = 4.41 × 1013 G. The pair production has sufficient

probability to start the cascade process only when χ ≥ 0.1 [19]. The proba-

bility rates for photon emission and pair production are expressed in intricate

expressions (see eq. (2) and (3) in ref. [21] and the description therein). The

computation usually requires solving the double integral of the Airy function.

Thus, the task involves a significant computational overhead. However, under

the assumption that the dimensionless field amplitude a0 � 1, the field can be

regarded as being constant during the decay processes. Additionally, if both

conditions χ � B/BS and B � BS are satisfied, we can utilise the theory

of quantum processes under a constant cross field given in [22] [23]. Accord-

ing to this theory, the probability rates for the photon emission Wem and pair

production Wpair are

Wem =
α

3
√

3π

mc2

~γ

∫ 1

0

5x2 + 7x+ 7

(1 + x)3
K2/3

(
2x

3χ

)
dx (13)

and

Wpair =
α

3
√

3π

m2c4

~ε

∫ 1

0

9− x2

1− x2
K2/3

(
8

3(1− x2)κ

)
dx. (14)

Here, α is the fine structure constant; K2/3(x) is the modified Bessel function210

of the second kind; ε is photon’s energy and κ its quantum parameter. Our

numerical model for the cascade process is based on the Monte Carlo method

[21] [24].

The magnetic shower is an appropriate example since the number of particles

can grow exponentially during the simulation and the particles’ energies can215

range from several to hundred MeVs. Thus, it is a good indicator of how a PMA

copes with the dynamic development during the simulation while preserving the

physical features of the system.

4.3.2. Simulation

The simulation configuration for the magnetic shower is listed in table 2.220

We begin the simulation with 5 numerical electrons. For an electron with a

Lorentz factor γ = 5× 104 and a magnetic field eB/mecω = 500, the quantum
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parameter is χ ≈ 150 � 1. Here, e is the elementary charge, me the electron

mass, c the velocity of light, and ω = 2πc/λ0. As before, we consider three

cases: without merging, with the blind merging method, and with the Voronoi225

algorithm. As before we deliberately choose the merging fraction α such that

the blind method and the Voronoi PMA result in the similar number of particles

at the end of the simulation.

Wavelength λ0 = 800 nm

Simulation box 3.2λ0 × 3.2λ0 × 3.2λ0

Grid steps 0.04λ0×0.04λ0×0.04λ0

Time step ∆t = 0.005λ0/c

Magnetic field strength B = 6.6× 1010 G

Electron initial Lorentz factor γ = 5× 104

Number of CPUs 5× 5× 5

Merging period 2∆t

The minimum particle number per cell

(for Voronoi PMA)

10

Tolerances (for Voronoi PMA) TX = 1.0 and TP = 0.02

Merging fraction (for the blind method) α = 0.88

Table 2: The configuration for the magnetic shower simulation.

The growth in particle number is shown in Fig. 7. Without merging (blue),230

both electron and positron display exponential growth during the simulation. At

the end of the simulation, a total number of 2.8×106 particles has been reached

for each specie. Meanwhile, the photon specie grows from 0 to 7× 104 particles

at the last frame. The blind method (green) results in 1.45× 105 electrons and

posittrons, 4000 photons. The Voronoi PMA (red) produces in total 1.35× 105235

electrons and positrons, and 8000 photons. That is, the number of particles in

the box is reduced approximately 40 times by both methods. In order to verify
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Figure 7: The number of particles in the magnetic shower simulation as a func-

tion of time for electron, positron, and photon (from left to right). The first row

shows the result from the simulation without merging, the second row shows

the outcome by using the Voronoi PMA (red) and the blind method (green).

The Voronoi PMA reduces the number of electrons (positrons) from 2.8 × 106

to 6.5× 104 particles.

the validity of the simulation, we look at the total energy and the spectra of

the particles. Figs. 8 and 9 illustrate the evolution of the particle energies and

their spectra at the end of the simulation. For the blind method (solid, green240

line in Fig. 8), we see a gradual decrease in the total energy of electrons and

positrons around the point when the photon energy is reaching its peak. This

strongly affects the spectrum of every specie in the simulation box (see Figs.

9 g, h, i): the distinct peak electrons and positrons is not observed. On the

other hand, with a careful approach the Voronoi PMA (short dash, black line)245

overlaps the case with no merging (long dash, light blue )in Fig. 8, showing

that it preserves the physical behaviour in the total energy, with the decrease
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in electron energy, increase in positron energy, and the sharp rise followed by a

decrease in photon energy. Moreover, the Voronoi PMA accurately reproduces

the spectra obtained with no merging (see Figs. 9 d, e, and f). Originally, the250

simulation with no merging takes approximately 2 hours (7265 seconds). With

the same settings, the Voronoi PMA completes roughly in 20 minutes (1172

seconds) and the blind method takes about 24 minutes (1440 seconds).

Figure 8: The total energy evolution of electron, positron, and photon during

the magnetic shower simulation for three merging cases: no-merge case (long

dash, light blue); Voronoi (short dash, black), and blind (solid, green). Unlike

the blind method, the Voronoi PMA reproduces the results obtained from the

original simulation.

Finally, we perform a parameter scan on the tolerances TX and TP in order

to observe the growth of particles and the accumulation of error due to merging.255

Fig. 10 shows the number of electrons and the relative error δE = (E0−E)/E0

during the simulation and Fig. 11 displays the total computation time with

various tolerance settings. Here, E0 is the energy of the system without merging.

The most accurate simulation is achieved with TX = 0.5 and TP = 0.005. With

this setting, the simulation takes roughly 40 minutes to complete and the total260

energy loss is around 0.05 MeV (δE ≈ 1 × 10−7). We observe that the growth

is also exponential and the number of electrons has reached 2.4× 105 particles

at the end of the simulation. When we loosen the tolerances, more particles

18



Figure 9: The spectra for the electron, positron, and photon species in the

magnetic shower simulation at time t = 98∆t for three merging cases: no merge

(blue), the Voronoi PMA (green), and the blind method(red). The spectra of

particles are accurately reproduced by using the Voronoi PMA. Meanwhile, with

the blind method, the distinct peak for electrons and positrons is not observed.

are merged together. As a result, the growth rate becomes more linear but the

energy loss develops speedily. In our test, the extreme case with TX = 1.0 and265

TP = 0.03 produces 7.7 × 104 electrons and positrons, 5 × 103 photons, and

takes 14 minutes to finish. However, in this case, it accumulates 20 MeV total

energy loss (δE ≈ 3.9× 10−5). Although the loss is extremely small, we notice
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the double in magnitude just by increasing from TP = 0.025 to TP = 0.03. We

also observe that, the purple line (TX = 0.5 and TP = 0.02) completely overlaps270

the dark blue line (TX = 1.0 and TP = 0.02), showing that the tolerance TP

is more sensitive than TX. Since, in a given cell, the particle momenta may

vary significantly, an accurate simulation requires small TP. We recommend

TP = 0.05 and TX = 1.0 as a threshold for this type of simulation.

Figure 10: The number of electron and the relative error in the total energy due

to merging with various tolerances [TX, TP] settings for the magnetic shower

simulation. With relaxed tolerances, the growth of particle number becomes

linear but the error also accumulates faster. When stricter tolerances are used,

the growth resumes the exponential behaviour while the error develops with a

slower rate. We also observe that, the purple line (TX = 0.5 and TP = 0.02)

completely overlaps the dark blue line (TX = 1.0 and TP = 0.02), showing that

the algorithm is always more sensitive towards the momentum space.
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Figure 11: The total computation time for the magnetic shower simulation.

The last six columns show the simulations with the Voronoi PMA for various

tolerances [TX, TP] settings.

5. Summary275

In this paper, we present the Voronoi particle merging algorithm for PIC

codes. The phase space of a simulation cell is partitioned, as in the Voronoi

diagram, into smaller subsets, which only consist of particles that are close to

each other. The quality of a merging event is ensured by two user inputs, the

tolerances on position TX and momentum TP. The tolerances act as the balance280

between the speed-up and the accuracy of the simulation. Stricter tolerances

mean smaller error but without much in the speed-up. On the other hand, re-

laxed tolerances result in more merged particles and thus the computation time

decreases but the error will accumulate faster. Making a right combination for

the tolerance pair for a certain simulation requires prior knowledge of particles’285

behaviour. If a simulation involves particles which spread out in a large range

in the momentum space, we suggest keeping the TP lower than 0.02. Other-

wise, this value can be relaxed. On the other hand, since it relates to particles’

relative position in a cell, TX can be chosen up to 1.0.
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We have tested the performance of our algorithm with three tests: the290

counter-propagating plasma blocks, the two-stream instability and magnetic

shower simulations. In all cases, we observe that the conservation of momen-

tum is perfectly held and the conservation of energy is maintained extremely

well, with only small margin of error. The two-stream instability shows that the

Voronoi PMA preserves the phase space evolution and the total energy error295

in this case is of the order of 10−3. In the magnetic shower simulation, the

total energy error is of the order of 10−5 with a speed-up by a factor of 6 and

the spectra of particles are also comparable very well to those obtained with no

merging.
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