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Abstract

The functional renormalisation group (fRG) has evolved into a versatile tool in

condensed matter theory for studying important aspects of correlated electron

systems. Practical applications of the method often involve a high numerical

effort, motivating the question in how far High Performance Computing (HPC)

can leverage the approach.

In this work we report on a multi-level parallelisation of the underlying compu-

tational machinery and show that this can speed up the code by several orders

of magnitude. This in turn can extend the applicability of the method to oth-

erwise inaccessible cases.

We exploit three levels of parallelisation: Distributed computing by means of

Message Passing (MPI), shared-memory computing using OpenMP, and vec-

torisation by means of SIMD units (single-instruction-multiple-data). Results

are provided for two distinct High Performance Computing (HPC) platforms,

namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-

Bridge-based development cluster. We discuss how certain issues and obstacles

were overcome in the course of adapting the code. Most importantly, we con-

clude that this vast improvement can actually be accomplished by introducing

only moderate changes to the code, such that this strategy may serve as a

guideline for other researcher to likewise improve the efficiency of their codes.
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1. Introduction

Parallel algorithms are an essential ingredient when making proper use of

high-performance computing (HPC) infrastructures. The parallelism of the un-

derlying hardware has increased particularly fast during the last decade, and

more importantly, has entered the realm of small to medium-sized computing

infrastructures, extending even to the hardware that serves our every-day use.

The habitual increase in cpu frequency has factually halted and Moore’s law is

only kept reasonably valid via an increase of parallel on-chip execution units.

Therefore, concerning scientific applications we cannot rely anymore on an ”au-

tomatic speed-up” by means of an increase in cpu frequency. Instead, it is

rather the transfer of substantial, and sometimes even revolutionary, advances

in HPC into the branches of fundamental science which in the near future can

leverage and accelerate theoretical and experimental investigations which would

otherwise remain unreachable. Harvesting the potential of parallel computing

systems has never been a straight-forward task, with HPC being a scientific

branch and community of its own for that very reason. We here report on an

example of such a transfer and demonstrate that current HPC architectures can

prove extremely helpful in accelerating a specific type of numerical application

in quantum condensed matter physics, namely functional renormalisation group

calculations. We stress from the very beginning that the concepts and the route

taken to arrive at an enormous speed-up were not particularly complicated, and

the actual code modifications turn out to be comparatively moderate and sim-

ple. An all-important lesson we learned from this example is that we can avoid

a complicated and intense code porting phase, something which scientific code

developers hardly ever wish to engage in.

1.1. fRG

In recent times, functional renormalisation group methods have been estab-

lished in quantum condensed matter physics as a powerful tool to detect and

treat various phenomena which arise in correlated electron systems. In partic-

ular, they can be used as an unbiased detector for competing correlations and
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quite a range of results is available for various models, parameter sets and specif-

ically targeted observables [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]. A pioneering

work in this context is given in [12], for a comprehensive review see [13]. The

generic equation which governs the method is a functional differential equation

which arises when an explicit scale-dependence is introduced in functionals of

interest and a derivative with respect to this scale is taken subsequently. Upon

expanding the functional of interest in terms of correlation functions, one ob-

tains an infinite hierarchy of ordinary differential equation for these functions

(fRG-ODE). The right-hand side (rhs) of this equation is in general given by

multi-dimensional integrals and/or summations over weighted products of these

functions, which stem from standard diagrammatic expansions in quantum field

theory, see e.g. [14].

In practice, the formal representation of these functions and equations is dis-

cretised and subsequently treated numerically. The resulting algorithms and

codes can become very demanding in their computational intensity and thereby

inhibitory to the overall scientific potential of the method, which in principle

extends far beyond current applications. In this work we shall tackle this very

obstacle by means of HPC methods, namely we wish to illustrate how a paral-

lelisation at different levels can speed up a typical code of the fRG family such

that ultimately a speed-up of several orders of magnitude is accomplished.

We feel that this step forward can be of considerable importance for one reason

in particular: In very recent times an increasing amount of attention in compu-

tational science is paid to ”virtual scanning techniques” in the area of materials

design, the general idea of which is to pre-select potential candidates for new

materials by first calculating relevant properties via numerical methods. We

believe that the fRG has the potential to become a very helpful computational

kernel within such strategies. However, proper scanning of ”theoretical materi-

als” relies on the capability to generate results for a large variety of parameter

sets in a short amount of time and by this virtue such quantitative improve-

ments are a necessary ingredient for qualitative progress.
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That said, the resulting motivation for this study is to provide a proof-of-

concept that fRG calculations can massively profit from small and large-scale

multi-parallel HPC environments. We thereby intend to offer a blueprint to

enable fRG developers to best benefit from such architectures.

1.2. HPC systems

The key aspects when parallelising the numerical treatment of the fRG-

ODE are imposed by a hierarchy of available means for parallelisation which is

common to many contemporary HPC systems. In a bottom-up sequence this

hierarchy can essentially be summarised as follows:1

• on-core single-instruction-multiple-data (SIMD) vector units, with a ten-

dency of increasing width

• possibility/necessity to execute two or more processes/threads per core

• multiple cores per CPU, in part massively increasing in number (e.g. Intel

Xeon Phi)

• multiple CPUs per compute node with access to the same physical memory

• an ever increasing number of compute nodes connected by faster and faster

networks

As an in-house example for a standard small-sized cluster we will refer to

a general purpose Intel-based development cluster at JSC. As a representative

system at the Petascale level we will refer to JUQUEEN, the IBM BG/Q su-

percomputer at JSC which offers 28,672 nodes and 458,752 cores in total [15].

Each core can be overloaded by four processes such that ultimately 1,835,008

concurrent threads can be executed. The set-up is summarised in Table 1.

1GPU-based accelerators are not considered in this work but are left for future studies.

Yet, they are also highly parallel in nature and numerous aspects are likely to carry over to

this case.
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Table 1: HPC systems under consideration in this work

Level parallelisation type Intel Cluster JUQUEEN

distributive via max number of threads 512 1,835,008

message passing max nodes available 16 28,672

shared memory CPU/Node 2 1

via OpenMP cores/CPU 8 16

max threads/core 2 4

vectorisation SIMD 256 Bit 256 Bit

In principle, the fRG-ODE constitutes an ideal candidate for parallelisation

due to its high number of independent computational sub-tasks which are each

subject to a high numerical effort. Yet, the goal of optimally harvesting all

levels of parallelisation offered by the underlying hardware is somewhat subtle

in certain aspects. We will in the following report on a hierarchical parallelisa-

tion of a specific instance of an fRG code and comment on the experiences we

encountered in the course of that process.

2. Algorithm and Data Structure

As mentioned above, in its exact formulation the functional renormalisation

group equation leads to an infinite hierarchy of ordinary differential equations for

correlation functions. In practical applications, this hierarchy is truncated and

the functions of interest are discretised. This allows to map it onto a numerical

algorithm and results in the computational task of solving an ODE with a

large number of components and the need to plug the discretised functions into

a multi-dimensional numerical quadrature/summation to obtain the rhs. The

scale-dependent functions of interest are in most cases two-point (one-particle)

and/or four-point (two-particle) correlation functions, also termed self-energies

and effective interactions respectively. By storing the discretised representations

of all these functions in a single array V [i] of size n where i ∈ {1, n} and
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introducing g as a continuous flow parameter, the fRGE has the form

d

dg
V [i](g) = F [V [j](g); g] (1)

with initial condition V [i](0) = V [i]0 and the functional F [V [j]], j ∈ {1, n},

being non-linear and highly ”non-local” regardless of choosing a real-space or

reciprocal space representation of the problem. In this work we have restricted

ourselves to the flow of the four-point function. It is straight forward to extend

the strategy to other cases, e.g. to calculations of self-energies.

We use an explicit ODE stepper taken from a recent version of the Odeint

library [16], which in the meantime has been added to the Boost C++ library

collection [17]. We use an explicit solver such that the computation of the rhs

can be done independently for each single component, since V [j](g) is fixed for

all j when calculating F [V [j](g); g] within the algorithm.

Historically, the very first numerical computations based on an fRGE were

effectuated on nearly completely non-parallel hardware, i.e. typically a single

workstation using a single core, possibly including a narrow SIMD unit. This

allows for a reasonable treatment of numerous aspects of interest even today.

However, many aspects are not accessible within such a concept since com-

putation times virtually explode when increasing either the resolution, or the

dimensionality of the models of interest, or the desired accuracy of the results,

etc. To account for this, in some cases the possibility of parallelising the algo-

rithm has been exploited, e.g. in [6, 18, 19]. While lacking detailed knowledge

on all fRG codes in use we shall assume that such a first level of parallelisation

has been implemented in other works as well.

We will account for the hierarchical hardware structure in a top-to-bottom

fashion by organising the parallelisation in the following hierarchy of three levels:

• distribution layer (via MPI): work packages are distributed to separate

compute nodes which then act independently on physically separate data

• many-core/shared memory layer (via OpenMP): computation on a single

node is distributed over all available physical/logical cores which refer to
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the same shared data

• vectorisation (via compiler): lowest level computational tasks are mapped

to algorithmic variants which allow for an efficient use of vector units

(SIMD)

The paradigm we applied to each of these layers was to keep things as simple

as possible while making optimal use of the respective potentials. We did not

aim at finding the best possible hybrid algorithm, but we wanted to demonstrate

that the possibilities of parallel architectures can, for this type of code, actually

be exploited quite efficiently in simple ways. As stated above, we feel that

this is an essential criterion when considering and/or proposing the migration

of scientific applications to HPC infrastructures. In turn, this approach leaves

room for further improvement which can be explored by more sophisticated

means.

3. Parallelisation

We are dealing with an ODE for which the most time-consuming part con-

sists in the calculation of the rhs. We therefore decided to employ a standard

master-worker concept in which the workers are solely involved in calculating

the rhs and the master executes the actual ODE step once the rhs has been

calculated for all components. This setup explicitly introduces a serial element

in the overall algorithm which needs to be watched closely since by Amdahl’s

law [20] it imposes an implicit limit for the strong scaling behaviour.

Moreover, if we eventually try to treat very fine discretisations, higher spatial or

inner dimensions, or other schemes in which the number of components of V [j]

increases rapidly, we will eventually also run into memory capacity issues since

the full array is replicated on all nodes. This is however beyond the scope of

this work. A more general discussion along with conceptual details on efficient

hybrid implementations of master-worker parallelism is given e.g. in [21].

7



3.1. Top-level parallelism: distributed computing via MPI

Keeping these a priori limits in mind we chose a set-up for the calculation

of the rhs sketched in Algorithm 1 for a static work schedule and Algorithm

2 for a dynamic work schedule. Both variants will be discussed in the results

section. We denote by ’node’ the largest element of a (homogeneous) large-

scale computing cluster which provides one common, shared memory to all its

processing units, i.e. in most clusters a compute node of NUMA type (non-

uniform memory access).

Algorithm 1 distribution layer - static scheduling
master part

1: procedure distribute V [i]

2: broadcast V [i] to each node n ∈ N

3: end procedure

4: procedure collect results

5: for each node n ∈ N do

6: receive from each node the corresponding results

7: end for

8: end procedure

worker part

1: procedure receive V [i]

2: receive broadcast of V [i] from master

3: end procedure

4: procedure do calculation

5: for each index to calculate do

6: calculate and locally store result

7: end for

8: end procedure

9: procedure send results

10: send results to master

11: end procedure
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Algorithm 2 distribution layer - dynamic scheduling
master part

1: procedure distribute V [i]

2: broadcast V [i] to each node n ∈ N

3: end procedure

4: procedure distribute single work units and collect results

5: send single work units to workers

6: while work units left to calculate do

7: collect single results from any worker and assign next unit

8: end while

9: collect remaining results

10: end procedure

worker part

1: procedure do calculation

2: while work to be done do

3: receive work unit from master

4: compute result for single unit

5: send result to master

6: end while

7: end procedure

In practice we use the Message Passing Interface standard (MPI) to imple-

ment these common algorithms. We also anticipate to use only one MPI rank

per node in order to reduce the limits imposed by memory size per node. We

could relax this condition by allowing for several ranks per node which would

generalise the algorithm accordingly. We shall see later that for a small and

intermediate number of nodes dynamic scheduling is preferable, while for a very

high number of nodes the static concept is required for proper scaling.
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3.2. Second-level parallelism: multi-core/shared memory layer

Once all values of V [i](g) at a given value of g have been distributed to

the workers, the numerical task on a single compute node consists in general

in a multi-dimensional numerical quadrature (summation) over a continuous

(discrete) space for each of the components assigned to this node. In the case

looked at here this amounts to a two-dimensional integration over the two-

dimensional Brillouin zone of the Hubbard model on a square lattice [4]. While

there exist very efficient serial algorithms for numerical quadrature, there are

little to no resources available when it comes to generically efficient parallel

quadrature algorithms, in particular if the amount of cores used in a shared

memory environment increases to very high numbers. Therefore we have chosen

a fixed grid mid-point rule for the outer integral subject to quadrature, since this

can be parallelised very efficiently by means of OpenMP. For the inner integral

we used a locally adaptive mid-point rule which then constitutes the largest

inseparable numerical block to be executed by a single OpenMP task. The

fact that we apply the distribution of work on the outer quadrature is intended

to ensure that the computational time needed for each core to calculate the

function value is reasonably long compared to the OpenMP overhead. The

validity of this assumption needs to be verified by appropriate analysis tools as

well as scaling tests as will be described in later sections.

This is again a rather simple way of introducing parallelism which of course

leaves room for improvement by itself. Yet, we will see that it is an appropriate

way to arrive at a very efficient performance level.

3.3. Third-level parallelisation: vectorisation and core overload

In order to exploit the advantages of vectorisation as well as other cpu-

internal means of parallelism we follow a similar strategy as in the previous

section, however from a bottom-up view. We wish to avoid the usage of intrin-

sics or even assembly-like programming in order to keep the code easily portable

between different HPC systems as well as easily sustainable and maintainable.
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Modern compilers are able to vectorise code if it is offered to them in a suffi-

ciently simple and obvious fashion, which is typically a single loop with a fixed

iteration count, be it at compile time or at runtime, within which simple math-

ematical operations are applied to elements residing in elementary, contiguous

arrays. We thus split the innermost quadrature kernel over multiple domains

and evaluate these domains by means of such loops. To verify the efficiency of

this procedure we need to ensure that the compiler does indeed vectorise the

relevant code sections and we have to check by scaling benchmarks and, if pos-

sible, hardware-oriented tools whether we arrive at the desired speed-up.

In addition to this compiler-generated auto-vectorisation, current architectures

support and often recommend the execution of multiple threads per core to

make proper use of the complex internal architecture. We will include this core

overloading in our analysis in combination with the aspects of vectorisation.

We learned from the two distinct combinations of HPC architecture and com-

piler, that vectorisation and core overloading seem to be intimately related. On

the X86 platform it is a combination of both which yields a reasonable gain at

single core level, while on JUQUEEN the compiler avoids explicit vectorisation

and rather resorts to intrinsic ways to make use of the underlying hardware

parallelism. This seemed somewhat disappointing at first sight, considering the

behaviour on the X86 side. However, it turned out that the final structure of

the code was just as beneficial for core performance on the BG/Q. Again, it is

possible and promising to dig much deeper into technical details, preferably at

the level of assembly instructions, but here we wish to keep things as simple as

possible while obtaining a substantial gain.

4. Scaling results on small clusters

As our working example we focus on the interaction flow method introduced

in [4, 22], applied to the two-dimensional Hubbard model on a square lattice

with nearest-neighbour hopping amplitude t set to unity, next-nearest neighbour

hopping t′ = −0.01t, temperature T = 0.1t and chemical potential µ = −0.02.
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This corresponds to a hole-like case with the bare Fermi energy being slightly

above the van-Hove energy and the Fermi surface being closed around (π, π).

The bare on-site interaction is directly dependent on g and serves as the flow

parameter. We started from the code base used in [19] which we adapted to

the interaction flow and subsequently altered step by step in order to make use

of all the levels of parallelisation as outlined in the previous section. We will

restrict ourselves to results for the average time needed to calculate the rhs

within the first ODE step, for which seven single, complete evaluations of the

rhs are required. This is sufficient for the analysis of the scaling behaviour.

The calculation of the rhs consists in a numerical treatment of three distinct one-

loop diagrams. It amounts to a quadrature over the two-dimensional Brillouin

zone, which is numerically split into an outer integral over an energy variable

and an inner integral over a radial variable. The outer variable is pinned to a

fixed, equidistant grid of 1600 points, giving an energy spacing of 0.005t. The

inner quadrature is treated by a custom adaptive routine with a relative target

precision of 10−4 and a maximum of 2187 points at which the innermost loop-

kernel is evaluated.

In the following sections we analyse the efficiency of the individual paralleli-

sation layers in a bottom-up fashion, ending up with scaling results for a fully

hybrid code running on up to 16 compute nodes. We used a typical set of model

parameters with 32 patches and a discretisation in analogy to [4] and [19]. This

leads to an fRGE for 4072 independent coupling components when all spacial,

spin-related and time-reversal symmetries are taken advantage of.

All results were obtained on a JSC-internal compute cluster based on Intel

E5-2650 CPUs running at 2.0 GHz. We used the Intel C++ compiler 2015

(neglecting minor updates) and the ParaStation MPI implementation version

5.1.2 by ParTec, unless stated otherwise. In addition we offer some results at

the single node level obtained on the Intel Xeon Phi architecture (KNC) for

comparison.

12



4.1. Single-core: baseline, vectorisation and core-overload

We begin with computations on a single core in order to determine an ap-

propriate reference value to compare against when we later check the scaling

behaviour. For this purpose we ran the code on a single thread and switched

off vectorisation explicitly. The first row of Table 2 shows an average time for

computing the rhs of 1271.71 seconds of the non-vectorised code when executed

using one thread and defines this as the initial baseline.

Next we exploit the lowest level of parallelism by using the SIMD processing

units, in this case one 256 Bit AVX unit per core. As mentioned above, the code

was structured in a way to carry out elementary operations on simple arrays of

double-precision floating point numbers in loops with pre-determined iteration

counts, and the respective arrays were explicitly aligned. This facilitates the

compilers built-in ability to vectorise code efficiently. The level of vectorisation

was checked in compiler reports and/or by checking the generated assembly

code.

Furthermore, current architectures are designed to offer potential perfor-

mance gains when dispatching several threads on a single core. In our case the

effect of this core overload offers a similar performance gain compared with vec-

torisation, for the architectures under consideration here. However, already in

some immediate follow-up cpu architectures the SIMD width has been doubled,

such that the benefit of - and thus need for - vectorisation in this respect will

increase.

We see from Table 2 that it is indeed favourable to employ both, vectorisation

and an overloaded core in order to arrive at a speed-up factor of 2 compared

to the baseline result. It should be mentioned that the ideal speed-up one

can expect from mere vectorisation is of course 4, if the code at the lowest level

consisted exclusively of elementary mathematical operations which are executed

in a four-fold parallel fashion compared to the serial case. However, mainly two

aspects reduce the true gap between vectorised and non-vectorised code. First,

the vectorisation process as such introduces an overhead at the lowest hardware
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level. This is particularly disadvantageous for small iteration counts, which we

deal with here. Second, there are some complex operations executed before and

after the vectorised loop which are unavoidable and reduce the maximum gain

from speeding up the parallelised regions. While this is a small draw-back on

the X86 cluster, we will see later that these effects are more prominent on other

hardware.

By deeper substantial architectural software changes, we could most likely reach

better scaling on a single core. Yet, we managed to stick to small and simple

code changes and gained a factor of two while staying on a single compute core,

which is by all means satisfactory at this level.

Table 2: Single core parallelism

Threads vectorised rhs avg [s] speed-up

1 no 1271.71 1

1 yes 889.30 1.43

2 no 1021.16 1.25

2 yes 628.41 2.02

4.2. Adding intra-node parallelism using OpenMP

As our new baseline we now use the shortest runtime of 628.41 seconds of the

vectorised code when using two threads on a single core and introduce shared-

memory parallelism as described in the previous section. Table 3 again shows

the average times for computing the rhs along with the corresponding speed-up

values. All results are obtained with a compact affinity, meaning that a physical

core is always occupied by two threads in order to extract the correct scaling

with respect to the number of physical cores.

We observe that we manage to gain a very reasonable speed-up factor of

13.41 when moving from one to 16 cores, which is quite satisfactory. We thus
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Table 3: OpenMP parallelism

cores threads rhs avg [s] speed-up

1 2 628.41 1

2 4 320.60 1.96

4 8 175.62 3.58

8 16 91.79 6.85

16 32 46.87 13.41

managed to efficiently parallelise the code at this level by means of slight code

changes.

4.3. Adding distributed-memory parallelism using Message Passing Interface

(MPI)

Finally we show in Table 4 the results when the work is distributed over up

to 16 compute nodes using a dynamic MPI strategy as sketched in Algorithm

2. The fastest implementation of 32 threads per node from the previous section

is used as the new baseline, with the slight difference between 46.87 and 47.5

seconds being due to the intrinsic variation in runtime between different runs.

Table 4: MPI parallelism

worker nodes rhs avg [s] speed-up

1 47.15 1

2 23.65 1.99

4 11.82 3.99

8 5.91 7.98

16 2.97 15.88

The code scales nearly perfectly, showing a linear speed-up in the number

of worker nodes. We chose to exclude the master node from any computational
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task for reasons of scalability. Of course, for such a small number of nodes it

can be reasonable to also defer some computational work to the master, the dis-

advantage being that any delay on the master node with respect to the workers

translates into a larger and larger waste of cpu time the more nodes we use.

Furthermore , for very high numbers of worker nodes the master will have to

cope with a high load due to MPI communication as we will see later. This will

be another motivation to keep it free from computational tasks.

Gathering the results from all three levels of parallelisation in Table 5, we

find that we managed to reduce the average time to compute the rhs from 20

minutes to 3 seconds. That is, we arrive at a total speed-up of about 430 when

comparing the non-vectorised code run on a single thread and a single core to

the case of using 512 threads on 256 cores.

Table 5: total parallelism

cores threads vectorised rhs avg [s] speed-up

1 1 no 1271.71 1

256 512 yes 2.97 428

4.4. Pushing OpenMP to the limits: Scaling on Intel Xeon Phi (KNC)

It is instructive to benchmark the code on hardware which offers an even

higher level of parallelism on the shared-memory level in order to push towards

the limits of node-internal scalability. For this purpose we ran it on a single in-

stance of Intels Xeon Phi (Knight’s Corner) running at 1.0 GHz and offering 60

cores, each with a SIMD width of 512 Bit, i.e. eight double precision numbers.

Additional platforms which are worth to be examined further are GPU acceler-

ators, however this is outside the scope of this report. We note that this option

was used in [18].
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4.4.1. Vectorisation

We again start with a non-vectorised executable which we run on a single

core and we end up with an average time of 10,959 seconds, which is roughly

nine times as long as the counterpart run on a standard core as described in

the previous sections. This is not too surprising taking into account the major

architectural differences between the two cpu architectures.

A priori we could expect that the use of vectorisation offers about double

as much speed-up as in the case of a 256 Bit vector unit used in the X86 clus-

ter nodes. However, as shown in Table 6 the speed-up of 1.8 accomplished by

mere vectorisation seems rather low. This corroborates the conjectures from the

previous section concerning the limitations of vectorisation, and it is actually

known that on this very architecture the need and benefit of properly prepared

inner loops with preferably large iteration counts is crucial to exploit the poten-

tial of the 512 Bit SIMD units. To put it differently, when using this platform

we truly exceed the limit of on-core scalability for this version of the code. The

necessity for an algorithm to exploit vectorisation on Intel’s Xeon Phi is out-

lined in detail in [23]. We could now try to push things further by altering the

algorithm to make better use of these hardware capabilities, and this is indeed

scheduled for future work. In fact, some procedure like this is nearly always

applied when the underlying hardware structure changes. Here, we only wish

to illustrate one kind of limit that we ran into in the process of arriving at a

highly scalable code. (We note that there is no such thing as a highly-scalable

code as such, but there are rather pairs of the type (code,hardware) which can

result in a highly-scalable execution set.)

4.4.2. OpenMP

The Xeon Phi accelerator used here (5110P) offers 60 physical cores for

computational purposes. However, at the internal level each core runs two inde-

pendent threads which are served at every second clock tick, roughly speaking.

Therefore, it will be imperative to trigger the OpenMP implementation to put
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Table 6: Intel Xeon Phi vectorisation

Threads vectorised rhs avg [s] speed-up

1 no 10959.71 1

1 yes 5992.57 1.83

at least two threads on each core. On top of this we may overload each of these

two states as we did on the standard nodes, and in fact the Xeon Phi reports

240 logical cpus in total.

Table 7 summarises the OpenMP scaling results with the single-core vec-

torised runtime as the baseline. The picture resembles the behaviour on stan-

dard nodes: When using the maximum number of logical threads we can essen-

tially exploit the physical limit of scalability and arrive at a maximum speed-up

of 116.5 when using 240 OpenMP threads.

Table 7: Intel Xeon Phi OpenMP parallelism

Threads rhs avg [s] speed-up

1 5992.57 1

60 102.57 58.4

120 65.71 91.2

240 51.43 116.5

Ultimately, we observe that the final runtime is within ten percent of the

runtime on a standard node, cf. Table 3, which means we could already switch

to such an infrastructure without relevant disadvantages in the scientific work-

flow. Also, in terms of energy consumption according to hardware specs the

accelerator requires about as much power as two E5 2650 CPUs, such that by

this measure the accelerator already constitutes a valid alternative even without

18



additional architecture-specific code optimisations.2 However, considering that

nominally the peak performance of the Xeon Phi accelerator is about four times

as high compared to a dual-cpu node of the X86 cluster, a more thorough adap-

tation of the code could and should lead to substantial further optimisations on

this class of hardware.

4.5. Wrap-up: Single nodes and small clusters

While the scaling results presented above for the fRG specific task seem

trivially plausible, straight forward and not far from ideal, this is by no means

a generic property of any fRG code. The route taken to finally arrive at such a

scaling behaviour did involve several changes in code structure and design, often

due to issues in the areas of load balancing and compiler-related optimisation.

The most time consuming part, however, consisted in locating the bottle-

necks and from this deducing the code changes. The resulting code is kept

reasonably simple and the actual modifications were relatively few. At the

same time, the speed-up which can be accomplished even for such a small num-

ber of compute nodes is more than considerable. We note that we started with

an average time to calculate the rhs of about 1200 seconds, i.e. 20 minutes.

Building a complete fRG run on this set-up would imply a total runtime of

the order of a few days, depending of course also on the desired accuracy, the

parameter sets used and other conditions. The hybrid code when deployed on

16 nodes allows for step times of less than a minute for one ODE step, implying

durations for a complete run of the order of less than two hours. In terms of

future applicability of fRG methods for material scans already this small-scale

parallelisation can thus be considered a potential can opener, since scanning

involves a high number of runs applied to many different parameter sets and

model configurations.

2cf. specs available at http://ark.intel.com
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5. Scaling on large clusters

We have seen in the previous sections that already compute clusters of mod-

erate size can substantially speed up fRG calculations and reduce the runtime

by more than two orders of magnitude. Next, we will investigate in how far this

strategy carries over to much larger systems, be it in order to reach a further

speed-up, which in HPC language is termed ”strong” scaling, or be it to treat

(much) larger vector sizes, which in HPC language is termed ”weak” scaling.

5.1. Results on IBM BlueGene/Q (JUQUEEN)

JUQUEEN is an IBM BlueGene/Q HPC infrastructure, operated at and by

Jülich Supercomputing Centre (JSC) at Forschungszentrum Jülich, in coopera-

tion with IBM. Inaugurated in 2012 and operational at full capacity since the

beginning of 2013, it remains one of the most powerful supercomputers world-

wide, listed on rank eleven in the TOP 500 supercomputer ranking of November

2015. It consists of 28 racks, 28,672 nodes and a total of 458,752 cores [15], where

each core provides a 256 Bit SIMD/vector unit and permits a four-fold thread

overload.

In Table 8 we show scaling results starting from a baseline of 32 nodes, i.e.

32 × 16 = 512 compute cores. This starting point approximately corresponds

to the case of 16 nodes on the X86 cluster, in terms of runtime as well as power

demand.

In addition, we will now also vary the problem size to motivate an intrinsic

scaling limit. With an ODE vector of size 4072 and a structure which relies on

the computation of the rhs for one single component on one node, it is clear

a priori that strong scaling will saturate at least when the number of reaches

the order of the vector size. Yet, going from 32 nodes to 1024 nodes, i.e. by an

upscaling of 32, we note that the runtime needed for one single ODE step still

decreases substantially and the strong scaling behaviour remains very reason-

able even up to an average load of four components per node. This is due to

the use of dynamic MPI scheduling, i.e. the fact that we use Algorithm 2. The
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slightly super-linear speed-up is due to the fact that the master node does not

take part in the computation and for technical reasons we here work with the

total number of nodes rather than the number of worker nodes, unlike in the

case of the X86 cluster. In the limit of a large number of nodes this is irrelevant

for practical purposes.

Table 8: Strong scaling for a small-sized problem on JUQUEEN (IBM BG/Q)

Size: 4072 schedule: dynamic

node nodes rhs avg speed-up

cards [s]

1 32 3.92 1

2 64 1.93 2.03

4 128 0.97 4,04

8 256 0.50 7.84

16 512 0.26 15.07

32 1024 0.15 26.13

64 2048 0.09 43

Next, we move to an intermediate problem size for which the coupling vector

consists of 110,136 independent components. In Table 9 we again include results

for Algorithm 2, i.e. a fully dynamic MPI scheduling in which each worker is

assigned the task of computing the rhs for a single component, returns the

result, and receives the next work unit. This concept is however known to fail

eventually in an HPC context of massively parallel distributive set-ups, since

the master node will congest with respect to communication and the resulting

MPI overhead spoils the scaling. Indeed we observe that scaling starts to breaks

down when moving from 8,192 to 16,384 nodes. A simple recipe to overcome this

consists in changing from a dynamic MPI work load distribution to a static one

by assigning a certain set of predefined work units to every worker task first, have
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the workers compute all results, and finally collect all results in packages. Such

a static assignment has of course disadvantages, one being the lack of implicit

load balancing. E.g. the clustering of computationally more demanding tasks

to one or a few nodes could spoil the scaling behaviour even more than the

dynamic version. To prevent this we employed a strided distribution of the

static workload. This turned out to be fully sufficient to achieve very good

scaling up to the full machine size of 28,672 nodes.

We observe for such a static assignment following Algorithm 1, which we

have further supplemented by a strided distribution of the workload to avoid

clustering of heavy load at a single worker, that this is sufficient to achieve very

good scaling up to the full machine size of 28,672 nodes.

Figure 1 graphically summarises the scaling bevaviour and illustrates that

the static, strided work load distribution scales up to the whole machine size of

JUQUEEN.

While scaling is an important and central ”observable” in any HPC context,

it is essential from the scientists point of view to ask the question if there is a

qualitative gain one may achieve by this scaling. In that respect what counts

are actual runtimes and treatable system sizes and we note that in the limit of a

very large number of nodes it is possible to squeeze the time needed to calculate

the rhs down to about a second for a moderate system size. For what matters

to the fRG community this is the all important outcome since it opens the door

even further towards the possibility of materials scanning.

6. Issues, obstacles and tools

As already mentioned, the general set-up of the fRG-ODE constitutes a

scenario which seems ideal for very efficient and at the same time simple paral-

lelisation techniques over a wide range of relevant parameters. We started with

an initial code that had originally been optimised for serial performance and

which scaled perfectly only for a small number of MPI ranks. The outcome is
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Table 9: Strong scaling for a medium-sized problem on JUQUEEN (IBM BG/Q)

Size: 110136 schedule: dynamic schedule: static (strided)

node nodes rhs avg speed-up rhs avg speed-up

cards [s] [s]

1 32 148.69 1 149.1 1

4 128 36.34 4.09 36.64 4.07

16 512 9.04 16.44 9.25 16.12

64 2048 2.29 64.93 2.41 61.87

128 4096 1.17 127.08 1.24 120.24

256 8192 0.69 215,49 0.67 222.53

512 16384 0.66 225.29 0.36 414.17

896 28672 0.65 228.75 0.21 710.0

a code which now benefits from two additional levels of parallelisation at the

shared-memory and SIMD/core overload level and scales to very large numbers

of nodes at the distributed memory level. The evolution involved various means

of redesign and restructuring, including changes in the low-lying algorithms and

continuous evaluations of the appropriate locations where parallelisation-specific

pragmas and functions had to be placed. Some examples of such an approach

along with generic issues which are also valid in our context are e.g. given in

[24], a discussion along with general conceptual details on efficient hybrid im-

plementations of master-worker parallelism is given in [21].

The final code which scales over several orders of magnitude is then again rather

simple, which was a core statement already in the introduction. We thus hope

that the obstacles we had to overcome on the way to this simple code structure

may motivate others to engage in a similar strategy and to help making the

transition to a scalable codes an easier task than it may seem.

An obligatory step when encountering a break-down in scaling is to analyse
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Figure 1: Scaling behaviour for a medium-sized problem on JUQUEEN. A plot for the small-

sized problem is included for comparison.
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the application with respect to its usage of the underlying hardware infrastruc-

ture. This is possible thanks to a number of HPC-specific tools which, when

used in combination, allow for correctness checking and performance analysis

at nearly all technical and algorithmic levels. In this section we will outline the

two most relevant issues we encountered together with a brief description of how

these issues were analysed and which tools were of great use in doing so.

6.1. Making use of vectorisation and core overload

The initial code neither involved shared-memory multi-threading, nor did it

offer simple means for a compiler to make efficient use of on-core vector units

and other parallelism. The first step was to start from the very bottom of the

algorithm, which essentially means at the very lowest level of basic evaluations

of computational kernels within a multi-dimensional numerical quadrature. For

that purpose we needed to ensure that loops run over a minimum of iterations

for vectorisation to become reasonably effective, and we wanted to end up with

code that makes it sufficiently easy for compilers to automatically vectorise these
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loops without forcing us to resort to intrinsics. While it can be argued that this

approach is possibly less efficient than optimisation ”by hand” we wanted to

keep the code generically portable.

An inevitable subtask when trying to find and evaluate means for efficient

vectorisation are harware-based tools that shed sufficient light on the inner work-

ings of the actual binary. In case of the Intel-based X86 cluster we mainly relied

on Intel’s native performance analysis tools VTune and Intel Advisor, which

provide information on various aspects and potential bottlenecks. In particular,

on KNC hardware it allows for an explicit analysis of the actual vectorisation

intensity which is achieved in reality. In combination with compiler diagnostics

offered by the Intel compiler, we were able to combine the information obtained

from the tools and the reported vectorisation level of the compiler to efficiently

analyse bottlenecks and potential locations for code changes. This eventually

allowed us to alter the code as much as needed but no more than necessary to

obtain a high level of vectorisation intensity.

Porting and tuning the code on JUQUEEN relied mainly on the Score-

P/Scalasca/Vampir toolset. Here, it actually turned out that the compiler de-

cides to not explicitly vectorise the code but rather to optimise it for on-core

parallelism as it can be used when overloading a core. Yet, it proved to be an

efficient algorithm also in this case and showed that the path we were guided

to on the X86 cluster was a valid direction also for lifting the code to a BG/Q

environment.

While it was very valuable to enable compiler-based vectorisation, the gain

at this level of parallelisation was a little lower than we anticipated on the

standard X86 hardware. In case of the Xeon Phi it was much lower, and in

the case of JUQUEEN it was even preferable for the compiler to resort to other

means of optimisation. This tells us that there is still room for improvement,

since in principle and also in ideal examples vectorisation can be much more

efficient. Considering the current hardware evolution with wider and wider

SIMD units appearing in standard cpus, there is a big potential in this area to
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further improve the code. When designing a similar code from scratch we would

strongly suggest to address this at a very early stage of code development.

6.2. Load balancing vs. logistical overhead

When distributing work over a large number of nodes, already slight differ-

ences in work load can completely spoil the overall efficiency of parallelisation.

Therefore it is imperative to construct the overall algorithm in such a way that

the load balancing amongst all nodes is extremely well equalised.

The same argument holds for the intra-node load balancing, where it applies

to the work distribution among the available threads. This of course means

that in summary we need to ensure a near-to-perfect load balancing between

all available threads on all participating nodes, i.e. ultimately for full machine

runs on JUQUEEN between 1,835,008 threads (28,672 nodes × 16 cores × 4-fold

thread overload).

This requirement translates into the necessity to find the best location for

both levels of parallelisation, MPI and OpenMP-based, in the numerical al-

gorithm: If the level in the algorithm is too high up, we will spoil the load

balancing since we cannot smoothen out differences in compute time. There-

fore, from this point of view we would place both handles as low as possible

while keeping sufficient space between them.

If we followed this paradigm we would, however, eventually run into difficul-

ties at the other end of the scale. If we reduce the thread-specific numerical effort

at the shared-memory OpenMP level by too much, the logistical overhead that

is intrinsic to the OpenMP runtime framework will itself turn into a bottle-neck

and act as a limiting factor for any further scaling when increasing the intensity

of parallelisation. Similarly, if we reduce the individual work packages per node

by too much, i.e. if each node is ”too quick”, it is the MPI communication

overhead which will constitute a bottleneck in an analogous manner.

These requirements impose a lower limit to the level in the algorithm where

it is sensible to place the two parallelisation techniques MPI and OpenMP. We

could even be unlucky and hit the case when there is no sweet-spot or sweet-
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region between the aforementioned approaches, and for very small problem sizes

we indeed observed this when making use of the full JUQUEEN.

The process of locating such a sweet-spot would be a more or less impossible

task without dedicated tools which have been designed and developed over many

years for the specific purpose of analysing massively parallel code. In our case

we mainly relied on the tools Score-P, Scalasca and Vampir [25] for the analysis

of MPI and OpenMP load balancing as well as overhead analysis. In order

to illustrate a typical part of the workflow when analysing the quality of the

load balancing we show three figures for the case of using eight MPI worker

nodes, each of which employs 32 OpenMP threads. Figure 2 shows a sample

taken via Score-P/Vampir which shows the load distribution for the case when

each MPI rank is assigned a fixed set of components at the beginning of each

rhs evaluation. The OpenMP distribution within an MPI rank is such that

each OpenMP thread calculates the rhs for one single component. While this

was appropriate for certain cases and a small number of nodes, the graphical

analysis immediately unveals the draw-backs. The white regions show that half

of the nodes run idle for a substantial period of time during each calculation

of the rhs. The seven evaluations of the rhs necessary to execute one ODE

step can clearly be seen. This deficiency was first tackled by changing the work

scheduling at the OpenMP level by moving the OpenMP parallelisation one

level down. Namely, instead of having each thread compute the full rhs for

a single component we make use of all threads already for the computation of

the outer numerical quadrature in the two-dimensional integration, as described

above. This leads to a load balancing picture shown in Figure 3 where it can

be seen that we obtain quite a reasonable level. We can further improve the

situation by switching to the dynamical master-worker concept of assigning

only one component of the rhs at the time to each rank, receiving the result

and reassigning the next task to this now available rank. As shown in Figure

4 this further increases the efficiency of the algorithm and leads to a nearly

ideal load balancing. On the other hand, this strategy increases the intensity of

communication between master and workers and is known not to scale beyond
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Figure 2: Example for the load distribution for static MPI work load scheduling and outer

level OpenMP when using 8 worker tasks each employing 32 OpenMP threads

a certain number of nodes, depending on the specific application. Yet, we note

that it is well worth considering and benchmarking this standard approach as we

found that it constitutes the most efficient algorithm up to 4096 nodes. Beyond

this limit it is more efficient to resort to a static MPI load distribution.

7. Conclusion

The central purpose of this work - and more generally of HPC in science -

is to provide means to numerically tackle scientific problems of interest which

would otherwise be unfeasible or extremely time consuming. However, HPC

systems cannot ”automagically” speed up any scientific application. This is due

to the fact that the enormous nominal peak performance relies on an extremely

high level of hardware parallelism. Therefore, a key task to harvest the power

of HPC consists in designing applications in a manner that they scale on such

parallel infrastructures. In many cases this task appears to be a major obstacle
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Figure 3: As Fig. 2 but for static MPI work load scheduling and inner-level OpenMP

Figure 4: As Fig. 2 but for dynamic MPI work load scheduling and inner-level OpenMP
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to code developers, the result often being the implicit decision to ”maybe do it

at a later stage”.

In case of a particular example of a functional renormalisation group (fRG)

code we find that an HPC-ready design can indeed be accomplished, while at

the same time the necessary code modifications can be kept at a very moderate

level. In our case legacy code needed to be altered and the final resulting code

is simple. Arriving at this result involved a number of intermediate steps of

analysis and code redesign, which we also sketched in this paper.

In summary, we hope to motivate the fRG community to use parallel computing

architectures more intensely and eventually move to full-fledged HPC systems

in order to most efficiently harvest the potential of the method.

As the closing bottom line we note that we achieved an overall speed-up of

about five orders of magnitude, coming from a single core computation on an

Intel-based compute node to a full run on a 28 rack BG/Q system. This is

an enormous spread in compute time and in our eyes justifies the common

conjecture that ”quantity is quality” in this context.
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