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Abstract

An analytical benchmark is proposed for graphene and carbon nanotubes, that may serve to test whatsoever
molecular dynamics code implemented with REBO potentials. By exploiting the benchmark, we checked
results produced by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) when adopting
the second generation Brenner potential, we made evident that the code in its current implementation
produces results which are offset from those of the benchmark by a significant amount, and provide evidence
of the reason.
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1 Introduction

Molecular dynamics (MD) simulations are nowadays more and more popular in scientific applications, es-
pecially in those fields of material science involving nanotechnology and advanced material design. On one
side, there are advantages in the speed and accuracy of the simulations, with the model of the potential for
atomic interactions being optimized to reproduce either experimental values or quantities extimated by first
principles calculations (considered, as a matter of facts, just like experimental results). On the other side,
it is more and more frequent to use commercial or open-access codes implementing off-the-shelf potential
models, and use them as a black box, without having a precise feeling with the code itself. One of the most
used simulator is LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), able to implement
several interatomic potentials. By using an analytical discrete mechanical model, we present a benchmark
for the equilibrium problem of graphene and carbon nanotubes, which can be applied to any kind of REBO
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(reactive empirical bond-order) potential. The analytical condition proposed produces results in complete
agreement with First Principles, Density Functional Theory and Monte Carlo simulations. With the aid
of this benchmark, we show that LAMMPS code, when implemented with the second generation Brenner
potential, produces results which are offset from those of the benchmark by a significant amount, and provide
evidence of the reason. The purpose of this letter it is not to just to supply a test for the LAMMPS code,
rather, it is to provide a general tool for testing any MD code.

2 An analytical discrete model for equilibrium configurations of
FGSs and CNTs

The benchmark solution we propose has been developed within the context of carbon macromolecules, such
as Flat Graphene Strips (FGSs) or Carbon Nanotubes (CNTs). When regarded from the point of view of
MD, such aggregates are modelled as sets of mass points, whose configuration is described by the Cartesian
coordinates of each point with respect to a chosen reference frame; each point is then interacting with the
others – at least with the closest ones – and the interaction is captured by a suitable empirical potential,
whose shape and parameters are fitted with a set of selected experiments and ab initio calculations. The last
generation potentials usually take into account multi-particle interactions, up to the third nearest neighbor,
which is indispensable to capture the mechanics of complex systems, such as carbon macromolecules.

In order to provide an easy-to-visualize mechanical picture, the perspective we here adopt is not the one
of MD, we consider instead the approach of Favata et al.[6], where a discrete mechanical model is detailed
for 2D carbon allotropes. In this view, the configuration of a molecular aggregate is not identified by the
coordinates of the mass points, but rather by a suitable finite list of order parameters. In particular, the
conditions of natural equilibrium of the aggregate can be determined and expressed in terms of such list and
independently of the choice of the REBO potential. As we will see, the prediction of such equations are in
total agreement with First Principles, Density Functional Theory and Monte Carlo simulations; moreover,
given their generality, they can be exploited to establish benchmark solutions.

In order to understand the physical meaning of the conditions we propose, we summarize some of the
results of Favata et al.[6]. Starting with the geometry, with reference to Fig. 1, let the axes 1 and 2 be
respectively aligned with the armchair and zigzag directions, and let n1, n2 be the number of hexagonal cells
counted along these axes. Let us consider now the representative cell A1B1A2B3A3B2A1. We note that
the sides A1B1 and A3B3 are aligned with the axis 1; the common length of corresponding bonds will be
denoted by a, and we will call a-type the corresponding bonds. We see that the other four sides have equal
length b (b-type bonds). We pass to introduce the bond angles and, since we intend to consider interactions
up to the third neighbor, the dihedral angles. As to the bond angles, we notice that they can be of α-type

and β-type (e.g., respectively, Â3B2A1 and B̂2A1B1; see Fig. 1). As to the dihedral angles, there are five
types (Θ1, . . . ,Θ5), which can be identified with the help of the colored bond chains in Fig. 1. In conclusion,
to determine the deformed configuration of a representative hexagonal cell, no matter if that cell belongs to
a FGS or to an achiral CNT, we need to determine the 9-entry order-parameter substring :

ξsub := (a, b, α, β,Θ1, . . . ,Θ5) . (1)

The complete order-parameter string for the whole molecular aggregate can be obtained by sequential jux-
taposition of substrings.

Due to the geometric compatibility conditions induced by the built-in symmetry (see Favata et al.[6] for
details), only three of the nine kinematic variables determine the natural configuration, which are chosen to
be a, b, and α. In particular, by distinguishing the armchair (superscript A) from the zigzag (superscript Z)
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Figure 1: Order parameters in a graphene sheet.

case, the order-parameter substring are given by, respectively:

ξAsub =(a, b, α, β̃
A

(α,ϕA),

Θ̃A
1 (α,ϕA), Θ̃A

2 (α,ϕA), 2Θ̃A
2 (α,ϕA), 0, 0);

ξZsub =(a, b, α, β̃
Z

(α,ϕZ),

ϕZ , Θ̃Z
2 (α,ϕZ), 0, 2 Θ̃Z

2 (α,ϕZ), 0).

(2)

The explicit form of the functions β̃
A,Z

, Θ̃A
1 , Θ̃

A,Z
2 is given in Favata et al.[6] In (2), ϕA = π/n1 is the angle

between the plane of A1B1B3 and the plane of B1A2B3 when an armchair CNT is considered, and ϕZ = π
n2

the angle between the planes of A1B1A2 and A2B3A3, when a zigzag CNT up is considered. In case of a

FGS, we have ϕA,Z = 0, β̃
A,Z

= π − α/2, and Θ̃A
1 = Θ̃A,Z

2 ≡ 0.

The equilibrium equations turn out to be the following ones:

σa = 0 , σb = 0 ,

τα + 2β,α τβ + Θ1,α T1 + 2Θ2,α T2 + Θ3,α T3 + Θ4,α T4 ,
(3)

where σa, σb, τα, τβ , and Ti, are the so-called nanostresses, work-conjugate to changes of, respectively, bond
lengths, bond angles, and dihedral angles of each type considered. The form of the third of (3) depends on
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which of the two achiral CNTs is dealt with; more precisely, we have that

τAα + 2βA,α τ
A
β + ΘA

1 ,α T A1 + 2ΘA
2 ,α T A2 + ΘA

3 ,α T A3 = 0 ,

τZα + 2βZ ,α τ
Z
β + 2ΘZ

2 ,α T Z2 + ΘZ
4 ,α T Z4 = 0 .

Due to their generality, the conditions (3) may serve as a benchmark for any REBO potential. To express
the equilibrium equations in terms of the Lagrangian coordinates a, b, and α, it is necessary to introduce the
constitutive equations for the stress, which result from the assignment of an intermolecular potential. In the
next section, we detail the formulas in the Brenner 2nd generation REBO potential [2] which are needed to
solve (3) in terms of the order parameters.

3 REBO potentials

In the Brenner 2nd generation REBO potential, the binding energy V REBO of a molecular aggregate is
written as a sum over nearest neighbors:

V REBO =
∑
i

∑
J<I

VIJ ;

the interatomic potential VIJ is given by the construct

VIJ = VR(rIJ) + bIJVA(rIJ) , (4)

where the individual effects of the repulsion and attraction functions VR(rIJ) and VA(rIJ), which model
pair-wise interactions of atoms I and J depending on their distance rIJ , are modulated by the bond-order
function bIJ . The repulsion and attraction functions have the following form:

VA(r) = fC(r)

3∑
n=1

Bne
−δnr ,

VR(p) = fC(r)

(
1 +

Q

r

)
Ae−γr ,

where fC(r) is a cutoff function limiting the range of covalent interactions to nearest neighbors, and where
Q, A, Bn, γ, and δn, are parameters to be chosen fit to a material-specific dataset. The remaining ingredient
in (4) is the bond-order function:

bIJ =
1

2
(bσ−πIJ + bσ−πJI ) + bπIJ ,

where superscripts σ and π refer to two types of bonds: the strong covalent σ-bonds, between atoms in
the same plane, and the π-bonds , which are perpendicular to the plane of σ-bonds. We now describe the
functions bσ−πIJ and bπIJ .

The role of function bσ−πIJ is to account for the local coordination of, and the bond angles relative to,
atoms I and J , respectively; its form is:

bσ−πIJ =

(
1 +

∑
K 6=I,J

fCik(rIK)G(cos θIJK) eλIJK +

+ PIJ(NC
I , N

H
I )

)−1/2

.

Here, for each fixed pair of indices (I, J), (a) the cutoff function fCIK(r) limits the interactions of atom I to

those with its nearest neighbors; (b) λIJK is a string of parameters designed to prevent attraction in some
specific situations; (c) function PIJ depends on NC

I and NH
I , the numbers of C and H atoms that are nearest

neighbors of atom I, and is meant to adjust the bond-order function according to the specific environment
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of the C atoms in one or another molecule; (d) according to Brenner et al.[2], for solid-state carbon, the
values of both the string λIJK and the function PIJ are taken null. Finally, function G(cos θIJK) modulates
the contribution of each nearest neighbor in terms of the cosine of the angle between the IJ and IK bonds;
its analytic form is given by three six-order polynomial splines in cos θ, each of them defined in an interval
of the bond angle θ. The corresponding coefficients are determined by fitting each polynomial spline to the
values of G(cos θ) at certain values of θ.

Function bπIJ is given a split representation:

bπIJ = ΠRC
IJ + bDHIJ ;

the first addendum depends on whether the bond between atoms I and J has a radical character and on
whether it is part of a conjugated system, the second depends on dihedral angles. Function bDHIJ is given by

bDHIJ = TIJ(N t
I , N

t
J , N

conj
IJ )×

×

 ∑
K(6=I,J)

∑
L(6=I,J)

(
1− cos2 ΘIJKL

)
fCIK(rIK)fCJL(rJL)

 ,

where function TIJ is a tricubic spline depending on N t
I = NC

I + NH
I , N t

J , and N conj
IJ , a function of local

conjugation, while ΘIJKL is the diedral angle between the planes of I, J,K and I, J, L.
When the point of view described in Sect. 2 is assumed, the expressions of the potentials have to be

specialized and written in terms of the order parameters in the substrings (1). On introducing the potentials
Va and Vb for the a- and b-type bonds, we have, respectively:

Va(a, β,Θ1) = VR(a) + ba(β,Θ1)VA(a) ,

Vb(b, α, β,Θ2,Θ3,Θ4) = VR(b) + bb(α, β,Θ2,Θ3,Θ4)VA(b)

(see Favata et al.[6] for details).
Once this has been done, the nanostresses entering the balance equations (3) can be expressed in terms

of the order parameters by means of the following constitutive relations:

σa = V ′R(a) + ba(β,Θ1)V ′A(a) ,

σb = V ′R(b) + bb(α, β,Θ2,Θ3,Θ4)V ′A(b) ,

τα = bb,α(α, β,Θ2,Θ3,Θ4)VA(b) ,

τβ =
1

4

(
ba,β(β,Θ1)VA(a) + 2bb,β(α, β,Θ2,Θ3,Θ4)VA(b)

)
,

T1 =
1

2
ba,Θ1(β,Θ1)VA(a) ,

T2 =
1

2
bb,Θ2(α, β,Θ2,Θ3,Θ4)VA(b) ,

T3 = bb,Θ3
(α, β,Θ2,Θ3,Θ4)VA(b) ,

T4 = bb,Θ4
(α, β,Θ2,Θ3,Θ4)VA(b) .

4 Analytical vs LAMMPS results

The most direct outcomes of our solution are natural geometry and energy, which can be used to check
the correctness of whatever MD code. The results obtained by solving equations (3) with Brenner 2nd
generation potential are in good agreement with First Principles, Density Functional Theory (DFT) and
Diffusion Monte Carlo (DMC) simulations, as Tables 1 and 2 show.

As an application of the possibility of exploiting (3) as a benchmark, we present in Table 3 the radii of
a number of CNTs, showing that standard LAMMPS code underestimates them. In Table 4 the values of
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the cohesive energy from our solution and those obtained with the use of LAMMPS code when adopting
the 2nd-generation Brenner potential are presented; it can be seen that there is a remarkable difference:
the cohesive energy is highly overestimated and our benchmark makes evident that the code in its current
implementation definitely produces results which are offset from those of the benchmark. The origin of the
discrepancies can be found only by a close inspection of LAMMPS source code. In fact, although in Brenner
et al.[2] it is indicated that the values of the function PIJ should be taken null for solid-state carbon, the
code assigns the value 0.027603. This latter value is actually dictated in Table VIII of Stuart et al.[10] for
AIREBO potentials, due to the additional terms included in this potential. Whenever a LAMMPS user
wants to adopt REBO potentials, he needs to change the hard-wired number for the variable PCCf[2][0] in
“pair airebo.cpp”; unfortunately, the LAMMPS manual does not provide any information on this issue, and
most studies based on LAMMPS REBO calculations are likely to have underestimation or overestimation
of mechanical and geometrical properties presented in our Tables. An example of the use of LAMMPS
with 2nd generation Brenner potential is Zhang et al.[11]. When the value assigned in Brenner et al.[2] is
implemented, the LAMMPS code produces the same results as the benchmark solution, letting alone a tiny
difference due to numerical effects, as the third column of Tables 3 and 4 undeniably makes evident.

Starting from the geometry and the energy gathered by means of (3), it is possible to obtain secondary
quantities. In Table 5 and 6 the Young moduli and the Poisson coefficients are reported: the standard
LAMMPS code overestimates the former and underestimates the latter. Our results are in very good agree-
ment with the literature (see e.g. Agrawal et al.[1]). The differences between our benchmark and the
LAMMPS code with modified parameters are ascribable to numerical effects, more accentuated because
Young modulus and Poisson coefficients are quantities not directly evaluated, but rather derived, and an
increment of numerical error is foreseeable.
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Table 1: Cohesive eneregy (eV/atom)

our El-Barbery Shin
benchmark et al. [5] et al. 2014 [9]

(First Principles) (DMC)
-7.3951 -7.4 -7.464

Table 2: Radii (nm) of small CNTs, comparison with literature

(n,m) our Machón Cabria Popov Budyka
benchmark et al. 2002 [7] et al. 2003 [4] 2004 [8] et al. 2005[3]

(DFT) (DFT) (TB) (DFT)

(3,3) 0.211 0.210 0.212 0.212 -
(4,4) 0.277 - - - 0.277
(5,0) 0.208 0.204 0.206 0.205 -
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Table 3: Radii
Our LAMMPS LAMMPS

benchmark (standard) (modified)

(n,m) (nm) (nm) (nm)

(3,3) 0.2111 0.2079 0.2110
(4,4) 0.2767 0.2723 0.2766
(5,5) 0.3431 0.3371 0.3404
(6,6) 0.4101 0.4035 0.4100
(7,7) 0.4773 0.4697 0.4773
(8,8) 0.5447 0.5361 0.5447

(10,10) 0.6798 0.6690 0.6798
(12,12) 0.8151 0.8022 0.8151
(18,18) 1.2216 1.2020 1.2215
(25,25) 1.6961 1.6689 1.6960
(5,0) 0.2078 0.2046 0.2076
(6,0) 0.2447 0.2409 0.2446
(7,0) 0.2823 0.2778 0.2821
(8,0) 0.3202 0.3151 0.3201
(9,0) 0.3584 0.3527 0.3583
(10,0) 0.3969 0.3905 0.3967
(12,0) 0.4741 0.4665 0.4739
(15,0) 0.5905 0.5810 0.5904
(20,0) 0.7853 0.7274 0.7852
(30,0) 1.1760 1.1572 1.1759
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Table 4: Cohesive energy

Our LAMMPS LAMMPS

benchmark (standard) (modified)

(n,m) (eV/atom) (eV/atom) (eV/atom)

(3,3) -7.0137 -7.3838 -7.0137
(4,4) -7.1695 -7.5569 -7.1695
(5,5) -7.2463 -7.6422 -7.2462
(6,6) -7.2898 -7.6905 -7.2896
(7,7) -7.3167 -7.7204 -7.3166
(8,8) -7.3346 -7.7403 -7.3345

(10,10) -7.3560 -7.7640 -7.3558
(12,12) -7.3678 -7.7771 -7.3676
(18,18) -7.3829 -7.7038 -7.3827
(25,25) -7.3887 -7.8003 -7.3886
(5,0) -6.9758 -7.3417 -6.9759
(6,0) -7.0969 -7.4763 -7.0969
(7,0) -7.1715 -7.5593 -7.1715
(8,0) -7.2212 -7.6144 -7.2212
(9,0) -7.2560 -7.6531 -7.2560
(10,0) -7.2814 -7.6812 -7.2813
(12,0) -7.3151 -7.7186 -7.3149
(15,0) -7.3432 -7.7499 -7.3431
(20,0) -7.3656 -7.7747 -7.3655
(30,0) -7.3819 -7.7927 -7.3818

graphene -7.3951 -7.8074 -7.3950
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Table 5: Young modulus

Our LAMMPS LAMMPS

benchmark (standard) (modified)

(n,m) (GPa) (GPa) (GPa)

(3,3) 893.9167 987.0102 885.0631
(4,4) 851.4536 944.4810 840.1351
(5,5) 804.6053 901.869 799.7630
(6,6) 800.9298 891.6427 789.8102
(7,7) 793.7379 881.2895 778.2888
(8,8) 784.8784 872.9931 767.9165

(10,10) 768.6379 856.9461 756.7625
(12,12) 756.3044 846.2911 746.5046
(18,18) 735.9332 831.2163 732.5252
(25,25) 726.2650 823.3865 726.4968
(5,0) 948.0854 1046.3569 943.9120
(6,0) 973.0048 1075.4912 968.5679
(7,0) 976.5265 1082.0265 971.5102
(8,0) 969.7954 1076.6910 965.8188
(9,0) 958.1824 1066.6410 954.9396
(10,0) 944.5151 1053.1830 941.3135
(12,0) 916.0510 1025.8253 915.1339
(15,0) 877.5820 986.5745 877.9641
(20,0) 830.0108 940.5973 835.7993
(30,0) 779.7321 890.5147 789.0504
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Table 6: Poisson coefficient
Our LAMMPS LAMMPS

(n,m) benchmark (standard) (modified)

(3,3) 0.1450 0.1237 0.1563
(4,4) 0.2311 0.2078 0.2388
(5,5) 0.2924 0.25782 0.2963
(6,6) 0.3061 0.27936 0.3115
(7,7) 0.3181 0.2937 0.3318
(8,8) 0.3292 0.3020 0.3458

(10,10) 0.3466 0.3194 0.3526
(12,12) 0.3588 0.3306 0.3626
(18,18) 0.3779 0.3426 0.3740
(25,25) 0.3867 0.3507 0.3790
(5,0) 0.0655 0.0362 0.0661
(6,0) 0.0867 0.0600 0.0840
(7,0) 0.1100 0.0800 0.1105
(8,0) 0.1328 0.1045 0.1306
(9,0) 0.1544 0.1234 0.1511
(10,0) 0.1742 0.1424 0.1737
(12,0) 0.1923 0.1725 0.2032
(15,0) 0.2493 0.2138 0.2446
(20,0) 0.2950 0.2564 0.2835
(30,0) 0.3406 0.2991 0.3261
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