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Abstract

By putting together an abstract view on quantum mechanics and a quantum-
optics picture of the interactions of an atom with light, we develop a corre-
sponding set of C++ classes that set up the numerical analysis of an atom
with an arbitrary set of angular-momentum degenerate energy levels, arbitrary
light fields, and an applied magnetic field. As an example, we develop and
implement perturbation theory to compute the polarizability of an atom in an
experimentally relevant situation.

1. Introduction

In the eponymous two-level atom the entire atomic level structure is reduced
to two states with a dipole coupling between them. An external light couples
to the dipole moment, and drives transitions between the states or “levels.”
Transitions between the two states and possibly also to states outside of the
two-state system associated with spontaneous emission of photons may also be
included; see Fig. 1, left. These concepts have been thoroughly discussed in
many quantum-optics textbooks [1, 2], and have proven enormously valuable
in the analysis of atom-field interactions. For instance, the two-level system is
the reigning paradigm of the physical implementations of quantum information
systems.

d E

Γ

F’= 3
2

1

1

0

F= 2

Figure 1: Left: The two-level system. Also shown symbolically are the dipole-coupled transi-
tions driven by the external light, and spontaneous emission taking the atom down from the
upper to the lower level. Right: Schematic representation of the hyperfine structure of the
D2 line in 87Rb. The light-driven and spontaneous transitions between the “stretched” states
F = 2, mF = 2 and F ′ = 3, m′F = 3 are also illustrated.
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However, Nature does not necessarily cooperate. Atomic energy levels have
angular momentum degeneracy except if the total angular momentum is zero,
but there is no dipole transition between two states with zero angular momenta.
Consult Fig. 1, right, for a highly stylized representation of the hyperfine struc-
ture of the D2 line of 87Rb, an atomic species and transition commonly em-
ployed in modern atomic physics experiments. The total number of quantum
states, including the Zeeman states in the hyperfine levels, is 24. Now, if the
driving transition has the proper σ+ circular polarization, there is a closed tran-
sition between the stretched states, ground- and excited-level hyperfine states
F = 2, mF = 2 and F ′ = 3, m′F = 3, in such a way that the selection rules
for dipole transitions prevent the atom from leaving this two-state system; and
there is a pathway from every other state to the stretched states with dipole-
allowed light-driven and spontaneous transitions. The atom thus invariably (in
principle) gets optically pumped to the two stretched states, and a two-level
system is realized. But there are complications, and the experiments often add
a second “repumper” laser to help things along.

Numerous are the cases when experimental results from laboratories are
qualitatively discussed in terms of two-level models, but more enlightenment
is sought from computations using multistate models. Besides, there are also
experiments in which level systems with more that two states are a deliberate
objective. For instance, the multitude of quantum states may be an advantage
in laser cooling, leading to much lower atomic temperatures than would be
possible for a two-level atom.

Well over 20 years ago we wrote a C code that in principle could manage
an arbitrary atomic level structure under an arbitrary light field, and used it
to study problems such as laser cooling in situations where angular momentum
degeneracy is essential [3, 4, 5, 6, 7, 8]. We also have more modest C programs
for use in Mössbauer spectroscopy [9], with the main enhancement over the
atomic-physics scheme being that we allow arbitrary multipole transitions in
addition to dipole transitions. Since then C++ [10] has all but superseded C.
Moreover, with the interest in quantum information, quantum measurements
and feedback [11, 12], deep understanding of the structural aspects of quantum
mechanics is more common these days than it was back then. That is why we
undertook a complete rewriting of the C code in C++.

The idea of the new Software Atom is to abstract the relevant concepts of
quantum mechanics and atomic physics, and map them to software objects.
We describe here the relevant mathematics and physics background, discuss the
corresponding programming principles and software, and illustrate with code
snippets. Finally we discuss briefly an application to physics related to experi-
mental and theoretical analyses of light scattering from a small, dense cloud of
low-temperature atoms.

Our emphasis is really on philosophy, namely, the synergy between physics,
mathematics, and coding. We do not offer any comprehensive and optimized
end-user programs. However, an operational version of the C++ code with a
main program and thorough internal commenting is available at [13].
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2. Vectors, operators, and so on

2.1. Primitives of quantum mechanics

State vector |v〉 is the elementary concept of state in quantum mechanics.
An array of complex numbers vi, numerically, a complex vector, is a natural
representation of a state vector. Along with the vectors comes the inner product
of two vectors that can also be implemented numerically in a natural way.

To deal with vectors, we have coded a template vector-matrix class. Vectors
and matrices come with the usual algebra implemented by overloading C++
operators. For instance, if a and b are complex numbers, u, v, and w are
complex vectors, and A is a complex matrix, then w=a*u+b*w and v=A*u do
what you would expect them to do, inner(u,v) takes the inner product of
two vectors, and u.normalize() normalizes the vector u to unity. Even some
implicit type conversions are implemented, so if r is a real vector and c is a
complex vector, the operation c=r is legal. For the present purpose we have
defined, using typedef, both the scalar type CMPLX as complex<double>, and
the shorthands RealV, ComplexV, RealM and ComplexM for real and complex
vectors and matrices..

Our matrices and vectors known about their dimensions, which are checked
on every attempt to do algebra and an exception is thrown if the dimensions are
not compatible. This may not look efficient, but it helps enormously to catch
programming errors. On the scale of computational problems the Software Atom
is light work, so the programmer’s time is much more costly than the CPU time.
That is why the checking of the dimensions cannot be bypassed in the present
version.

On the next level of quantum mechanics are the (linear) operators. Their
primary implementation is in terms of the matrices of the same vector-matrix
class that we have already mentioned. Our Software Atom also uses internally
another implementation of operators in which the matrix elements of the opera-
tor are stored as a linked list maintained by using the C++ Standard Template
Library. One element in the list consists of the indices of the matrix and the
corresponding matrix element.

A particularly prominent operator in quantum mechanics is the density op-
erator ρ, a positive operator with unit trace. It is a generalization of the usual
state-vector state of a quantum system. In fact, if there exists a normalized
state vector |ψ〉 such that ρ = |ψ〉〈ψ|, the density operator is said to be a pure
state. The expectation value of the quantum mechanical observable is given by
〈A〉 = Tr(ρA).

We build on top of the vector-matrix package, bringing in additional layers
of quantum mechanics and relevant atomic physics. First, we allow a vector
implementation of operators, Ak with just one index, with a one-to-one mapping
between the indices k and the pairs of vector indices ij. Although this choice is
hidden from the user, in the present code the matrix-form operator Aij is in fact
stored as the exact same array of complex numbers as the corresponding vector-
form operator Ak, in the C style row-major order. We also offer constructs such

3



as outer product, construction of operators from vectors as in the Dirac notation
dyad |ψ〉〈φ|.

The vector-matrix dichotomy together with our strict checking of dimen-
sions of vectors and matrices necessitates explicit conversions between the two
operator types. The function convert does it both ways, depending on the type
of the argument. In quantum mechanics with density operators trace also plays
a prominent role, so we have two functions Trace to deal with it for operators
represented as vectors.

The next level of abstraction in quantum mechanics is operators acting on
operators. For instance, think about the Liouville-von Neumann equation of
motion of the density operator in a closed system with the Hamiltonian H,

d

dt
ρ = − i

~
[H, ρ] . (1)

The right-hand side clearly presents a linear operator, a superoperator, that
takes the operator ρ as an argument and turns out another operator (−i/~)[H, ρ]
as the result. At the basic level the superoperators are collections of complex
numbers Lij,kl labeled by four vector indices, and the action of the superoperator
L on the operator A produces the operator LA whose matrix elements are
(LA)ij =

∑
kl Lij,klAkl.

If we think of operators as vectors, then superoperators can be thought of
as matrices and represented using the existing vector-matrix class. In this way
the linear algebra of superoperators is automatically implemented. However,
as it turns out that in this problem area matrices holding superoperators are
generally sparse, we also have another implementation as a linked list based on
the C++ Standard Template Library. We have not coded the linear algebra
for this representation of the superoperators, but the linked-list superoperators
know how to act on operators represented both as matrices and as vectors.

2.2. Quantum mechanics wrapped in an atom

In the end, though, a typical user of the Software Atom needs to see relatively
little of the underlying vector-matrix algebra we have described until now. This
is because it is wrapped inside abstractions mimicking atomic physics. At the
core there is the class general atom, which encapsulates the description of an
atom.

In the vein of quantum optics we think of an atom as an arbitrary collection
of angular-momentum degenerate levels of Zeeman states with dipole couplings
between the levels as appropriate. Correspondingly, we have a class level for
each level. One specifies a level by giving the degeneracy equal to 2J+1, with J
being the angular momentum of the level, and the Lande g factor that is needed
if one is to allow a magnetic field to act on an atom; if not specified, the default
value is 0. However, we use C++ access rules to disallow direct manipulation of
levels in an atom. Instead, to construct an atom, a user would start by taking
an empty atom and adding levels to it, as here a level with J = 1:

general atom atom;
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size t deg e = 3;

double Lande e = 0.653;

atom.add level("e", deg e, Lande e);

The string literal "e" will internally turn into a string that is subsequently
used to refer to this level.

From the quantum optics point of view, though, the atom generated so far
is uninteresting in that it does not couple to the external light. The next step
is to add the appropriate dipole couplings between the levels. Suppose we have
two levels g (“ground”) and e (“excited”) defined for an atom, then we add a
dipole coupling between the levels as here,

double D = 1.0;

double gamma = 1.0;

atom.add coupling("g", "e", D, gamma);

D is the reduced dipole matrix element defined so that the dipole matrix element
between magnetic substates equals D times the corresponding Clebsch-Gordan
coefficient, and gamma is the half width half maximum linewidth for the transi-
tion between these levels in the absence of any other levels. Note that the order
of "g" and "e" matters: e is taken to be higher in energy so that spontaneous
decay proceeds in the direction e→g. In a maybe counterintuitive design de-
cision explained below, the levels themselves do not know what their energies
are.

The atom thus far constructed is an organizational template. It holds a
description of the levels and the transitions between them, and some static data
such as the relevant Clebsch-Gordan coefficients. An atom also stores the data
needed for a quantitative description of spontaneous-emission transitions that
might occur in it. Finally, an atom presents a facility to make any state vector
using a symbolic representation of levels and Zeeman states without having to
know explicitly the vector representation of the state. Thus, given the complex
vector type ComplexV, we could make a state vector that has the atom in a
particular level g and Zeeman state m = 2,

ComplexV state(atom.get size());

double m = 2;

double value = 1.0;

atom.add to state("g", m, value, state);

The index for the Zeeman state m = 2 is a double to accommodate half-integers;
if the given m is not close to an integer or a half-integer or is otherwise invalid,
an error message and an abort result.

Next we have the atomic operator class atomic operator. The constructor
atomic operator(general atom& atom) stores a reference to atom, which is
then used to construct an operator acting on the atom. Objects of the class
general atom know how to calculate their expectation values in both state
vector states and density operator states, and also how to construct certain
superoperators corresponding to the operator, such as the one the right-hand
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side of (1).
In fact, an object of the type atomic operator would, however, be a zero

operator. The substance is in the derived classes. We have developed a sur-
prisingly small collection that has so far answered all of our questions, such as
magnetic moment operator and unit operator for each level, and the raising and
lowering parts of the dipole operator between the levels. For instance, given two
levels g and e, g the one being the one lower in energy, the raising operator is

d+ = D
∑

mg,me,σ

ê∗σC
Je,me

Jg,mg ;1,σ|e,me〉〈g,mg|, (2)

and the lowering operator d− is its hermitian conjugate. Here êσ, σ = −1, 0, 1
are the usual circular unit operators, and C stand for the appropriate Clebsch-
Gordan coefficients. To be sure, we also have a catch-all class that can be
constructed to contain any operator with arbitrary matrix elements specified in
terms of the symbolic level designators and magnetic quantum numbers.

On the programming side, we have added safeguards against potential prob-
lem situations. For example, once any object that depends on the mapping of
atomic states to complex vectors and matrices is instantiated, the atom gets
locked and can no longer be modified. There are also member functions in the
class general atom to print out detailed descriptions of vectors, operators and
superoperators using the symbolic level-Zeeman state description to label the
states. These have proven invaluable for debugging. Finally, access control is
used extensively to prevent potentially dangerous direct manipulations of the
innards of the objects.

To sum up what we have so far, we have at our disposal a machine to
construct an arbitrary dipole coupled atomic level structure and a ready-made
collection of the most useful operators corresponding to the observables of the
atom. Besides, we have facilities to construct any state vector and any opera-
tor symbolically without having to know how they are represented as complex
vectors and matrices.

2.3. Atom and external fields

Nonetheless, the atom that we have so far is still of little use in quantum
optics style problems: Neither the light fields driving the atom nor a possi-
ble applied magnetic field are accounted for. This is the task for the class
atom and fields. It is derived from general atom, and the member functions
add level and add coupling also work for atom and fields objects. In fact,
one does not need an explicit general atom object at all.

When an atomic transition with the frequency ω is driven by an electric
field with a (dominant) frequency ω̄, the ordinary practice in quantum op-
tics is to make a unitary transformation of the quantum mechanics to what is
known as a rotating frame, and perform the rotating-wave approximation [1, 2].
Three things effectively happen. First, a physical electric field of the form
E(r, t) = 1

2 [E+(r, t)e−iω̄t + c.c.] gets transformed to a slowly varying (or pos-
sibly stationary) field 1

2E
+(r, t). Second, the characteristic frequency of the
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atomic level is set at ∆ where the detuning is

∆ = ω − ω̄. (3)

Be warned, in quantum optics it is more common to define the detuning as
ω̄ − ω. Third, there will be dipole couplings of the electric field to the atomic
dipoles. We split the dipole operators in two parts, positive frequency part
d+, see (2), which acts to transfer atoms from the states that are actually (in
real terms) lower in energy to states with higher energy, and its Hermitian
conjugate d−. The end result is a dipole coupling term in the Hamiltonian of
the form − 1

2E
+(r, t) · d+ + h.c. In the code we write all vectors in terms of

the usual cartesian components, numbered 0, 1, and 2 for x, y and z. Given
the complex-valued three-dimensional vectors, we occasionally need an inner
product that is appropriate for complex vectors. This circumstance has spurred
various notational conventions in the literature. Here we use a dot product that
means the same as the usual dot product of three-dimensional real vectors, and,
when needed, write the conjugates that come with the complex inner product
explicitly.

Let us now assume that an atom and fields object af has already been
defined and furnished with two levels, ground level g and excited level e. To
gain access to the detuning, i.e., apparent energy of the excited level, we say

det id id = af.variable detuning("e");

The purpose of this line is threefold. First, it declares that the energy of the
excited state e may be varied. Second, it gives an object id of the type det id

that acts as the handle to the detuning to be varied. Third, it adds to the Hamil-
tonian of the atom-field system a term corresponding to an apparent transition
frequency ∆ of the form

He

~
= ∆1e, (4)

where 1e is the unit operator in the manifold of the states belonging to the level
e. We would subsequently change the apparent energy of the excited state to
the value delta by saying

af.set det(id, delta);

The default is ∆ = 0 and only energy differences matter anyway, so in a two-level
example we may leave the ground state alone.

It may be that the system presents couplings between several levels, and in a
complicated configuration. For instance, we may have a transition from a ground
state g to an excited state e and then further up to a state E; or down from e to
another level G. There are standard procedures in quantum optics how to set
the detunings in each such case. For instance, you could fix the detuning of one
of the levels at zero and calculate how much multiphoton transitions starting
from this level and with the given light frequencies would fall below resonance
with each of the other levels. This value equals the detuning; if the multiphoton
transitions put you above the resonance, the detuning is simply negative. To
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put this formally, let us study sequential transitions from a reference level with
the characteristic frequency ω0 to the levels i with the characteristic frequencies
ωi with lasers whose frequency is denoted by ω̄1 for the transition from the level
0 to 1, and so on. Then the detuning for the level i would be

∆i = (ωi − ω0)−
i∑

j=1

sgn(ωi − ωi−1)ω̄i , (5)

where sgn is the signum function. There is also an added condition of consis-
tency: If there are two (or more) paths via light-induced transitions between two
levels, the detuning should come out the same along both paths. Our earlier
general-atom scheme [3] automatically checked that this rule is satisfied, but
here the check is not implemented. If the rule is not satisfied, it is not possible
to find a rotating frame that would eliminate the oscillation frequencies of all
driving fields completely from the description. The Software Atom could be
used to deal even with this situation, but since we have never run into it and it
seems extremely unlikely in practice anyway, we will not describe how.

Management of a light field coupling to a pair of levels works analogously.
Suppose we want to set the electric field with the positive frequency part E+

to act on the transition between the same ground and excited levels g and e as
in the preceding examples. To do it, we would first prepare a three-dimensional
complex vector E plus with the x, y, and z components of E+ then program as
follows,

E id iE = af.variable E("g", "e");

af.set E(iE, E plus);

This would add a dipole coupling between the levels in the Hamiltonian,

Hge = − 1
2 (d+ ·E+ + d− ·E−). (6)

The object iE of the type E id is a handle that keeps track of the transition for
which the field is changed to the value E plus. The negative-frequency compo-
nent of the electric field is automatically deduced from the positive-frequency
component, and is used where needed.

There may also be a global magnetic field B acting on the atom that couples
to the magnetic moment operators of the atom µ, sum of the magnetic moment
operators of all levels, and adds the term to the Hamiltonian

HB = −µ · B . (7)

There is no need to specify what level or transition the magnetic field acts on
and correspondingly no handle class, but for consistency we still require that
the magnetic field be declared as variable. To set the magnetic field to the value
B, we first prepare a three-dimensional real vector B so that the z, y, and z
components of the magnetic field are in B[0], B[1], and B[2], and write

af.variable B();
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af.set B(B);

At this point we have constructed the Hamiltonian governing the atom un-
der the given fields and detunings. In fact, af.get H would return a constant
reference to the Hamiltonian that one could use to integrate the time evolution
of the state vector of the atom, and likewise for the superoperator corresponding
to the Hamiltonian evolution of the density operator. These operators are set
up by the declarations that enable detunings and electric and magnetic fields
to be varied, and are adjusted with a minimal number of operations every time
the field values or the detuning are changed. For instance, if the detuning of a
level is changed, the elements in the Hamiltonian that do not depend on this
detuning are not recomputed or otherwise touched.

However, this is not yet the end of the line. In real atoms there are also
spontaneous-emission processes in which the atoms make transitions from up-
per to lower levels as a result of the dipole coupling to the vacuum of the
electromagnetic field. Another way of viewing the same is that the electric
field originating from a transition couples back to the transition that sent it
and causes the atom to make a spontaneous transition. It is also possible that
the field from one transition couples to another, and peculiar cross-couplings
between spontaneous-emission processes emerge. These are a fact of life in
transitions between the Zeeman states of two angular-momentum degenerate
levels, since light emitted in one transition is close to resonance with the other
transitions and can couple strongly to them. We have a prescription to take
into account all of these spontaneous-emission terms [3], and we do so here. It
is possible to have spontaneous cross-couplings in transitions between different
levels, too, especially if the transition frequencies are close [14]. However, the
symmetries in atomic physics generally eliminate them, and they manifest only
by unlikely accident. We had the possibility of spontaneous couplings between
different levels included in our C version of the software atom, but no more here.

The bottom line is that there exists a superoperator G that describes the
effect of spontaneous emissions. Taking this into account, the evolution of the
density operator is given in terms of yet another superoperator L as

d

dt
ρ = Lρ =

1

i~
[H, ρ] + Gρ . (8)

An object of class atom and fields forms all of the relevant superoperators
when needed. One typical consequence of the ensuing time evolution is that
even if the state were pure at some particular time, in general it does not
remain so at all times and has to be described by a density operator instead of
a state vector.

We now have the objects available that generate the time evolution of the
density operator as per the superoperators on the right-hand side of (8). We
could wrap the right-hand side inside a differential-equation solver, and find the
evolution of the density operator and whatever quantities are deemed interesting
for the prevailing purpose even for explicitly time dependent external fields.
However, at present we have not implemented any time dependent calculations
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in the C++ version of the Software Atom. Instead, we have developed a small
demonstration project about the steady state: We calculate the polarizability
tensor of an atom. Before proceeding to our example, we note that others
have developed codes for essentially the same purpose [15]. In comparison, our
method to obtain the polarizability is inherently more general, e.g., we have no
restrictions on the direction of the magnetic field. On the other hand, we do not
offer a front end to set up the level structure for many commonly used isotopes
of alkali atoms, nor a back-end to, say, fit the calculation results to experiments.

3. Example: Polarizability of 87Rb

In Refs. [16, 17, 18] the authors compare basically exact simulations of light
scattering with experimental results obtained in very small atomic samples, and
find in both ways that the shift of the fluorescence line shape (fluorescence
intensity as a function of laser tuning) with the density of the sample is much
smaller than one expects from the traditional local-field correction arguments
of electrodynamics [19]. For the present purposes the point is that the ground
state of the atom used, 87Rb, has the total angular momentum F = 2, and is
thus five-fold degenerate. The excited level of the transitions has F ′ = 3, and
seven-fold degeneracy. A magnetic field was also applied in the experiments.
We have coded the same 87Rb simulations as the group of J. Ruostekoski [16]
independently (without ever seeing their code) using the Software Atom, and
in collaboration we have verified that, to within statistical error, the results are
the same. As an aside the question arose, what is the polarizability of the 87Rb
atom in an arbitrary external magnetic field, and for an arbitrary but known
steady state that the atom may have in the presence of the magnetic field.

The evolution of an atom with spontaneous emissions is damped and, for
constant fields and detunings usually (though not necessarily always) leads to
a steady state. We start from the equation of motion of the density operator

ρ̇ = Lρ, (9)

where the Liouvillean superoperator L includes both the external fields that
we wish to take into account while determining the steady state, and all of
spontaneous emissions. The steady state satisfies ρ̇ = Lρ = 0, but precisely
because there is a steady state the matrix L has a zero eigenvalue and the
solution to the set of linear equations Lρ = 0 cannot be unique. The standard
fix is to replace one of the equations in the set Lρ = 0 with a condition specifying
that Trρ = 1. This works as long as the steady state is unique, but it is not
always so. Unfortunately it also appears that, if the steady state is not unique,
in general it is not possible to find out which steady state gets realized without
integrating Eq. (9) from the initial state all the way to the final steady state.

Our approach to the a priori unknown number of steady-state solutions is
to resort to singular value decomposition (SVD) [20]. As is, of course, very well
known, in the matrix representation the superoperator L may be decomposed
in the form

L = UDV †, (10)
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where U and V are unitary matrices, and D is a diagonal matrix with non-
negative elements. Numerically, we embed SVD from CLAPACK [21] into the
Software Atom.

The steady states are distinguished by “very small” diagonal elements Dii,
i ∈ I, of the matrix D. Numerically, we replace the elements deemed “very
small” with zeros. The subspace N spanned by the corresponding columns of
V , vi, i ∈ I, is the null space of the matrix L, and all steady states live in N .
Steady states must be represented by positive density operators with unit trace,
and not all members of the subspace N qualify; but being in N is a necessary
and sufficient condition for a valid density operator to be a stationary state.

Given a properly initialized and parameterized atom and fields object, the
manifold of the steady states would be found by programming

vector<ComplexV> ss;

af.find steady state(ss);

If the length of the vector ss (as returned by ss.size()) is one, the program
has decided that the steady state is unique. Suppose we then have, say, an
object mu operator z from the class magmom containing the z component of the
magnetic moment, the expectation value of the magnetic moment in such a
steady state would be stored to a newly declared variable mu z by writing

double mu z = real(mu operator z.expt val(ss[0]));

It is real since the expectation value of even a hermitian operator usually comes
out with a small imaginary part originating from numerical errors.

Continuing in this same vein, the column vectors vj , j /∈ I, span the or-
thogonal complement N⊥ of the null space. The corresponding column vectors
of the matrix U , uj , span the range R of the superoperator L, all possible op-
erators that can be reached by acting on an arbitrary operator with L. Now,
L : N⊥ → R is a one-to-one mapping of the orthogonal complement of the null
space to the range. The inverse of this mapping L̄ : R → N⊥, which we call
the pseudoinverse of L, is obtained as L̄ = V D̄U†, where D̄ is the diagonal
matrix with the diagonal elements equal to zero if the corresponding element
Dii is zero, for i ∈ I, and otherwise D̄jj = 1/Djj . Since the matrix L has a
zero eigenvalue, it cannot have a true inverse; but if v 6= 0 is in the range R of
L, then u = L̄v is the unique vector outside the null space N with the property
that v = Lu

The goal of our mathematical analysis as well as the corresponding code is
to device a framework that can find the state of an atom under certain physi-
cal/mathematical/computational conditions perturbatively using singular-value
decomposition. To be explicit, we phrase the discussion in terms of a 87Rb atom
under the experimental conditions of Refs. [16, 17, 18], but the perturbative
methods in itself is very general.

We assume that initially there is no light present, so that the steady-state
density operator lives in the manifold spanned by the F = 2 ground states of
the degenerate two-level system. In our example we specify the steady state
manually as it would presumably come out of the preparation of the atoms
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in the experiment, namely with equal probability in the three lowest-energy
states in the given applied magnetic field. Denote the steady state by ρ0. We
then add a small electric field λE+. Here λ is a formal parameter to count
orders in perturbation theory. The calculations are carried out in the asymptotic
limit λ → 0, but the final results are expressed by setting λ = 1. We then
have an added perturbation Hamiltonian denoted by λH ′, and a perturbation
superoperator λK. Together the perturbation and the existing spontaneous-
emission damping bring about a change in the state by λρ1, so the atom develops
an induced dipole moment that turns out to be d = Tr(ρ1d

−). With caveats
that we will discuss in detail as we go along, for a weak electric field the dipole
moment is linear in the field, di =

∑
j αijE

+
i . The question is, what is the

polarizability tensor αij?
Corresponding to various physical processes that may happen in the atom,

the mathematics can get quite challenging. For instance, no matter how small
the amplitude of the probing light is, given enough time it may optically pump
the atom to a unique steady state that depends on the polarization of the probe
but, in the limit of a small amplitude of the probing light not at all on the
amplitude. In perturbation theory this would be a correction of the order λ0,
and would not give an induced dipole moment linear in the driving light. To
study the weak-field response, we both retain the interaction strength parameter
λ, and add a mathematical process in which we turn on the probing field on
exponentially as eηt, η > 0, over t ∈ (−∞, 0]. This means that the perturbation
is assumedly turned on adiabatically. We formally compute ρ(0) given the initial
condition ρ(−∞) = ρ0, then let λ → 0, and finally η → 0. In other words, we
first take the limit of very low light intensity, then allow a formally infinite time
for the optical response to get established.

We thus have an evolution equation for the density operator

ρ̇ = (L+ λeηtK)ρ, (11)

and write the solution as a perturbation series,

ρ = ρ0 + λρ1 + . . . . (12)

The perturbation theory is substantially more involved than, say, in ordinary
quantum mechanics, and is detailed in the Appendix. The summary for the
present purposes is the following. Suppose the following assumptions hold true:

A1. We have at our disposal a steady-state density operator ρ0 that satisfies
Lρ0 = 0.

A2. Kρ0 ∈ R.

A3. We consider the perturbation-induced expectation value of an operator
A whose expectation value in any non-perturbed steady state vanishes.
More specifically, Tr(ρA) = 0, ρ ∈ N .
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Then the system develops a perturbation to the steady state that is linear in
the amplitude of the driving light, and the corresponding perturbation-induced
expectation value

ρ1 = −L̄Kρ0, 〈A〉 = Tr(ρ1A), (13)

where L̄ is the pseudoinverse of the Liouvillean.
To provide a tangible example of coding, we have wrapped the perturbative

process into a class pert th 1. This class even comes with tests of whether
the assumptions A1-A3 are valid, i.e., if the perturbation theory is valid as a
matter of principle. In the small main program that we provide with the C++
classes [13] we present a computation of the susceptibility tensor for the 87Rb
atom of Refs. [16, 17, 18] as a demonstration of the use of the perturbation the-
ory. We compare the results with results from another class polarizability,
also built on our Software Atom, that computes the susceptibility tensor more
directly, basically by applying state-vector perturbation theory.

To showcase the flexibility of the Software Atom, the main program con-
cludes with a small example about a particularly simple steady state that
emerges as a result of optical pumping in a constant magnetic field B. In
this optical-pumping example the driving light is not weak, the steady state
comes from the direct solution of the equation Lρ0 = 0, and it is unique. We
have not done so in our example program, but we could use this steady state as
a starting point and investigate perturbatively the response of the system to a
weak magnetic field added in a direction perpendicular to the original magnetic
field. In this case we would choose a component of the magnetic moment µ⊥
in some direction perpendicular to B, use the superoperator corresponding to
the operator −µ⊥ as the superoperator K of the perturbation theory, and the
operator µ⊥ as the operator A whose expectation value we wish to calculate.
Then the relevant member functions of the perturbation class in fact tell us that
the assumptions A1-A3 are valid, so in this case χ⊥ = Tr(ρ1µ⊥) gives us the
magnetic susceptibility of the atom in the direction perpendicular to B. Like-
wise, one could study the components of the electric dipole moment induced by
the added transverse magnetic field.

4. Concluding remarks

We combine a broad framework of quantum mechanics as it is now used
in, say, quantum information theory, a quantum-optics view of an atom and
its interactions with external fields, and the type facility of C++ to implement
these abstractions numerically. The result is small class library that makes it
unprecedentedly easy to set up the problem of an atom with angular-momentum
degenerate energy levels interacting with a magnetic field and light. We have
also presented a perturbative treatment of the state of the atom, and discussed
computation of polarizability of an atom as an example. Some of our design
decisions may seem counterintuitive, but they are based on long experience in
theoretical quantum optics. The unfortunate flip side is that there is a learning
curve. We hope we have explained the philosophy behind our C++ classes in
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sufficient detail so that it is relatively easy for anyone who runs into multistate
issues in quantum-optics style problems to apply them, instead of hand-coding
for the specific problem.

The main point we wish to emphasize here is really a variation of the maxim
of the mathematicians, “if you cannot solve it, generalize it”: By moving to a
high enough level of abstraction, it is possible to put together a short piece of
C++ code that is both a very flexible and a very general tool for a broad class
of physics problems.
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Appendix: perturbation theory

In the usual manner we find from Eqs. (11) and (12) in the zeroth and first
order in perturbation theory the equations

ρ̇0 = 0 , (14)

ρ̇1 = Lρ1 + eηtKρ0. (15)

Equation (14) holds true since ρ0 was a steady state by assumption A1. More-
over, defining ρ1 = ρ̃1e

ηt, we find for ρ̃1 the equation of motion

˙̃ρ1 = (L − η)ρ̃1 +Kρ0 . (16)

Obviously ρ̃1 starts as zero at time t = −∞, and the value we wish to find is
ρ1(0) = ρ̃1(0). The constant η > 0 represents a finite damping, and in effect
ensures that there is a solution at t = 0. The constant η is implied in our
calculations until otherwise noted, but is not denoted explicitly.

From Eq. (16) we may write an evolution equation over a short time dt,

ρ̃1(t+ dt) = ρ̃1(t) + dt[Lρ̃1(t) +Kρ0] . (17)

Now, by assumption A2, Kρ0 ∈ R. Since ρ̃1 starts out as the zero operator, the
time stepping shows that ρ̃1(t) ∈ R at all times.

Next, introduce the orthogonal projectors P and Q to the subspaces N and
N⊥. Using P +Q = 1 and LP = 0, we have from (16)

d

dt
(P ρ̃1) = (PLQ)(Qρ̃1) + PKρ0, (18)

d

dt
(Qρ̃1) = (QLQ)(Qρ̃1) +QKρ0. (19)
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Equation (19) leads to the steady-state solution that we again denote by ρ1,
namely, ρ1 ≡ Qρ̃1(0). Let us look for a solution to the equation

Lρ1 = −Kρ0; (20)

such a solution also automatically satisfies the steady-state version of (19). But
since −Kρ0 ∈ R and we require that ρ1 ∈ N⊥, there is a unique solution

ρ1 = −L̄Kρ0, (21)

where L̄ is the pseudoinverse.
In the process there may also arise a correction to the steady state P ρ̃1, so

that the perturbed density operator is, with the parameter λ restored,

ρ(0) = ρ0 + λ[P ρ̃1(0) +Qρ̃(0)] +O(λ2). (22)

Now, this density operator is not necessarily normalized to unit trace, so that
the expectation value of an operator A satisfying assumption A3 is

〈A〉 =
λTr[AQρ̃1(0)]

1 + λTr[P ρ̃1(0) +Qρ̃1(0)]
+O(λ2) = λTr(ρ1A) +O(λ2). (23)

It may happen that in the final limit η → 0 the term P ρ̃1(0) diverges, but this is
not a problem as the order of the limits, first λ→ 0 and then η → 0, eliminates
the divergence. Equations (21) and (23) constitute the final result (13).
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