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a b s t r a c t

Version 1.6.0 of the code SusHi is presented. Concerning inclusive CP-even Higgs production in gluon
fusion, the following new features with respect to previous versions have been implemented: expansion
of the partonic cross section in the soft limit, i.e. around x = M2

H/ŝ → 1; N3LO QCD corrections in terms
of the soft expansion; top-quark mass suppressed terms through NNLO; matching to the cross section at
x → 0 through N3LO. For CP-even and -odd scalars, an efficient evaluation of the renormalization-scale
dependence is included, and effects of dimension-5 operators can be studied, which we demonstrate for
the SM Higgs boson and for a CP-even scalar with a mass of 750 GeV. In addition, as a generalization
of the previously available bb̄ → H cross section, SusHi_1.6.0 provides the cross section for charged
and neutral Higgs production in the annihilation of arbitrary heavy quarks. At fixed order in perturbation
theory, SusHi thus allows to obtain Higgs cross-section predictions in different models to the highest
precision known today. For the SM Higgs boson of MH = 125 GeV, SusHi yields 48.28pb for the gluon-
fusion cross section at the LHC at 13 TeV. Simultaneously, SusHi provides the renormalization-scale
uncertainty of ±1.97pb.
New version program summary
Program title: SusHi.
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(2HDM) and the next-to-minimal supersymmetric standard model (NMSSM). The effects of dimension-5
operators in the calculation of the gluon-fusion cross section can be studied. It allows to calculate the
Higgs production cross section from the annihilation of heavy quarks and includes various new features
which improve the gluon-fusion cross-section prediction and the associated uncertainty estimate. Links
to external codes 2HDMC, MoRe-SusHi and MadGraph5_aMC@NLO can be established.
Summary of revisions:
Inclusion of 2HDM, NMSSM; Improvements in the prediction of the gluon-fusion cross section: Top-
quarkmass termsup to next-to-next-to leading order, soft expansion andnext-to-next-to-next-to leading
order corrections in the heavy top-quark effective theory, top squark corrections up to next-to-next-to
leading order; dimension-5 operators; analytic determination of the renormalization scale dependence.
Inclusion of heavy-quark annihilation cross sections. Link toMoRe-SusHi for the calculation of resummed
transverse-momentum distributions.
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Nature of problem:
Calculation of inclusive and exclusive Higgs production cross sections in gluon fusion and heavy-quark
annihilation in the SM and extended Higgs sectors through next-to-leading order QCD, including (next-
to-)next-to-next-to-leading order top-(s)quark contributions and electroweak effects.
Solution method: Numerical Monte Carlo integration.
References: http://sushi.hepforge.org

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since the year 2012, an important task of particle physics is to fullymeasure the properties of the Higgs bosonwithmassMH ≈ 125 GeV
discovered at the Large Hadron Collider (LHC) [1,2]. At the same time, the search for additional Higgs bosons, which are predicted in many
extended theories, is among the main missions of the LHC experiments. For this purpose, the knowledge of the corresponding production
cross sections with high precision is of great relevance. The latest efforts in this direction are regularly summarized in the reports of the
‘‘LHC Higgs cross section working group’’[3–6].

In this paper,wedescribe the new features that have been implemented in version1.6.0 of the programSusHi [7,8].SusHi is a Fortran
code which calculates Higgs-boson production cross sections through gluon fusion and bottom-quark annihilation in the Standard Model
(SM), general Two-Higgs-Doublet Models (2HDM), the Minimal Supersymmetric Standard Model (MSSM) as well as its next-to-minimal
extension (NMSSM), see Ref. [9].1 Some of these additions to SusHi directly improve the theoretical predictions of the cross section; others
are provided to allow for more sophisticated uncertainty estimates of these predictions. The new features are the following:

• SusHi now includes the next-to-next-to-next-to-leading order (N3LO) terms for the gluon-fusion cross section of a CP-even Higgs
boson in the heavy-top limit as described in Refs. [19–22].

• It provides the so-called soft expansion of the gluon-fusion cross section around the threshold of Higgs-boson production at
x ≡ M2

φ/ŝ = 1, where ŝ denotes the partonic center-of-mass energy and Mφ the Higgs-boson mass. This expansion is available
for the cross sections in the heavy-top limit up to N3LO for CP-even Higgs bosons. At next-to-leading order (NLO) and next-to-NLO
(NNLO), the exact x-dependence is still available, of course, and remains the default.

• In addition, SusHi_1.6.0 includes top-quark mass effects to the gluon-fusion cross section of a CP-even Higgs boson in the heavy-
top limit up to NNLO, implemented through an expansion in inverse powers of the top-quark mass as described in Refs. [23–29].
The exact top-mass dependence at lowest order can be factored out. We remark that this feature is most interesting at NNLO, of
course, since at leading order (LO) and NLO, SusHi also provides the full quark-mass dependence.

• A matching of the soft expansion to the high-energy limit [23–25], i.e. x → 0, is available through N3LO.
• The renormalization-scale dependence of the gluon-fusion cross section within an arbitrary interval is calculated in a single SusHi

run.
• The effect of dimension-5 operators to the gluon-fusion cross section can be taken into account through N3LO QCD for the inclusive

cross section, and at LO and NLO (i.e. α3
s ) for the Higgs transverse momentum (pT ) distribution and (pseudo)rapidity distribution,

respectively.
• Higgs-boson production cross sections through heavy-quark annihilation are implemented along the lines of Ref. [30], both for the

NNLO QCD inclusive cross section, as well as for more exclusive cross sections up to NLO QCD.

All of the described features are applicable to Higgs-boson production in the theoretical models currently implemented in SusHi, even
though some only work for low Higgs masses below the top-quark thresholdMφ < 2Mt or for CP-even Higgs bosons.

Our paper is organized as follows: We start with a brief general overview of the code SusHi in Section 2, and subsequently present
the new features implemented for the prediction of the gluon-fusion cross section in Section 3. This includes a theoretical description
of the soft expansion, the inclusion of N3LO terms and the top-quark mass effects in Sections 3.1–3.3. We proceed with a description
of the ‘‘RGE procedure’’ to determine the renormalization-scale dependence of the gluon-fusion cross section in Section 3.4, and finally
describe the implementation of an effective Lagrangian including dimension-5 operators in Section 3.5. The implementation of heavy-
quark annihilation cross sections is described in Section 4. Numerical results are presented in Section 5; they also include a comparison
of our results with the most recent literature. In the Appendix we present a collection of example input blocks of SusHi, which contain
example settings for the various input entries introduced in previous and the newest release.

2. The program SusHi

SusHi is a program originally designed to describe Higgs production in gluon fusion and bottom-quark annihilation in the MSSM. It
collects a number of results from the literature valid through N3LO in the strong coupling constant, and combines them in a consistent
way. We subsequently discuss the present theoretical knowledge of the calculation of the gluon fusion and bottom-quark annihilation
cross sections and their inclusion in SusHi.

It is well-known that QCD corrections to the gluon-fusion process gg → φ [31], mediated through heavy quarks in the SM, are very
large. NLO QCD corrections are known for general quark masses [32–37]. In the heavy-top limit, an effective theory can be constructed by
integrating out the top quark. In this case, NNLO corrections have been calculated a long time ago [38–40]. The N3LO contributions were
only recently obtained in Refs. [19,20,22,41,42],while various parts of theN3LO calculationhave been calculated independently [21,43–56].
Approximate N3LO results were presented in Refs. [16,17,57]. Effects of a finite top-quark mass at NNLO were approximately taken into
account in Refs. [23–29].

1 Other codes to obtain inclusive Higgs-boson cross sections through gluon fusion in the SM and beyond are described in Refs. [10–18].

http://sushi.hepforge.org
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Many of these effects can be taken into account in the latest version of SusHi; this will be discussed in detail in Section 3. Electroweak
corrections [58–60] can be included as well, either in terms of the full SM electroweak correction factor, or restricted to the corrections
mediated by light quarks, the latter being a more conservative estimate in certain BSM scenarios. For completeness, we note that effects
beyond fixed order have been addressed through soft-gluon resummation [18,61–67], but those are not included in SusHi.

If requested in the input file, SusHi uses the SM results described above also for the 2HDM, theMSSMor theNMSSM through the proper
rescaling of the Yukawa couplings. In supersymmetric models, also squarks induce an interaction of the Higgs boson to two gluons. In the
MSSM, the corresponding NLO virtual contributions, involving squarks, quarks and gluinos, are either known in an expansion of inverse
powers of heavy SUSY masses [68–70] or in the limit of a vanishing Higgs mass, see Refs. [71–74]. In this limit, even NNLO corrections of
stop-induced contributions are known, see Refs. [75,76]; an approximation of these effects [77] is included in SusHi, see Ref. [78].Whereas
for theMSSM SusHi relies on both expansions, for the NMSSM theNLO virtual corrections are purely based on an expansion in heavy SUSY
masses [9]. We note that numerical results for the exact NLO virtual contributions involving squarks, quarks, and gluinos were presented
in Refs. [79,80], and analytic results for the pure squark-induced contributions can be found in Refs. [36,37,81].

The associated production of a Higgs boson with bottom quarks, pp → bb̄φ, is of particular relevance for Higgs bosons, where the
Yukawa coupling to bottom quarks is enhanced. This happens in models with two Higgs doublets, for example, if tanβ , the ratio of the
vacuum expectation values of the two neutral Higgs fields, is large. SusHi includes the cross section for this process in the so-called
5-flavor scheme, i.e. for the annihilation process bb̄ → φ. The inclusive cross section for this process is implemented at NNLO QCD [82,83];
it is reweighted by effective Yukawa couplings in the model under consideration. SusHi_1.6.0 now also includes general heavy-quark
annihilation cross sections [30] at NNLO QCD, which we will describe in Section 4.

For completeness we note that SusHi can be linked to FeynHiggs [84–87] and 2HDMC [88] to obtain consistent sets of parameters in
the MSSM or the 2HDM, respectively.

SusHi is controlled via an SLHA-style [89] input file. In the following, we will refer to the entries of a Block "NAME" and their possible
values as NAME(ENTRY)=VALUE. If more than one value is required, we write NAME(ENTRY)={VALUE1,VALUE2, . . . } or, when referring
only to one specific value, NAME(ENTRY,1)=VALUE1, etc. In the Appendix we include input blocks with example settings for the various
new input entries.

3. Higgs production through gluon fusion

The hadronic cross section for Higgs production in gluon fusion can be written as

σ (pp → H + X) =

∑
i,j∈{q,q̄,g}

φ̃i ⊗ φ̃j ⊗ σ̂ij , (1)

where φi(x, µF) = φ̃i(x, µF)/x are parton densities, q (q̄) denotes the set of all (anti-)quarks (q = t and q̄ = t̄ can be neglected), and ⊗ is
the convolution defined as

(f ⊗ g)(z) ≡

∫ 1

0
dx1

∫ 1

0
dx2f (x1)g(x2)δ(z − x1x2). (2)

The perturbative expansion of the partonic cross section,

σ̂ij,NnLO =

n∑
l=0

σ̂
(l)
ij , (3)

can be represented in terms of Feynman diagrams where the external partons couple to the Higgs bosons through a top-, bottom-, or
charm-quark loop (contributions from lighter quarks are negligible).

The first two terms in the perturbative expansion of σ̂ij (l = 0, 1 in Eq. (3)) are known for general quark mass and included in
SusHi_1.6.0.2 For the top-quark contribution, theNNLO term σ̂

(2)
ij has been evaluated on the basis of an effectiveHiggs–gluon interaction

vertexwhich results from integrating out the top quark from the SMLagrangian. At NLO, it has been checked that this results in an excellent
approximation of the NLO QCD correction factor to the LO cross section, even for rather large Higgs-bosonmasses. At NNLO, the validity of
the heavy-top limit for the QCD corrections factor was investigated through the calculation of a number of terms in an expansion around
M2

t ≫ ŝ,M2
φ , and matching it to the high-energy limit of σ̂

(2)
ij [23–29]. It was found that the mass effects to the QCD correction factor are

at the sub-percent level.
Recently, also theN3LO-term σ̂

(3)
ij has become available in terms of a soft expansion and assuming the heavy-top limit.Wewill comment

on its implementation in the latest release of SusHi in Section 3.2.
The exact NLO and the approximate higher order results for the cross section are combined in SusHi through the formula

σX = σNLO + ∆Xσ
t , ∆Xσ

t
≡ (1 + δEW)σ t

X − σ t
NLO , (4)

where σNLO refers to the NLO cross section with exact top-, bottom- and charm-mass dependence, while σ t
X (X=NnLO, n ≥ 1) is obtained

in the limit of a large top-quark mass. Electroweak effects [58], encoded in δEW, are included by assuming their full factorization from the
QCD effects, as suggested by Ref. [90] for a SM Higgs boson. In BSM scenarios, this assumption may be no longer justified. SusHi therefore
provides an alternative way to include electroweak effects which is based solely on the light-quark contributions to the electroweak
correction factor; for details, we refer the reader to Refs. [7,78]. For our purpose, it suffices to assume Eq. (4). The new release of SusHi
provides various approximations to evaluate σ t

X, in particular through expansions in 1/Mt, and expansions around ŝ = M2
φ .

In addition to σX, which can be found in Block SUSHIggh, SusHi also outputs the individual terms of Eq. (4). The exact LO and NLO
cross sections are collected in Block XSGGH, while the σ t

X are given in Block XSGGHEFF, which also contains the electroweak correction
term δEW, if requested.

2 We focus on the SM contributions here, but also SUSY contributions can be added in the first two terms and partially even at NNLO, see the description in Section 2.
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It is understood that the NnLO terms in Eq. (4) are evaluated with NnLO PDFs.3 Note that this means that, for example, ∆NNLOσ t is
not simply the convolution of σ̂ t,(2) with NNLO PDFs, but retains a sensitivity to σ̂ t,(1). Thus, the final result for the NNLO gluon-fusion
cross section obtained from SusHi through Eq. (4) depends on the approximation applied to the evaluation of both σ̂ t,(2) and σ̂ t,(1). If
electroweak effects are included, this even holds for SusHi’s final result for σNLO due to the definition of ∆Xσ

t in Eq. (4).
In the remainder of this section, we first discuss the soft expansion around the threshold of Higgs production, ŝ = M2

φ , in Section 3.1.
The implementation of N3LO contributions is described in Section 3.2, and top-quark mass effects through NNLO as well as the matching
to the high-energy limit in Section 3.3. While these features are only available for CP-even Higgs bosons (partially in a certain range of
Higgs-boson masses Mφ only), the analytic calculation of the µR dependence of the gluon-fusion cross section described in Section 3.4 is
available for all Higgs bosons. The inclusion of dimension-5 operators is discussed in Section 3.5.

3.1. Soft expansion

The NLO and NNLO coefficients of σ t are approximated very well by the first few terms4 in an expansion around the ‘‘soft limit’’, x → 1.
In fact, the gain of the full ŝ-dependence becomes doubtful anyway when working in the heavy-top limit, since the latter formally breaks
down for ŝ > 4M2

t , meaning x ≲ 0.13 for MH = 125 GeV. Apart from the exact ŝ-dependence at LO, NLO, and NNLO, SusHi_1.6.0
provides the soft expansion of the cross section for CP-even Higgs production through order (1 − x)16 at these perturbative orders, and
also at N3LO (for more details on the latter, see Section 3.2).

The precise way in which the soft expansion is applied is governed by the new Block GGHSOFT. Each line in this block contains four
integers:

Block GGHSOFT
<entry> <n1> <n2> <n3>

Following Section 2, wewill refer to such a line as GGHSOFT(<entry>)={<n1>,<n2>,<n3>} in the text, and to the individual entries
as GGHSOFT(<entry>,1)=<n1>, etc. The integer GGHSOFT(n,1) determines whether the soft expansion is applied (=1) or not (=0) at
order NnLO. Setting GGHSOFT(n)={1,N, a} evaluates the soft expansion of σ̂ t,(n)

ij in the following way:

σ̂ t
ij → σ̂ t

ij,N ≡ xaT x
N

(
∆σ̂ t

ij

xa

)
, (5)

where T x
N denotes the asymptotic expansion around x = 1 through order (1 − x)N , and a is a non-negative integer. Setting GGHSOFT(n, 2)

=-1will keep only the soft and collinear terms, whose x dependence is given by

δ(1 − x) or
(
lnk(1 − x)

1 − x

)
+

, k ≥ 0 (6)

by definition. Here (·)+ denotes the usual plus distribution, defined by∫ 1

z
dx(f (1 − x))+g(x) =

∫ 1

z
dxf (x) [g(x) − g(1)] + g(1)

∫ z

0
dxf (x). (7)

The parameters GGHSOFT(n) apply to all partonic subchannels at order NnLO, and to all terms in the 1/Mt expansion as requested by the
input Block GGHMT, see Section 3.3.

The exact x-dependence is obtained by setting GGHSOFT(n, 1)=0 (only available for n ≤ 2). The other two entries in GGHSOFT(n) are
then irrelevant. The default values for the block GGHSOFT through N3LO are

default: GGHSOFT(1,1)=0 ; GGHSOFT(2,1)=0 ; GGHSOFT(3)={1,16,0}. (8)

Again, all terms of the soft expansion are available including the full µF- and µR-dependence.
A sample input block reads

Block GGHSOFT
1 0 0 0
2 1 16 1
3 1 16 1

which provides the result including the exact x-dependence at NLO, and the soft expansion through (1 − x)16 at NNLO and N3LO after
factoring out a factor of x (a = 1 in Eq. (5)). We recall that these settings only affect the heavy-top results σ̂ t

X in Eq. (4); σNLO is always
calculated by taking into account the full quark-mass and x-dependence. The soft expansion is available for all CP-even Higgs bosons of
arbitrary masses.

3 Since N3LO PDFs are not yet available, we use NNLO PDFs for the evaluation of the N3LO cross section in this paper. The user of SusHi can specify the PDF set at each
order individually.
4 The first 16 terms in this expansion lead to an accuracy of better than 1% with respect to the heavy-top limit with exact x-dependence at NNLO, for example. For more

details see below.
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3.2. N3LO terms

Recently, the N3LO QCD corrections to the Higgs production cross section through gluon fusion have become available [19–22]. More
specifically, the result was provided in terms of the soft expansion through order (1−x)37 of the leading term in 1/Mt forµ = µR = µF. We
implemented this expansion through (1− x)16; higher order terms do not change the result within the associated uncertainty. In addition,
we included the µF- and µR-dependent terms at the same order. Experience from NNLO lets one expect that these terms are sufficient to
obtain an excellent approximation of the QCD correction factor to the LO cross section, at least for Higgs masses in the validity range of
the effective theory description.

The N3LO result is accessible in SusHi_1.6.0 by setting the input parameter SUSHI(5)=3. This will evolve αs(MZ ) to αs(µR) at 4-loop
order when calculating the cross section, where µR/Mφ is defined in SCALES(1). Note that with this setting, the hadronic cross section
will formally still suffer from an inconsistency because N3LO PDF sets are not yet available. As described in Section 3.1, the depth of the
soft expansion at N3LO, as well as the power a in Eq. (5) can be controlled through the input variables GGHSOFT(3).5

Finally, we remark that, also at N3LO, the full µR- and µF-dependence is available, again accessible through the variables SCALES(1)
and SCALES(2), respectively. It follows from invariance of the hadronic result under these scales, and only requires the NNLO result as
input, as well as the QCD β function and the QCD splitting functions through three loops. The required convolutions can be evaluated with
the help of the program MT.m [91], for example.

3.3. Top-quark mass effects

In versions before SusHi_1.6.0, only the formally leading terms in 1/Mt were available for σ̂
t,(2)
ij . However, in order to allow for

thorough studies of the theoretical uncertainty associated with the gluon-fusion cross section, SusHi_1.6.0 includes also subleading
terms in 1/Mt for the production of a CP-even Higgs ( SUSHI(2)∈ {11,12,13}). There are a number of options provided by SusHi_1.6.0
associated with this; they are controlled by the new input Block GGHMT.

First of all, GGHMT(n)=P ∈ {0,1, . . . , Pmaxn } provides the expansion of σ̂
t,(n)
ij through 1/MP

t (note that terms with odd P vanish). In
addition (or alternatively), onemay define the depth of the expansion individually for each partonic channel σ̂ t,(n)

ij through the parameters
GGHMT(nm)=P ∈ {0,1,. . . , Pmaxn }, where ij = (gg, qg, qq̄, qq, qq′) corresponds to m = (1, 2, 3, 4, 5), respectively. Currently, the maximal
available depths of expansion are6 Pmax

0 = Pmax
1 = 10 and Pmax

2 = 6.
The default settings are

default: GGHMT(0)=-1 ; GGHMT(1)=0 ; GGHMT(2)=0 ;

GGHMT(1i)=GGHMT(1) , i = 1, . . . , 3 ; GGHMT(2i)=GGHMT(2) , i = 1, . . . , 5 , (9)

where GGHMT(0)=-1means to keep the full top mass dependence. Let us recall that these settings only affect the heavy-top results σ̂ t
X in

Eq. (4); σNLO is always calculated by taking into account the full quark-mass dependence.
As an example, consider the input

Block GGHMT
1 10
13 0
2 6
23 0
24 0
25 0

which will cause SusHi_1.6.0 to

• keep the full top mass dependence at LO
• expand the NLO terms σ̂

t,(1)
gg and σ̂

t,(1)
qg through 1/M10

t
• expand the NNLO terms σ̂

t,(2)
gg and σ̂

t,(2)
qg through 1/M6

t
• keep only the terms of order 1/M0

t for the pure quark channels at NLO and NNLO.

This also shows that the variables GGHMT(nm) overrule the setting of GGHMT(n) for the individual channels. This may be desirable as it
is known that the pure quark channels show a rather bad convergence behavior [24–29], so one may want to include only a small number
of terms for them in the 1/Mt expansion. By convention, GGHMT(n) must always be at least as large as the maximum of GGHMT(nm); if this
is not the case in the input file, SusHiwill override the user’s definition of GGHMT(n) and set it to the maximum of all GGHMT(nm).

In the strict heavy-top limit (i.e., P = 0), the quality of the approximation improves considerably if one factors out the LO mass
dependence σ t

0 [34,92] before the expansion, given by

σ t
0 =

π
√
2GF

256

(αs

π

)2
τ 2
⏐⏐⏐⏐1 + (1 − τ ) arcsin2 1

√
τ

⏐⏐⏐⏐2 , τ =
4M2

t

M2
φ

, (10)

where GF ≈ 1.16637 · 10−5 GeV−2 [93] is Fermi’s constant. The generalization to higher orders in 1/Mt corresponds to

σ̂
t,(n)
ij = σ t

0

TPn,ij σ̂
t,(n)
ij

TPnσ
t
0

, (11)

5 The setting GGHSOFT(3,1)=0 is not available, of course.
6 For the qq̄-channel, the maximum reduces to Pmax

2 = 4, if a soft expansion beyond N = 13 is requested.
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where TP denotes an operator that performs an asymptotic expansion through order 1/MP
t . In a strict sense, it should be Pn = Pn,ij;

however, SusHi allows only for a global value of Pn here, which applies to all sub-channels ij and is set to GGHMT(n).
Setting GGHMT(-1)=n factors out the LO mass dependence through order n, i.e.

σ̂ t
ij = σ t

0

n∑
k=0

TPk,ij σ̂
t,(k)
ij

TPkσ
t
0

+

∑
k≥n+1

TPk,ij σ̂
t,(k)
ij . (12)

This will affect all partonic channels. The default setting is

default: GGHMT(-1)=3 (13)

which means that the LOMt dependence is factored out from all available orders.
It was observed that higher orders in 1/Mt in general spoil the validity of the expansion, since its radius of convergence is formally

restricted to ŝ < 4M2
t . This manifests itself in the expansion coefficients containing positive powers of ŝ/M2

φ . In order to tame the
corresponding divergence as ŝ → ∞, it was suggested to match the result to the asymptotic behavior in this limit, which is known
from Refs. [23,24]. Whether or not such a matching is performed for σ̂

t,(n)
ij is governed by the parameter GGHMT(n· 10) (i.e. GGHMT(10),

GGHMT(20), . . . ). By default,

default: GGHMT(n·10)=0 , n = 1, . . . , 3 , (14)

meaning that no matching is done; setting GGHMT(n· 10)=1 switches the matching on for all partonic subchannels at order NnLO.
As we will find in Section 5, the matching to x → 0 is helpful in approximating the full cross section even at 1/M0

t . Thus, we provide
the possibility to do this matching also at N3LO, even though top-mass suppressed terms are not yet known at this order. The form of the
matching through NNLO has been introduced in Refs. [24,25]; here we adopt the same strategy, generalized to N3LO:

σ̂
t,(n)
ij (x) = σ̂

t,(n)
ij,N (x) + σ t

0

n−1∑
l=1

A(n,l)
ij

[
ln

1
x

−

N∑
k=1

1
k
(1 − x)k

]l

+(1 − x)N+1
[
σ t
0B

(n)
ij − σ̂

t,(n)
ij,N (0)

]
,

(15)

where σ t
0B

(0)
ij = σ̂

t,(0)
ij,N (0) = 0, and σ̂

t,(n)
ij,N (x) denotes the soft expansion of the cross section through order (1−x)N , see Eq. (5). The coefficients

B(1)
ij and A(2,1)

ij are given in numerical form in Refs. [23,24,94],7 while A(3,2)
gg can be found in Ref. [94] (where it is called C3

AC
(3)). For the

unknown coefficients through N3LO, we assume

σ t
0B

(n)
ij = σ̂

t,(n)
ij,N (0) for n ≥ 2 , A(3,1)

ij = 0. (16)

The technical consequence of the matching procedure implemented in SusHi is that it requires the cross section to be expressed in terms
of the soft expansion, i.e., one needs to set GGHSOFT(n, 1)=1 if the NnLO cross section is requested.

The effect of the matching at N3LO is shown in Fig. 1: the soft expansion tends to a constant towards x → 0 by construction, and
cannot reproduce the ln2x-behavior of the exact result. The merging of the two limits is very smooth and suggests that the matched curve
is not too far from the full result. Of course, the fact that some coefficients in Eq. (15) are unknown introduces a theoretical uncertainty.
However, we observe a change in the final cross section of only about 0.5% when setting A(3,1)

gg = A(3,2)
gg for a SM Higgs, for example.

It remains to say that all terms in 1/Mt are available including the full µF- and µR-dependence. As in earlier versions of SusHi,
these parameters are accessible through the input parameters SCALES(1) and SCALES(2). Since top-quark mass effects are not known
for the N3LO cross section, all settings of GGHMT involving n = 3 except from GGHMT(30) have no effect in the current version
SusHi_1.6.0. The inclusion of 1/Mt terms is only available for Mφ < 2Mt and the matching to the high-energy limit only in a mass
rangeMφ ∈ [100GeV, 300GeV].

3.4. Renormalization scale dependence

The renormalization scale (µR) dependence of the partonic cross section can be written as

σ̂ij =

∑
n≥0

n∑
l=0

(
αs(µR)

π

)n+2

κ̂
(n,l)
ij (µ0) llR0 , (17)

where lR0 = 2 ln(µR/µ0), andµ0 is an arbitrary reference scale. The coefficients κ̂
(n,l)
ij (µ0) are explicitly contained in SusHi (forµ0 = Mφ).

The dependence of the cross section on µR can be studied with SusHi by varying the input parameter SCALES(1), which contains the
numerical value for µR/Mφ . SusHiwill then insert this value into Eq. (17) and convolve the resulting partonic cross section over the PDFs.
A decent picture of the µR dependence may require to perform this ‘‘standard procedure’’ ten times or more.

SusHi_1.6.0 provides a considerably faster way to obtain the µR dependence of the cross section by convolving the κ̂
(n,l)
ij (µ0) with

the PDFs before varying µR,

κ (n,l)(µ0) = κ̂
(n,l)
ij (µ0) ⊗ φ̃i ⊗ φ̃j. (18)

7 The notation for A(2,1)
ij is A(2)

ij in that paper.
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Fig. 1. Partonic cross section σ̂
t,(3)
gg /σ t

0 in 104 according to Eq. (15) as a function of x = M2
φ/ŝ with and without matching to the high-energy limit. The order of the soft

expansion applied in both cases is (1 − x)16 .

We will refer to this as the ‘‘RGE procedure’’. Due to the renormalization group equation8

d
dµ2

R
σNnLO = O(αn+3

s ) =
d

dµ2
R
σ̂ij,NnLO , (19)

which holds both at the partonic and the hadronic level, it suffices to calculate the coefficients κ (n,l)(µ0) for l = 0 and n ≤ 2 if the N3LO
result is requested. SusHi_1.6.0 does this by initially assuming µ0/Mφ = µR/Mφ = SCALES(1) in Eq. (17). All other coefficients are
then determined via the QCD β function, defined through

d
dµ2

R
αs(µR) = αs(µR)β(αs) , β(αs) = −

αs

π

∑
n≥0

(αs

π

)n
βn. (20)

Explicitly, one finds

κ (1,1)
= 2β0 κ (0,0) , κ (2,2)

=
3
2

β0 κ (1,1) , κ (2,1)
= 2β1 κ (0,0)

+ 3β0 κ (1,0) ,

κ (3,3)
=

4
3
β0 κ (2,2) , κ (3,2)

=
3
2

β1 κ (1,1)
+ 2β0 κ (2,1) ,

κ (3,1)
= 2β2 κ (0,0)

+ 3β1 κ (1,0)
+ 4β0 κ (2,0).

(21)

Inserting these coefficients into the hadronic analog of Eq. (17), it is possible to obtain the hadronic cross section at any value ofµR without
any further numerical integration. Since the µR dependence is typically much larger than the µF dependence for gluon fusion, this feature
of SusHi saves a significant amount of computing time when aiming for an estimate of the theoretical uncertainty of the cross section.

Thus, in addition to the usual output file <outfile>, running SusHi_1.6.0with the standard command

./bin/sushi <infile> <outfile>

will produce an additional file<outfile>_murdepwhich contains the gluon-fusion cross section for several values ofµR in the form

µR/GeV σLO/pb σNLO/pb σNNLO/pb σN3LO/pb (22)

where all cross sections are evaluated following Eq. (4), i.e. they potentially contain quark-mass effects, SUSY corrections, and/or
electroweak effects. The values of µR to be scanned over can be set in <infile> through

Block SCALES
1 <mu0mh>

102 <min0> <max0> <N>

whichwill causeSusHi_1.6.0 to evaluate the cross section atN+1 equidistant points for logµR between logµmin and logµmax, meaning9

µR = µmin

(
µmax

µmin

)i/N

, i ∈ {0, 1, . . . ,N}. (23)

8 The power n + 3 takes into account the fact that the LO cross section is of order α2
s .

9 <N>=N , <min0>=µmin/µ0 , <max0>=µmax/µ0 , <mu0mh>=µ0/Mφ .
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Table 1
Assignment of the SusHi input parameter SUSHI(2)=<htype> to the type of Higgs boson in the various models. A
dash (−) means that the assignment is not meaningful; it will lead to a fatal error in SusHi.

<htype> SM 2HDM/MSSM NMSSM

11 H h H1
12 − H H2
13 − − H3
21 A A A1
22 − − A2

In addition, SusHi_1.6.0 includes a theoretical error estimate on the inclusive cross section into the standard output file <outfile>,
given as the maximal and minimal deviation (in pb) within the interval µR ∈ [µ1, µ2] from the value at µR = µ0, using the sampled
values of µR defined in Eq. (23), and the cross sections at the two boundaries µR = µ1 and µ2. The interval is specified as SCALES(101)
={µ1/µ0, µ2/µ0} (recall that µ0/Mφ = SCALES(1)); it defaults to [µ1, µ2] = [µ0/2, 2µ0].

We remark that this featureworks at all perturbative orders throughN3LO, for any settings in the blocks GGHMT or GGHSOFT, and for any
model under consideration. The only restriction is that all parameters except for the strong coupling constant need to be defined on-shell.
If this is not the case, SusHi_1.6.0 will not produce <outfile>_murdep. Note that, due to Eq. (4), the procedure implemented in
SusHi_1.6.0 is a slightly refined version of the one described above. In particular, this implies that the NNLO µR dependence is exact,
since it is fully determined by the exact NLO cross section σNLO. On the other hand, the renormalization-scale dependence at N3LO derived
from the RGE procedure inherits whatever approximations were made (or not made) at NNLO. Thus, the results obtained through the
standard and the RGE procedure are usually not identical. For example, if one keeps the full x-dependence at NNLO, one also obtains the
full x-dependence of the µR-terms at N3LO with the RGE procedure, while the standard procedure would only provide them in the soft
expansion.

3.5. Effective Lagrangian—dimension-5 operators

Let us start from a particular well-defined theory TH; in the current version of SusHi, this could be the SM, a general 2HDM, theMSSM,
or the NMSSM. We may now include additional gauge invariant dimension-5 operators to TH which couple the neutral Higgs bosons of
TH to gluons in the following way10 :

L = LTH +

N1∑
i=1

αs

12πv
c5,1i H1iGa

µνG
a,µν

+

N2∑
i=1

αs

8πv
c5,2i H2iGa

µν G̃
a,µν . (24)

Here, LTH is the Lagrangian of the initial theory TH, Ga
µν is the gluonic field strength tensor with color index a and Lorentz indices µ and ν,

and G̃a
µν ≡ εµνρσGa,ρσ is its dual (ε0123

= +1). As usual, αs is the strong coupling constant and v the SM Higgs-boson vacuum expectation
value, which we express in terms of Fermi’s constant v = 1/

√√
2GF . N1 and N2 are the numbers of CP-even and CP-odd Higgs bosons of

the theory, respectively. The particles themselves are generically denoted by H1i and H2i (cf. also Table 1).
The c5,ni denote dimensionless Wilson coefficients which are understood as perturbative series in αs:

c5,ni =

3∑
k=0

(αs

π

)k
c(k)5,ni. (25)

The normalization is such that c(0)5,ni = 1 corresponds to the LO contribution of an infinitely heavy up-type quark u′ with SM-like couplings.11

The NLO term for a CP-even Higgs in this case would be c(1)5,11 =
11
4 , etc. In a theory that obeys naturalness, on the other hand, the order of

magnitude of the Wilson coefficients would be c5,ni = O(v/Λ), where Λ is a scale of physics beyond the SM.
The basic structures for the implementation of the effective Lagrangian in Eq. (24) have already been present in earlier versions of

SusHi. The reason for this is that the very same operators result from integrating out the top quark or heavy squarks and gluinos from
LTH. In fact, the NNLO corrections due to top quarks, as well as the NLO corrections due to top, stop, and gluino are evaluated on the basis
of these dimension-5 operators.

Thus, SusHi_1.6.0 does not implement any new results; it simply re-uses previously available functions and subroutines in
order to extend the gluon-fusion amplitudes to take into account the effect of the additional terms in Eq. (24). The numerical values for
the coefficients c5,ni in Eq. (24) are specified through the newly introduced Block DIM5.

For example, within the MSSM,

Block DIM5
11 1.00000000E-04 # c5h0
12 4.00000000E-05 # c5H0
21 -3.00000000E-07 # c5A0

corresponds to c(0)5,11 ≡ c(0)5,h = 10−4, c(0)5,12 ≡ c(0)5,H = 4 · 10−5, and c(0)5,21 ≡ c(0)5,A = −3 · 10−7. Note that SusHi calculates the cross
section of only one particular type of Higgs boson per run (defined in SUSHI(2)), see Ref. [7]. Correspondingly, only the pertinent entry
in Block DIM5will have an effect on the result, the other entries will be ignored. The corrections at higher orders are specified by setting

10 CP-even and -odd scalars, which couple through dimension-5 operators only, can also be studied, see the description after Eq. (31).
11 ‘‘SM-like’’ refers to the interaction Lagrangian Lint = −(mu′/v)H1iū′u′ for a CP-even, and Lint = −i(mu′/v)H2iū′γ5u′ for a CP-odd Higgs boson.



Please cite this article in press as: R.V. Harlander, et al., SusHi Bento: Beyond NNLO and the heavy-top limit, Computer Physics Communications (2016),
http://dx.doi.org/10.1016/j.cpc.2016.10.015

R.V. Harlander et al. / Computer Physics Communications ( ) – 9

DIM5(<k><ni>) for coefficients c(k)5,ni with k ≥ 1. At NLO the contribution of an infinitely heavy up-type quark u′ is thus reproduced by
setting DIM5(11)=1 and DIM5(111)=2.75.

The scale dependence of the dimension-5 Wilson coefficient can be derived from the non-renormalization of the trace anomaly
term [95–98],

µ2 d
dµ2 β(αs)GµνGµν

≡ 0 , (26)

where β(αs) is given in Eq. (20). Since also αsc5,1iGµνGµν must be scale invariant, this immediately leads to [10,99]

c5,1i(µR) = c5,1i(µφ)
(β/αs)|µR

(β/αs)|µφ

. (27)

Perturbatively, we can write this as

c5,1i(µR) =

∑
n≥0

n∑
l=0

(
αs(µR)

π

)n

c(n,l)5,1i (µφ)llRφ , (28)

with lRφ = 2 ln(µR/µφ),

c(n,0)5,1i = c(n)5,1i(µφ) , c(n,n)5,1i = 0 ∀ n (29)

and, through NNLO,

c(2,1)5,1i = β0c
(1,0)
5,1i − β1c

(0,0)
5,1i ,

c(3,2)5,1i = β0(β0c
(1,0)
5,1i − β1c

(0,0)
5,1i ) , c(3,1)5,1i = 2(β0c

(2,0)
5,1i − β2c

(0,0)
5,1i ).

(30)

Setting DIM5(0)=1 makes SusHi evolve the Wilson coefficient perturbatively, i.e. according to Eq. (28); this is the default. On the other
hand, one can also employ Eq. (27) for the evolution by setting DIM5(0)=2, similar to the implementation in HIGLU [10]. The evolution
can also be switched off (i.e. c5,1i(µR) = c5,1i(µφ)) by setting DIM5(0)=0. The RGE procedure described in the previous section is only
applicable for DIM5(0)=1. SusHiwill assume the Wilson coefficient provided in the input Block DIM5 to be renormalized at µφ = Mφ .
The corresponding values at µR (where µR is given in SCALES(1)) are output in Block DIM5OUT.

Moreover, the inclusion of dimension-5 operators is not compatible with the inclusion of 1/Mt terms, i.e. SusHi stops if GGHMT(1)̸=
0 or GGHMT(2)̸= 0. The LO dependence including quark-mass effects must not be factored out, i.e. SusHi only accepts the setting
GGHMT(-1)=-1, in order not to reweight the dimension-5 operator contributions with top-quark mass effects.

We note that through the Block FACTORS, which existed also in earlier versions, SusHi allows to alter the couplings of the Higgs
boson to quarks and squarks. Thus, for example additional factors κt and κb for the Higgs-boson coupling to top and bottom quarks can be
chosen. In case of the SM the corresponding Lagrangian then takes the following form for the CP-even Higgs boson H11 = H

LTH ∋ −κt
√
2
Mt

v
t t̄H − κb

√
2
Mb

v
bb̄H. (31)

It is therefore easily possible to perform an analysis as presented in Ref. [100] in SusHi, where the dependence of the gluon-fusion cross
section on κt and c5,1i is discussed. We will later also focus on this dependence for a very boosted Higgs taking into account the bottom-
quark induced contribution in addition. Moreover, by setting the couplings to quarks and gauge bosons to zero through the settings in
Block FACTORS and SUSHI(7)=0, respectively, also CP-even or -odd scalars beyond the implemented models can be studied. We will
demonstrate this option by providing inclusive cross sections for a scalar with a mass of 750 GeV at the 13 TeV LHC in Section 5.4.

4. Heavy-quark annihilation

In this section we shortly comment on the implementation of the total inclusive NNLO Higgs-production cross sections through heavy-
quark annihilation, Q ′Q̄ → φ, as described in Ref. [30]. Its activation is through the presence of the Block QQH in the input file, which
has the following form:

Block QQH
1 <parton1>
2 <parton2>

11 <v*y>
12 <mu>

Here, <parton1>∈ {1, . . . , 5} denotes the initial-state quark flavor Q ′, and <parton2>∈ {−1, . . . ,−5} the initial-state anti-quark
flavor Q̄ . <v*y> is the Q ′Q̄φ coupling in the MS scheme at scale <mu>= µ/GeV, normalized such that the SM value of the qq̄H coupling
is <v*y>= mq(µ)/GeV. For further details regarding the implementation in SusHi_1.6.0 and results we refer to Ref. [30].

If the Block QQH is provided, SusHi will not calculate the gluon-fusion cross section. The calculation of heavy-quark annihilation
cross sections is also compatible with cuts on the (pseudo)rapidity or transverse momentum of the Higgs boson up to O(α3

s ), controlled
through the settings in Block DISTRIB. Also pT distributions ( DISTRIB(1)=1) can be requested. Since all quarks are assumedmassless
in this approach, the underlying theory is chirally symmetric. Therefore the results for a scalar and a pseudo-scalar Higgs are identical and
the setting of SUSHI(2) is irrelevant. Note also that the collision of an up-type quark with a down-type anti-quark (or vice versa) implies
that φ carries an electric charge. The only model dependence of the Q ′Q̄φ cross section as calculated by SusHi is through the setting of
the Yukawa coupling in QQH(11), such that a calculation in the SM-mode is sufficient ( SUSHI(1)=0), unless the Higgs mass should be
obtained from some external code like FeynHiggs.

Other parameters of the Q ′Q̄φ calculation are determined by the same input values as they are used for the bb̄φ cross section when no
input Block QQH is present. In particular, the perturbative order of Q ′Q̄φ is controlled through SUSHI(6) =n, where n = 1, 2, 3 results
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Fig. 2. (a) Convergence of the NLO cross section as a function of N for a = 0, 1, 2, 3 in Eq. (5); (b) Convergence of the NNLO cross section as a function of N for a = 0, 1, 2, 3
in Eq. (5). In both figures the colors depict a = 0 (red), a = 1 (blue), a = 2 (green), a = 3 (black). The black, dashed line corresponds to the exact result in the heavy-top
limit. The results are obtained for a SM Higgs with MH = 125 GeV at the

√
s = 13 TeV LHC. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

in the LO, NLO, or NNLO prediction, respectively, and the renormalization and factorization scales (relative to Mφ) are defined through
SCALES(11) and SCALES(12), respectively.

5. Numerical results

This section demonstrates the newly implemented features of SusHi_1.6.0 with the help of exemplary numerical results. We start
with a discussion of the convergence of the soft expansion at individual perturbative orders up to N3LO, proceed with top-quark mass
effects in the effective field-theory approach, move to the RGE procedure to determine the renormalization-scale dependence, before we
use these features to provide a prediction for the cross section of the SM Higgs boson. Finally, we study the effect of higher dimensional
operators to the transverse momentum pT of the SM Higgs boson and provide inclusive cross sections for a CP—even scalar with a mass of
750 GeV. For numerical results concerning heavy-quark annihilation, we refer the reader to Ref. [30].

If not stated otherwise, the setup for the numerical evaluations is as follows: The LHC center-of-mass energy is set to
√
s = 13 TeV, and

the SM Higgs mass to MH = 125 GeV. We employ PDF4LHC15 [101–107] as parton distribution functions (PDF), where the (n)nlo_mc
Monte Carlo is used by default, and the (n)nlo_100Hessian sets if noted. Since N3LO PDF sets are not available, we use the NNLO set also
for the evaluation of the N3LO terms. Nevertheless, in the N3LO calculation, we evolve αs at 4-loop level; using 3-loop running of αs instead,
the final prediction of the cross section for a SMHiggs boson changes at the level of 10−5 . The remaining input follows the recommendation
of the LHC Higgs cross section working group, see Ref. [108]. The on-shell charm-quark mass is set tomOS

c = 1.64 GeV, which is the upper
edge of the range given in Ref. [108]. The central scale choice for the renormalization and factorization scale is µR = µF = MH/2.

Note that the results of Sections 5.1–5.3 are obtained for a SM Higgs boson. However, SusHi_1.6.0 allows to take into account
the effects of N3LO contributions in the heavy-top limit and 1/Mt terms to the NNLO contributions for any CP-even Higgs boson in the
implementedmodels, as long as themass of the Higgs boson under consideration is sufficiently light, i.e. below 2Mt. Effects of dimension-5
operators (see Sections 3.5 and 5.4), on the other hand, can be taken into account for any of the neutral Higgs bosons of the implemented
models and CP-even and -odd scalars, which couple through dimension-5 operators only.

5.1. Soft expansion up to N3LO

In this section, we study the behavior of the expansion around the ‘‘soft limit’’, x → 1, for the gluon-fusion cross section, see also
Section 3.1. For the sake of clarity, top-quark mass effects beyond LO will be neglected in this section, although the LO cross section
including the full top-quark mass dependence is factored out to all orders (i.e. we set GGHMT(-1)=3, see Section 3.3). In order to discuss
the convergence of the soft expansion, we define the quantity(

δσ

σ

)NnLO

=
σ t
NnLO,N,a

σ t
Nn−1LO

− 1 with n ≥ 1 , (32)

where σ t
NnLO has been introduced in Eq. (5). Through O(αn+1

s ), the exact x-dependence is taken into account. In the highest-order terms,
i.e. the terms of order O(αn+2

s ) in σ t
NnLO,N,a, the soft expansion is applied according to Eq. (5) up to order (1 − x)N with N ≤ 16. All studies

in this subsection were performed without matching the cross section to the result at x → 0, i.e., we set GGHMT(n· 10)=0 for n = 1, 2, 3.
At infinite order of the soft expansion, the value of the parameter a in Eq. (5) is obviously irrelevant. If only a finite number of terms in

the expansion is available, the dependence of the result on the parameter a has been studied in detail in Ref. [22]. It was shown that the
soft expansion seems to converge particularly well for small, non-negative values of a. The differences among the final results for different
values of a are smaller at higher orders, as we demonstrate subsequently. One observes that the µF-dependent terms of σ̂ at NLO are
polynomial in x, which means that they are identical to their soft expansion for a = 0 once it is taken to sufficiently high order (N = 3, to
be specific). This is no longer true with the choice a > 0. Let us add that, since theµR-dependent terms at NLO are proportional to δ(1− x),
they are the same whether the soft expansion is applied or not.

Fig. 2(a) and (b) show the convergence of the soft expansion at NLO and NNLO, respectively. Both figures also include the result without
soft expansion as dashed black line, i.e. where σ t

NnLO,N,a is replaced by σ t
NnLO in Eq. (32). At NLO, the case a = 0 appears to be clearly
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Fig. 3. (a) Convergence of the N3LO cross section as a function of N for a = 0, 1, 2, 3 in Eq. (5); (b) Convergence of the gg channel of the N3LO as a function of N for
a = 0, 1, 2, 3 in Eq. (5). A zoom for larger values of N is provided in the upper right corner of the figures. In both figures the colors depict a = 0 (red), a = 1 (blue), a = 2
(green), a = 3 (black). The results are obtained for a SM Higgs with MH = 125 GeV at the

√
s = 13 TeV LHC. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

preferable; for larger value of a, the soft expansion is further away from the exact x-dependence. For N ≥ 9, the deviation for a = 0 is less
than 2.5%.12 It decreases down to 1.3% at N = 16, while the result for a = 1 is still more than 7% off.

At NNLO, convergence of the soft expansion appears to be a bit faster, with no significant impact of the terms higher than (1− x)6 both
for a = 0 and a = 1. For N ≥ 9, the result for a = 0 (a = 1) approximates the exact x-dependence of the correction term to better than 5%
(2%) (translating into about 0.9% (0.3%) for the total cross section).

Fig. 3(a) depicts the convergence of the soft expansion for the cross section at N3LO. Above N = 11, the spread among the curves for
a = 0, 1, 2, 3 is of the order of 3% of δσ/σ , which means about 0.1% of the total cross section. For completeness, the same plot for the
dominant gg channel alone is shown in Fig. 3(b). Note that in this case, we only include the gg channel also in the denominator of Eq. (32).
At lower orders of the soft expansion, the curve for a = 0 behaves less smoothly compared to a ≥ 1; at sufficiently high orders though,
all results can be considered consistent with each other at the level of accuracy indicated above.

5.2. Top-quark mass effects through NNLO and matching to the high-energy limit

In this section we comment on top-quark mass effects beyond the heavy-top limit, which can be taken into account in SusHi up to
1/M10

t at LO and NLO and up to 1/M6
t at NNLO. As already pointed out in Section 3.3, a naive expansion of the partonic cross section in

1/Mt breaks down. Thus, in this section, we apply the matching to the high-energy limit as described in Section 3.3, i.e. we set GGHMT(n·
10) =1 for n = 1, 2, 3.

Recall that the matching procedure of Refs. [24,25] requires the soft expansion of the partonic cross section. Thus before discussing the
relevance of the top-quark mass effects, it is necessary to study the convergence of the soft expansion also for these terms. For the result
at NLO we can compare to the result in the heavy-top limit, but also to the exact top-quark mass dependence; the difference between
these two results is about 1%. At NNLO, on the other hand, only a comparison to the heavy-top limit is possible. The results are shown in
Fig. 4, including terms through 1/M8

t at NLO, and through 1/M4
t at NNLO (for the gg and the qg channels also 1/M6

t terms are implemented
in SusHi but provide a negligible contribution, see Fig. 6). Following Eq. (32), we keep the exact x-dependence one order below to allow
for a better comparison with the figures of Section 5.1. At NLO, one observes a nice convergence of the soft expansion to the exact result,
provided a = 0. Terms beyond (1 − x)10 have only negligible effects on the final result in this case. At NNLO, convergence of the soft
expansion is significantly slower, but the available number of terms in this expansion seems sufficient for a prediction of the mass effects
with permille level accuracy, provided that a = 0 is indeed the most reliable choice for the parameter defined in Eq. (5). Fig. 5 shows the
N3LO result with matching to the high-energy limit as described in Section 3.3. The convergence of the soft expansion as a function of N is
slightly worse compared to the result without matching, but shows a similar behavior as the results at NLO and NNLO depicted in Fig. 4.
The correction at N = 16 is comparable to the result without matching, see Fig. 3.

Let us now discuss the top-quark mass effects at different orders 1/MP
t in more detail, while applying the soft expansion through

(1 − x)16 with a = 0 (see Eq. (5)). The result is presented in Fig. 6, where the relative difference(
δσ

σ

)
Mt

=
σP

σhtl
− 1 (33)

to the heavy-top limit at the corresponding perturbative order is shown. At NLO, σP is obtained by including terms of order 1/MP
t in the

partonic cross section and matching it to the x → 0 limit (i.e. GGHMT(1)=P , GGHMT(10)=1, GGHSOFT(1)={1,16,0}), while σhtl is the
heavy-top limit at NLO (i.e. GGHMT(1)=GGHMT(10)=0, GGHSOFT(1)={0,0,0}). In both cases, the value for the cross section provided
by SusHi in XSGGHEFF(1) is used.

At NNLO,we use Eq. (4)which corresponds to the SusHi output SUSHIggh(1), neglecting bottom- and charm-quark, and electroweak
effects ( FACTORS(1)=FACTORS(3)=SUSHI(7)=0). Furthermore, wemake sure that only the genuine NNLO effects of the 1/Mt terms are
shown, by fixing the approximation used at O(α3

s ); specifically, we set GGHMT(1)=6, GGHMT(10)=1, and GGHSOFT(1)={1,16,0}, both
for σP and σhtl. For theO(α4

s )-terms, we apply the analogous settings of the NLO case described above. I.e., we include terms of order 1/MP
t

12 Note that this refers to the absolute NLO correction term in pb; with respect to the total cross section, this translates into an approximation which is better than 1.6%.
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Fig. 4. (a) Convergence of the NLO cross section as a function of N for a = 0, 1, 2, 3 in Eq. (5) with top-quark mass effects up to 1/M8
t ; (b) Convergence of the NNLO cross

section as a function of N for a = 0, 1, 2, 3 in Eq. (5) with top-quark mass effects up to 1/M4
t . In both figures the colors depict a = 0 (red), a = 1 (blue), a = 2 (green), a = 3

(black). The black, dashed line corresponds to the exact result in the heavy-top limit, the black, dot-dashed line to the exact result with full top-quarkmass dependence (only
known at NLO). The results are obtained for a SM Higgs withMH = 125 GeV at the

√
s = 13 TeV LHC. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

a b

Fig. 5. (a) Convergence of the N3LO cross section as a function of N for a = 0, 1, 2, 3 in Eq. (5); (b) Convergence of the gg channel of the N3LO as a function of N for
a = 0, 1, 2, 3 in Eq. (5). A zoom for larger values of N is provided in the upper right corner of the figures. In both figures the colors depict a = 0 (red), a = 1 (blue), a = 2
(green), a = 3 (black). In contrast to Fig. 3 the N3LO result ismatched to the high-energy limit. The results are obtained for a SMHiggswithMH = 125 GeV at the

√
s = 13 TeV

LHC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

in σP (modulo the restriction to 1/M4
t for the pure quark channels, see above), and match them to the x → 0 limit, while we apply the

usual heavy-top limit for σhtl.
The results are shown in Fig. 6, together with the relative difference of the exact NLO cross section to its heavy-top limit (black dashed).

The points at P = 0 illustrate the effect of using the soft expansion combinedwithmatching to the result at x = 0, as opposed to keeping the
full x dependence (without matching). Both at NLO and NNLO, this effect is obviously larger than the genuine 1/Mt-terms. This underlines
that, as long as one works in a heavy-top approximation, which is strictly valid only for x > M2

φ/(4M2
t ), the full x-dependence is not

necessarily an improvement w.r.t. the soft expansion, in particular if additional information like the x → 0 limit is available.
Both at NLO and NNLO, the 1/Mt terms exhibit a nice convergence behavior. However, the observation at NLO is that, while the 1/M0

t
result almost exactly reproduces the full mass dependence after matching to the high-energy limit and employing the soft expansion,
including higher-order mass effects moves the approximation away from the exact result. Thus, we cannot expect that their inclusion at
NNLO leads to an improved result w.r.t. the heavy-top limit. Nevertheless, we believe that their overall behavior allows to derive an upper
bound on the top-mass effects to the heavy-top limit of the order of 1% [24,25,27].

5.3. Cross section prediction for the SM Higgs boson and scale dependence

Having discussed the top-quark mass terms to the NLO and NNLO cross section in the heavy-top limit and the convergence of the soft
expansion, we can finally provide a prediction for the cross section of the SM Higgs boson including its scale uncertainty. In this section
we make use of the Hessian PDF sets PDF4LHC15_(n)nlo_100. Following the arguments of the preceding sections, the best prediction
of SusHi is obtained with the following settings: use the perturbative result through N3LO, i.e. set SUSHI(5)=3; at each order of the
effective-theory result, apply the soft expansion through (1 − x)16 with a = 0, i.e. set GGHSOFT(n)={1,16,0} for n ∈ {1, 2, 3}; take into
account top-quarkmass terms to the predictions of the NLO and NNLO cross sections in the heavy-top limit through the settings GGHMT(n)
=4 for n ∈ {1, 2}, i.e. 1/M4

t terms are taken into account at NLO and NNLO; match to the high-energy limit x → 0 at NLO, NNLO, and N3LO,
i.e. set GGHMT(n· 10) =1 for n = 1, 2, 3. The choice of a = 0 is motivated through the reproduction of the correct scale dependence at NLO
and the observations in Section 5. Also note that for all predictions in the effective field-theory approach, we factor out the full top-quark
mass dependence, i.e. GGHMT(-1)=3. Finally, we include the electroweak correction factor according to Eq. (4), i.e. we set SUSHI(7)=2.
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Fig. 6. Relevance of 1/MP
t terms to the cross section in the heavy-top limit in percent at NLO (black) up to P = 10 and at NNLO (red) up to P = 6 with respect to the exact

heavy-top limit at the corresponding order. The black, dashed line corresponds to the exact NLO result. The results are obtained for a SM Higgs with MH = 125 GeV at the
√
s = 13 TeV LHC.

Fig. 7. (a) LO (red, dotted), NLO (green, dashed), NNLO (blue, dot-dashed) and N3LO (black, solid) gluon-fusion cross section in pb (see Eq. (4)) as a function of µR/MH
(obtained in a single run); (b) Best prediction cross section in pb as a function of µF/MH (together with µR = MH/2) (blue) and µF/MH = µR/MH (red) and µR/MH (together
with µF = MH/2) (black). Each curve is shown twice, once for a = 0 (solid) and a = 1 (dashed) in the soft expansion at N3LO. The dotted, thin black line depicts the N3LO
result from (a). Both figures are obtained for a SM Higgs withMH = 125 GeV at the

√
s = 13 TeV LHC. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

The exact NLO cross section of Eq. (4) contains the contributions from the three heaviest quarks: top, bottom, and charm. The numbers
can be reproduced with the input file SM-N3LO_best.in in the example-folder of the SusHi_1.6.0 distribution.

With this setup, we obtain

NNLO : σ = 43.55 pb ± 4.44 pb(µR),
+N3LO : σ = 45.20 pb ± 1.61 pb(µR),

+1/Mt effects at NLO and NNLO
+matching (x → 0) at NLO, NNLO and N3LO : σ = 45.80 pb ± 1.87 pb(µR),

+electroweak corrections : σ = 48.28 pb ± 1.97 pb(µR),

(34)

where the uncertainty ±∆(µR) only takes into account the renormalization-scale dependence. Here, ∆(µR) is the maximum deviation of
the cross section within the interval µR/MH ∈ [1/4, 1] from the value at µR = MH/2. Each line of Eq. (34), including the uncertainty, has
been obtained in a single run of SusHi, which takes a few seconds on a modern desktop computer. The final result is perfectly consistent
within its uncertainties with the prediction 48.58 pb±1pb(µR) given in Ref. [22] and the result 48.1 pb±2.0pb (without resummation)
employing the Cacciari–Houdeau Bayesian approach [109] to estimate higher unknown orders presented in Ref. [18]. We note that the
result of Ref. [22] was computed with the NNLO PDF set at all orders, whereas we employ the NLO PDF set for the NLO terms in Eq. (4).
If we employ PDF4LHC15_nnlo_100 instead at all orders, we obtain 48.37pb. Other uncertainties need to be added as described in
Refs. [6,22].

Running the input file SM-N3LO_best.in also generates a file including the renormalization-scale dependence. Its content is shown
in Fig. 7(a). The dependence clearly reduces successively from NLO to N3LO. Note that at each order we follow Eq. (4) and thus include
the electroweak correction factor beyond LO. The flat behavior around µR = MH/2 leads to a highly asymmetric scale variation around
the central value, suggesting a symmetrization of the corresponding uncertainty band as done in Eq. (34). As explained in Section 3.4, the
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Fig. 8. (a) Ratio of R(pcutT ) with different c(0)5,H (see figure) and R(pcutT ) with c5,H = 0 as a function of pcutT in GeV; (b) Ratio of R(pcutT ) and R(pcutT ) with c5,H = 0 as a function of
c(0)5,H for different pcutT (see figure). In both figures we set c(1)5,A =

11
4 c(0)5,A . Both figures are obtained for a CP-even SM Higgs withMH = 125 GeV at the

√
s = 13 TeV LHC.

µR dependence obtained through the RGE procedure at NnLO is as precise as the calculation at Nn−1LO, while in the standard procedure
(by manually varying SCALES(1)), its precision is determined by the NnLO calculation. We show the result of the standard procedure in
Fig. 7(b) (black lines). In addition, the µ = µF dependence for µR = MH/2 (blue) and the combined µ = µF = µR dependence (red) are
shown. In each case, the solid and dashed line corresponds to setting a = 0 and a = 1 in Eq. (5), respectively. The differences between
these two cases, as well as between the standard and the RGE procedure are small, except for small values of µ. We also observe that the
behavior at low values ofµ in Fig. 7(b) is dependent on the soft expansion and thematching performed at NLO and NNLO. However, within
the interval µ ∈ [MH/4,MH] which we use for the uncertainty determination, the agreement is good.

5.4. Dimension 5 operators

In order to study the effect of the dimension-5 operators, it is helpful to consider the fraction of events where the SM Higgs boson is
produced at transverse momenta above a certain value pcutT . We define

R(pcutT ) =
1

σ tot σ (pcutT ) with σ (pcutT ) =

∫
pT>pcutT

dpT
dσ
dpT

, (35)

where σ ≡ σni(c5,ni) denotes the cross section for the production of a Higgs boson Hni within the theory defined by Eq. (24), and follow the
numerical setup described at the beginning of Section 5. However,we do not take into account charm-quark and electroweak contributions
and choose a pT -dependent renormalization and factorization scale for the result presented in Fig. 10. If not stated otherwise, the relative
Yukawa couplings to top- and bottom quarks are set to one, i.e. we discuss the specific model TH with additional dimension-5 operator.
In the subsequent NLO analysis, we set c(1)5 =

11
4 c(0)5 , i.e. our dimension-5 operator assumes the same (rescaled) NLO correction as for the

top-quark induced Wilson coefficient.
The ratio R(pcutT ) of Eq. (35) is shown in Fig. 8 for the SM Higgs boson as a function of (a) pcutT for various values of c(0)5,H , and (b) c(0)5,H for

various values of pcutT . Similarly, Fig. 9 shows the ratio for a CP-odd Higgs boson with mass 125 GeV. For Figs. 8(a) and 9(a), σ tot is chosen
such that each R(pcutT ) is normalized to its NLO inclusive cross section. For Figs. 8(b) and 9(b), σ tot

= σ (pcutT ) for c5 = 0 to ensure that
all curves start at one. The minima, which are clearly visible around pcutT = 50 GeV, are induced by the negative interference with the
bottom-quark induced contributions to gluon fusion, which turns into a positive interference for higher values of pcutT . Accordingly, these
minima affect also the dependence on c5 in Figs. 8(b) and 9(b), i.e. the lowest curve is obtained for a value of pcutT around 40 GeV. Apart
from the impact on the inclusive cross section, the point-like interaction encoded in the coefficient c5 thus distorts the shape of the pT
distributions with respect to the loop-induced massive top- and bottom-quark contributions, as expected.

Following the study performed in Ref. [100], we now work out the dependence of the cross section with a minimal cut on pT on the
factors κt and c(0)5,H for the SM Higgs boson.13 In addition, we include the dependence on the bottom-quark induced contribution through
the factor κb, since the latter is non-negligible for pcutT < 200 GeV. For this study we also choose pT -dependent renormalization and

factorization scales µR = µF =

√
M2

H + p2T/2, which is possible through the setting SCALES(3)=1. We define σ̃ (pcutT ), which just includes
the top-quark induced contribution, i.e. we set κt = 1 and c5,H = κb = 0, and then perform a fit of

σ (pcutT )
σ̃ (pcutT )

= (κt + c(0)5,H )
2
+ δκtc

(0)
5,H + ϵ(c(0)5,H )

2
+ δbtκbκt + δbgκbc

(0)
5,H + ϵbκ

2
b , (36)

where we set c(1)5,H =
11
4 c(0)5,H and δ and ϵ are defined identically to Ref. [100]. In addition, however, we include the bottom-quark induced

contribution, which is understood as pure correction entering through δbg , δbt , and ϵb. The values for δ and ϵ coincide at the percent level
with the values of Table 1 in Ref. [100], where for completeness we note that our calculation also includes the qq induced contribution to
gluon fusion. For our numerical setup we show the dependence of the five correction factors on the lower cut pcutT in Fig. 10.

13 Our c(0)5,H corresponds to κg in Ref. [100].
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Fig. 9. (a) Ratio of R(pcutT ) with different c(0)5,A (see figure) and R(pcutT ) with c5,A = 0 as a function of pcutT in GeV; (b) Ratio of R(pcutT ) and R(pcutT ) with c5,A = 0 as a function of c(0)5,A

for different pcutT (see figure). In both figures we set c(1)5,A =
11
4 c(0)5,A . Both figures are obtained for a CP-odd Higgs withmA = 125 GeV at the

√
s = 13 TeV LHC.

Fig. 10. (a) Correction factors δ, ϵ as a function of the lower cut pcutT in GeV and in addition (b) δbg , δbt and ϵb as a function of pcutT . Both figures are obtained for a SM Higgs
withMH = 125 GeV at the

√
s = 13 TeV LHC.

As can be seen in Fig. 10(a), the larger the lower cut pcutT , themore the degeneracy between κt and c5,H , which are indistinguishable in the
inclusive cross section, is broken. On the other hand Fig. 10(b) points out that for low pcutT < 200 GeV bottom-quark induced contributions
should also be taken into account. The interferences of the latter with the top-quark induced contributions on the one hand and with the
effective coupling c5,H on the other hand, encoded in δbt and δbg , are identical only for low pcutT . We note that the cross section prediction
for the SM Higgs boson of course should include the full correction by bottom quarks given by δbt and ϵb. For completeness we partially
also reproduced Fig. 2 of Ref. [100], which illustrates the disentanglement of the degeneracy between κt and c5,H .

As a last example we discuss the calculation of the gluon-fusion cross section for an arbitrary scalar, which couples to gluons through
an effective operator c(0)5 = 1 only. Motivated by the background deviation in the diphoton channel at 750 GeV in both LHC experiments
[110,111], we choose the mass of the scalar to be mX = 750 GeV. We pick an input file for the SM, set the SM Higgs-boson mass to
MH = 750 GeV, include a dimension-5 operator through DIM5(11)=1, but set the SM Higgs-boson couplings to quarks and gauge
bosons to zero in Block FACTORS and through SUSHI(7)=0. The results are shown in Table 2. We include the renormalization scale
uncertainty ±∆(µR), which was obtained simultaneously. Again ∆(µR) is the maximum deviation of the cross section within the interval
µR ∈ [1/4, 1]mX and µR ∈ [1/2, 2]mX for the central scale choices µR = µF = mX/2 and µR = µF = mX , respectively. For this purpose
the Wilson coefficient is evolved perturbatively, i.e. DIM5(0)=1. At N3LO the soft expansion is performed up to (1 − x)16 with a = 0. The
matching to the high-energy limit, x → 0, is not applied. Similar to the SMHiggs bosonwe observe a good convergence of the perturbative
series with a renormalization scale uncertainty of less than ±1.3% and ±2.9% at N3LO QCD for the central scale choices µR = µF = mX/2
and µR = µF = mX , respectively.

6. Conclusions

We presented the new features implemented in version 1.6.0 of the code SusHi. Aside from the implementation of heavy-quark
annihilation, many new features aim at the improvement of the gluon-fusion cross-section prediction and its associated uncertainty
estimate. In particular, SusHi now provides the soft expansion around the threshold of Higgs production and the matching to the high-
energy limit for CP-even Higgs bosons, at NLO, NNLO and N3LO QCD. Top-quark mass effects beyond the usual infinite top-mass limit
can be taken into account at NLO and NNLO. We investigated the relevance of these effects for a SM-like Higgs boson with a mass of
125 GeV and provide a prediction of the corresponding gluon-fusion cross section at the LHC with a center-of-mass energy of 13 TeV.
Both for CP-even and -odd Higgs bosons, SusHi now calculates the renormalization-scale uncertainty simultaneously to the calculation of
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Table 2
Inclusive gluon-fusion cross section in fb for a CP-even scalar withmassmX = 750 GeV, which couples to gluons through
c(0)5 = 1 only. The results are given at different orders NkLO, k = 0, 1, 2, 3, in QCD for the

√
s = 13 TeV LHC for

two renormalization and factorization scale choices. The depicted uncertainty is the renormalization-scale uncertainty
±∆(µR).

σ (gg → X) [fb] µR = µF = mX/2 µR = µF = mX

LO 246.2±52.8 185.8±36.0
NLO 368.7±43.1 316.3±39.1
NNLO 410.0±19.1 384.9±24.0
N3LO 414.6±5.4 407.2±11.7

the gluon-fusion cross section at the central scale. Moreover, the effects of dimension-5 operators can be studied in any model currently
supported by SusHi. We showed how the degeneracy between the top-quark mass contribution and a point-like dimension-5 operator
contribution can be broken at large values of the transverse momentum of a Higgs boson with mass 125 GeV. The implementation of
arbitrary dimension-5 operators is also particularly suited for the study of new CP-even and -odd scalars beyond the implementedmodels.
We showed the convergence of the perturbative series for the inclusive gluon-fusion cross section of a scalar with mass 750 GeV at the
13 TeV LHC.

Our description and the subsequent Appendix include examples how the user can control the new features through the setting of blocks
in the input file of SusHi. Example input files are contained in the example-folder of the current SusHi release to be found at [8].
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Appendix. Example input

In this Appendix we present exemplary input blocks, which control features that have been added to SusHi since its original release
described in Ref. [7] (version1.0.0). This includes the features described in themain text of this paper, but also others like the introduction
of the NMSSM[9] and the 2HDM, or the calculation of the Higgs cross section in general heavy-quark annihilation through NNLO [30]. For
a complete up-to-date manual of SusHi, we refer the reader to Ref. [112].

We begin with the main Block SUSHIwhich may look as follows:

Block SUSHI
1 0 # Chosen model: 0=SM, 1=MSSM, 2=2HDM, 3=NMSSM
2 11 # 11/12/13=scalar, 21/22=pseudo-scalar
3 0 # Particle collider: 0=pp, 1=ppbar
4 1.3E+04 # center-of-mass energy in GeV
5 3 # Order for ggh
6 2 # Order for bbh
7 2 # Electroweak contributions to ggh

19 1 # 0 = silent mode of SusHi, 1 = normal output
20 10 # ggh@nnlo subprocesses: 0=all, 10=ind. contributions
21 0 # bbh@nnlo subprocesses: 0=all

SUSHI(1) controls the physics model, SUSHI(2) the Higgs boson under consideration. In contrast to the original release with the 2HDM-
adapted options SUSHI(2)∈{0,1,2} for the light, the pseudo-scalar and the heavy Higgs boson, respectively, the Higgs bosons are
now defined in the more general NMSSM-framework, where SUSHI(2)∈ {11,12,13} denote the CP-even Higgs bosons {H1,H2,H3},
and SUSHI(2)∈ {21,22} the CP-odd Higgs bosons {A1, A2}. If SUSHI(1)=0, H1 assumes the role of the SM Higgs boson, while A1 is a
hypothetical pseudo-scalar with ‘‘SM-like’’ couplings (see, e.g., Ref. [113] for details). If SUSHI(1)∈ {1,2}, then H1 = h and H2 = H are
the light and the heavy CP-even Higgs boson, and A1 = A is the CP-odd Higgs boson of the MSSM or the 2HDM.

SUSHI(5) now allows for the settings SUSHI(5)=3, activating the N3LO QCD top-quark contributions as discussed in this paper, and
SUSHI(5)=12 for the inclusion of approximate NNLO stop contributions as described in Ref. [78] (see also Ref. [77]). Other new options
are set in SUSHI(n) with n ≥ 10: SUSHI(19) controls the screen output verbosity of SusHi, while SUSHI(20) and SUSHI(21) allow to
display the individual subchannels in the calculations of gluon-fusion and bottom-quark annihilation, respectively.

We continue with a description of the input blocks to control the effects described in this paper. For this purpose we consider the input
file SM-N3LO_best.in, which contains new input entries in Block GGHMT, Block GGHSOFT, and Block SCALES. The Block GGHMT
controls top-quark mass effects in the calculation of the gluon fusion cross section and has the following entries:

Block GGHMT
-1 3 # factor out exact LO result at LO(=0)/NLO(=1)/etc.
0 -1 # expand through 1/mt^n at LO [-1=exact]
1 4 # expand through 1/mt^n at NLO

11 4 # expand gg through 1/mt^n at NLO
12 4 # expand qg through 1/mt^n at NLO
13 4 # expand qqbar through 1/mt^n at NLO
2 4 # expand through 1/mt^n at NNLO

21 4 # expand gg through 1/mt^n at NNLO
22 4 # expand qg through 1/mt^n at NNLO
23 4 # expand qqbar through 1/mt^n at NNLO
24 4 # expand qq through 1/mt^n at NNLO
25 4 # expand qqprime through 1/mt^n at NNLO
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3 0 # expand through 1/mt^n at N3LO (more not implemented)
10 1 # [0/1]: do not/match to high energy limit at NLO
20 1 # [0/1]: do not/match to high energy limit at NNLO
30 1 # [0/1]: do not/match to high energy limit at N3LO

In this example, we factor out the LO top-quark mass dependence through the first setting. The parameter GGHMT(0) is only of relevance
for GGHMT(-1)=-1 (meaning that the LO top-quark mass dependence is not factored out) and allows to control the top-quark mass terms
in the LO contribution in this case. Beyond LO, we take into account the first four terms in the expansion in 1/Mt in all channels. Finally,
through GGHMT(n · 10) =1with n ≥ 1, we match to the high-energy limit at each order beyond LO.

The block Block GGHSOFT activates the soft expansion around the threshold of Higgs production through GGHSOFT(n,1)=1 with
n ∈ {1, 2, 3} and performs it up to (1 − x)16 with a = 0, see Eq. (5):

Block GGHSOFT # parameters for soft expansion
1 1 16 0 # NLO [0/1=n/y] [order] sig(x)/x^[n]
2 1 16 0 # NNLO [0/1=n/y] [order] sig(x)/x^[n]
3 1 16 0 # N3LO [0/1=n/y] [order] sig(x)/x^[n]

Let us next consider the new settings in Block SCALES:

Block SCALES
1 5.00000000E-01 # Renormalization scale muR/mh for ggh
2 5.00000000E-01 # Factorization scale muF/mh for ggh

101 5.00E-01 2.00E+00 # min and max for muR uncertainty around SCALES(1)
102 1.00E-01 1.00E+01 100 # min/max/steps for table of muR variation
11 1.00000000E+00 # Renormalization scale muR/mh for bbh
12 2.50000000E-01 # Factorization scale muF/mh for bbh

Entry SCALES(101) defines the interval of µR relative to the central scale given in SCALES(1), which SusHi uses to determine the
renormalization scale uncertainty of the gluon fusion cross section following Section 3.4. Thus, in this example, the µR uncertainty is
obtained from a variation of µR within the interval µR ∈ [0.5, 2] · 0.5 · MH. The minimal and maximal values of µR with respect to the
central scale choice relevant for the output file <outfile>_murdep are specified in SCALES(102). In the example, the cross sections at
100µR valueswithin [1/10, 10]·0.5·MH will be printed in the additional output file. Finally, note that the renormalization and factorization
scales for bottom-quark annihilation can be set independently in SCALES(11) and (12), which is possible since SusHi release 1.2.0.

For the discussion of dimension-5 operators we add an example of an arbitrary scalar φ coupling to gluons, similar to the one in the
last paragraph of Section 5.4.

Block DIM5
0 1 # Running of DIM5 operators 0=off/1=pert./2=res.

11 1.00000000E+00 # LO coeff of dim-5 operator
111 0.00000000E+00 # NLO coeff of dim-5 operator
211 0.00000000E+00 # NNLO coeff of dim-5 operator
311 0.00000000E+00 # N3LO coeff of dim-5 operator

We thus consider a CP-even Higgs boson through SUSHI(2)=11 and control its coupling to gluons through DIM5(n·100+11) with
n ∈ {0, 1, 2, 3}. The setting DIM5(0)=1 evolves the dimension-5 operator perturbatively, and through DIM5(11)=1we only fix the lowest
order contribution of the dimension-5 operator at the scale Mφ to a non-vanishing value. Higher order contributions will be generated
through the perturbative running and can be taken from the output Block DIM5OUT in the output file.

Next we display an example of the calculation of the cross section cc̄ → H in the SM through the settings in Block QQH, where apart
from the incoming parton types also the Yukawa coupling in GeV and the input scale of the Yukawa coupling in GeV have to be specified:

Block QQH
1 4 # parton 1 = c
2 -4 # parton 2 = cbar

11 1.27500000E+00 # Yukawa coupling
12 1.27500000E+00 # renorm.-scale for input Yuk.-coupl.

Let us next discuss the access to new physics models within SusHi. Since SusHi_1.0.2, calculations in the CP-conserving 2HDM can be
performed. Release 1.1.1 introduced a link to the external code 2HDMC [88]. The input of the 2HDM closely resembles the SM input. The
user has to specify the Higgs under consideration using SUSHI(2)∈ {11,12,21} for the light, the heavy, and the pseudo-scalar Higgs,
respectively. Moreover, the corresponding Higgs mass has to be given in Block MASS together with the Higgs mixing angle α in Block
ALPHA and the ratio of the vacuum expectation values tanβ in Block MINPAR. The different types of the 2HDM as discussed in Ref. [114]
can be distinguished in Block 2HDM:

Block 2HDM # 2HDM version according to arxiv:1106.0034
2 # (1=Type I,2=Type II,3=Flipped ,4=Lepton Specific)

Block MINPAR
3 5.00000000E+00 # tanb

Block ALPHA
-5.00000000E-01 # mixing in CP-conserving Higgs sector

Block MASS
25 1.25000000E+02 # Higgs mass h
35 1.50000000E+02 # Higgs mass H
36 3.00000000E+02 # Pseudoscalar Higgs mass A

The link to 2HDMC allows the user to provide the 2HDM input parameters in Block 2HDMC either in the λ basis, the physical basis, or the
H2 basis. For detailswe refer to the2HDMCmanual.Block 2HDMCmakes the blocks2HDM, MINPAR, ALPHA andMASS obsolete. Example
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input files are provided in the example-folder of the current SusHi distribution. For example, in case of the λ basis, the relevant block
takes the form:

Block 2HDMC # 2HDMC arXiv:0902.0851
1 1 # 2HDMC key, 1=lambda basis, 2=physical basis, 3=H2 basis
2 2 # 2HDM version type
3 1.00000000E+01 # tan(beta)
4 1.00000000E+02 # m12

11 1.00000000E-01 # lambda1
12 2.00000000E-01 # lambda2
13 3.00000000E-01 # lambda3
14 4.00000000E-01 # lambda4
15 5.00000000E-01 # lambda5
16 0.00000000E-01 # lambda6
17 0.00000000E-01 # lambda7

Since version 1.5.0, SusHi includes also the NMSSM[115]. For the corresponding input blocks we refer to Ref. [9] (note, however, a
change in the convention for Block NMAMIX [115]). Contrary to the MSSM and the 2HDM, no link to an external code is provided, such
that the NMSSMHiggs sector has to be specified completely in the input file. This involves the Higgs masses in Block MASS as well as the
Higgs mixing in the CP-even sector in Block NMHMIX and the CP-odd sector in Block NMAMIX.

SusHi_1.5.0 also introduced the Block FEYNHIGGSFLAGS, which allows to control the various options of a FeynHiggs [84–87]
run in the MSSM. The number of arguments depends on the FeynHiggs version, please consider the MSSM input and output files in the
example-folder of each SusHi release. We generally provide input files for all models and links to external codes in the folder example,
which is part of each SusHi release. We thus encourage the user to start his/her considerations with an example input file.
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