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Calculating relative free energies is a topic of substantial interest and has many applications
including solvation and binding free energies, which are used in computational drug discovery. How-
ever, there remain the challenges of accuracy, simple implementation, robustness and efficiency,
which prevent the calculations from being automated and limit their use. Here we present an exact
and complete decoupling analysis in which the partition functions of the compared systems decom-
pose into the partition functions of the common and different subsystems. This decoupling analysis
is applicable to submolecules with coupled degrees of freedom such as the methyl group and to any
potential function (including the typical dihedral potentials), enabling to remove less terms in the
transformation which results in a more efficient calculation. Then we show mathematically, in the
context of partition function decoupling, that the two compared systems can be simulated sepa-
rately, eliminating the need to design a composite system. We demonstrate the decoupling analysis
and the separate transformations in a relative free energy calculation using MD simulations for a
general force field and compare to another calculation and to experimental results. We present a
unified soft core technique that ensures the monotonicity of the numerically integrated function
(analytical proof) which is important for the selection of intermediates. We show mathematically
that in this soft core technique the numerically integrated function can be non-steep only when we
transform the systems separately, which can simplify the numerical integration. Finally, we show
that when the systems have rugged energy landscape they can be equilibrated without introducing
another sampling dimension which can also enable to use the simulation results for other free energy
calculations.
Keywords: Free energy, decoupling partition functions, monotonicity of free energy
derivative, replica exchange

I. INTRODUCTION

Calculating free energy differences between two phys-
ical systems, is a topic of substantial current interest. A
variety of advanced methods and algorithms have been
introduced to answer the challenge, both in the context
of molecular dynamics (MD) and Monte Carlo (MC)
simulations [1–7]. Applications of these methods in-
clude calculations of binding free energies [8–10], free
energies of hydration [11], free energies of solvation [12],
chemical reactions [13] and more. Free energy methods
are extensively used by various disciplines and the in-
terest in this field is growing - over 3,500 papers using
the most popular free energy computation approaches
were published in the last decade, with the publication
rate increasing ∼ 17% per year [14].

Free energy difference between two systems can be
calculated using equilibrium methods (alchemical free
energy calculations) and non-equilibrium methods. In
equilibrium methods a hybrid system is used to trans-
form system A into B, e.g with the transformation

Hhybrid = λHA + (1− λ)HB , λ ∈ [0, 1], (1)
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(in practice usually more complex transformations are
used as will be explained later on). In these methods,
the hybrid system is simulated at a set of λ interme-
diates and average values are calculated. Then, using
these values, the free energy difference is calculated.
The commonly used methods include Exponential Aver-
aging/ Free Energy Perturbation (FEP) [15] and Ther-
modynamic Integration (TI) [4, 16, 17]. Two methods
to estimate free energies which are considered equivalent
are Bennett Acceptance Ratio (BAR) [18] and Weighted
Histogram Analysis Method [19] (WHAM).

Another approach which enables to access directly the
free energy is the Wang-Landau method, in which ran-
dom walk is performed in energy space [20, 21]. Other
approaches such as λ Metadynamics and adiabatic MD
[22, 23] suggest to consider λ as a coordinate of the sys-
tem and to enable the system to wander between λs.
This is performed by introducing in the Hamiltonian a
potential term which depends on λ which ensures that
the system spends more time where the sampling of the
free energy as a function of λ is more challenging.

In non-equilibrium methods the work needed in the
process of switching between the two Hamiltonians is
measured. These methods include Jarzynski relation
[24] and its subsequent generalization by Crooks [25].

Calculating binding free energies is fundamental and
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has many applications. In particular it has potential to
advance the field of drug discovery which has to cope
with new challenges. In the last years the number of in-
novative new molecular entities for pharmaceutical pur-
poses has remained stable at 5− 6 per year. This situa-
tion is especially grim when taking into account the con-
tinual emergence of drug-resistant strains of viruses and
bacteria. Virtual screening methods, in which the 1060

possible molecules are filtered out, play a large role in
modern drug discovery efforts. However, there remains
the challenge of selecting the candidate molecules out of
the still very large pool of molecules in reasonable times.
Equilibrium methods show great potential in enabling
the computation of binding free energies with reasonable
computational resources. In these methods instead of
simulating the binding processes directly, which would
require a simulation many times the lifetime of the com-
plex, the ligand is transmuted into another through in-
termediate, possibly non-physical stages. This is in fact
relative free energy calculation in which the difference
between free energy of a process of one molecule and
another molecule is calculated. If the free energy differ-
ences between the ligands in the two environments are
calculated, the relative binding free energy between the
two ligands can be calculated (this cyclic calculation is
called the Thermodynamic Cycle).

Figure 1. The standard free energy differences scheme in the
calculation of binding free energy in the existing methods

In Fig. 1 a scheme of the free energies in the calcula-
tion of binding free energies in the standard methods is
presented (L1, L2 and R represent the ligands and the
receptor respectively). For solvation there is a similar
scheme in which instead of a receptor there is a solvent.

Free energy calculation methods already have suc-
cesses in discovering potent drugs [26]. However, despite
the continuing progress in the field from the original
concepts, the methods have restrictions which prevent
them from being automatic and limit their use in com-
putational drug design. A naive calculation of the free

energy difference using TI can be performed as follows:

4FA→B (β1) =

∫ 1

0

dFA→B (Hhybrid (λ))

dλ
dλ =

(2)∫ 1

0

∫
[HB(Ω)−HA(Ω)] e−β1[λHB(Ω)+(1−λ)HA(Ω)]dΩ

Z(λ)
dλ,

where Ω denotes the vector of all coordinates. It can
be seen that at λ = 1 for example HA does not affect
the systems’ behavior but its energy values are averaged
over, which can result in large magnitudes of the inte-
grated function. Thus, when the systems have low phase
space overlap there are significant changes in the inte-
grated function and large variance and hence large com-
putational cost. This is especially dominant when the
two compared molecules have different covalent bond
description which results in a very low phase space over-
lap (in the naive setup). Moreover, since molecular force
fields include electrostatic and VDW terms that diverge
at small atom-atom distances, the average energy can
diverge at λ→ 0, 1.

A variety of approaches and techniques have been in-
troduced to address the challenges in the field. These
include the topologies for simulating the system, that
usually take into account the fact that the compared sys-
tems have similarities to generate a hybrid system with
higher phase space overlap (see Fig. 2). The topologies
are usually combined with removing VDW and Coulomb
terms of the different atoms which is called decoupling
in order to further enhance phase space overlap (see e.g
Fig. 2). Soft core potentials were suggested to avoid sin-
gularities at small λs. Common sampling techniques to
overcome high energy barriers include Temperature and
Hamiltonian Replica Exchange methods [27–29]. We
will explain these methodologies in the course of the
derivation of the method.

However, the calculations in the existing practices
have several limitations. First, they are notoriously dif-
ficult to implement correctly [30]. Such complications
arise for example from the fact that the hybrid system is
composed of both systems and hence it usually has to be
designed (see for example dual topology in Fig. 2 and
Ref. [31]). Moreover, the interactions between atoms
from the two compared systems have to be ignored in or-
der for the calculations to be reasonable. Second, since
the process of transforming one system into the other is
different for each comparison and has no a priori known
properties, the choice of intermediates remains a chal-
lenge. In the context of TI this is equivalent to a func-
tion that needs to be numerically integrated without any
known properties. In addition, since both systems inter-
act simultaneously with the environment the behavior
of the intermediate systems cannot be predicted. Third,
each type of hybrid topology has small phase space over-
lap in one aspect [31]. Fourth, the existing decoupling
analysis, while explaining several important principles,
involves approximations and does not treat all the po-
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λ=1 λ=0.5 λ=0

A B

Figure 2. A scheme of the transformation in a hybrid sys-
tem in the dual topology that compares Benzoic Acid and
Toluene at λ values of 0,0.5 and 1 (one system). The trans-
parent atoms in the end states A and B are decoupled atoms
- atoms whose VDW and Coulomb interactions are removed.
At λ = 0.5 the different atoms between the two subsystems
are partly interacting. These calculations are often used
when the compared systems have a relatively small differ-
ence (e.g molecules that differ in few atoms). The transfor-
mation represents the top or bottom transformations in Fig.
1 where A and B represent L1 and L2 respectively.

tentials [32] (such as non-quadratic terms, methyl group
etc.). Fifth, the soft core technique, while being efficient
in removing singularities from the calculations, has var-
ious disadvantages. One of them is difficult implemen-
tation due to the complicated functions involved and
the requirement to transform first the Coulomb terms
and then the VDW terms in order to avoid singularities.
In addition, since it involves changing the shape of the
functions it results in lower phase space overlap between
intermediates. It is worth noting that the free energies
associated with the transformations (Fig. 1) are often
much larger than their difference. Thus, these calcula-
tions have to be very precise to produce reliable relative
free energy values.

Temperature Integration (TeI) was suggested in Refs.
[33, 34] as an efficient method to calculate free energy
differences. TeI is based on calculating for each system
the lnZ difference (where Z is the partition function),
between the temperature of interest and a high tem-
perature using a Parallel Tempering procedure. Since
at the high T limit the two systems with the same de-
grees of freedom have the same partition function, the
free energy difference can be calculated. In TeI in or-
der to ensure the equation of the partition functions
when β → 0, we capped the potential terms - that is
if E was larger than Ecap it was set to Ecap (denoted
in TeI by Ecutoff). It is emphasized that the free en-
ergy difference calculated in TeI is between two differ-
ent molecules while in relative free energy calculations
the goal is to calculate free energy difference between
the same molecule in two states (e.g solvated vs. un-

solvated or bounded vs. unbounded) compared to the
free energy difference of another molecule in these two
states. While TeI has many advantages, that will also be
apparent in this method, it cannot be directly applied
to MD. MD simulations at very high temperatures are
impractical due to the very high velocities which will
necessitate very small time steps for the integration of
the equations of motion. In addition in TeI due to the
simplicity of the energy models considered, effectively,
all the energy terms are completely removed.

The presented method is based on TeI and is guided
by the goal is to address the challenges previously men-
tioned - namely accuracy, simple implementation, ro-
bustness and high phase space overlap. First, in order
to avoid reaching high temperatures (used in TeI), we
use an additional variable λ that will transform the sys-
tem, keeping the temperature constant. Second, in or-
der to enahnce phase space overlap we will keep some
terms constant in the transformation.

The method is based on first identifying in each of
the compared systems (e.g molecule and environment)
a common subsystem (e.g submolecule and the environ-
ment) and a different subsystem (e.g a submolecule).
Then, each of the systems is transformed in each envi-
ronment (e.g vacuum or water environment) by remov-
ing certain potential terms, into a system in which the
partition functions of the common subsystem and the
different subsystem can be decoupled. This decoupling
is not trivial as the atoms in one decoupled subsystem
will still interact with atoms in another decoupled sub-
system via potentials that relate between 2, 3 and 4
atoms. However, this will turn exact due to the fact
that this is decoupling of the two integrals of the parti-
tion functions. This novel analysis is applicable to any
potential function and to submolecules with coupled de-
grees of freedom, enabling to remove less terms in the
transformation. Removing less terms in the transfor-
mation results in a smaller free energy difference which
needs to be integrated over and higher phase space over-
lap (smaller statistical error), which are related to the
efficiency of the calculation. Since each transformed sys-
tem is simulated in two environments and the different
subsystem can be treated as non-interacting system, the
free energy associated with the different subsystem will
analytically (exactly) cancel out in the thermodynamic
cycle. Thus, instead of transforming between the com-
pared systems to calculate the relative free energy dif-
ference, each system is transformed separately into its
replica with some energy terms relaxed (removed) and
we avoid having ingredients (such as atoms and possi-
bly force fields) of the two systems in the simulation.
This ingredient is in fact a scheme for two separated
topologies. Transforming the systems separately has
been suggested in recent works [35, 36] and is given here
in a detailed mathematical description in the context of
partition function decoupling. It is noted that the sepa-
rate simulations are used here to calculate relative free
energy (difference between two solvation/binding pro-
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cesses) and not only to calculate absolute solvation free
energy (e.g Ref. [37]). We demonstrate the decoupling
analysis and the separate transformations in MD cal-
culations of relative free energies which agree with ex-
perimental results. This decoupling analysis is also in
agreement with our MD simulations in Ref. [38]. We
then present a unified soft core technique that will re-
sult in less steep integrated function. We prove analyti-
cally that the soft core technique ensures that the inte-
grated function is monotonic. This statement regarding
the monotonicity of the integrated function is novel and
we then further extended to non-linear transformations.
Since for monotonic functions the numerical integration
error limit is known the integration result will be robust.
In addition the monotonicity will enable simple selection
of intermediates. We also show mathematically that in
this soft core technique the numerically integrated func-
tion can be non-steep only when we transform the sys-
tems separately (novel result). Finally, we show that if
the systems have rugged energy landscape, instead of
using the sampling techniques such as H-REMD in an-
other λ or T dimension, we can use only one sampling
dimension.

The method is divided to its independent ingredients.
Namely, the decoupling analysis is applicable to the ex-
isting topologies. The topology ingredient can be used
with the existing soft core schemes and the soft core in-
gredient can be used with the existing topologies. Each
ingredient will be presented in a separate section with
references to simulations that demonstrate it and to the
state of the art corresponding ingredients. In Section
II present an exact and complete decoupling analysis.
In Section III we explain mathematically that the two
systems can be simulated separately to give the free en-
ergy difference. This ingredient is related to topology
and can be called Two Topologies. In Section IV we
demonstrate the decoupling analysis and the separate
transformations in MD simulations for a general force
field. In Section V we present a unified soft core tech-
nique [34, 39] and prove mathematically the monotonic-
ity of the integrated function. In Appendix D we show
mathematically that when using this soft-core technique
it is advantageous to transform the systems separately
since the integrated function can be non-steep. In Sec-
tion VI we explain how we can equilibrate the systems
by using only one sampling dimension. In Section VII
we summarize and discuss the method.

II. DECOUPLING THE PARTITION
FUNCTIONS

In this section we explain how by removing certain
terms in the transformation, the partition function of
the transformed system can be exactly decoupled into
two partition functions. One partition function will be
identical between the transformed systems at each en-
vironment and one will be of the different subsystem.

This decoupling scheme is applicable to all topologies.
The common subsystem is defined as an identical sub-
molecule and the environment and the different sub-
system is defined as the different submolecule between
the compared systems. We will maximize the phase
space overlap between the original and the transformed
systems by removing as few terms as possible in the
transformation (the phase space overlap is related to
the number of intermediate systems needed in order to
calculate the free energy difference).

The existing decoupling scheme for the hybrid topolo-
gies is based on the rigid rotor approximation and the
HJR technique [32]. In this scheme potential terms
are removed in a transformation and then the system’s
partition function is decomposed into eight partition
functions - the partition function of the subsystem in
common between the compared systems, the partition
function(s) of the different subsystem(s) (according to
their definition) and a polymer-like part which connects
between them and decomposes into six partition func-
tions [32, 40]. In case that the connecting part is not
polymer-like, the potential terms which differentiate it
from being polymer-like are removed in the transforma-
tion. For example the methyl group is modeled with six
bond angle terms and five of them need to be removed in
the transformation in order to conform to this require-
ment [32, 40]. In addition, the calculation of the six
partition functions is considered and the potentials as-
sociated with them are required to be quadratic [32, 40].
Thus, non-quadratic potential terms such as dihedral
terms (and possibly bond stretching and bond angle
terms) are removed in the transformation to enable the
decoupling [12, 40]. This results in atoms which are
bound to move on a sphere relatively to another atom
instead of being properly located. When performing
a larger transformation (removing more terms in the
transformation), the computation time increases.

Here we present an exact analysis in which we decou-
ple the partition function of the transformed system into
two partition functions - the partition functions of the
common and different subsystems. This analysis is ap-
plicable to any potential function and thus the dihedral
terms which are usually non-quadratic do not need to
be removed in the transformation. In addition, we show
that when the different submolecule includes bond an-
gle terms with coupled degrees of freedom (e.g a methyl
group) it can also be exactly decoupled. Thus, coupled
bond angle potentials do not need to be removed in the
transformation. Removing less terms in the transfor-
mation results in a smaller free energy difference and
higher phase space overlap. Since the free energy dif-
ference and the phase space overlap are related to the
the number intermediates and to the statistical error
respectively, it is expected to reduce the computational
power needed to perform the simulations. We note that
in this analysis there is no need to consider calculation
of integrals.

Molecular modeling includes covalent bond, bond an-
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gle, dihedral angle, improper dihedral, electrostatic and
VDW potentials (see [41–44] and Appendix A). Co-
valent bond, bond angle and dihedral angle potential
terms depend on the coordinates of two, three and four
nearest covalently linked atoms respectively. Electro-
static and VDW potentials relate between every atom
pair in the system. Thus the energy terms can be sep-
arated into short range terms (covalent bond, bond an-
gle, dihedral angle and improper dihedral angle) and
long range terms (electrostatic and VDW). In the ter-
minology of the field they are called bonded interac-
tions and non bonded interactions respectively and we
use these names in order to emphasize this difference
between them.

To obtain the equilibrium constant, the standard
Gibbs free energies are usually calculated. The standard
state is the hypothetical state with the standard state
concentration but exhibiting infinite-dilution behavior
(the interactions between e.g the solute molecules are
negligible). Hence, when we are interested in the prop-
erties of one substance a single copy of the molecule of
interest can be simulated either in vacuum or solvent
environments.

We write the partition function of the system, which
includes the molecule of interest and possibly the solvent
molecules as follows:

Z =

∫
e−βH(Ω)dΩ =

∫ l∏
i

e−βH(Ω)dr′i,

where Ω is the coordinates vector of all the atoms in the
systems, r′i is the coordinate of atom i, β = 1

kBT
and

kB is Boltzmann constant. The integration is over all
possible values of the vectors r′i. We define the variables
as follows:

Ω = {r′1, r2, ..., rk, rk+1, ..., rn, r
′
n+1, ..., r

′
l}

where

ri ≡ r′i − r′i−1, (3)

which will be chosen as the position of atoms relative
to covalently bounded atoms (bold letters denote vec-
tors). r′k represents the position of the last atom that is
common between the compared systems and r′k+1 rep-
resents the position of the first atom in the different
submolecule. n denoted the index of the last atom in
the molecule and

{
r′n+1, ..., r

′
l

}
≡ Ωenv denote (if nec-

essary) the solvent molecules. The partition function
can now be written as follows:

Z =

∫
e−βH(Ω)dr′1

k∏
i=2

dri

n∏
j=k+1

drj

l∏
m=n+1

dr′m,

Integration over these degrees of freedom will of course
give the same result.

To illustrate the technique we compare the molecules
Benzoic Acid and Toluene which include an aromatic
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r
k+2

r
k+3

r
k+1

r
k-1

r
k
a

Figure 3. An example of the new coordinates of the atoms
in Benzoic Acid in comparison to Toluene. The short range
interactions that include the different atoms are plotted -
the bond angle, dihedral and improper dihedral terms are
marked by arcs, arcs with arrows and three intersecting
dashed lines respectively.

ring and few different atoms. The method presented can
be applied to molecules in which there is one separation
point between the common and different submolecules
(the different atoms do not form a loop that starts at
one atom and ends in another atom in the molecule).
The numbers of atoms of the two compared molecules
can be different since the free energies associated with
the different subsystems will cancel out in the Thermo-
dynamic Cycle (Section III, Fig. 9). The decoupling
analysis will be demonstrated in a relative free energy
calculation with two other molecules in Section IV.

In Fig. 3 an example of the new coordinates of the
atoms in the molecule Benzoic Acid in its comparison to
Toluene is presented. The vector a denotes the relative
coordinate of the top atom in the ring, and it is used
since rk−1 represents the relative position of this atom
with respect to another atom. We will use the notations
on Benzoic Acid in the figure in the next explanations
and the following analysis is applicable also to Toluene.

We will now turn to explain how the system’s parti-
tion function can be separated into two partition func-
tions identically - the partition function of the com-
mon submolecule and the environment and the partition
function of the different submolecule.

We first define the coordinates of the atoms of the
common submolecule as (r′1, r2, ..., rk) and the coor-
dinates of the atoms of the different submolecule as
(rk+1, rk+2, rk+3). In the following analysis it is as-
sumed that in the transformed state the interactions
of the common submolecule with itself and the envi-
ronment are kept constant. We will also assume that
there are no improper dihedral and long range terms
that couple atoms from the two subsystems. In Section
III it will be explained how these terms are removed in
the transformation.
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When a system can be separated into two groups of
particles that are not interacting with each other it is
well known that its partition function can be separated
into the partition functions of the two groups of parti-
cles and be written as their multiplication. Thus, it is
clear that in the transformed state the existence of inter-
actions between the atoms in the different submolecule
will not prevent us from separating the partition func-
tion into two partition functions. Hence, terms that
involve only atoms of the different submolecule can re-
main constant in the transformation. This also includes
the long range terms between the atoms in the different
submolecule (in agreement with Ref. [40]). It is worth
noting that transforming the molecule into a molecule
with a different charge in the context of MD can result
in free energy change due to artifacts that originate from
the periodicity of the system [45].

We now turn to explain that three types of short
range terms that involve atoms from the different
submolecule, including ones that couple the different
and common submolecules, can remain constant in
the transformation and will enable us to decouple the
partition function into the two. In standard molecular
modeling there are the following covalent bond terms
that depend on the positions of the different atoms:
Vc (rk+1) , Vc (rk+2) and Vc (rk+3). The bond angle
terms that depend on the position of the different
atoms are: Vb (rk, rk+1) , Vb (rk, rk+2) , Vb (rk+1, rk+2)
and Vb (rk+2, rk+3) . Only one
of the following dihedral terms
Vd (rk−1, rk, rk+1) , Vd (rk−1, rk, rk+2) , Vd (a, rk, rk+1)
and Vd (a, rk, rk+2) is usually used since they model
the rotation of the different submolecule in which
the bond angles are kept constant . We will as-
sume for the following explanation that the dihedral
term Vd (rk−1, rk, rk+2) is used. The dihedral term
Vd (rk, rk+2, rk+3) usually also exists. In addition the
improper dihedral term Vi d (rk, rk+1, rk+2) usually
exists and will be removed in the transformation (see
Fig. 3).

If we define

ẑ ≡ −r̂k,

the bond angle terms that depend on rk can depend
instead on ẑ.

The dihedral potential term depends on the angle be-
tween two planes (see Appendix A for details) which
can be defined as the angle between the vectors in these
planes that are perpendicular to the intersection line
of these planes. We notice that the dihedral angle
φ (rk−1, rk, rk+2) is equal to φ angle in spherical coor-
dinates defined with respect to ẑ and

x̂ ≡ − rk−1 − (rk · rk−1) r̂k
|rk−1 − (rk · rk−1) r̂k|

(see Fig. 4). Hence the corresponding dihedral term
depends on x̂, ẑ and rk+2.

x
φ

Figure 4. An illustration that shows the correspondence be-
tween the dihedral angle and φ angle. The triangles are in
the planes between which the dihedral angle is measured.
The rectangles are perpendicular to the line of intersection
of these planes. The vectors are both in these planes and in
the planes which are perpendicular to the intersection line.
In the molecule on the right, the bottom vector is placed
next to the one on top in order to show the correspondence
between the angles.

We define Ωcom = (r′1, r2, ..., rk,Ωenv) and Hcom as
all the potential terms that depend on the coordinates
of the atoms in the common subsystem Ωcom . We write
the partition function as follows:

Z =

∫
e−βHcom(Ωcom)dΩcom

∫ k+3∏
j=k+1

e−βVc(rj)×

e−β[Vb(ẑ,rk+1)+Vb(ẑ,rk+2)+Vb(rk+1,rk+2)+Vb(rk+2,rk+3)]×
e−β[Vd(x̂,ẑ,rk+2)+Vd(ẑ,rk+2,rk+3)]drj . (4)

We now notice that given a set of coordinates of the
common submolecule, the only information used in the
integration over Ωdif = {rk+1, rk+2, rk+3} is the orien-
tation of x and z axes. This information does not affect
the integration result since the different submolecule
does not have a preferred direction. In other words,
for any set of coordinates of the common subsystem the
integration result over Ωdif is the same (see Fig. 5). We
can thus write:

Z =

∫
e−βHcom(Ωcom )dΩcomZdif = ZcomZdif , (5)

where Zcom and Zdif denote the partition functions of
the common and different subsystems respectively. Note
that Zdif is a constant and does not affect the integration
over Ωcom. See detailed proof in Appendix B.

Hence, the bond stretching, bond angle and dihedral
angle energy terms, effectively, do not couple the par-
tition functions. This is despite the fact that some of
these terms involve atoms from the two submolecules.

This decoupling of the partition functions does not
depend on the potential function but only on the vari-
ables it depends on. Moreover, the partition function of
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Figure 5. Two sets of coordinates of the common subsys-
tem. The transparent atoms represent atoms whose long
range and improper dihedral interactions with the common
subsystem are removed. The atoms of the common subsys-
tem, including the water molecules in the case of explicit
solvent can enter the volume of the different atoms since the
long range interactions between them are relaxed. Zdif is the
same in both cases.

submolecules with coupled degrees of freedom such as
the three bond angle terms associated with the vectors
rk, rk+1 and rk+2 decouple exactly.

In case there will be a dihedral potential term that
depends on the vector rk−1 (e.g the dihedral term de-
fined by rk−1, rk and rk+2) and a dihedral term that
depends on a (e.g the dihedral term defined by a, rk
and rk+1), there will be dependence between the par-
tition functions since the coordinates of the atoms in
the common submolecule will determine x, z axes but
also another vector in the xy plane which is related to
the configuration of the common submolecule. However,
usually only one dihedral angle energy term is used to
relate between such subsystems and this explanation is
given for generality.

A similar analysis applied to the improper dihedral
terms that relate between atoms in the two submolecules
shows that the partition function of the different sub-
system does depend on the coordinates of the atoms in
the common subsystem. Thus, it is suggested that mod-
eling the planarity of the molecule with dihedral angle
terms rather than improper dihedral terms (optional in
Gromacs manual [44]) will result in less removed terms
in the transformation.

We can write in terms of the partition functions:

Z (r′1, r2, .., rn,Ωenv)→ (6)

Zcommon int (r′1, r2, .., rk,Ωenv)Zdiff non int (rk+1,...,rn) ,

where Zcommon int denotes the partition function of the
common subsystem in which the common submolecule
interacts with the environment, Ωenv denotes the coor-
dinates of the molecules of the environment, Zdiff non int

denotes the partition function of the different sub-
molecule that does not interact with the environment
and the arrow symbolizes the transformation in which
energy terms are relaxed. We define A and B to be the
compared systems in a certain environment and A′ and
B′ as their transformed replicas (the systems without
the terms that couple the partition functions as previ-
ously explained). It can thus be written (see Fig. 6):

FA′ = FA′common int
+ FA′diff non int

,

FB′ = FB′common int
+ FB′diff non int

. (7)

It is noted that in fact the dihedral and bond angle terms
that include atoms from the common and the different
submolecules are associated with Zdiff non int (rk+1,...,rn).
The orientations of the rk, rk+1 vectors that are in
the common submolecule, are also effectively associated
with the different submolecule in the form of arbitrary
orthogonal x and z axes for the separate theoretical cal-
culation of free energy.

In the case of totally different molecules it can thus
be written:

Z → Zdiff non int.

In the terminology of the field removing the long range
energy terms is called decoupling and the decoupled
atoms are called dummy. In this context we can call the
different subsystem dummy subsystem since we can keep
the internal energy terms in the different subsystem con-
stant in the transformation. In addition, in some cases
in binding the long range terms between the different
subsystem and the common environment (water) may
be kept constant and may have a small effect on the free
energy. However, this assumes that the water molecules
that are interacting with the different subsystem are
weakly interacting with the common submolecule and
is therefore not recommended in the general case.

F F F= +

F F F= +

Figure 6. A scheme of the free energy of the transformed
Toluene in two environments (F denotes free energy)

In standard molecular modeling the force field pa-
rameters of the common subsystems are identical, and
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hence the common subsystems are identical. In Fig. 6
a scheme of the free energies of the transformed repli-
cas of Toluene in vacuum and water environments are
presented. It can be seen that in both environments
the free energy of the transformed replica can be de-
composed into the free energy of the common and the
different subsystems. The free energy of the different
subsystem is equal in the two environments since it ef-
fectively does not interact with the rest of the system.

To summarize the following terms can remain con-
stant in the transformation and yield an exact calcula-
tion, independently of the potential function:

1. Bond stretching and bond angle terms.

2. Dihedral energy terms, as long as terms that in-
volve atoms from the two submolecules are associ-
ated with two covalent bonds in the common sub-
molecule (e.g rk and rk−1).

3. Potential terms that involve only atoms of the dif-
ferent subsystem.

We now denote the Hamiltonian with all the terms
that are removed in the transformation by Hr. This
Hamiltonian includes the VDW and electrostatic inter-
actions of the different atoms with the rest of the system
and improper dihedral terms (in case they are defined
in the usual manner) that relate between atoms from
the different and common submolecules. We denote by
Hc the other terms in the system. These definitions will
be used in the next section.

Verification of the analysis with MD simulations

The analysis presented in this section is in agreement
with the MD simulation results in Ref. [38] in which
free energies associated with non-quadratic potentials
for a methanethiol molecule were calculated. The free
energies associated with bond angle potential, methyl
group with coupled bond angle potentials and dihedral
angle potential in the transformed state were the same
in vacuum and water environments. This means that
the partition functions which include these terms decou-
ple. This is in agreement with the analysis presented in
this section according to which such terms do not have
to be removed in the transformation in order for the
partition functions to decouple.

III. TWO SEPARATE SIMULATIONS

In relative free energy calculations the difference
between solvation/ binding processes of two similar
molecules is calculated. Our goal here is to calculate
the relative free energy by transforming each system
separately without having ingredients such as atoms and

force fields from the two compared molecules in the sim-
ulation (see Fig. 2). These separate simulations can fa-
cilitate automation as it eliminates the need for human
intervention in setting up the simulation. Transform-
ing the systems separately has been suggested in recent
works [35, 36] and is given here in a detailed mathe-
matical description in the context of partition function
decoupling.

The idea in this section is to first identify in each of
the compared systems a common subsystem and a differ-
ent subsystem. Then, to transform each of the systems
in each environment (e.g vacuum and water for solva-
tion) by relaxing the Hamiltonian Hr, into a system in
which the partition functions of the common subsystem
and the different subsystem can be decoupled. In this
section we assume that the potential terms that diverge
at r → 0, such as the VDW and electrostatic interac-
tions, when we are close to the transformed state, do
not play a role. In the next section we will justify this
assumption. In Fig. 7 a scheme of the two separate
systems suggested in this section is presented. We now

λ=1 λ=0.5 λ=0

λ=1 λ=0.5 λ=0

A A’

B B’

Figure 7. A scheme of the transformations in the novel
method (two systems). A and B are the compared systems
and A′ and B′ are the transformed replicas - the original sys-
tems with the terms denoted by Hr removed. The transpar-
ent submolecule is the decoupled submolecule as previously
explained.

explain how the free energy difference between the origi-
nal systems and their transformed replicas can be calcu-
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lated in the context of TI. We emphasize that it can also
be calculated with other free energy calculation meth-
ods (FEP, BAR etc.). The λ dependent Hamiltonians
can be written as follows (please note that each equation
includes a definition for the system A and a definition
for the system B):

HA/B (λ) = λH
Ar/Br

+HAc/Bc , (8)

where the Hamiltonian with the terms that are removed
in the transformation and the Hamiltonian including all
the other terms are denoted by Hr and Hc respectively
as previously explained.

The free energy between each system and its trans-
formed replica can be written as follows:

∆FA/B→A′/B′ =

kBT
[
lnZA/B (β, λ = 1)− lnZA/B (β, λ = 0)

]
=

kBT

∫ 1

0

d lnZA/B (β, λ)

dλ
dλ = −

∫ 1

0

〈
H
Ar/Br

〉
dλ. (9)

Each system is simulated at a set of λs in the range
[0, 1] that interpolates between the original and trans-
formed systems. The average energy

〈
H
Ar/Br

〉
is calcu-

lated in the simulation at each λ value. Thus, we can
numerically integrate and get the free energy difference
between the original and transformed systems. It is em-
phasized that the free energy difference calculated here
is between A and A′ or between B and B′ as opposed
to the standard calculation in which the free energy is
calculated between A and B as in Eq. (1).

We now denote the first and second environments
by 1, 2 respectively. Examples for two environments
are vacuum and water for solvation free energy and
water and protein+water for binding free energy. We
denote the compared systems in each environment
by A1, B1, A2, B2 and their transformed replicas by
A
′

1, B
′

1, A
′

2, B
′

2. According to the explanations in the
previous section, taking into account that the partition
functions of the different subsystems are not coupled to
the environment, we write:

A1 → A
′

1, B1 → B
′

1A2 → A
′

2, B2 → B
′

2, (10)

ZA′1
= Z1identical

ZA′different
, ZB′1

= Z1identical
ZB′different

,

(11)

ZA′2
= Z2identical

ZA′different
, ZB′2

= Z2identical
ZB′different

.

(12)
It can be seen that the partition functions of the trans-
formed replicas are decomposed to sub partition func-
tions which are equal to sub partition functions of other
transformed replicas (having the same names). In Fig.
8 a scheme of the free energies in the novel method is

1  → ′1                              ′2 ← 2 

+ 1 → + ′1        + ′2 ← + 2 → +

transforma!on 

transforma!on 

′ ← +

transforma!on 

′ ←

transforma!on 

  

  

Binding 

process 

Binding 

process 

Figure 8. A scheme of the free energy differences in the novel
method

presented. R + L1, R + L1 denote the ligands bound
to the receptor. L1, L2 denote the unbound ligands
in an environment that does not include the receptor.
The unbound receptor does not have to be simulated
since it is the same in both L1 and L2 end states. The
ligand L1/ L2 is transformed into its replica L′1/ L′2
with the Hr terms completely relaxed. The end states
L1, L2, L

′
1, L
′
2, R+L1, R+L2, R+L′1, R+L′2 correspond

to the end states A1, B1, A
′

1, B
′

1, A2, B2, A
′

2, B
′

2 respec-
tively.

The free energy difference between L′1 and L′2 is equal
to the free energy difference between R+L′1 and R+L′2
(∆FL′1→L′2 = ∆FR+L′1→R+L′2

), since the free energy of
the common subsystems in each environment are equal
and the free energy of the different subsystems is the
same in both environments. This can be written explic-
itly as follows:

∆FL′1→L′2 =

− kBT
(

lnZw id + lnZL′2 dif
− lnZw id − lnZL′1 dif

)
=

− kBT
(

lnZL′2 dif
− lnZL′1 dif

)
=

− kBT
(

lnZwp id + lnZL′2 dif
− lnZwp id − lnZL′1 diff

)
=

∆FR+L′1→R+L′2
, (13)

where the subscripts “w” and “wp” stand for water en-
vironment and water protein environment respectively.
The subscripts “id” and “dif” denote the identical and
different subsystems respectively. The relative free en-
ergy can now be written as follows:

∆FAsolvation/binding→Bsolvation/binding
=
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∆FL1→R+L1 −∆FL2→R+L2 =

∆FL1→L′1 + ∆FL′1→L′2 −∆FL2→L′2

−
(
∆FR+L1→R+L′1

+ FR+L′1→R+L′2
−∆FR+L2→R+L′2

)
=

∆FL1→L′1 −∆FL2→L′2

−
(
∆FR+L1→R+L′1

−∆FR+L2→R+L′2

)
=

∫ 1

0

〈HBr 〉 −
∫ 1

0

〈HAr 〉

+

∫ 1

0

〈
HAsolvated/boundedr

〉
−
∫ 1

0

〈
HBsolvated/boundedr

〉
.

(14)
Thus we perform in each environment (in vacuum and
in solvent for solvation and in solvent and in solvent-
protein environment for binding) one transformation of
each of the compared molecules. That is, each molecule
is simulated at a set of λs and the free energy be-
tween the original and transformed systems is calcu-
lated. These free energy differences will allow us to get
the relative free energy difference. Fig. 9 is a summary
scheme of the transformations and free energy cancel-
lations. As previously mentioned the cancellations of
the free energies are exact. It is emphasized that (in
all topologies) there is no restriction on the number of
atoms of the compared molecules since these factors can-
cel out in the Thermodynamic Cycle. In each of the sim-

λ=1

A

λ=0

A’

λ=1

B

λ=0

B’

λ=1

A

λ=0

A’

λ=1

B

λ=0

B’ in water in water in water in water

1 1
1 1

2 22
2

Figure 9. A summary scheme of the transformations and
free energy cancellations (context of solvation)

ulations we have only the atoms and force fields of the
original molecule. Thus human intervention in order to
integrate between the systems and their force fields and
to disable the interaction between the systems is not
required. Here we achieve a considerable simplification
over the simulation in the hybrid system setup, and a
simplification and significantly better phase space over-
lap as compared with the dual topologies setup since
less terms are removed.

It is noted that this ingredient is different from the
single reference comparison schemes [12] in which all
the molecules are compared with one reference molecule.
This is since the single reference comparison is defined
for a specific group of molecules and the reference sys-
tem has to be given as an input and is not generated
from the compared molecules. Using the two origi-
nal systems for the comparison allows generality and
flexibility - can be used for any group of two or more
molecules. The use of the molecules themselves as a
reference ensures maximal phase space overlap. The
separation of the system into the common and different
submolecules ensures that we maintain the largest com-
mon subsystem untransformed. This is as opposed to
previous works in which the reference molecule is not
the largest common subsystem (e.g Ref. [12]).

IV. DEMONSTRATIONS OF THE
DECOUPLING ANALYSIS AND THE
SEPARATE TRANSFORMATIONS

We now demonstrate the decoupling analysis and
the separate simulations in calculating the free energy
difference between solvation of para-Cresol and para-
Cholorophenol. In the force field we used all the po-
tential terms that depend on the spherical variables are
non-quadratic

Vc =
1

2
kc
(
r2 − r2

0

)2
, Vb =

1

2
kθ (cos θ − cos θ0)

2
,

Vd (φijkl) = kφ (1 + cos (nφ− φs)) .

Therefore, the calculation presented here can be per-
formed only when using the decoupling analysis pre-
sented in Section II.

In standard force fields the parameters of the common
subsystems are usually identical between the compared
systems. We consider here the general case in which
the molecules are individually parametrized by Quan-
tum Mechanics computations [46]. Thus the common
submolecules do not necessarily have the same terms.

Figure 10 is an illustration of the transformations into
systems in which the common subsystems are identical
and the partition functions of the different and common
subsystem decouple. The VDW and electrostatic po-
tentials of the different atoms as well as the improper
dihedral term (three connected green lines) couple be-
tween the two subsystems and are therefore relaxed in
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Figure 10. Illustration of the transformations. The partial
charges written in black and green belong to the common
and different subsystems respectively. The light blue dashed
line denotes the dihedral term. The three connected green
lines represent the improper dihedral term. In case there is
no term its value is zero.

the transformation. The bond angle terms marked on
the figure have the same θ0 and different kb (correspond-
ing to fc), which after the transformations are the same.
The VDW terms are not presented since they are the
same for the same atoms.

Similar transformations apply for a group of 3,4 etc.
para-phenols. In that case the terms of all the molecules
have to be taken into account and average parameter
value can be chosen to minimize the transformations.

A. Simulation Protocol

We have used the Gromos53a6 force field parame-
ters from ATB server [46] for both p-Cresol and p-
Chlorophenol (p-CH3 and p-Cl) along with spc water
model during the simulations. The rhombic dodecahe-
dron box, with a minimum distance of 1nm between the

solute (the p-CH3 or p-Cl molecule) and the box edge
to prevent interactions of the molecule with its periodic
copy in the adjacent cell, was used. The rhombic dodec-
ahedron was selected since it provides a more effective
packing of periodic images than rectangular boxes. Af-
ter minimization and equilibration (200 ps), 20 ns and
1 ns of MD simulations were performed in vacuum and
water respectively under NVT and NPT ensembles, at
each of the 19 equi-spaced intermediate states (λ states)
including the initial (λ = 0) and final states (λ = 1).
For each of the λ states, first the coulomb terms were
relaxed followed by VDW terms. We have computed
the free energy difference between solvation of p-CH3
and p-Cl using the BAR (Bennett’s acceptance ratio)
method [18].

B. Results and comparision

We first calculated Helmholtz and Gibbs free energies
corresponding to NVT and NPT ensembles respectively,
according to the decoupling analysis in Sec. II. To this
end we associated the bond angle of the C/Cl atom with
the common subsystem and the the C-C/Cl-C atom dis-
tance with the different subsystem (the rest of the anal-
ysis follows from Sec. II). We then performed an addi-
tional transformation of p-CH3 and p-Cl molecules in
which bond angle terms were removed according to the
existing decoupling analysis. To perform the additional
bonded transformation we defined for p-CH3 molecule
the CH3 group atoms as the different subsystem and
we removed the five bond angle terms and the dihedral
angle term which involve atoms from the common and
different subsystems. In the additional bonded trans-
formation of p-Cl we defined Cl as the different subsys-
tem and removed the two bond angle terms which in-
volve atoms from the two subsystems. The simulations
have been performed with bond length constraints that
should have a minor effect on the dynamics. In the ad-
ditional bonded transformation of p-Cl in vacuum in or-
der to reduce the standard deviation we also performed
in some of the intermediates a transformation without
constraints.

The results obtained are the following (in kJ/mol):

NVT NPT
vacuum water vacuum water

p-CH3 140.18±0.00 147.44±0.14 155.78±0.03 164.2±0.23
p-Cl 19.74±0.01 29.95±0.65 46.78±0.02 59.06±0.28

p-CH3 bonded terms -25.51±0.10 -25.89±0.37 -25.72±0.25 –26.87±0.22
p-Cl bonded terms -7.68±0.78 -7.51±0.24 -8.27±0.79 -7.36±0.07

p-Cl bonded, no costraints -7.42±0.25 -7.27±0.04

It can be seen that the free energy difference associ- ated with the removal of the bonded terms is the same



12

(within less than a standard deviation) in vacuum and
water in NVT ensemble as explained in Section II. Gibbs
free energy, which is usually similar to Helmholtz free
energy [44], in vacuum and water was different by 1.15
kJ/mol for p-CH3 and the same for p-Cl. In the follow-
ing table we present Helmholtz and Gibbs relative free
energies of solvation (in kJ/mol).

decoupling
analysis

inc. bonded

constraints no const.

∆Fp−Cl→p−CH3
-2.95±0.66 -3.5±1.12 -3.24±0.84

∆Gp−Cl→p−CH3 -3.86±0.28 -5.92±0.91 -4.92±0.44

It can be seen that ∆Fp−Cl→p−CH3
is the same

(within less than a standard deviation) when we re-
moved additional bonded terms. Thus, a smaller trans-
formation and a simpler implementation resulted in the
same relative free energy with a shorter simulation and
a smaller standard deviation. This implies that in order
to obtain the same standard deviation using the exist-
ing decoupling analysis a longer simulation is required.
For similar transformations (in another context) see Ref.
[38].

The experimental free energy difference is [47] :

∆Gdiff = −29.54− (−25.75) = −3.79kJ/mol.

It can be seen that there is good agreement between
the calculation and the experimental free energies. The
total simulation time using the decoupling analysis in
Sec. II was ∼ 42 days (on a single core). Hence, im-
provement in the efficiency of the calculation is signifi-
cant in terms of computation time.

V. REMOVING SINGULARITIES AT SMALL
λS

The potential in the standard soft core technique is
given by:

H (λ, r) = 4ελn

[(
α (1− λ)

m
+
( r
σ

)6
)−2

+

(
α (1− λ)

m
+
( r
σ

)6
)−1

]
.

Here we present a soft core technique in which we
cap the diverging energy terms at high energetic values
in order to remove the singularities at small λs. This
is a unification of the approach in Ref. [34] in which
accessible capping energies with a negligible effect on
the free energy are suggested, resulting in integrated
functions that are less steep, and Ref. [39] in which
the derivative of the potential is continuous, enabling

use in MD simulations. We also show mathematically
that that the monotonicity of the integrated function is
ensured.

This soft core technique does not introduce depen-
dency on λ and hence the potential and its derivative are
relatively simple to implement. In addition, the original
shape of the potential constant, which is good in terms
of phase space overlap. Moreover, the need to remove
first the electrostatic terms and then the VDW terms to
avoid singularities is eliminated.

A. The value of the capping energy

Since at λ = 0 the energy terms that diverge at r = 0
cause the average energy to diverge, capping is used in
the long range energy terms (if E > Ecap, E = Ecap).
Thus, the terms at λ → 0 are no longer dominant and
decoupling is achieved. The proposed calculation of the
free energy difference between the two systems is legit-
imate only if the choice of the capping energy has a
negligible effect on the free energy value of each of the
two systems at λ = 1. The Hamiltonian with the capped
long range energy terms H ′ is written as follows:

H ′A/B (β, λ) = λH ′
Alr/Blr

+HAsr/Bsr
, (15)

where H ′
Alr/Blr

and HAsr/Bsr
denote the capped long

range and the short range terms respectively. The re-
quirement stated above can be written explicitly as fol-
lows:

lnZA/B (β, λ = 1, H ′) w lnZA/B (β, λ = 1, H) . (16)

In order for the capping to have a negligible effect on
the partition functions at λ = 1 it has to be set to a
value that satisfies:

e−
Ecap
kT � 1. (17)

Thus at λ values satisfying e−
λEcap
kT ≈ 1 the diverging

interactions, including the steric, become transparent.
In Fig. 11 energy and exp(−E/kT ) as a function of dis-
tance for the potential r−12 − r−6 are plotted at λ = 1
and at λ = 0.01. It can be seen that the capping of the
energy has a negligible effect on the probability distri-
bution at λ = 1 and that at small λs the interactions
are transparent.

It is suggested that since the probability to be in a mi-
crostate decays exponentially with the energy with typi-
cal decay scale of kBT and since the density of states for
E > Ecap is very low, capping the energy at a value sev-
eral times kBT higher than the equilibrium total atom-
atom long range energy will have a negligible effect on
the free energy value at λ = 1.
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Figure 11. Energy and exp(−E/kT ) as a function of distance
for the potential r−12 − r−6 with Ecap=7kcal/mol (a) at
λ = 1 (b) at λ = 0.01

Demonstrations

It has been demonstrated that Ecap values of ∼
5kcal/mol enable accurate free energy calculations [34].
In this reference the free energy calculation results for
Ecap = 5kcal/mol and Ecap = 4.4kcal/mol were similar
(see Fig. 29 there). In addition in Ref. [35] the free
energy difference calculation between two systems com-
posed of two atoms with Ecap = 7kcal/mol was very
accurate (see Supplementary Material which appears in
the same document). See also Fig. 11. Note that in
Ref. [34] β is varied rather than λ. However, the soft
core technique presented there is mathematically equiv-
alent to the one presented here. The conditions for the
capping energy here involve λ rather than β.

B. The monotonicity of the integrated function

In this subsection we explain why the suggested soft
core technique ensures the monotonicity of the inte-

grated function. This monotonicity will enable a simple
selection of intermediates for the calculation of the free
energy difference. For example of integrated functions
that are not monotonic see Ref. [12], Fig. 3.

This monotonicity for the soft core technique when
used with the transformation of Eq. (8) can be under-
stood by recalling that the integrated function 〈HAr 〉
in Eq. (9) is calculated with the governing Hamilto-
nian HAc + λHAr . A system will spend time in each
configuration proportional to the Boltzmann weight of
that configuration which is determined by the governing
Hamiltonian. When energy terms are multiplied by a λ
value smaller than 1, the energy heights and valleys of
that terms will appear smaller. Thus, the system will
spend more time in these heights and less time in these
valleys. In the calculation of the average energy, the
energy landscape did not change as the Hamiltonian re-
mained the same. Thus, since the system now spends
more time in less favorable states, the calculated aver-
age energy will be higher. This is similar to heating the
system as λ plays the role of β. Thus low values of λ
correspond to high temperatures, leading to higher av-
erage energies. This is expressed in the known result
−∂U∂β =

〈
(∆E)

2
〉
[48]. However, here λ multiplies some

of the terms so it can be regarded as “partial heating”
(see Eq. (8)). Also, in this case the average energy 〈Hr〉
is only of the removed terms.

We now prove that the integrated is monotonic for
transformations which depend linearly on λ. It is easy to
show that for d

2H(λ)
dλ2 = 0 (see detailed proof in Appendix

C)

− d

dλ

(
dF

dλ

)
= β

〈[
dH (λ)

dλ
−
〈
dH (λ)

dλ

〉]2
〉

= βσ2 ≥ 0,

(18)

where σ2 =

〈[
dH(λ)
dλ −

〈
dH(λ)
dλ

〉]2〉
.

Hence, the suggested soft core technique, which does
not introduce dependency on λ combined with linear
transformations in λ such as the transformations of Eq.
(1) or Eq. (8) results in a monotonic change in the
integrated function.

Interestingly, this also shows that the variance of
dH(λ)
dλ is proportional to the slope of the integrated func-

tion. Thus, steep slopes of the integrated function are
challenging both to sample and to numerically integrate.

The monotonicity is important for the integration
since at two adjacent intermediates there can be no ex-
tremum point, which can cause a free energy difference
that is not taken into account in the numerical integra-
tion. The monotonicity of the function enables accurate
numerical integration and facilitates the selection of in-
termediates.

Setting λ → λn preserves monotonicity in both hy-
brid and separate transformations. When performing
separate transformations there is a “soft core transition”
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(steep integrated function) near λ = 0. When perform-
ing hybrid transformations there are two “soft core tran-
sitions” - near λ = 0 and near λ = 1. Setting λ → λn

when n > 1 results in a less steep integrated function
near λ = 0 and more steep integrated function near
λ = 1. This is useful in separate transformations but
not in hybrid transformation in which it will improve
the sampling for one transition but worsen for the other
transition. (see Appendix D for more details).

This statement regarding the monotonicity of the in-
tegrated function is in agreement with Ref. [39] (Fig.
5), in which the soft core technique (for inaccessible cap-
ping energy) with a linear transformation of the type of
Eq. (8) results in a monotonic change in the integrated
function (has not been pointed out).

C. The effect of the capping energy on the
integrated function

We now analyze the effect of the capping en-
ergy value on the integrated function. We choose
two legitimate capping energies Ecap=7kcal/mol and
Ecap=15kcal/mol. For simplicity in the following para-
graph we omit the units. The free energy change asso-
ciated with the transition to "transparent" VDW and
electrostatic interactions is concentrated in the range
0.05 . exp (−βλEcap) . 0.95. Taking β → 1 for simplic-
ity, we get that the free energy change is concentrated in
0.05
Ecap

. λ . 3
Ecap

. This translates into 0.007 . λ . 0.42

and 0.003 . λ . 0.2 for Ecap = 7 and Ecap = 15 respec-
tively. It can thus be seen that the range in which the
free energy changes is smaller and the change occurs
at smaller λs as Ecap is higher. Since

∫ 1

0

〈
dHA
dλ

〉
dλ is

the same to a good accuracy for both capping energies
(equal area), the integrated function reaches a higher
value at λ = 0 for high Ecap values.

Demonstrations

It has been demonstrated in molecular MC simula-
tions that there is a trade-off when choosing Ecap. That
is, high Ecap value results in a more accurate calcu-
lation but an integrated function that is steeper and
reaches a higher value. See Ref. [34] (Fig. 28) in
which the integrated functions for Ecap = 5kcal/mol
and Ecap = 4.4kcal/mol are compared. See also the in-
set in Fig. 5 in Ref. [39] in which the integrated function
with Ecap = 40kcal/mol is plotted (MD simulations).

D. Continuity of the potential and its derivative

In order to have continuity in the derivative that
will enable the integration over the equations of mo-
tion in MD to be valid, a switching function between

the standard long range potential and the flat potential
is needed. This has been developed independently and
implemented in MD with a cubic switching function and
an energetically inaccessible capping energy (reaches a
state in which E > Ecap once every 1014 moves), which
validates the use of the capping in the context of MD
for high energetic values (40kcal/mol) [39]. This use of
a switching function with Ecap = 40kcal/mol as a soft
core techniques appeared to perform marginally better
compared to the standard soft core technique [39].

E. Unifying the approaches

Thus a unified approach that uses a switching func-
tion and a capping energy that is accessible and has
a negligible effect on the free energy (e.g Ecap =
7kcal/mol) is suggested as a soft core technique. This
condition results in significantly lower value of Ecap as
compared with the one needed in order to ensure in-
accessibility and thus sampling is much easier (see the
comparison of the behavior of the integrated function
for two different Ecap values in Ref. [34] Fig. 28). Now
Eq. (14) can be written as follows:

∆FAsolvation/binding→Bsolvation/binding
=

∫ 1

0

〈
H ′Br

〉
−
∫ 1

0

〈
H ′Ar

〉

+

∫ 1

0

〈
H ′Asolvated/boundedr

〉
−
∫ 1

0

〈
H ′Bsolvated/boundedr

〉
.

(19)

VI. SAMPLING RUGGED ENERGY
LANDSCAPE IN ONE λ DIMENSION

When the systems, between which the free energy
difference is calculated, have rugged energy landscape
in conformational space (as a function of the coordi-
nates of the atoms), one can use techniques such as
H-REMD/H-PT (Hamiltonian Replica Exchange MD/
Hamiltonian Parallel Tempering, variant of Parallel
Tempering/Replica Exchange [27–29]) to alleviate sam-
pling problems [49]. In this technique the system is
simulated at a set of λs and exchanges of configurations
between them are performed every certain number of
steps according to the Metropolis criterion. Thus, the
systems at the low λs, that can cross energetic barri-
ers, help the system of interest to be sampled well .This
technique, even though is highly efficient, introduces an-
other sampling dimension since the simulations of the
replicas at a set of λs are performed at each intermedi-
ate of the hybrid system (sampling the dimensions of λ
that interpolates between the systems and of λ of the
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replicas that are used for the equilibration). Here, the
simulations at the different λs will be used also to cal-
culate the free energy difference by integration and the
need for another sampling dimension is eliminated.

In order to equilibrate the entire system, the energy
terms that are not multiplied by λ can be written as
follows:

Hc → f (λ)Hc, f (λ) =

{
λ λ ≥ λeq,

λeq λ < λeq,
(20)

where λeq denotes the minimal λ for equilibration in the
H-REMD procedure. Here we transform all the terms
only up to λeq in order to have a minimal transfor-
mation. Thus the H-REMD procedure is in its origi-
nal form in the range λ = [1, λeq] and the systems at
λ = [λeq, 0], in which only Hr is lowered, can be simu-
lated separately since the energy barriers are accessible
for these λ values. See Fig. 12.

λ=1 λ=0

λ=1 λ=λeq=0.9 λ=0

A A’

B B’

λ=λeq=0.9

Figure 12. A scheme of the two transformations suggested.
At λ = λeq all the energy terms that need equilibration are
multiplied by λeq. At λ = 0 Hr is removed and the other
terms remain multiplied by the same λ as when λ = λeq .

H-REMD, which is in its standard use here, is ex-
plained and demonstrated in Ref. [49]. A general ex-
ample which demonstrates free energy calculation of sys-
tems with rugged energy landscape in one λ dimension
with further methodological advances can be seen in
Ref. [35], Supplementary Material. For methodologies

and guiding principles in choosing the intermediates in
the H-REMD/PT procedure see Refs. [33, 50, 51].

VII. DISCUSSION

A novel method for calculating relative free energies is
presented. The method can be used to calculate the free
energy difference between solvation/binding free energy
of two molecules with any number of atoms and is ap-
plicable to MD and MC simulations and to all types of
molecular modelings. The article is composed of several
independent ingredients. First, we showed that the par-
tition functions of the common and different subsystems
decouple exactly and hence there is no error involved.
This analysis is applicable to all potential functions and
to submolecules with coupled degrees of freedom. Then
we suggested to use the two separate systems instead of
one system that includes ingredients of the two systems
in order to calculate the relative free energy. This has
the advantage of large phase space overlap since the sys-
tems are inherently correlated and simplicity since the
simulations are performed only on the two (almost) orig-
inal systems in two separate simulations and the need for
extensive design is eliminated. The third ingredient is a
unified approach to soft core potentials. This technique
is simple to implement and results in monotonic change
of the integrated function. The monotonicity enables
simple selection of intermediates and ensures accuracy
in the numerical integration and hence a robust result.

We also show how if the systems have rugged energy
landscape, instead of using the sampling techniques in
another λ or T dimension, we can use only one sampling
dimension. since the λs used in the H-REMD/H-PT
procedure are also used as intermediates in the calcu-
lation of free energy difference, a convergence for sys-
tems with rugged energy landscape is achieved without
introducing another sampling dimension. Both in the
calculation of the integral for the free energy difference
and in the H-REMD/H-PT procedures, the chosen in-
tervals between the λs have to be smaller where the
internal energy varies significantly, in the free energy
difference calculation in order to have good sampling of
the function and in H-REMD in order to maintain opti-
mal acceptance rates. Thus, no additional unnecessary
λs have to be sampled.

It has been shown analytically and in MD simulations
that less terms need to be removed in the transforma-
tion as compared to the existing methodology such as
the dihedral terms. Since each removal of a term in
the transformation has a free energy energy value as-
sociated with it, removing less terms necessarily means
that the free energy difference in the transformation is
smaller and less intermediate systems are required. In
addition the monotonicity of the integrated function in
the soft core technique has both been proved analyti-
cally and backed up in existing MD simulations. The
monotonicity of the integrated function ensures that the
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function will not have extrema and enables to know the
upper limit of the numerical integration error. Thus
it is expected that less intermediates will be needed
to sample the function. The relation between the free
energy difference and the number of intermediates re-
quired can be understood for example from the upper
limit of the numerical integration error of a monotonic
function ∆x∆y/2 which depends linearly on this differ-
ence. Thus, for integration result within a given numeri-
cal error, less intermediates are expected to be required.
Finally, capping the potential at an energy value that is
energetically accessible in the soft core technique, which
has been demonstrated in MC simulations, results in a
function that is less steep and reaches a lower value as
compared to the case of an energetically inaccessible
capping energy. Thus, again, less intermediates are re-
quired. Since the number of intermediates is directly re-
lated to the computational power needed, the principles
presented here are expected to increase the efficiency of
the calculations.

These advantages are of high importance for automat-
ing free energy calculations and computational drug dis-
covery. Thus, using this method, preceded by virtual
screening filtering, an automated free energy calculation
that will result in the best candidates may be performed.
It is noted that the method may have other applications
in physics, where the environment for example can be
external electric or magnetic field.

Appendix A: Molecular potentials

Here we briefly describe the molecular potentials.
The covalent bond between two atoms is modeled

with the following potential:

Vc = kc (r − d)
2
, (A1)

where r is the distance between the atoms. The bond
angle term between three atoms is usually modeled with
the following potential:

Vb (θ) =
1

2
kθ (θ − θ0)

2
. (A2)

The commonly used dihedral angles potential is of the
following type:

Vd (φijkl) = kφ (1 + cos (nφijkl − φs)) , (A3)

where φijkl is defined by the angle between the plane
formed by the ijk atoms and the plane formed by the
jkl atoms. The improper dihedral term that is used to
enforce planarity is defined as follows:

V (φijkm) =
1

2
k (φijkm − φs)2

, (A4)

where φijkm is defined by the angle between the plane
formed by the ijm atoms and the plane formed by the

i
j

kl

m

Figure 13. Benzoic Acid molecule with atom indices that
suit the defined dihedral terms

imk atoms. The atoms in this case have different co-
valent connectivity. The Coulomb and VDW terms are
defined by the 1/r and r−12−r−6 potentials respectively.
The coefficients for these interactions are determined by
the VDW coefficients/charges of both atoms.

Appendix B: Decoupling the partition function -
detailed proof

Since we vary over all possible values of Ωdif the in-
tegration result does not depend on x̂ and ẑ.

We can change the coordinate system of the different
subsystem so that x̂ and ẑ and accordingly ŷ will be its
new axes x̂new = O−1x(0,0,1) = x̂ and similarly for y and
z axes, where O−1 is the rotation matrix that rotates
the previously defined axes [(0, 0, 1) , (0, 1, 0) , (1, 0, 0)] to
x̂, ŷ, ẑ. Ωdif is rotated with O in order to be represented
in the new system of coordinates Ω̃dif = OΩdif . The
Jacobian of rotation is 1 dΩ̃dif = dΩdif . The integration
limits of x̃j , ỹj and z̃j are −∞ to ∞. x̂new and ẑnew in
the new system of coordinates are (0, 0, 1) and (1, 0, 0) .
We can thus write

∫
e−βHcom(Ωcom )dΩcom

∫
e−βHdif(Ω̃dif ,(0,0,1),(1,0,0))dΩ̃dif =

∫
e−βHcom(Ωcom )dΩcomZdif = ZcomZdif .

Alternatively, we can switch Ωdif to relative spherical
variables and this integration will not depend on Ωcom .
Here we define x̂,ẑ for every atom in the different sub-
molecule similarly to the definitions above. We can thus
write
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Z =

∫
e−βHcom(Ωcom )dΩcom×

∫
e−βHdif (rk+1,rk+2,rk+3,θk+1,θk+2,θk+3,φk+1,φk+2,φk+3)×

k+3∏
j=k+1

r2
j sin θjdrjdθjdφj =

∫
e−βHcom(Ωcom )dΩcomZdif = ZcomZdif

Appendix C: Detailed proof of the monotonicity of
the integrated function

− d

dλ

(
dF

dλ

)
=

∫
e−βH(λ)

[
β
(
dH(λ)
dλ

)2

− d2H(λ)
dλ2

]
dΩ

Z (λ)

−
∫
e−βH(λ) dH (λ)

dλ
dΩ

d
[
Z (λ)

−1
]

dλ
. (C1)

Differentiating Z (λ)
−1 with respect to λ we get:

d
[
Z (λ)

−1
]

dλ
= −Z (λ)

−2 dZ

dλ
= −Z (λ)

−2 d
∫
e−βH(λ)dΩ

dλ
=

Z (λ)
−2
∫
e−βH(λ)β

dH (λ)

dλ
dΩ.

And finally:

− d

dλ

(
dF

dλ

)
=

∫
e−βH(λ)

[
β
(
dH(λ)
dλ

)2

− d2H(λ)
dλ2

]
dΩ

Z

− β
〈
dH (λ)

dλ

〉〈
dH (λ)

dλ

〉
. (C2)

For H that depends linearly on λ the second derivative
vanishes and we can write:

− d

dλ

(
dF

dλ

)
= β

[〈(
dH (λ)

dλ

)2
〉
−
〈
dH (λ)

dλ

〉〈
dH (λ)

dλ

〉]
=

β

〈[
dH (λ)

dλ
−
〈
dH (λ)

dλ

〉]2
〉

= βσ2 ≥ 0, (C3)

where σ2 =

〈[
dH(λ)
dλ −

〈
dH(λ)
dλ

〉]2〉
.

Appendix D: Setting λ→ λn preserves monotonicity
and results in improved behavior of the integrated
function when used in separate transformations

We now explain that when performing separate simu-
lations we can choose a transformation that will preserve
the monotonicity and result in improved behavior of
the integrated function. We will investigate free energy
functions which can be mapped from the free energy
functions with linear transformations. For example the
free energy for the separate and linear transformation
Hls (λ) = λHr+Hc can be mapped into this of the trans-
formation Hms (λ) = λnHr + Hc (Fls (λn) = Fms (λ)).
The integrated function of a mapped function Fm (λ)
from a linear function Fl (λ) for any λ → λn, λ ∈ [0, 1]
mapping is monotonic

−d
2Fm (λ)

dλ2
= −d

2Fl (λ
n)

dλ2
=

−d
2Fl (λ

n)

(dλn)
2

(
dλn

dλ

)2

= −d
2Fl (λ)

dλ2

(
nλn−1

)2
> 0.

It can be readily seen that the hybrid and linear
transformation Hlh (λ) = λHr + (1− λ)Hc cannot be
mapped into the transformation Hmh1 (λ) = λnHr +

(1− λ)
2
Hc. For example for n = 2, λ = 0.1 we have

Hmh1 (λ = 0.1) = 0.01 · Hr + 0.81 · Hc which has no
corresponding value in Flh. Flh can be mapped into
Hmh2 = λnHr + (1− λn)Hc.

Mapping of λ→ λn results in
(
nλn−1

)2 factor which

equals 1 at λ = n−1

√
1
n and for n > 1 increases with λ.

For example for n = 2 this factor equals 1 at λ = 1√
2
.

This means that the slope of the integrated function will
be smaller for λ < 1√

2
and larger for λ > 1√

2
compared

to the original one. Such a mapping will result in less
steep integrated functions for transitions at small λ s
but steeper integrated functions for transitions at high
λ s. Thus dFls

dλ in which the transition occurs at small
λ s will benefit from such a mapping but dFlh

dλ which
includes a transition near λ w 1 will experience steeper
changes in the region of this transition (see for example
[35] Fig. 3 (a)). In conclusion, λ → λn, n > 1 mapping
in separate simulations will result in both monotonic
integrated function and more equally spaced intermedi-
ates.

Appendix E: Sampling rugged energy landscape in
one λ dimension - additional explanations

The free energy difference calculated in the H-REMD
procedure, which is in the range λ = [1, λeq] can also be
used for comparisons to other molecules that have a sub-
system in common. The simulations in the range λ =
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[λeq, 0] can be used for comparison to other molecules
that have the same common subsystem as the one in
the transformation that was performed. Covalent bond
and bond angle energy terms may not need equilibra-
tion (multiplication by λ) as they are not expected to be
associated with rugged energy landscape. It is empha-
sized that any transformation can be combined with H-
REMD. However, it usually does not ensure convergence
of the simulations and another dimension is needed.
Since here we use only the original molecule in the trans-
formation it can be performed in such a way that will
ensure convergence. This originates from the fact that
in order to achieve convergence the system needs to ex-
change configurations with its replica in a Hamiltonian

with lowered energy barriers. Thus only when we relax
terms up to a value in which the states can be sampled
well will the simulations converge. This option is thus
possible only when using the topology and soft core in-
gredients presented before.
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