
Real-Time Computation of Parameter Fitting and Image
Reconstruction Using Graphical Processing Units

Uldis Locansa,c, Andreas Adelmanna,∗, Andreas Sutera, Jannis Fischerb, Werner
Lustermannb, Günther Dissertorib, Qiulin Wangb,d

aPaul Scherrer Institut, Villigen, CH-5232, Switzerland
bETH Institut für Teilchenphysik, CH-8092, Switzerland

cUniversity of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia
dTsinghua University Institute of Medical Physics, Bejing, China

Abstract

In recent years graphical processing units (GPUs) have become a powerful
tool in scientific computing. Their potential to speed up highly parallel applica-
tions brings the power of high performance computing to a wider range of users.
However, programming these devices and integrating their use in existing appli-
cations is still a challenging task.

In this paper we examined the potential of GPUs for two different applications.
The first application, created at Paul Scherrer Institut (PSI), is used for parameter
fitting during data analysis of µSR (muon spin rotation, relaxation and resonance)
experiments. The second application, developed at ETH, is used for PET (Positron
Emission Tomography) image reconstruction and analysis. Applications currently
in use were examined to identify parts of the algorithms in need of optimization.
Efficient GPU kernels were created in order to allow applications to use a GPU,
to speed up the previously identified parts. Benchmarking tests were performed in
order to measure the achieved speedup.

During this work, we focused on single GPU systems to show that real time
data analysis of these problems can be achieved without the need for large com-
puting clusters. The results show that the currently used application for parameter
fitting, which uses OpenMP to parallelize calculations over multiple CPU cores,
can be accelerated around 40 times through the use of a GPU. The speedup may
vary depending on the size and complexity of the problem. For PET image analy-

∗Corresponding author
Email address: andreas.adelmann@psi.ch (Andreas Adelmann)

Preprint submitted to Computer Physics Communications October 12, 2018

ar
X

iv
:1

60
4.

02
33

4v
2

 [
cs

.D
C

]
 2

2
N

ov
 2

01
6

sis, the obtained speedups of the GPU version was more than×40 larger compared
to a single core CPU implementation. The achieved results show that it is possible
to improve the execution time by orders of magnitude.

Keywords: GPU, CUDA, Musrfit, PET, Image reconstruction

1. Introduction

The use of graphical processing units (GPUs) in scientific applications has
been increasing in recent years. With the emergence of development frameworks
such as CUDA and OpenCL, the computational power of GPUs is becoming more
available for use in general purpose and scientific applications. The capabilities of
GPUs to increase the performance of highly parallel algorithms, and the relatively
low price of these devices, allows the creation of cost effective real time simulation
and data analysis systems.

This paper describes the efforts to use the power of GPUs to achieve near real
time performance for data analysis of two separate problems. The first applica-
tion that this paper describes focuses on the parameter fitting for data analysis
of µSR experiments. The second application performs PET image reconstruction
and analysis.

Parameter fitting using MUSRFIT is examined in this paper. This application is
used for data analysis of µSR experiments. During the fitting, a set of parameters
is determined by performing χ2 minimization. The most time consuming part of
this parameter fitting is the calculation of the χ2 values. Using the current CPU
implementation, this fitting can take hours for certain data sets. The calculation of
χ2 is a good algorithm to parallelize using a GPU and the approach used to create
a real time parameter fitting using a GPU is described in this paper.

The second part of the paper describes the efforts to speed up an iterative al-
gorithm for tomographic image reconstruction. In addition to reconstruction, this
application also performs an analysis of the reconstructed image which searches
for signals above a background.

When integrating GPU usage in existing applications, it can add another level
of complexity to the program code. For this reason the dynamic kernel scheduler
(DKS) was developed and described in [1]. DKS allows the separation of all the
device code details into an independent layer and provides a simple interface for
the host application to invoke tasks on the GPU or other accelerator devices. DKS
was also used in this work to keep the MUSRFIT and the image recognition GPU
code separate from the original application. This improves the code maintenance

2

and keeps the application more portable, as it is possible to disable the DKS pro-
vided layer if there is no GPU device available on the system.

For parameter fitting the state-of-the-art application for data analysis of µSR
experiments was chosen as the baseline implementation. The application uses
OpenMP to parallelize the calculation of χ2 on the CPU. For image reconstruc-
tion and analysis the application used at ETH for analysis of experimental data
was chosen as the baseline. The algorithm implementation in this application is
serial and uses just one core of the CPU. The main aim of this work was to show
how both of these applications could benefit from the use of hardware accelerators
such as GPUs. By the use of DKS, that provides a higher level of abstraction from
the host application side, we demonstrate seamless and simple integration of the
GPU code in the existing software. The higher level of abstraction will provide
us with software investment protection because one can react prompt and effort-
less on hardware changes on the GPU side. The simplicity will help maintaining
software quality in our inhomogeneous (w.r.t. software engineering competences)
open source development team.

The rest of the paper is organized as follows: Section 2 describes related work,
section 3 provides an overview of DKS and how it was used in regards to the work
presented. Section 4 provides a description of: the application that is being used
for parameter fitting, the problems the application is applied to, and the efforts to
improve the performance of this application with the use of a GPU. At the end of
the Section 4, benchmark results of a specific parameter fitting example are pre-
sented and analyzed. Section 5 provides: insight into the image reconstruction and
analysis problem, the specifics of how GPU was used to speed up the algorithms,
and the details on the achieved results with GPUs. In Section 6 conclusions are
presented.

2. Related work

With the increasing popularity of hardware accelerators there have been many
attempts to provide high level APIs that allow the creating of GPU code. Nvidia
provides a set of GPU accelerated libraries with the CUDA toolkit [2] that can be
easily incorporated in the host applications. Several parallel vector libraries, such
as Thrust [3], ArrayFire [4] and BoostCompute [5], are available that implement
parallel versions of algorithms from C++ standard template libraries. There have
also been attempts to create higher level APIs and abstractions to ease the creation
of the GPU code [6, 7, 8]. These attempts focus on creating a more generic way
of expressing the GPU code that is later translated to CUDA or OpenCL kernels.

3

The DKS API does not aim to replace or replicate these efforts but rather
provide a confined layer where all of these approaches can be used, and together
with hand tuned kernels provides the ability to create fast, optimized algorithms
for hardware accelerators. DKS algorithms for parameter fitting use handwritten
kernels complemented by cuBLAS library, while image analysis in addition to
hand written kernels uses Thrust libraries sort functions.

3. Dynamic Kernel Scheduler

With DKS we aim to add GPUs to complex physics applications which previ-
ously only relied upon the power of the CPU for computation. DKS is a software
module that allows to move all of the device specific code in a separate layer and
provides a simple interface that can be used in the existing host application to
offload tasks to the GPU. This approach eases the integration of hardware acceler-
ators in existing scientific applications while still allowing to create fast, optimized
kernels to run on the GPU.

CUDA and OpenCL kernels used in DKS are hand tuned and optimized for
optimal performance. In future versions of DKS an auto-tuning module is planned,
that would allow to optimize kernel launch parameters, but it is not included in
current work.

The concept of how DKS and host application work together is shown in Fig-
ure 1.
The algorithms that are offloaded to the GPU are implemented in the DKS. The
host application uses a simple interface to communicate the tasks that need to be
executed on the device, and providing the necessary data.

As an example, a Fast Fourier Transformation offload using DKS is shown in
Code sample 1. The simplicity and high level of abstraction is evidently shown,
in this simple but representative template of a generic offloading task.

The separation of device code in a different module makes both the host ap-
plication and GPU code a lot more manageable and maintainable. This adds some
software investment protection since the algorithms in DKS can be improved and
updated using the best available tools and libraries to ensure the best possible per-
formance with no changes to the host application. It also opens the possibility to
add different devices in the future with no or very few modifications to the host
application, since with DKS it is possible to create the device code using multiple
frameworks such as CUDA, OpenCL, or OpenMP. During this work we focused
on the use of CUDA to take advantage of computational power of NVIDIA GPUs.

4

CPU(s)

Application code

DKS

GPU(s)

MIC(s)

Figure 1: Dynamic Kernel Scheduler concept.

For parameter fitting, OpenCL was used as well to make the application more flex-
ible and capable of running on other devices.

4. Parameter fitting with Musrfit

MUSRFIT is a software tool for analyzing time-differential µSR data [9]. MUS-
RFIT uses the MINUIT2 [10, 11] library for fitting data. This framework eases the
analysis of muon spin rotation, relaxation, and resonance experiments by allowing
the user to define all the relevant input parameters and functions for MINUIT2 in
a scripting manner. At the same time, the µSR spectra are visualized utilizing the
ROOT framework [12].

4.1. Problem description
The schematic of a time differential µSR experiment is shown in Figure 2.

During an experiment, ∼ 100% polarised positive muons (µ+) are implanted in a
solid sample where they rapidly thermalise (∼ 10 ps) without noticeable polariza-
tion loss.

After the implantation the spin evolution of the muon ensemble is measured as
a function of time. The evolution can be monitored by using the fact that the parity
violating muon decay is highly anisotropic. During the decay an easily detectable

5

Code sample 1: Example of DKS interface integrated in the host application.
1 //setup and initialize the device
2 DKSbase dks;
3 dks.setAPI("CUDA");
4 dks.setDevice("-gpu");
5 dks.initDevice();
6
7 //allocate memory on device and write data
8 mem_ptr = dks.allocateMemory<Complex_t>(DATA_SIZE);
9 dks.writeData<Complex_t>(mem_ptr, DATA_ARRAY, DATA_SIZE);

10
11 //execute FFT or IFFT
12 if (direction == 1)
13 dks.callFFT(mem_ptr, DIMENSIONS, DIM_SIZE);
14 else
15 dks.callIFFT(mem_ptr, DIMENSIONS, DIM_SIZE);
16
17 //read data and free memory
18 dks.readData<Complex_t>(mem_ptr, DATA_ARRAY, DATA_SIZE);
19 dks.freeMemory<Complex_t>(mem_ptr, DATA_SIZE);
20 }

positron is emitted preferentially along the direction of the µ+ spin. The time
differential µSR spectrum takes the form:

N j(t, ~P) = N j
0e
−t/τµ [1 + Aj(~pj, t)] +N j

bkg, (1)

where the time is measured in discrete steps t = n · ∆t [n ∈ N0, ∆t the time
resolution] and j indexes the positron detectors. The “physics” of the system under
consideration is described by the functionAj(~p, t). More details about the function
Aj(~p, t) can be found in Ref. [13]. The muon lifetime is given by τµ and N0

gives the scale of the positron count. Lastly the constant N j
bkg originates from

uncorrelated background events. For a given positron histogram, j, the optimal
parameter set

~P j =
{
N j

0 , N
j
bkg, ~p

j
}

(2)

needs to be determined. Depending on the level of statistics of the positron his-
tograms, the parameter set, ~P , is determined by minimizing the χ2 function:

χ2(~P) =
∑
j

∑
n

[djn −N j(t, ~P)]2

(djn,err)2
, (3)

where djn are the measured data points of the jth positron detector. The theory

6

Electronic Clock

Positron
Detector

Muon
Detector

Sample

Spin-Polarized
Muon Beam

e+

μ+

νe

νμ

Bμ

Figure 2: Schematic of a time differential µSR experiment

describing the data is given by Eq. (1), and djn,err is the estimated error of djn
(djn,err =

√
djn for the Poisson distributed positron events).

For data sets with rather limited statistics, Eq. (3) is not leading to satisfactory
results. In this case the log-likelihood function

L(~P) = 2 ·
∑
j

∑
n

[
N j(t, ~P)− djn

]
+ djn log

[
djn

N j(t, ~P)

]
(4)

should be maximized, which leads to a much better estimate of ~P .
With the improvements in detector technologies, it is possible to achieve higher

time resolution (smaller ∆t) during the experiments. This is leading to increasing
sizes of data sets that need to be analyzed, and the associated minimization/maxi-
mization times are increasing drastically.

To perform the parameter fitting, MUSRFIT uses the MINUIT2 library. MUSR-
FIT contains the implementations of Eqs. (3) and (4) while the minimization/max-
imization process is executed by MINUIT2. The main, and most time consuming,

7

part of the parameter fitting is the calculations embedded in Eqs. (3) and (4) re-
spectively. Offloading these calculations to the GPU could lead to a significant
improvement in the total time needed to perform a parameter fit. In the following
discussion we will use χ2 synonymous for L(~P) fits.

What does “real time” data analysis in the context of µSR mean and why is
it important? µSR is a spectroscopic, accelerator based technique where measure-
ment slots are awarded through a highly competitive proposal system. In the best
case a researcher is granted a beam time slot twice a year. During these short beam
periods (typically 2-4 days), all the necessary measurements need to be performed.
The material classes studied by µSR are often showing a very reach and complex
physics and hence it is initially hard to judge what will be the best measuring
strategy in terms of available external parameters, like temperature, field, pressure
etc. The online modeling of the data is crucial to conclude on an optimal mea-
surement program. However, for some µSR instruments, currently the parameter
fitting time which is needed in this modeling process is comparable to the actual
measurement time. This makes it very hard to come to a clever and decisive deci-
sion how to use the beam time. Wrong decisions will force researcher to re-apply
for beam time which is a waste of resources. Therefore it is crucial to reduce the
fitting time to a level allowing to come to the right conclusions during online anal-
ysis. To exemplify the above stated, the numbers for the HAL-9500 instrument at
the Paul Scherrer Institut can help. A typical measurement time for a given field
and temperature is 2-4 hours. Robust fitting results are only available after about
half of the measurement time. A single fit with the current version of MUSRFIT

which utilizes OpenMP takes about 15 min. During the first day of data taking
various fitting models need to be applied and refined. This means that the full on-
line analysis takes longer than the measurement. This is drastically improved by
the DKS solution which brings the fitting times down to about 20 sec allowing to
find the appropriate fitting model needed to guide the experiment successfully.

4.2. GPU implementations
To ease the process of adding GPU support to MUSRFIT, the Dynamic Kernel

Scheduler (DKS) [1] was used. All the device specific code is developed in DKS
and MUSRFIT only receives a simple interface that it can use to invoke task exe-
cution on the GPU. DKS uses CUDA or OpenCL frameworks to create the GPU
code. CUDA is used to target Nvidia GPUs while OpenCL implementation is used
to target devices from other vendors (Intel, AMD).

Using DKS, MUSRFIT allocates memory on the GPU for every data set used
in the fitting and transfers the data to the device. Since the data sets do not change

8

GPU memory management

Parse user function

Compile GPU code

DKS
Calculate χ2

MINUIT2
calculate parameters

Finish parameter fitting

χ2

~P

Figure 3: Flow diagram of parameter fitting with MUSRFIT using MINUIT2 and
DKS

during the fitting, this operation can be performed only once.
One of the most important features of MUSRFIT is the ability for users to

define the theory function using the input files. A mechanism needs to be created
where this user defined function can be passed to the GPU at run-time and used
in the kernel code. To handle this problem, run-time compilation was used. The
user defined function is parsed by MUSRFIT from the input files and passed to
DKS where a CUDA or OpenCL device function is created to be used in GPU
kernels. This process is described in more detail in section 4.2.1. When the new
GPU program is created and compiled by DKS, MUSRFIT begins the process of
minimizing the χ2 value by invoking the CUDA or OpenCL kernels to calculate
the χ2 value and using MINUIT2 to fit the parameter set. The sequence diagram
of this process is shown in Figure 3.

4.2.1. User-defined functions
To allow users to define functions, the GPU code must be created at run-time.

For OpenCL this is the standard execution method, while for the CUDA frame-
work the CUDA run-time compilation library [14] was used. MUSRFIT parses
the user input file to get the user defined function and creates a string with a
C++ mathematical expression. This expression can use standard C++ mathemati-

9

cal operators and functions, and in addition it is able to utilize a set of predefined
functions which are commonly used in µSR field. CUDA implementations of ex-
ponential and Gaussian distribution functions are shown below in code sample 2.
A full list of available predefined functions is listed in MUSRFIT user guide [9].

Code sample 2: CUDA examples of predefined functions that can be used to create
the user function.
1 __device__
2 double se(double t, double lambda) {
3 return exp(-lambda*t);
4 }
5
6 __device__
7 double ge(double t, double lambda, double beta) {
8 return exp(-pow(lambda*t, beta));
9 }

10
11 __device__
12 double sg(double t, double sigma) {
13 return exp(-0.5 * pow(sigma*t, 2));
14 }
15
16 __device__
17 double stg(double t, double sigma) {
18 double sigmatsq = pow(sigma*t,2);
19 return (1/3) + (2/3)*(1 - sigmatsq) * exp(-0.5 * sigmatsq);
20 }

The mathematical expression can use the parameter array to access parameter
values and the function array to access precomputed function values. The function
array is a convenience feature for the user. A subset of the parameter array is data
set specific. In order to keep the mathematical expression compact, an indirect
addressing of these parameters is needed. This is accomplished with the map array.
For more details see Ref.[9, 15]. An example of a created user function for use in
CUDA kernels is shown in code sample 3.

Code sample 3: Example of parsed user defined function ready for compilation.
1 __device__
2 double fTheory(double t, double *p, double *f, int *m)
3 {
4 return p[m[0]] * sg(t,p[m[1]]) * tf(t,p[m[2]],f[m[3]]);
5 }

After MUSRFIT has created the string containing the mathematical expres-

10

sion of the user defined function, it is added to the string containing the CUDA
program. The CUDA program consists of a user defined function definition, pre-
defined functions, and the kernel for χ2 calculation. This newly created program
is compiled at run-time and used by DKS to evaluate the χ2 of a given data set.

4.2.2. Computing χ2

The most time consuming part of the parameter fitting is the calculation of the
χ2 function for each data set. This calculation can be easily parallelized and there-
fore is an ideal candidate to offload to the GPU. The CUDA kernel to compute
the χ2 value creates a thread for each data point in a data set. Shared memory is
used to store parameter, function, and map values since these values are accessed
multiple times by each thread. Using the new parameters, functions, and maps for
the data set, the theory function is evaluated at each point and the χ2 value at that
point is calculated and stored in a temporary allocated global memory array. After
the kernel completes the calculation of χ2 for each individual data point, all these
values are summed up using CUBLAS [16] to get the χ2 value of the whole data
set. This process is repeated for every data set used in the calculation.

4.3. Results
The tests of the parameter fitting were run on two systems. First system was

equipped with two Intel(R) Xeon(R) CPU E5-2609 v2 processors and one Nvidia
Tesla K40c GPU. The second system was equipped with two Intel(R) Xeon(R)
CPU E5-2690 v3 processors. MUSRFIT parallelizes CPU code using OpenMP
so the performance of the fitting using this implementation, with 8 threads, was
chosen as the baseline. To test the CUDA and OpenCL performance, the same
example was run on the GPU using both of these frameworks. Another benchmark
was run with OpenCL using the CPU as the target device on the first machine.

For the tests, a typical muon polarisation function was chosen to determine the
magnetic shift of a para-/diamagnetic material [13]. It is given by:

Aj(~p, t) = Aj0 exp

[
−1

2
(σt)2

]
cos(γµBt+ φj), (5)

where j = 1 to 16, where 16 is the number of positron detectors in this example.
Aj0 is the asymmetry of each positron detector, σ is the depolarisation rate of the
muon spin ensemble, γµ is the gyromagnetic ratio of the muon, B is the magnetic
induction at the muon stopping site, t is the time, and φj is the phase of the initial
muon spin in respect to the positron detector.

11

Table 1: Parameter fitting with χ2 function running on the GPU. The given time
is for the execution of the minimize command of Minuit2 [11].

Data size Iter. Device Time (s) Speedup

16×85320 8833
E5-2609 290
E5-2690 226

Tesla K40c 11 ×20 to ×26

16×106650 8538
E5-2609 351
E5-2690 274

Tesla K40c 11.5 ×23 to ×30

16×142200 9319
E5-2609 508
E5-2690 396

Tesla K40c 13.8 ×28 to ×36

16×213300 8052
E5-2609 654
E5-2690 513

Tesla K40c 15.1 ×33 to ×43

16×426601 6313
E5-2609 1015
E5-2690 798

Tesla K40c 17.9 ×44 to ×56

The results of these tests are shown in the Table 1. The results show that for
the chosen test function, the total execution time of the parameter fitting can be
improved by around ×40 to ×50 on the GPU depending on the size of the prob-
lem.

The OpenCL implementation of parameter fitting in DKS allows the use of
other accelerator devices to speed up the calculations. This makes the applica-
tion more portable and more accessible to users. The results of OpenCL tests are
shown in Figure 4. This figure also shows OpenMP results when using up to 48
CPU cores to run the fitting on the second test system equipped with two Intel(R)
Xeon(R) CPU E5-2690 v3 processors each consisting of 24 virtual cores with
hyperthreading enabled.

The performance increase of MUSRFIT with GPUs using CUDA or OpenCL
allows for data analysis of µSR experiments to be done real-time, which will lead
to increased efficiency of the experiments. Furthermore the use of DKS layer in
MUSRFIT will allow to ease the maintenance of the GPU code to adjust for new
GPU architectures or introduction of new devices such as Intel MICs or FPGAs.

12

●
●

●

●

●

100000 150000 200000 250000 300000 350000 400000

0.001

0.002

0.005

0.010

0.020

0.050

0.100

Total dataset size

Ti
m

e
(s

)

● E5−2609 OpenMP(8)
E5−2609 OpenCL
Tesla K40c OpenCL
Tesla K40c CUDA

E5−2690 OpenMP(8)
E5−2690 OpenMP(16)
E5−2690 OpenMP(48)

Figure 4: Parameter fitting with χ2 function running on the GPU. The time is
shown for the execution of one iteration of the minimize command of Minuit2
[11].

5. Image reconstruction and
analysis

The SAFIR (Small Animal Fast Insert for MRI) project is developing a fast
PET insert for a pre-clinical MRI (Magnetic Resonance Imaging) system for dy-
namic in vivo PET-MRI studies with excellent temporal resolution. This requires
tomographic image reconstruction followed by image data analysis adapted to the
conducted study. While under idealized assumptions, the image can be obtained
analytically by a filtered inverse Fourier transform. Modeling the system details
and irregularities results in better images. However, this second approach involves
the manipulation of huge matrices. Therefore typically iterative image reconstruc-
tion algorithms are applied, which still constitute a significant computational bur-
den.

Image analysis, such as feature finding, is computationally time intensive as
well. Moreover, in dynamic studies sequences of dozens of images need to be re-
constructed and analyzed. In particular the aim is to reconstruct one image about
every 5 s. Thus 60 images need to be reconstructed for a typical acquisition of
5 minutes, each comprising 5 s worth of data. Computation times of hours to
days would be required for data acquired in a few minutes. Speeding up the com-
putation is therefore of prime importance. A first big improvement would be the
reconstruction of the image series on a time-scale of one hour. Ultimately, a quasi-

13

online visualization of the process dynamics would be very beneficial to control
and optimize the experiments requiring to reconstruct one image within 5s.

There are several articles in the literature that describe the efforts of accel-
erating PET image reconstruction codes using GPUs [17, 18, 19]. The algorithm
described in this work uses list-mode data for image reconstruction and follows
a similar approach as proposed in [17] and [19]. The results obtained in previous
works show that PET image reconstruction is a good algorithm for GPU accel-
eration and would greatly benefit the reconstruction algorithms used in SAFIR
project.

5.1. Image reconstruction
In PET image reconstruction, the goal is to find the source activity distribution

in the object to be studied. The activity distribution is found from the projection
measurements of the set of coincident detector pairs, which form the whole PET
scanner. In PET imaging, a positron emitting radiotracer is used. The positron
annihilates producing two back-to-back photons with 511 keV energy. These are
measured, typically with a set of cylindrically arranged detectors surrounding the
source. A schematic sketch of one ring of such an arrangement is shown in figure
5.

When within a short time window two detectors each register a photon, it indi-
cates that an annihilation event has occurred on the line joining the two detectors
(line-of-response, LOR). This is a measurement of projections, because the num-
ber of counts that have happened on a given line can be approximated as the line
integral of the activity distribution along this line.

The list of all these coincidence events (listmode data) can directly be used to
reconstruct the image. A general description of PET image reconstruction can be
found in [20].

Consider a discrete tracer distribution ~f = (f1, . . . , fJ)T on a 3D Cartesian
grid, where the index labels the volume elements called voxels and J is the number
of voxels. The coincidence measurement yields an estimation of the mean counts
~̄y = (ȳ1, . . . , ȳI)

T per detector pair i, where I is the number of possible pairs.
Using a linear model for ȳi, the relationship between tracer distribution and

mean measured counts can be written as

ȳi =
J∑
j=1

aijfj + ni, (6)

14

Detector ring

Photon

Photon

Image region

Line of
response (LOR)

Point of
annihiliation

Figure 5: PET imaging basic principles.

where the matrix a is called the system matrix and ~n is a noise term. PET re-
construction aims at solving the inverse problem, i.e. finding ~f given ~̄y. Inverting
the matrix a is computationally unaffordable due to its size. Therefore, iterative
approaches are employed.

The stochastic nature of the radioactive decay, together with the detection of
the events, can be modeled with a Poisson process. The likelihood function is

p(~̄y|~f) =
I∏
i=1

p(yi|ȳi) =
I∏
i=1

e−ȳi
ȳyii
yi!
, (7)

where yi is the actually measured number of counts in the i-th line-of-response
(LOR).

The Bayes factors for the inversion of the conditional probability are ne-
glected. Finding the minimum of the likelihood function with respect to ~f yields
an iterative formula for the distribution

fk+1
j =

fkj∑I
i=1 aij

I∑
i=1

aij
yi
ȳki
, (8)

ȳki :=
J∑
j=1

aijf
k
j + ni. (9)

15

This algorithm can be rewritten for listmode processing

fk+1
j =

fkj∑I
i=1 aij

L∑
l=1

I∑
i=1

δi,c(l)
aij
ȳki

=
fkj∑I
i=1 aij

L∑
l=1

ac(l),j

ȳkc(l)
, (10)

c(l) :=index of detector pair
corresponding to l-th listmode event, (11)

where L is the number of listmode events and δij is the Kronecker delta. The
matrix element ac(l),j describes the probability of detecting an annihilation from
the j-th voxel in the c(l)-th LOR, in which the l-th coincidence event was detected.

Equation (9) implicitly reappears in the denominator of the last term of (10)
and is called forward projection because it constitutes a map from the spatial ac-
tivity distribution to the number of counts in the LORs. The sum over l in (10)
is called backward projection because it constitutes a map from the set of LOR
count values to the spatial activity distribution.

The matrix elements aij can be estimated using an adapted raytracing algo-
rithm. To reduce the computation effort, the LOR’s predominant direction of prop-
agation is determined to be along the x- or y-axis and the planes perpendicular to
that axis, through the voxel centers, are considered. For each plane, the intersec-
tion point ~p = (px, py, pz)

T of the LOR i with that plane is determined and the
voxel j with center coordinate (vjx, vjy, vjz)

T , containing this intersection point is
identified.

Without loss of generality, let the predominant direction be along the x-axis. In
each plane, the matrix element is calculated for the voxel j and its three neighbors
j′, j′′, j′′′ in the positive y- and z-directions. The matrix element aij is approxi-
mated to be related to the distance of the voxel to the intersection point in the
following way

aij ≈ md −
√

(py − vjy)2 + (pz − vjz)2, (12)

where md is the matrix distance factor. The matrix distance factor acts as a weight
for the influence of the distance of the voxel to the intersection point to the system
matrix element.

5.2. Image analysis
An important task for the envisaged research is to identify a small spot, with a

volume of about 5 to 10 mm3, in a rodent brain with enhanced activity. This spot

16

needs to be identified in non-uniform background and with the enhanced activity
of the order of 20% compared to its normal state. The stochastic nature of the data
and the relatively low number of counts in the few second time intervals results in
large variance of the reconstructed activity concentration. It is therefore important
to distinguish true features from fluctuations with quantifiable significance.

As explained above, the goal is to find the relative activity increase in a region
over some normal (background) activity. Hence the excess E and its standard
deviation ∆E are defined

E =
S −B
B

, (13)

∆E =
S

B

√(
1

S
+

1

B

)
, (14)

where B is the background activity and S is the activity in the region of interest
including the background. For simplicity, two concentric spheres are used, the
smaller (inner) one representing the signal region and the larger, with the volume
of the smaller sphere cut out, representing the background region. The significance
of the excess can be expressed in terms of its standard deviations and a threshold
can be used to separate true from random signals.

The image is processed by displacing the center of the sphere into the center
of each voxel. Applying a threshold to the transformed image allows to locate
features of a certain significance.

5.3. GPU Implementation
For image reconstruction, the most time consuming parts of the algorithm are

the forward and backward projections. Both of the projections loop through the
projection lines and either accumulate image data along the line (forward pro-
jection) or distribute projection values into the image data along the same lane
(backward projection). Every line in the list can be processed independently so
this problem can be parallelized to take advantage of the computational resources
available on GPU. However, there are several challenges that must be considered
for the GPU algorithm to achieve the desired performance:

• Some lines in the list do not require processing and different predominant
line directions require alternative processing which results in a large thread
divergence;

17

• Each line requires a different set of voxels from the image resulting in ran-
dom memory access;

• Multiple lines need to update the same voxel in the image and thus requires
atomic operations.

For image analysis, the most time consuming part is the calculation of the av-
erage value and the standard deviation of the voxels inside a sphere. Two spheres
are placed at the source location. First the average value and standard deviation of
voxels that are inside the smaller of the two spheres (source value) are calculated.
The second part of calculations finds the same values for voxels that are outside
of the smaller sphere, but inside the larger sphere (background value).

Since the spheres are placed at the center of each voxel, this can be parallelized
on the GPU by every thread calculating the average value for a different sphere.

To add GPU support to host application CUDA kernels for forward projec-
tion, backward projection, source calculation and background calculations were
implemented in DKS. The host application was updated to use DKS instead of
CPU implementation when a GPU is available. The host application uses DKS
interface to invoke memory management, data transfer and kernel calls while all
the temporary memory, kernel details and kernel launch parameters are handled
by DKS. A DKS call sequence is presented in Code listing 1.

5.3.1. Forward and backward projections
The forward projection in DKS is implemented as two kernel calls. The first

kernel call calculates the predominant direction of each line, and assigns a label
to it:

• 0 - line does not need to be processed

• 1 - predominant direction in the x plane

• 2 - predominant direction in the y plane

Once the predominant direction of the line is known, the Thrust sort by key func-
tion is used, sorting the lines according to its direction. In this way we minimize
the thread divergence in the kernel call that performs the forward projection.

After the lines are sorted, the forward projection processes the image in slices
along the predominant direction as shown in Figure 6. Whether the line requires
any values from a slice is determined by the position and angle of the line. This
process is the same for both forward and backwards projections. For each slice

18

the position where the line crosses the slice is determined, if this position is inside
the image region the values are loaded from global memory (forward projection)
or global memory is updated with the correction value (backward projection).

x-LORs

x-LORs

x-LORs

x-slice

cross section of image

x

y

region of interest

Figure 6: Cross section of the image showing LORs, with predominant direction
in the x plane, and a slice of the image along this direction being processed.

The assigned label allows us to process all the lines with a single kernel call
and avoid repeated calculations on how the line should be processed. After the
lines are sorted, they are grouped by the predominant direction. The divergence of
threads within the warp will be very minimal.

Since the lines require very few values from a slice and not all the lines use ev-
ery slice, each thread checks if any voxels from the slice are needed and only then
perform a load from global memory. This will result in an un-coalesced global
memory access since lines in the same warp are accessing random voxels in the
image. Since only a few of the slices are used for each line, and only a few values
from each slice are used, this results in a better performance than loading all of
the voxels in the slice in shared memory.

Backward projection takes the correction value calculated for each line and
distributes it back to the voxels along this line. During backward projection, the
same sorted list of lines is used to tackle thread divergence. The main bottleneck
for the backward projection is the need for multiple threads to update the same
voxels because different lines can cross the same positions in the image. To avoid
race conditions when multiple threads need to write to the same global memory
address CUDAs atomic operations are used.

19

DKS calls are inserted in the host application to offload tasks if a GPU device
is present. Using the DKS, the host application allocates memory on the device
and transfers data from the host, holding voxel positions, voxel values, detector
pair list and detector positions. In addition memory is allocated on the GPU to
hold the correction values for each detector pair calculated by forward projection
and corrected voxel values calculated by background projection. After memory
allocation and data transfer the host application loops trough the set reconstruction
iterations and uses DKS to call forward and backward projection kernels on the
GPU. Every iteration requires a read of corrected voxel values from the GPU, and
since the final processing of the image is done by the host application, before the
next iteration new voxel values are written back to the GPU. Each iteration also
requires a write of list of detector pairs used for reconstruction. Since after every
iteration half of the detector pairs are discarded this list needs to be updated and
resorted before every forward projection. The example code of host application
and DKS integration for image reconstruction is shown in the code sample 4.

Code sample 4: Example code of DKS interface integrated in the host application
for image reconstruction. Initialization of DKS, memory allocation and dealloca-
tion is similar to the Code sample 1.
1 for (int iter = 0; iter<num_of_iteration; iter++)
2 {
3 //transfer image data to GPU every time step
4 dksbase.writeData<float>(*image_gpu, *recon_image_host, image_size);
5
6 //calc forward projections on the GPU
7 dksbase.callForwardProjection(*line_correction, *image_gpu,

*list_detectors, *detector_position, *image_position, event_number);
8
9 //calc backward projections on the GPU

10 dksbase.callBackwardProjection(*line_correction, *image_correction,

*list_detectors, *detector_position, *image_position, event_number,
image_size);

11
12 //read recon_image_3d_corrector form GPU
13 dksbase.readData<float>(*image_correction, *recon_image_host, image_size);
14
15 //final processing of the reconstructed image
16 //output operations
17
18 //remove half of detector pairs
19 event_number /= 2;
20 dksbase.writeData<ListEventData>(*list_detectors, *list_detectors_host,

event_number);
21 }

20

5.3.2. Source and background calculation
Source and background calculations are separated in two kernels. To calculate

the source values at each voxel position, every thread places a sphere with the
center at this voxel. Then knowing the diameter of the sphere, the position of the
voxel, and the size of each voxel, a box is calculated that contains this sphere. This
process is illustrated in Figure 7.

source

background

Figure 7: 2D representation of sphere placement at the voxel position for source
and background calculation.

After the box is formed the thread loops through the voxels in this box and
calculates the average value and standard deviation using only voxels that lie
inside the sphere. The box is necessary to minimize the number of voxels that
each thread has to process. This approach requires a lot of global memory ac-
cess. Shared memory usage could be explored to improve the performance of the
kernel, since voxels used by threads in the same thread block are overlapping.

To calculate source and background values on the GPU, the host application
first needs to allocate memory on the device and transfer data for voxel positions
and voxel values in the image. Then memory is allocated to hold temporary values
for average values and standard deviation at each sphere. When all the necessary
data is transferred to the device, kernels to calculate source and background values
are invoked trough DKS. In the final stage of the algorithm the host application
reads the average and standard deviation values for each sphere from the GPU
and performs final signal to noise ratio calculations. As in the case of forward and
backward transformation the host application is responsible when memory allo-

21

cation and data transfer is scheduled, in order to ensure that the host application
can access the data from GPU when needed, but DKS handles all the device code
details and kernel launch parameters.

5.4. Results
The tests for image reconstruction and analysis where performed on the same

two systems as the parameter fitting tests. The first system uses Intel(R) Xeon(R)
CPU E5-2609 v2 processor and Nvidia Tesla K40c GPU, while the second system
uses Intel(R) Xeon(R) CPU E5-2690 v3 CPU. The CPU implementation of recon-
struction and analysis is not parallelized, so the single CPU core performance was
chosen as the baseline performance.

To test the GPU performance, simulated data were used. The data were gen-
erated using GEANT4 [21, 22] for an idealized scanner made from 91 rings of
180 detectors. The detector crystals are 2.0 mm x 2.0 mm and are 12.0 mm long
in the radial direction. The pitch between adjacent detectors in a ring, as well as
between the rings, is 2.2 mm. Simulations of a Derenzo [23] type phantom were
performed: six groups of spheres with different diameters (1.0 mm, 1.2 mm, 1.6
mm, 2.4 mm, 3.2 mm, and 4.0 mm) were embedded into a rat phantom. The rat
phantom was implemented as a high density polyethylene cylinder, with a length
of 150 mm and a diameter of 50 mm. The simulation was performed for one sec-
ond with 500 MBq distributed evenly over the spheres volume. This corresponds
to 1.42 MBq/mm3 and zero activity in the rat phantom. Reconstruction and image
analysis were performed using the algorithms as described above.

The reconstructed image size was 90x90x50 voxels with a voxel size of 0.7
mm x 0.7 mm x 0.7 mm, and the reconstruction was performed using 13, 901, 607
coincidence events. The reconstruction starts by using all of the available coinci-
dence events and performs forward and backward projections for 15 iterations.

Table 2: Performance of image reconstruction and analysis example.

Device Recon Speedup Analysis Speedup
E5-2609 v2 800s 8.8s
E5-2690 v3 599s 5.9s

Nvidia Tesla K40c 14 s ×57 2.7s ×3

When performing image analysis, the example performs two separate types of
analysis. The first analysis places the spheres at previously defined source posi-
tions and the second analysis places the spheres at every voxel that lies inside the
image region.

22

●

●

●

●

●

●

●

0 2000000 6000000 10000000 14000000

0.
00

1
0.

01
0

0.
10

0
1.

00
0

10
.0

00

Number of events

T
im

e
(s

)

● Backward projection CPU
Forward projection CPU
Backward projection GPU
Forward projection GPU

Figure 8: Execution time for forward and backward projections. Run on Intel(R)
Xeon(R) CPU E5-2690 v3 and Nvidia Tesla K40c

The results of the reconstruction for 1s of data and the analysis are shown in
Table 2. As can be seen from the results, the implemented GPU version cuts the
execution time from almost 15 minutes to around 15 seconds. The time repre-
sented in the table shows the total execution time of the reconstruction algorithm,
including the input and the output operations. For image analysis input and out-
put operations are excluded from the benchmarking, because they take more that
50% of total analysis time. For the image analysis, the diameter of inner and outer
spheres are chosen to be 2mm and 4mm. The performance of individual kernels,
for image reconstruction, offloaded to GPU are shown in Figure 8. The results in
Figure 8 illustrate the execution time for forward and backward projections using
different numbers of lines for image reconstruction on a CPU and a GPU.

To test the GPU performance and scaling of kernels used for image analysis,
tests were repeated with different sphere sizes. Figure 9 shows the execution time
of calculating source and background values at each voxel position with different
sphere diameters. The diameter of the outer sphere is always twice the diameter
of the inner sphere.

The computation time for the image reconstruction depends on the total num-
ber of detected events and on the number of iterations, but is independent of the

23

●

●

●
●

●
●

●

2 3 4 5 6 7 8

1e
−

03
1e

−
02

1e
−

01
1e

+
00

1e
+

01

Inner sphere diameter (mm)

T
im

e
(s

)

● Intel(R) Xeon(R) E5−2690 v3
Nvidia Tesla K40c

Figure 9: Calculation of source and background values with different sphere di-
ameters.

true image and the physical scanner used to obtain the data. The computation
time of the image analysis will scale with the number of voxels and the size of
spheres, as can be seen in Figure 9. However the computed time is independent of
the content of the image and of how the image was actually obtained. Therefore,
the results of the examples are representative for all other possible PET systems,
applying similar reconstruction and feature finding. In the given application us-
ing list-mode processing, the reconstruction time scales linear with the amount of
data. Thus reconstructing an image of 5 s using the GPU requires a total of 72.7
s, and the reconstruction of a series of 5 minutes of data into 60 images would
require 1 h and 12.7 min. This is a significant improvement compared to the ˜66
hours required in the CPU case and already close to the first objective to recon-
struct within the order of one hour.

6. Conclusions

The Dynamic Kernel Scheduler (DKS) was used to enable GPU usage in two
different scientific applications. Both use cases are aimed at two separate prob-
lems, data analysis of µSR experiments and PET image reconstruction/analysis
respectively.

24

Significant speedups were reached, that allows, for the first time, near real-
time data analysis in both use cases.

Due to the higher level of abstraction achieved with DKS, the application de-
velopment and maintenance will be simpler and independent of the fast moving
hard- and software technology.

This is software investment protection, which is important, and will become
an even bigger issue in the present and future trend towards more heterogeneous
hardware and software environments.

Future work will include the use of multiple GPU’s to cover larger data sets,
and explore an efficient OpenCL implementation with the goal to target a wider
range of hardware. Auto-tuning on the level of optimal kernel launch parameters
is planed for future releases of DKS.

7. References

References

[1] A. Adelmann, U. Locans, A. Suter, Computer Physics Communications 207
(2016) 83–90.

[2] Gpu-accelerated libraries, https://developer.nvidia.com/gpu-accelerated-
libraries.

[3] Thrust, http://docs.nvidia.com/cuda/thrust.

[4] Arrayfire, http://www.arrayfire.com/docs/index.htm.

[5] Boostcompute, https://boostorg.github.io/compute/.

[6] M. Bourgoin, E. Chailloux, J. Lamotte, International Journal of Parallel Pro-
gramming 42 (4) (2014) 583–600.

[7] J. Svensson, K. Claessen, M. Sheeran, Procedia Computer Science 1 (1)
(2010) 2065–2074.

[8] M. Viñas, B. Fraguela, Z. Bozkus, D. Andrade, Procedia Computer Science
51 (2015) 110–119.

[9] A. Suter, B. Wojek, Physics Procedia 30 (2012) 69–73.

[10] C. Group, Minuit users guide, Program Library D506, CERN.

25

[11] L. Moneta, M. Winkler, A. Zsenei, P. Mato-Vila, M. Hatlo, F. James, IEEE
Transactions on Nuclear Science 52 (2005) 2818–2822.

[12] R. Brun, F. Rademakers, Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 389 (1–2) (1997) 81–86.

[13] A. Youanc, P. D. de Réotier, Oxford University Press, Oxford, 2011.

[14] CUDA Toolkit 7.5, Nvrtc - cuda runtime compilation.

[15] Musrfit user manual, http://lmu.web.psi.ch/musrfit/user/MUSR/WebHome.html.

[16] CUDA Toolkit 7.5, CUBLAS Library.

[17] J.-Y. Cui, G. Pratx, S. Prevrhal, C. S. Levin, Medical physics 38 (12) (2011)
6775–86.

[18] J. L. Herraiz, S. Espana, R. Cabido, A. S. Montemayor, M. Desco, J. J. Va-
quero, J. M. Udias, IEEE Transactions on Nuclear Science 58 (5 PART 1)
(2011) 2257–2263.

[19] G. Pratx, J. Y. Cui, S. Prevrhal, C. S. Levin, 3-D tomographic image recon-
struction from randomly ordered lines with CUDA, NVIDIA Corporation
and Wen-mei W. Hwu, 2011.

[20] PET Clinics 2 (2) (2007) 173 – 190, PET Instrumentation and Quantification.

[21] Nuclear Instruments and Methods in Physics Research Section A: Acceler-
ators, Spectrometers, Detectors and Associated Equipment 506 (3) (2003)
250–303.

[22] J. Allison, K. Amako, et al., IEEE Transactions on Nuclear Science 53 (1)
(2006) 270–278.

[23] T. F. Budinger, S. E. Derenzo, et al., J Comput Assist Tomogr 1 (1) (1977)
131–145.

26

	1 Introduction
	2 Related work
	3 Dynamic Kernel Scheduler
	4 Parameter fitting with Musrfit
	4.1 Problem description
	4.2 GPU implementations
	4.2.1 User-defined functions
	4.2.2 Computing 2

	4.3 Results

	5 Image reconstruction and analysis
	5.1 Image reconstruction
	5.2 Image analysis
	5.3 GPU Implementation
	5.3.1 Forward and backward projections
	5.3.2 Source and background calculation

	5.4 Results

	6 Conclusions
	7 References

