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Abstract

In 2013, Henn proposed a special basis for a certain class of master integrals,
which are expressible in terms of iterated integrals. In this basis, the master integrals
obey a differential equation, where the right hand side is proportional to ε in d =
4 − 2ε space-time dimensions. An algorithmic approach to find such a basis was
found by Lee. We present the tool epsilon, an efficient implementation of Lee’s
algorithm based on the Fermat computer algebra system as computational backend.
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Program Summary

Program Title: epsilon

Licensing provisions: GPLv3

Programming language: C++

Nature of problem: For a certain class of master integrals, a canonical basis can be found in

which they fulfill a differential equation with the right hand side proportional to ε. In such a

basis the solution of the master integrals in an ε-expansion becomes trivial. Unfortunately, the

problem of finding a canonical basis is challenging.

Solution method: Algorithm by Lee [1]

Restrictions: The normalization step of Lee’s algorithm will fail if the eigenvalues of the matrix

residues are not of the form a+ bε with a, b ∈ Z. Multi-scale problems are not supported.

[1] R. N. Lee, JHEP 1504 (2015) 108 [arXiv:1411.0911 [hep-ph]].
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1 Introduction

The perturbative treatment of quantum field theories leads quite naturally to the problem
of evaluating a large number of multi-loop Feynman diagrams. After a tensor reduction
the Feynman diagrams can be expressed in an even larger number of scalar Feynman
integrals of the form ∫

ddl1· · ·
∫
ddlL

1

Dn1
1 . . . DnN

N

, (1.1)

where L is the number of loops and d = 4 − 2ε the number of space-time dimensions in
the context of dimensional regularization. The denominators Di in (1.1) are usually of
the form p2−m2, where p is a linear combination of loop momenta and external momenta
and m some mass.

A standard technique nowadays is the usage of integration-by-parts identities [1, 2] for
the reduction of this large number of Feynman integrals to a rather small set of so-called
master integrals. These identities provide linear dependences between various Feynman
integrals, where the coefficients are rational functions in both the space-time dimension
d and the kinematic variables of the problem.

Many methods were developed to solve these master integrals. For an overview see e.g.
[3]. Among the most successful ones is the method of differential equations which is also
based on integration-by-parts reductions[4–6]. Recently, significant progress was made in
this method, when Henn conjectured the existence of a canonical basis for master integrals
expressible in terms of iterated integrals [7]. In this basis the right hand side of the system
of differential equations is proportional to ε = (4 − d)/2. If the boundary conditions are
known, the solution of the system of differential equations in an ε-series becomes trivial.

Two years ago, Lee proposed an algorithm to automate finding a canonical basis [8]. A
first implementation for this algorithm was presented in [9, 10].

In this paper we present epsilon, a further implementation of Lee’s algorithm based on
the Fermat[11] computer algebra system. Our implementation utilizes the explicit depen-
dence of the transformations used by Lee’s algorithm on the kinematic variable to reduce
the number of variables in intermediate steps. Another advantage of our implementation
is the support of systems with singularities at complex points using Fermat’s polymod
capability.

In Section 2 we introduce some definitions and explain implementation details. In Sec-
tion 3 the installation procedure and the usage of epsilon is described. In Section 4 we
give a non-trivial example of the usage based on a real three-loop computation.
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2 Implementation details

2.1 Definitions

We consider a set of N master integrals ~f fulfilling an ordinary system of differential
equations

∂ ~f(x, ε)

∂x
= M(x, ε)~f(x, ε) , (2.1)

where x is a kinematic variable, M(x, ε) is an N × N -matrix and ε is a regulator in
d = 4− 2ε dimensions in the context of dimensional regularization. We restrict ourselves
to the case

M(x, ε) =
∑
xj∈S

∑
k≥0

M
(xj)
k (ε)

(x− xj)k+1
+
∑
k≥0

xkMk(ε) , (2.2)

where S is the set of all finite singularities and M
(xj)
k and Mk(ε) are independent of x.

In particular, singularities xj depending on ε are forbidden. In many physically relevant

cases one can use a trial and error approach to find a basis of master integrals ~f fulfilling
the restriction (2.2). The main strategy of our implementation is to keep the system
always in the form of (2.2) since here the x-dependence is explicit.

A singularity xj < ∞ has Poincaré rank p if M
(xj)
p 6= 0 and M

(xj)
k = 0 for k > p. In

addition to the finite singularities, the system might also have a singularity at ∞. The
Poincaré rank p of a singularity at ∞ is defined as the Poincaré rank of the singularity
at y = 0 of the system M(1/y, ε)/y2. So (2.2) has Poincaré rank p > 0 at ∞ if Mp−1 6= 0

and Mk = 0 for k ≥ p, and Poincaré rank p = 0 at ∞ if all Mk = 0 and
∑

xj∈SM
(xj)
0 6= 0.

If all Mk = 0 and
∑

xj∈SM
(xj)
0 = 0, the system is not singular at ∞.

Let p be the Poincaré rank of a singularity xj < ∞, then the generalized Poincaré rank

(or Moser rank) [12] of this singularity is defined as p + r/n − 1, where r = rankM
(xj)
p

and n is the dimension of the system.

A system

M(x, ε) =
∑
xj∈S

M
(xj)
0 (ε)

x− xj
, (2.3)

where all singularities have Poincaré rank zero is called Fuchsian, and a system

M(x, ε) = ε
∑
xj∈S

M̂
(xj)
0

x− xj
, (2.4)
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where M̂
(xj)
0 is no longer a function of ε, is said to be in ε-form. A change of basis

~g(x, ε) = T−1(x, ε)~f

modifies the system (2.1) to

∂~g(x, ε)

∂x
= M̃(x, ε)~g(x, ε) ,

with

M̃(x, ε) = T−1(x, ε)M(x, ε)T(x, ε)− T−1(x, ε) ∂
∂x
T(x, ε) . (2.5)

We assume the master integrals in ~f to be ordered in a way that a block-triangular
structure of the system is obtained (for details see e.g. [8]). We will often make use of
this block-triangular structure. Therefore we write

M =

A 0 0
B C 0
D E F

 , (2.6)

and use the same indices as in (2.2) for the matrices A, . . . ,F (e.g. C
(xj)
k (ε)). The block

C is called the active block as we apply Lee’s algorithm to this block. As A to F are
matrices as well, the definition of what we call the active block is more or less arbitrary
as long as a block-triangular structure is obtained. But from a computational point of
view a small dimension of the active block is preferable since this reduces the complexity

of the resulting operations. In the following, the matrices A
(xj)
k , . . . ,F

(xj)
k and Ak, . . . ,Fk

will be referred to as coefficient matrices.

2.2 Utilizing the explicit x-dependence

Lee’s algorithm uses three types of transformations: balances, off-diagonal reductions and
x-independent transformations.

We define balances as

B(P, x1, x2) = P+
x− x2
x− x1

P , (2.7a)

B(P, x1,∞) = P+
1

x− x1
P , (2.7b)

B(P,∞, x2) = P+ (x− x2)P , (2.7c)
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where P is a projector to be specified below, depending only on ε, P = 1 − P and
x1, x2 < ∞. In Lee’s algorithm balances are applied to the active block C in order to
reduce the generalized Poincaré rank of singular points and to normalize eigenvalues of
Fuchsian singularities.

Off-diagonal reductions are used to reduce the block B to Fuchsian form after the blocks
A and C were already reduced to ε-form. They are defined by

L(x1, k,G) = 1+
1

(x− x1)k
G , (2.8a)

L(∞, k,G) = 1+ xkG , (2.8b)

where

G =

0 0 0

Ĝ 0 0
0 0 0

 . (2.8c)

The block Ĝ has the same boundaries in G as block B in (2.6). Note that G2 = 0.

In both types of transformations the x-dependence is explicit. Another type of transfor-
mation which is independent of x is used in the last step of Lee’s algorithm to factor out
ε.

Our goal is to use those three types in the transformation rule (2.5) without spoiling the
form (2.2) or the block-triangular structure (2.6) of the system.

As a pedagogical example we consider the transformation of block B under a balance
between two singularities x1 and x2, i.e.

T = B(P, x1, x2) = P+
x− x2
x− x1

P , T−1 = B(P, x2, x1) = P+
x− x1
x− x2

P . (2.9)

Since we want to apply Lee’s algorithm to the active block we can restrict the form of the
projector P to

P =

0 0 0
0 Q 0
0 0 0

 , (2.10)

where Q is a projector with the dimensions of the active block. Inserting (2.9) into (2.5)
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we obtain

M̃(x, ε) =

[
P+

x− x1
x− x2

P

]
M(x, ε)

[
P+

x− x2
x− x1

P

]
+

x2 − x1
(x− x1)(x− x2)

P

= M(x, ε)− PM(x, ε)P− PM(x, ε)P+
x− x2
x− x1

PM(x, ε)P+
x− x1
x− x2

PM(x, ε)P

+
x2 − x1

(x− x1)(x− x2)
P

So block B in (2.6) transforms as

B̃(x, ε) = B(x, ε)−QB(x, ε) +
x− x1
x− x2

QB(x, ε) .

Inserting the form (2.2) of B(x, ε) leads to

B̃(x, ε) = B(x, ε)−QB(x, ε) +
∑
xj∈S

∑
k≥0

(x− x1)QB
(xj)
k (ε)

(x− x2)(x− xj)k+1
+
∑
k≥0

(x− x1)xk

x− x2
QBk(ε) .

(2.11)
Using partial fractioning and the incomplete geometric series, we can show that

∞∑
k=0

ak
(x− x2)(x− xj)k+1

=
1

x− x2

∑
n≥0

an
(x2 − xj)n+1

−
∑
k≥0

1

(x− xj)k+1

∞∑
n=0

an+k
(x2 − xj)n+1

,

(2.12a)

∑
k≥0

xk

x− x2
ak =

∑
k≥0

xk
∑
n≥0

xn2 ak+n+1 +
1

x− x2

∑
n≥0

xn2 an , (2.12b)

where identity (2.12a) only holds for xj 6= x2. Combining (2.11) and (2.12) yields

B̃(x, ε) = B(x, ε) +
x2 − x1
x− x2

∑
xj∈S\{x2}

∑
n≥0

QB
(xj)
n

(x2 − xj)n+1
+
x2 − x1
x− x2

∑
n≥0

xn2QBn

+
∑
k≥1

(x2 − x1)QB(x2)
k−1(ε)

(x− x2)k+1
+

∑
xj∈S\{x2}

∑
k≥0

x1 − x2
(x− xj)k+1

∑
n≥0

QB
(xj)
n+k(ε)

(x2 − xj)n+1

+ (x2 − x1)
∑
k≥0

xk
∑
n≥0

xn2QBk+n+1(ε) .

(2.13)
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Hence, the transformation laws for the coefficient matrices can be found by comparing
(2.13) with the structure of (2.2):

B̃
(x2)
0 (ε) = B

(x2)
0 (ε) +

∑
xj∈S\{x2}

∑
n≥0

x2 − x1
(x2 − xj)n+1

QB(xj)
n (ε) + (x2 − x1)

∑
n≥0

xn2QBn(ε) ,

B̃
(x2)
k>0(ε) = B

(x2)
k (ε) + (x2 − x1)QB(x2)

k−1(ε) ,

B̃
(xj 6=x2)
k (ε) = B

(xj)
k (ε) +

∑
n≥0

x1 − x2
(x2 − xj)n+1

QB
(xj)
n+k(ε) ,

B̃k(ε) = (x2 − x1)
∑
n≥0

xn2QBk+n+1(ε) .

An advantage of this form over the original transformation (2.9) is that now all operations
are independent of x. Therefore, the underlying computer algebra system has to deal with
rational functions of one less variable. The form (2.2) remains unspoiled, i.e. it is not
necessary to perform a partial fraction decomposition after the transformation.

All transformations in terms of the coefficient matrices are listed in appendix A.

2.3 Overview of Lee’s algorithm

Three basic steps allow Lee’s algorithm[8] to transform an ordinary system of differential
equations into an ε-form (2.4) if they are applied to the whole system:

1. transformation of a system into Fuchsian form,

2. normalization of the eigenvectors of all matrix residues,

3. factorization of ε.

In order to make use of the block-triangular structure of the system (2.6) these three steps
are applied only to the active block followed by a fourth step to transform the off-diagonal
block B into Fuchsian form.

In this sub-section we briefly discuss all four steps. More details can be found in the
original paper by Lee[8].

Fuchsification

The basic building blocks for the first part of Lee’s algorithm, the transformation of the
system to Fuchsian form, are the balances defined in (2.7). With the right choice of a
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projector P, it is possible to perform a so-called Moser reduction to strictly lower the
generalized Poincaré rank of the singularity at x1 [12]. In this discussion we restrict
ourselves to the case where x1 <∞. A more general treatment is given in[8].

Let p be the Poincaré rank of the singularity at x1 of the active block C and {uαk} with

α = 0, . . . , nk be the set of nk + 1 right generalized eigenvectors of C
(x1)
p belonging to a

Jordan block k in the Jordan decomposition of C
(x1)
p . The Jordan blocks are ordered by

their size so that ni ≥ ni+1. If p > 0, we assume all eigenvalues of C
(x1)
p to be zero, or else

no transformation to lower the generalized Poincaré rank exists. The right generalized
eigenvectors fulfill

C(x1)
p u

(0)
k = 0 , C(x1)

p u
(α+1)
k = u

(α)
k .

These relations are invariant under the transformation

u
(α)
k → u

(α)
k + cu

(α)
l , (2.14)

where α = 0, . . . , nk and k > l. The left generalized eigenvectors v
(α)
k are related to the

right generalized eigenvectors by(
v
(n1)
1 , . . . , v

(0)
1 , v

(n2)
2 , . . . , v

(0)
2 , . . .

)
=

[(
u
(0)
1 , . . . , u

(n1)
1 , u

(0)
2 , . . . , u

(n2)
2 , . . .

)−1]†
, (2.15)

and fulfill
v
(0)†
k C(x1)

p = 0 , v
(α+1)†
k C(x1)

p = v
(α)†
k .

The transformation (2.14) allows us to find a basis of eigenvectors which satisfies

v
(0)†
j C

(x1)
p−1u

(0)
k = 0 , (2.16)

for j /∈ R and k ∈ R∪{k0}, where R is some set of trivial Jordan blocks (ni = 0 for i ∈ R)
and k0 is a non-trivial Jordan block (nk0 > 0). An algorithm to find these generalized
eigenvectors, together with the set R and k0 is given in [8].

If in the definition of P (2.10) we use

Q =
∑

k∈R∪{k0}

u
(0)
k w†k , (2.17)

with w†ju
(0)
k = δjk and then apply the balance (2.7a), the generalized Poincaré rank of the

singularity at x1 is decreased. To see this, we introduce the projector

Q1 =
∑

k∈R∪{k0}

u
(0)
k v

(nk)†
k . (2.18)
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Since v
(nj)†
j u

(0)
k = δjk, the projector Q1 also is of the form (2.17). From the definitions of

Q and Q1 follows

Q1Q = Q , QQ1 = Q1 , C(x1)
p Q = C(x1)

p Q1 = 0 .

Evaluating the transformation (A.1b) at k = p leads to

C̃(x1)
p = QC(x1)

p + (x1 − x2)QC(x1)
p−1Q

=
(
Q+Q1

) [
Q1C

(x1)
p + (x1 − x2)Q1C

(x1)
p−1Q1

] (
Q1 +Q

)
As (Q+Q1) = (Q1 +Q)−1, the matrix rank of C̃

(x1)
p is given by

rank C̃(x1)
p = rank Ĉ(x1)

p , Ĉ(x1)
p = Q1C

(x1)
p + (x1 − x2)Q1C

(x1)
p−1Q1, .

The argument that the matrix rank (and therefore the generalized Poincaré rank) of C̃
(x1)
p

is lower than the matrix rank of C
(x1)
p is as follows:

• All left eigenvectors v
(0)
j of C

(x1)
p with j ∈ R are left eigenvectors of Ĉ

(x1)
p as v

(0)†
j Q1 =

0.

• All left eigenvectors v
(0)
j of C

(x1)
p with j /∈ R are left eigenvectors of Ĉ

(x1)
p as v

(0)†
j Q1 =

v
(0)†
j and so

v
(0)†
j Ĉ(x1)

p = (x1 − x2)
∑

k∈R∪{k0}

v
(0)†
j C

(x1)
p−1u

(0)
k v

(nk)†
k = 0 ,

where we used (2.16).

• The vector v
(nk0

)

k0
which is not a left eigenvector of C

(x1)
p is an additional left eigen-

vector of Ĉ
(x1)
p as v

(nk0
)†

k0
Q1 = 0.

So Ĉ
(x1)
p has one eigenvector more than C

(x1)
p and therefore has a lower matrix rank.

Unfortunately, the balance (2.7a) might also increase the Poincaré rank at x2. Therefore,
we have a closer look at (A.1d) evaluated at k = q + 1, where q is the Poincaré rank at
the singularity x2:

C̃
(x2)
q+1 = (x2 − x1)QC(x2)

q Q .

If this expression vanishes, the Poincaré rank at x2 is not increased. This is the case if
the vectors w†k in (2.17) span a left-invariant space of C

(x2)
q .
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In Lee’s algorithm the above steps are used to decrease the Poincaré rank of a singularity
x1 as long as it is possible to find a projector (2.17) with w†k spanning a left-invariant

space of some C
(x2)
q , where x2 6= x1 is some other singular point. If no such projector

exists, a regular point y is chosen and the projector Q1 defined by (2.18) is used in the
balance. This of course creates a new (apparent) Fuchsian singularity at y. This way it is
possible to reduce the system to an equivalent one with all singularities having Poincaré
rank zero. Fortunately, the next step, the normalization of the eigenvalues, removes all
apparent singularities introduced in this step.

Normalization

The second step of Lee’s algorithm is the normalization of the eigenvalues of the matrix
residues. Again, the main ingredients are the balances defined in (2.7). We assume all
singularities to be Fuchsian now and the eigenvalues of the matrix residues to be of the
form a+bε with a ∈ Z. This is a necessary condition for the existence of a transformation
normalizing all eigenvalues. If this condition cannot be fulfilled a redefinition of the
kinematic variable might be helpful. A normalized eigenvalue is an eigenvalue proportional

to ε (i.e. with a = 0). The matrix residue at ∞ is equal to −
∑

xj∈S C
(xj)
0 . Therefore, the

sum of all matrix residues (including the residue at ∞) vanishes and hence the sum of all
eigenvalues of all matrix residues must vanish as well.

For brevity’s sake, we will restrict our discussion to finite singularities x1, x2 < ∞; the
generalized treatment can again be found in[8].

Let {u(α)k } with α = 0, . . . , nk be the set of nk + 1 right generalized eigenvectors of C
(x1)
0

belonging to the Jordan block k:

C
(x1)
0 u

(0)
k = λku

(0)
k , C

(x1)
0 u

(α+1)
k = λku

(α+1)
k + u

(α)
k .

As in the fuchsification step, we define left generalized eigenvectors v
(α)
k via (2.15) which

satisfy
v
(0)†
k C

(x1)
0 = λkv

(0)†
k , v

(α+1)†
k C

(x1)
0 = λkv

(α+1)†
k + v

(α)†
k .

A balance (2.7a) with a right choice of a projector P can now be used to shift one
eigenvalue of the matrix residue at x1 up by one and/or one eigenvalue of the matrix
residue at x2 down by one. Let us consider a projector P defined by (2.10) with

Q = u
(0)
k w† , (2.19)

where w†u
(0)
k = 1. Also an additional projector

Q1 = u
(0)
k v

(nk)
k

10



is useful for the discussion. The following relations involving these two projectors hold:

QQ1 = Q1 , Q1Q = Q , C
(x1)
0 Q = λkQ , C

(x1)
0 Q1 = λkQ1 .

Let us now consider the transformation of C
(x1)
0 under a balance (2.7a) as given in (A.1a):

C̃
(x1)
0 = C

(x1)
0 −QC(x1)

0 Q+
∑

xj∈S\{x1}

x1 − x2
x1 − xj

QC
(xj)
0 Q+Q

= (Q+Q1)Ĉ
(x1)
0 (Q1 +Q) ,

where

Ĉ
(x1)
0 = C

(x1)
0 −Q1C

(x1)
0 Q1 +

∑
xj∈S\{x1}

x1 − x2
x1 − xj

Q1C
(xj)
0 Q1 +Q1 .

Because of (Q+Q1) = (Q1+Q)−1, C̃
(x1)
0 and Ĉ

(x1)
0 are related by a similarity transformation

and thus have the same eigenvalues. To evaluate the eigenvalues of C̃
(x1)
0 it is therefore

sufficient to analyze the eigenvalues of Ĉ
(x1)
0 which are much simpler to determine. We

consider Ĉ
(x1)
0 in the basis of the generalized eigenvectors of C

(x1)
0 . In this basis C

(x1)
0 is

in Jordan normal form. The second term −Q1C
(x1)
0 Q1 removes all elements from the row

corresponding to u
(0)
k but the diagonal one containing the eigenvalue to u

(0)
k . The last

term +Q1 increases the diagonal element by one. The terms proportional to Q1C
(xj)
0 Q1

contribute to the non-diagonal elements of the column corresponding to u
(0)
k (or v

(nk)†
k ).

Hence, the transformations can be summarized as

. . .
λk−1

λk 1
λk 1

. . .
. . .
λk 1

λk
λk+1 1

. . .
. . .


→



. . .
...

λk−1 ∗
λk + 1 0
∗ λk 1

...
. . .

. . .
∗ λk 1
∗ λk
∗ λk+1 1

...
. . .

. . .


,

where ∗ stands for contributions from the Q1C
(xj)
0 Q1 terms. Calculating the characteristic

polynomial by means of a Laplace expansion along the row corresponding to u
(0)
k leads

to the conclusion that all eigenvalues but one stay the same; only one eigenvalue λk is
changed to λk + 1.
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In the same way, a projector
Q′ = wv

(0)†
k (2.20)

with a left eigenvector v
(0)†
k of C

(x2)
0 and v

(0)†
k w = 1 shifts one eigenvalue λk of C

(x2)
0 down

by one.

A balance with a projector (2.19) could spoil the Fuchsian form of the system if it increases
the Poincaré rank at any singularity. This is in principle possible at x2. Evaluating (A.1d)
at k = 1 leads to

C̃
(x2)
1 = (x2 − x1)QC(x2)

0 Q .

This vanishes if w† is a left eigenvector of C
(x2)
0 . In that case not only the Fuchsian form

of the system is preserved but we also arrive at a projector of the form (2.20). So the
projector of choice is

Q = u
(0)
k v

(0)†
l , (2.21)

where u
(0)
k is a right eigenvector of C

(x1)
0 , v

(0)†
l is a left eigenvector of C

(x2)
0 and v

(0)†
l u

(0)
k = 1.

This projector, used in balance (2.7a), increases one eigenvalue λk of C
(x1)
0 by one and

decreases one eigenvalue µl of C
(x2)
0 by one while conserving the Fuchsian form of the

system.

In order to utilize the considerations above in an algorithmic approach, one first selects a
singularity x0 as ‘fallback’. Then balances with projectors of the form (2.21) are used to
‘mutually balance’ eigenvalues between two singularities. Certainly, the eigenvalue to be
increased should be negative and the eigenvalue to be decreased should be positive (for
ε = 0).

If no such balance exists, the eigenvalues will be balanced with the ‘fallback singularity’
x0 regardless of the sign of the eigenvalue at x0. This normalizes the eigenvalues at all
singularities but x0. To normalize even the eigenvalues at x0, we balance one unnormalized
eigenvalue with some regular point creating a new apparent singularity there and restart
the algorithm. Hopefully, the unnormalized eigenvalue at this new apparent singularity
can now be mutually balanced with another unnormalized eigenvalue at x0.

ε-Factorization

In the next step we find an x-independent transformation T(ε) to factor out ε. For an
x-independent T, (2.5) becomes a similarity transformation and does not change the
eigenvalues of the system. This makes it necessary for the eigenvalues to be proportional
to ε, i.e. the normalization step before must have been successful. We use the fact that
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T−1(ε)[M
(xj)
0 (ε)/ε]T(ε) should be independent of ε, so that the equation

T−1(ε)
M

(xj)
0 (ε)

ε
T(ε) = T−1(µ)

M
(xj)
0 (µ)

µ
T(µ)

holds for all xj ∈ S. Multiplying this equation from the left by T(ε) and from the right
by T−1(µ), leads to

M
(xj)
0 (ε)

ε
T(ε, µ) = T(ε, µ)

M
(xj)
0 (µ)

µ
, (2.22)

where T(ε, µ) = T(ε)T−1(µ). This linear system can be solved e.g. with Gaussian elim-
ination and the constants should be fixed so that T(ε, µ0) is an invertible matrix, where
µ0 is some arbitrary number. The transformation T(ε, µ0) can now be used to factor out
ε.

Fuchsification of off-diagonal blocks

Since the definition of the active block is somewhat arbitrary, we should in principle be
able to transform all diagonal blocks to ε-form by redefining the active block and applying
the three steps described above. However, we still need to reduce the off-diagonal block
B to Fuchsian form. Again we will restrict the discussion to finite singularities x1 < ∞
and assume the block A and C to be already in ε-form.

Let p be the Poincaré rank of the off-diagonal block B at the singularity x1, i.e. B
(x1)
p 6= 0

and B
(x1)
k = 0 for k > p. The behavior of B

(x1)
p under a transformation (2.8a) with k = p

is given by (A.3a):

B̃(x1)
p = B(x1)

p + C
(x1)
0 Ĝ− ĜA(x1)

0 + pĜ .

In order to decrease the Poincaré rank, Ĝ has to be determined such that B̃
(x1)
p vanishes.

This linear system of equations can be solved e.g. with Gaussian elimination.

Hence, with transformations of the form (2.8) it is possible to reduce all singularities of
the off-diagonal block B to Fuchsian form.
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3 Usage

3.1 Installation guide on Linux systems

Ensure that the dependencies

• Fermat (≥ 6.0) [11],

• GiNaC (≥ 1.6.2) [13] (for epsilon-prepare only)

are installed.

As a next step, libFermat has to be installed. libFermat, which was developed in
connection with epsilon, is a C++ library designed to communicate with Fermat. Never-
theless, we decided to publish libFermat in a separate repository since it might be useful
elsewhere. Internally, the communication is done with PStreams[14] which is included in
the package. The source code of the most recent version of libFermat can be obtained
via github using

git clone https :// github.com/mprausa/libFermat.git

This will create a directory libFermat/ and clone the library into that location. Now
inside this directory, run

cmake -DCMAKE_INSTALL_PREFIX =/path/to/install .

make

make install

where /path/to/install is your desired installation directory and defaults to /usr/local
on a typical Linux system. The library is installed into the sub-directory lib and the
header files into the sub-directory include of /path/to/install. If your choice is a
global directory you will require root access for the last step make install. Remem-
ber to include the sub-directory lib of /path/to/install into the LD LIBRARY PATH

environment variable if you are using a non-standard directory.

The next step is to install epsilon and epsilon-prepare. In principle the procedure is
the same as for the installation of libFermat. First, obtain the most recent version of
the source code with

git clone https :// github.com/mprausa/epsilon.git

then change into the newly created directory epsilon/ and run

14



cmake -DCMAKE_INSTALL_PREFIX =/path/to/install .

make

make install

It is recommended to use the same /path/to/install as for libFermat, else the cmake

step might require additional options to find libFermat. The programs epsilon and
epsilon-prepare are installed into the sub-directory bin of the installation path. As
before, make install might need root access depending on the installation prefix. For
a non-standard installation prefix, the environment variable PATH should be adjusted to
include the sub-directory bin of /path/to/install so that the programs epsilon and
epsilon-prepare can be found by the shell.

It is also possible to build epsilon and epsilon-prepare individually. This can be
done by changing into the corresponding sub-directory and running cmake and make from
within there.

The epsilon-repository also offers a Mathematica package EpsilonTools.m found in the
sub-directory mma/. Run

./ install.sh

from within this sub-directory to install EpsilonTools.m into the Applications/ direc-
tory of your Mathematica installation.

3.2 Input/Output format

epsilon uses its own file format to represent a system of differential equations of the
form (2.2), where every line represents one coefficient matrix. A line starts with either
‘A[xj,k]:’ or ‘B[k]:’ followed by a matrix. The matrix is stored as a list of rows, where
each row is itself a list of matrix elements. Lists are enclosed in curly-braces and list
entries are separated by commas. A line starting with ‘A[xj,k]:’ (‘B[k]:’) represents a

matrix M
(xj)
k (Mk) in (2.2).

The name of the symbol used to represent ε is fixed to ep.

An example of an input file for epsilon is given in section 4.

3.3 Usage of epsilon-prepare

The tool epsilon-prepare is used to convert a matrix in Mathematica format (a list of
lists) into epsilon input format (see section 3.2). If, for example, the file containing a
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symbol polymod expression
i i2 + 1 i

rN rN2 − rN + (1 +N)/4 1+i
√
N

2

qN qN2 − qN + (1−N)/4 1+
√
N

2

sqrtN sqrtN2 −N
√
N

isqrtN isqrtN2 +N i
√
N

Table 1: Additional symbols used by epsilon-prepare to represent zeros of quadratic
polynomials. N is a positive integer.

matrix in Mathematica format is called matrix.m, then the command

epsilon -prepare matrix.m > matrix.dat

is used to create a file matrix.dat in epsilon format. The matrix elements of the input
matrix are expected to be rational functions in ε and x (represented by the symbols
ep and x, respectively). The command epsilon-prepare performs a partial fraction
decomposition over complex numbers in the variable x of the matrix elements and results
in an expression of the form of (2.2).

To perform a partial fractioning of a rational function, the zeros of its denominator have
to be determined. Therefore, epsilon-prepare applies GiNaC’s polynomial factorization
algorithm to the denominator in order to factorize it into polynomials that are irreducible
over the integers. In a second step, the zeros of all factors are found individually.

This step will fail, if the considered irreducible polynomial has a degree larger than two.
An error is thrown as well if the system is not in form (2.2), i.e. a zero depends on the
parameter ε.

The additional symbols listed in table 1 might be introduced by epsilon-prepare. See
section 3.5 for how to make epsilon accept them.

3.4 Usage of epsilon

The general command syntax for the tool epsilon is

epsilon [OPTIONS] JOBS ...

The path to the Fermat binary can be set inside the environment variable FERMAT. If this
variable is not set explicitly, epsilon will look for a binary fer64 inside the directories
defined in the environment variable PATH. Options are set once at the start of epsilon.
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Jobs are processed one by one in the same order they are defined on the command line.
Some jobs will perform transformations to the system. These transformations are stored
in a so-called internal transformation queue in RAM and can also be written to an external
file.

Options:

• --verbose: Enable verbose output.

This option prints out all communication between libFermat and Fermat during a
regular run. This is useful as a debug tool.

• --timings: Enable timings.

This option prints the elapsed real time after every job and the total time of the
complete run.

• --symbols symbols : Adjoin additional symbols to Fermat.

This option adds the specified symbols to Fermat. The symbols defined in this
option are the very first variables adjoint to Fermat followed by the symbol ep and
further internally used symbols. symbols has to be a comma-separated list.

• --echelon-fermat: Use the Redrowech function in Fermat to
solve linear systems.

At various points in the code linear systems of equations have to be solved. Use this
option to choose the Redrowech function over our own implementation of Gaussian
elimination.

Jobs:

• --fermat file : Execute Fermat commands.

This job reads file line by line and sends all non-empty lines to Fermat.

• --load file start end : Load system.

This job loads file and activates the block {start , end }. Hereby file is expected
to be in the format specified in section 3.2
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• --write file : Write system.

This job writes the system of differential equations to file using the format spec-
ified in section 3.2.

• --queue file : Set external transformation queue.

This job enables an external transformation queue. An external transformation
queue is a file containing all transformations already performed by epsilon during
a run. This is particularly useful in connection with the options --load-queue and
--replay to restore an aborted run to the state after the last successful transfor-
mation.

• --load-queue filename : Load transformation queue.

This job loads an external transformation queue from filename into an internal
transformation queue stored in RAM. This job does not apply the transformations
stored in the file to the system.

• --replay: Apply internal transformation queue.

This job ‘replays’ the internal transformation queue, i.e. the transformations in the
queue are applied to the system one by one. It should only be used immediately
after --load-queue.

• --export file : Export transformation matrix.

This job computes a transformation matrix out of the transformations inside the
internal transformation queue. The matrix is written in Mathematica format to
file .

• --block start end : Activate a block.

This job activates the block {start , end }.

• --fuchsify: Transform active block into Fuchsian
form.

This job reduces the active block to Fuchsian form (2.3). See section 2.3 for details.

• --normalize: Normalize eigenvalues.

This job normalizes the eigenvalues of all residue matrices making them proportional
to ε. See section 2.3 for details.
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• --factorep: Factor out ε (auto detect µ).

This job transforms the active block into ε-form (2.4) using the method described
in section 2.3. The variable µ in (2.22) is left as an unknown and will be fixed only
after the system is solved to ensure that the transformation is invertible.

• --factorep-at mu : Factor out ε (with predefined µ).

This job transforms the active block into ε-form (2.4) using the method described
in section 2.3. In this variant, the variable µ in (2.22) is set to mu before the system
is solved. This is faster than --factorep because epsilon has to deal with one
less variable in the polynomials. Unfortunately, an unlucky choice of mu can hit a
pole in the matrix elements of the system or one can end up with an uninvertible
transformation. In both cases an error is thrown.

• --left-fuchsify: Fuchsify off-diagonal block.

This job is used to transform the block left of the active block (block B in (2.6)) to
Fuchsian form. See section 2.3 for details.

• --dyson file order type format : Generate Dyson operator.

This job writes a Dyson operator U(x, x0) for the active block up to order order

in ε to file . The active block has to be in ε-form. The Dyson operator fulfills

∂

∂x
U(x, x0) = ε

∑
xj∈S

Ĉ
(xj)
0

x− xj
U(x, x0) , U(x0, x0) = 1 .

The option type specifies the type of multiple polylogarithms in the output and
can be set to GPL, HPL or HPLalt for Goncharov polylogarithms[15] or harmonic
polylogarithms in the “a”- or “m”-notation[16, 17], respectively. format should be
mma or form to specify Mathematica or FORM[18] as output format.

3.5 Using field extensions

The Fermat computer algebra system works with multivariate polynomials over the ground
ring Z and the corresponding quotient field, the rational functions over Z. Fortunately,
Fermat offers a way to extend the ground ring by setting so-called polymods.

A polymod p(ξ) is a univariate polynomial in ξ, where ξ is one of the variables adjoint
to Fermat. This instates a new quotient ring Z[ξ]/〈p(ξ)〉 as the ground ring, forcing
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the condition p(ξ) = 0 onto the variable ξ. In other words every polynomial q(ξ) ∈ Z[ξ]
encountered by Fermat is replaced immediately by the remainder of a polynomial division
q(ξ)÷ p(ξ). For more details see the Fermat manual[11].

The polymod i2 +1 for example leads to the quotient ring Z[i]/〈i2 +1〉 which is equivalent
to the Gaussian integers, a field extension of the integers by a number i with i2 = −1.
Also other complex numbers can be represented in Fermat using polymods. The com-
plex numbers introduced via epsilon-prepare can be represented in Fermat using the
polymods listed in table 1.

The syntax to set a polymod in Fermat is &(P=polymod,1), where the variable of the
polymod must be the first symbol adjoint to Fermat which does not have a polymod
assigned yet. This Fermat command should be stored in a text file and can be read in by
epsilon with the --fermat job.

For internal reasons Fermat runs very slow if more than one polymod is assigned to it.
Therefore, in complicated cases with more than one complex number, it is useful to set a
polymod only for the most frequent variable appearing in the block to work with next. As
the order of symbols once set cannot be changed inside Fermat, the only way to change
the ‘active’ polymod is by saving the system with --write and reload it into a new session
after the symbols are adjoined in a different order. In our tests we were able to solve huge
systems with up to three complex numbers applying this strategy.

3.6 Usage of EpsilonTools.m

The Mathematica package EpsilonTools.m provides functions which help to set up
epsilon and to work with the epsilon input/output file format (see section 3.2). It
is not essential in order to run epsilon. After a successful installation, the package can
be loaded into a Mathematica session with

<<EpsilonTools ‘

EpsilonTools.m provides three functions:

• EpsilonSymRules[expression ]

This function scans expression for symbols of the form given in table 1 and com-
piles a list of rules for these symbols to their corresponding Mathematica expressions,
e.g.

{r3 ->(1+I*Sqrt [3])/2 , q5 ->(1+ Sqrt [5])/2 , i->I}
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• EpsilonRead[file ]

This function reads file into Mathematica where file is in the format described
in section 3.2.

Options:

– ReplaceSymbols (default: True)

If this option is set to True, all symbols introduced by epsilon-prepare will
be replaced by their corresponding Mathematica expression.

– CheckFuchsian (default: False)

If this option is set to True, the function returns $Failed if the system in file

is not in Fuchsian form.

– CheckEpsilon (default: False)

If this option is set to True, the function returns $Failed if the system in file

is not in ε-form.

• EpsilonBlocks[M ]

This function scans for a block-triangular structure of the matrix M and returns a
list of the boundaries of all diagonal blocks. The returned boundaries are in the
form {start,end }. The values start and end can be used in the --block job of
epsilon.

4 A physical example

As an example, we consider a set of three-loop master integrals {Ij} with j = 1, . . . , 9 in
d = 4− 2ε dimensions with internal lines of mass one or zero. A graphical representation
of the master integrals except I3 is contained in fig. 4.1. Further we define I3 as

I3 =

∫
ddp

∫
ddl

∫
ddk

(k − l)2

[(p+ q1)2 − 1][l2 − 1][(p− l + k)2 − 1][(l − p+ q2)2]
.

The kinematics is given by

q21 = q22 = 0 , q1 · q2 = −(1− x)2

2x
.

The vector ~f = (I1, . . . , I9) obeys a differential equation

∂

∂x
~f = M(x, ε)~f ,
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I1 I2 I4 I5

I6 I7 I8 I9

Figure 4.1: Three-loop master integrals to be solved with epsilon. The not pictured
integral I3 has the same topology as I2 but with an additional numerator. The thick
(thin) lines are massive (massless). The thin external lines carry the momenta q1 and q2,
while the double line carries the momentum q1 + q2.

where the 9× 9-matrix M(x, ε) has the structure

M(x, ε) =



0 0 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


. (4.1)

The ∗ represents any non-zero entry and we point out the block-triangular structure of the
system. First, this matrix should be stored in a Mathematica compatible file matrix.m.
The next step is to convert this file to the format described in section 3.2 via

epsilon -prepare matrix.m > matrix.dat

The generated file matrix.dat should read

A[r3 ,0]: {{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0 ...

A[-1,0]: {{0,0,0,0,0,0,0,0,0},{1-ep ,5-6*ep ,-6+ ...

A[-1,1]: {{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0 ...

A[-1,2]: {{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0 ...

A[1-r3 ,0]: {{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0 ...

A[1,0]: {{0,0,0,0,0,0,0,0,0},{-1+ep , -11+10*ep ...

A[1,1]: {{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0 ...

A[1,2]: {{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0 ...

A[1,3]: {{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0 ...

A[1,4]: {{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0 ...
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A[0,0]: {{0,0,0,0,0,0,0,0,0},{0,3-2*ep ,0,0,0, ...

A[0,1]: {{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0 ...

B[0]: {{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0 ...

The arguments of A and B reveal singularities at {r3,−1, 1 − r3, 1, 0,∞} with Poincaré
ranks {0, 2, 0, 4, 1, 1}, respectively. The symbol r3 introduced by epsilon-prepare is a
root of the polynomial r23 − r3 + 1 and is given by r3 = (1 + i

√
3)/2 (see table 1). Hence,

we need a file enable.r3.fer to set a polynomial for Fermat to mod out with containing

&(P=r3^2-r3+1,1)

To understand the origin of r3 we consider for example the partial fraction decomposition
over the complex of [M(x, ε)]51:

[M(x, ε)]51 =
(ε− 1)2(1 + x) (1 + 4x+ x2 + ε (1− 10x+ x2))

4ε(2ε− 1)(x− 1)3 (x2 − x+ 1)

=
1

x− r3

{
5− 9ε3 + 23ε2 − 19ε

4(2ε2 − ε)

}
+

1

x− (1− r3)

{
5− 9ε3 + 23ε2 − 19ε

4(2ε2 − ε)

}
+

1

x− 1

{
−5 + 9ε3 − 23ε2 + 19ε

2(2ε2 − ε)

}
+

1

(x− 1)2

{
3− 4ε3 + 11ε2 − 10ε

2(2ε2 − ε)

}
+

1

(x− 1)3

{
3− 4ε3 + 11ε2 − 10ε

2ε2 − ε

}
.

The possible blocks to run epsilon with can be either read off from the matrix (4.1) or de-
termined by the function EpsilonBlocks of the Mathematica package EpsilonTools.m.
In this case, the possible blocks are

{1, 1}, {2, 3}, {4, 4}, {5, 9} .

Now we can run epsilon with the command

epsilon --timings --symbols r3 --load matrix.dat 1 1 \

--queue out.queue \

--fermat enable.r3.fer \

--fuchsify --normalize --factorep -at -1 \

--block 2 3 \

--fuchsify --normalize --factorep -at -1 --left -fuchsify \

--block 4 4 \

--fuchsify --normalize --factorep -at -1 --left -fuchsify \

--block 5 9 \

--fuchsify --normalize --factorep -at 1 --left -fuchsify \
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--block 1 9 \

--factorep -at -1 \

--write epsilon.dat --export transformation.m

The --load job in the first line loads the file matrix.dat with an active block {1, 1}; the
--block jobs are used to change the active block. In all blocks except for block {5, 9}
we factor out ε at µ = −1. For this block µ = −1 would lead to a singular system so we
choose µ = 1 instead. The final system is written into the file epsilon.dat and the cor-
responding transformation matrix into transformation.m. The whole reduction process
takes about three minutes on an Intel Core i5-3320M CPU with 2.60 GHz. The package
EpsilonTools.m offers the function EpsilonRead for reading the file epsilon.dat into
Mathematica. The result is in ε-form (2.4), with

M̂
(−1)
0 =



0 0 0 0 0 0 0 0 0

1

5
−18

36

5
0 0 0 0 0 0

1

3
−30 12 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

7790185

4743936

−406887355

3162624

13303239

263552

−3715319

6325248

−21

58

323

58
1

−121

58

263

116

222799291

75902976

−557897095

12650496

13303239

2108416

−85452337

12650496

−483

116

7429

116

23

2

−2783

116

6049

232

−19366519759

2201186304

71280791995

366864384

−2870982795

61144064

6728442709

366864384

38031

3364

−584953

3364

−1811

58

219131

3364

−476293

6728

90725693

37951488

2996225

89088

−27685119

1054208

−48299147

6325248

−273

58

4199

58
13

−1573

58

3419

116

−48778543

37951488

126440695

6325248

−3235923

1054208

18576595

6325248

105

58

−1615

58
−5

605

58

−1315

116


,

M̂
(0)
0 =



0 0 0 0 0 0 0 0 0

−2

5
26 −12 0 0 0 0 0 0

−7

9
50 −23 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−30321797

7115904

356550775

2371968

−119849

2059

19535387

4743936

11137

5568

−51841

1392

−1225

192

35135

2784

−189319

11136

−686135525

113854464

223518385

37951488

29123307

1054208

529852429

37951488

419699

44544

−1585715

11136

−37835

1536

1147213

22272

−4875557

89088

49678009745

3301779456

−229880569165

1100593152

1437349057

30572032

−30031402873

1100593152

−25717127

1291776

91504967

322944

2219903

44544

−65705785

645888

274163633

2583552

−323472451

56927232

−2193835945

18975744

50456429

527104

344565875

18975744

262093

22272

−1020493

5568

−24181

768

746867

11136

−3104155

44544

158320529

56927232

402093395

18975744

−14262031

527104

−137227105

18975744

−101759

22272

404543

5568

9527

768

−290113

11136

1313657

44544


,
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M̂
(1)
0 =



0 0 0 0 0 0 0 0 0

1

5
−10

24

5
0 0 0 0 0 0

4

9
−20 10 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

41108207

14231808

−636997435

9487872

21452971

790656

28883609

18975744

673

116

−1484

87

−13

4

1651

174

1785

232

733595729

227708928

22172065

4743936

−1318339

109056

−334258861

75902976

−1507

464

5221

87

167

16

−14597

696

24933

928

−41044567181

6603558912

2404770185

137574144

−2068713589

91716096

20579631337

2201186304

194887

13456

−331405

2523

−11707

464

952145

20184

−1183713

26912

391067287

113854464

50935825

1185984

−71070457

1581312

−281285603

37951488

−1053

232

7870

87

121

8

−11539

348

17115

464

−188522477

113854464

−28164515

4743936

18097199

1581312

43744885

37951488

−237

232

−1634

87

−23

8

1877

348

−7157

464


,

M̂
(r3)
0 =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−119849

889488

1797735

65888

−838943

49416

−2996225

1185984

−2425

696

1355

58

97

24

−1053

116

5839

1392

−3715319

56927232

55729785

4216832

−26007233

3162624

−92882975

75902976

−75175

44544

42005

3712

3007

1536

−32643

7424

181009

89088

−26486629

1650889728

397299435

122288128

−185406403

91716096

−662165725

2201186304

−535925

1291776

299455

107648

21437

44544

−232713

215296

1290419

2583552

−2037433

28463616

30561495

2108416

−14262031

1581312

−50935825

37951488

−41225

22272

23035

1856

1649

768

−17901

3712

99263

44544

2277131

28463616

−34156965

2108416

15939917

1581312

56928275

37951488

46075

22272

−25745

1856

−1843

768

20007

3712

−110941

44544


,

M̂
(1−r3)
0 =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−119849

889488

1797735

65888

−838943

49416

−2996225

1185984

−2425

696

1355

58

97

24

−1053

116

5839

1392

−3715319

56927232

55729785

4216832

−26007233

3162624

−92882975

75902976

−75175

44544

42005

3712

3007

1536

−32643

7424

181009

89088

−26486629

1650889728

397299435

122288128

−185406403

91716096

−662165725

2201186304

−535925

1291776

299455

107648

21437

44544

−232713

215296

1290419

2583552

−2037433

28463616

30561495

2108416

−14262031

1581312

−50935825

37951488

−41225

22272

23035

1856

1649

768

−17901

3712

99263

44544

2277131

28463616

−34156965

2108416

15939917

1581312

56928275

37951488

46075

22272

−25745

1856

−1843

768

20007

3712

−110941

44544


.

5 Summary

In this paper we presented epsilon. The tool epsilon is an efficient implementation of
an algorithm proposed by R.N. Lee to reduce a system of ordinary differential equations
with rational coefficients to a canonical form, where the right hand side is proportional
to ε.

In physically relevant situations, the small parameter ε usually is a regulator in dimen-
sional regularization (e.g. in d = 4 − 2ε dimensions). We showed its applicability in
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a three-loop example and demonstrated the possibility to reduce systems with complex
singular points.
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A Transformations

A.1 Balances

The main building blocks of Lee’s algorithm are balances. In this section we describe how
they act on a system in the form (2.2) which is also assumed to be in block-triangular
form (2.6).

The projector P is determined by its impact on the active block C. Hence, it has to be
of the form

P =

0 0 0
0 Q 0
0 0 0

 .

Naturally, this also modifies the blocks B and E. In this appendix we omit writing down
the ε-dependencies explicitly.

First, we consider a balance between two singularities x1, x2 <∞ (2.7a):

T = B(P, x1, x2) , T−1 = B(P, x2, x1) .

The transformation (2.5) can now be written in terms of the coefficient matrices.
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We find for the active block

C̃
(x1)
0 = C

(x1)
0 −

∑
n≥0

1

(x2 − x1)n
QC(x1)

n Q+
∑

xj∈S\{x1}

∑
n≥0

x1 − x2
(x1 − xj)n+1

QC(xj)
n Q

+ (x1 − x2)
∑
n≥0

xn1QCnQ+Q ,
(A.1a)

C̃
(x1)
k>0 = C

(x1)
k + (x1 − x2)QC(x1)

k−1Q−
∑
n≥0

1

(x2 − x1)n
QC

(x1)
n+kQ , (A.1b)

C̃
(x2)
0 = C

(x2)
0 −

∑
n≥0

1

(x1 − x2)n
QC(x2)

n Q+
∑

xj∈S\{x2}

∑
n≥0

x2 − x1
(x2 − xj)n+1

QC(xj)
n Q

+ (x2 − x1)
∑
n≥0

xn2QCnQ−Q ,
(A.1c)

C̃
(x2)
k>0 = C

(x2)
k + (x2 − x1)QC(x2)

k−1Q−
∑
n≥0

1

(x1 − x2)n
QC

(x2)
n+kQ , (A.1d)

C̃
(xj 6=x1,x2)
k = C

(xj)
k +

∑
n≥0

x2 − x1
(x1 − xj)n+1

QC
(xj)
n+kQ+

∑
n≥0

x1 − x2
(x2 − xj)n+1

QC
(xj)
n+kQ , (A.1e)

C̃k = Ck + (x1 − x2)
∑
n≥0

{
xn1QCk+n+1Q− xn2QCk+n+1Q

}
, (A.1f)
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and for the off-diagonal blocks

B̃
(x2)
0 = B

(x2)
0 +

∑
xj∈S\{x2}

∑
n≥0

x2 − x1
(x2 − xj)n+1

QB(xj)
n + (x2 − x1)

∑
n≥0

xn2QBn ,

B̃
(x2)
k>0 = B

(x2)
k + (x2 − x1)QB(x2)

k−1 ,

B̃
(xj 6=x2)
k = B

(xj)
k +

∑
n≥0

x1 − x2
(x2 − xj)n+1

QB
(xj)
n+k ,

B̃k = Bk + (x2 − x1)
∑
n≥0

xn2QBk+n+1 ,

Ẽ
(x1)
0 = E

(x1)
0 +

∑
xj∈S\{x1}

∑
n≥0

x1 − x2
(x1 − xj)n+1

E(xj)
n Q+ (x1 − x2)

∑
n≥0

xn1EnQ ,

Ẽ
(x1)
k>0 = E

(x1)
k + (x1 − x2)E(x1)

k−1Q ,

Ẽ
(xj 6=x1)
k = E

(xj)
k +

∑
n≥0

x2 − x1
(x1 − xj)n+1

E
(xj)
n+kQ

Ẽk = Ek + (x1 − x2)
∑
n≥0

xn1Ek+n+1Q .

All other blocks are unaffected.

Next, we consider the case x1 <∞, x2 =∞, i.e.

T = B(P, x1,∞) , T−1 = B(P,∞, x1) .

In that case, the balances are given by (2.7b) and (2.7c). Here the active block transforms
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as

C̃
(x1)
0 = C

(x1)
0 −QC(x1)

0 Q−QC(x1)
0 Q+QC

(x1)
1 Q

+
∑

xj∈S\{x1}

∞∑
n=0

1

(x1 − xj)n+1
QC(xj)

n Q+
∞∑
n=0

xn1QCnQ+Q ,

C̃
(x1)
k>0 = C

(x1)
k −QC(x1)

k Q−QC(x1)
k Q+QC

(x1)
k+1Q+QC

(x1)
k−1Q ,

C̃
(xj 6=x1)
k = C

(xj)
k −QC(xj)

k Q−QC(xj)
k Q+QC

(xj)
k+1Q+ (xj − x1)QC

(xj)
k Q

−
∞∑
n=0

1

(x1 − xj)n+1
QC

(xj)
n+kQ ,

C̃0 = C0 −QC0Q− (1 + x1)QC0Q+
∑
xj∈S

QC
(xj)
0 Q+

∞∑
n=0

xn1QCn+1Q ,

C̃k>0 = Ck −QCkQ− (1 + x1)QCkQ+QCk−1Q+
∞∑
n=0

xn1QCk+n+1Q ,

and the blocks B and E as

B̃
(xj)
k = B

(xj)
k −QB(xj)

k +QB
(xj)
k+1 + (xj − x1)QB

(xj)
k ,

B̃0 = B0 − (1 + x1)QB0 +
∑
xj∈S

QB
(xj)
0 ,

B̃k>0 = Bk − (1 + x1)QBk +QBk−1 ,

Ẽ
(x1)
0 = E

(x1)
0 − E(x1)

0 Q+
∑

xj∈S\{x1}

∑
n≥0

1

(x1 − xj)n+1
E(xj)
n Q+

∑
n≥0

xn1EnQ ,

Ẽ
(x1)
k>0 = E

(x1)
k − E(x1)

k Q+ E
(x1)
k−1Q ,

Ẽ
(xj 6=x1)
k = E

(xj)
k − E(xj)

k Q−
∑
n≥0

1

(x1 − xj)n+1
E

(xj)
n+kQ ,

Ẽk = Ek − EkQ+
∑
n≥0

xn1Ek+n+1Q .

Finally, we consider the case x1 =∞, x2 <∞, i.e.

T = B(P,∞, x2) , T−1 = B(P, x2,∞) .
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This is similar to the previous case. The active block transforms to

C̃
(x2)
0 = C

(x2)
0 −QC(x2)

0 Q−QC(x2)
0 Q+QC

(x2)
1 Q

+
∑

xj∈S\{x2}

∑
n≥0

1

(x2 − xj)n+1
QC(xj)

n Q+
∑
n≥0

xn2QCnQ−Q ,

C̃
(x2)
k>0 = C

(x2)
k −QC(x2)

k Q−QC(x2)
k Q+QC

(x2)
k−1Q+QC

(x2)
k+1Q ,

C̃
(xj 6=x2)
k = C

(xj)
k −QC(xj)

k Q−QC(xj)
k Q+QC

(xj)
k+1Q+ (xj − x2)QC

(xj)
k Q

−
∑
n≥0

1

(x2 − xj)n+1
QC

(xj)
n+kQ ,

C̃0 = C0 −QC0Q−QC0Q+
∑
n≥0

xn2QCn+1Q− x2QC0Q+
∑
xj∈S

QC
(xj)
0 Q ,

C̃k>0 = Ck −QCkQ−QCkQ+
∑
n≥0

xn2QCk+n+1Q+QCk−1Q− x2QCkQ ,

and the blocks B and E transform as

B̃
(x2)
0 = B

(x2)
0 −QB(x2)

0 +
∑

xj∈S\{x2}

∑
n≥0

1

(x2 − xj)n+1
QB(xj)

n +
∑
n≥0

xn2QBn ,

B̃
(x2)
k>0 = B

(x2)
k −QB(x2)

k +QB
(x2)
k−1 ,

B̃
(xj 6=x2)
k = B

(xj)
k −QB(xj)

k −
∑
n≥0

1

(x2 − xj)n+1
QB

(xj)
n+k ,

B̃k = Bk −QBk +
∑
n≥0

xn2QBk+n+1 ,

Ẽ
(xj)
k = E

(xj)
k − E(xj)

k Q+ E
(xj)
k+1Q+ (xj − x2)E

(xj)
k Q ,

Ẽ0 = E0 − (1 + x2)E0Q+
∑
xj∈S

E
(xj)
0 Q ,

Ẽk>0 = Ek − (1 + x2)EkQ+ Ek−1Q .

A.2 Fuchsification of off-diagonal blocks

In this appendix we consider the transformation of the off-diagonal block B to Fuch-
sian form. We assume that the diagonal blocks A and C are already in ε-form. The
transformation needed has the form

T = L(x1, k,G) , T−1 = L(x1, k,−G) , (A.2)
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where we used the definitions (2.8).

In addition to block B only block D is influenced by this transformation, i.e. the blocks
A and C are unaffected.

The transformation (2.5), with T defined as in (A.2) translates to rules for the coefficient
matrices. For x1 <∞ we find

B̃
(x1)
k = B

(x1)
k + C

(x1)
0 Ĝ− ĜA(x1)

0 + kĜ , (A.3a)

B̃
(x1)
n<k = B(x1)

n −
∑

xj∈S\{x1}

C
(xj)
0 Ĝ− ĜA(xj)

0

(xj − x1)k−n
, (A.3b)

B̃
(x1)
n>k = B(x1)

n , (A.3c)

B̃
(xj 6=x1)
0 = B

(xj)
0 +

C
(xj)
0 Ĝ− ĜA(xj)

0

(xj − x1)k
, (A.3d)

B̃
(xj 6=x1)
n>0 = B(xj)

n , (A.3e)

B̃n = Bn , (A.3f)

and

D̃
(x1)
n<k = D(x1)

n −
∑

xj∈S\{x1}

∑
i≥0

(−1)i
(
k+i−n−1

i

)
(xj − x1)k+i−n

E
(xj)
i Ĝ

+
∑
i≥0

xi1

(
i+ k − n− 1

i

)
Ei+k−n−1Ĝ ,

D̃
(x1)
n≥k = D(x1)

n + E
(x1)
n−kĜ ,

D̃
(xj 6=1)
n = D(xj)

n + (−1)k
∑
i≥0

(
k+i−1
i

)
(x1 − xj)k+i

E
(xj)
n+iĜ ,

D̃n = Dn +
∑
m≥0

(−1)m
∑
i≥0

xm+i
1

(
n+m

n

)(
i+ n+m+ k

i

)
Ei+n+m+kĜ .
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The case x1 =∞ leads to

B̃k−1 = Bk−1 +
∑
xj∈S

[
C

(xj)
0 G− ĜA(xj)

]
− kG ,

B̃n<k−1 = Bn +
∑
xj∈S

xk−n−1j

[
C

(xj)
0 Ĝ− ĜA(xj)

0

]
,

B̃n>k−1 = Bn ,

B̃
(xj)
0 = B

(xj)
0 + xkj

[
C

(xj)
0 Ĝ− ĜA(xj)

0

]
,

B̃
(xj)
n>0 = B(xj)

n ,

and

D̃(xj)
n = D(xj)

n +
k∑
i=0

xij

(
k

k − i

)
E

(xj)
n+k−iĜ ,

D̃n<k = Dn +
∑
xj∈S

k−n−1∑
m=0

m∑
i=0

(−1)k−n−m−1xk−n−i−1j

(
k −m− 1

n

)(
k

k + i−m

)
E

(xj)
i Ĝ ,

D̃n≥k = Dn + En−kĜ .

A.3 ε-Factorization

The transformation required in the ε-factorization is x-independent. Hence, every coef-
ficient matrix in (2.2) transforms the same and the transformation rule (2.5) becomes a
similarity transformation

M̃(x, ε) = T−1(ε)M(x, ε)T(ε) .

The matrices T(ε) and T−1(ε) have the form

T(ε) =

1 0 0

0 T̂(ε) 0
0 0 1

 , T−1(ε) =

1 0 0

0 T̂−1(ε) 0
0 0 1

 ,

with T̂(ε) and T̂−1(ε) corresponding to block C. Using the block-triangular structure
(2.6) yieldsÃ(x, ε) 0 0

B̃(x, ε) C̃(x, ε) 0

D̃(x, ε) Ẽ(x, ε) F̃(x, ε)

 =

 A(x, ε) 0 0
T−1(ε)B(x, ε) T−1(ε)C(x, ε)T(ε) 0
D(x, ε) E(x, ε)T(ε) F(x, ε)

 .

Thus, besides block C, block B and block E are influenced as well.
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