
Computer Physics Communications 220 (2017) 503–506

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

OpenMP GNU and Intel Fortran programs for solving the
time-dependent Gross–Pitaevskii equation
Luis E. Young-S. a, Paulsamy Muruganandam b, Sadhan K. Adhikari c, Vladimir Lončar d,
Dušan Vudragović d, Antun Balaž d,*
a Departamento de Ciencias Básicas, Universidad Santo Tomás, 150001 Tunja, Boyacá, Colombia
b Department of Physics, Bharathidasan University, Palkalaiperur Campus, Tiruchirappalli—620024, Tamil Nadu, India
c Instituto de Física Teórica, UNESP - Universidade Estadual Paulista, 01.140-70 São Paulo, São Paulo, Brazil
d Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Serbia

a r t i c l e i n f o

Article history:
Received 11 July 2017
Accepted 14 July 2017
Available online 10 August 2017

Keywords:
Bose–Einstein condensate
Gross–Pitaevskii equation
Split-step Crank–Nicolson scheme
Intel and GNU Fortran programs
Open Multi-Processing
OpenMP
Partial differential equation

a b s t r a c t

We present Open Multi-Processing (OpenMP) version of Fortran 90 programs for solving the Gross–
Pitaevskii (GP) equation for a Bose–Einstein condensate in one, two, and three spatial dimensions,
optimized for use with GNU and Intel compilers. We use the split-step Crank–Nicolson algorithm
for imaginary- and real-time propagation, which enables efficient calculation of stationary and non-
stationary solutions, respectively. The present OpenMP programs are designed for computers withmulti-
core processors and optimized for compiling with both commercially-licensed Intel Fortran and popular
free open-source GNU Fortran compiler. The programs are easy to use and are elaborated with helpful
comments for the users. All input parameters are listed at the beginning of each program. Different output
files provide physical quantities such as energy, chemical potential, root-mean-square sizes, densities, etc.
We also present speedup test results for new versions of the programs.
New version program summary
Program title: BEC-GP-OMP-FOR software package, consisting of: (i) imag1d-th, (ii) imag2d-th,
(iii) imag3d-th, (iv) imagaxi-th, (v) imagcir-th, (vi) imagsph-th, (vii) real1d-th, (viii) real2d-th, (ix) real3d-
th, (x) realaxi-th, (xi) realcir-th, (xii) realsph-th.
Program files doi: http://dx.doi.org/10.17632/y8zk3jgn84.2
Licensing provisions: Apache License 2.0
Programming language: OpenMP GNU and Intel Fortran 90.
Computer: Any multi-core personal computer or workstation with the appropriate OpenMP-capable
Fortran compiler installed.
Number of processors used: All available CPU cores on the executing computer.
Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1888; ibid. 204 (2016) 209.
Does the new version supersede the previous version?: Not completely. It does supersede previous Fortran
programs from both references above, but not OpenMP C programs from Comput. Phys. Commun. 204
(2016) 209.
Nature of problem: The present Open Multi-Processing (OpenMP) Fortran programs, optimized for use
with commercially-licensed Intel Fortran and free open-source GNU Fortran compilers, solve the time-
dependent nonlinear partial differential (GP) equation for a trapped Bose–Einstein condensate in one
(1d), two (2d), and three (3d) spatial dimensions for six different trap symmetries: axially and radially
symmetric traps in 3d, circularly symmetric traps in 2d, fully isotropic (spherically symmetric) and fully
anisotropic traps in 2d and 3d, as well as 1d traps, where no spatial symmetry is considered.
Solution method: We employ the split-step Crank–Nicolson algorithm to discretize the time-dependent
GP equation in space and time. The discretized equation is then solved by imaginary- or real-time
propagation, employing adequately small space and time steps, to yield the solution of stationary and
non-stationary problems, respectively.

* Corresponding author.

E-mail addresses: luis.young@usantoto.edu.co (L.E. Young-S), anand@cnld.bdu.ac.in (P. Muruganandam), adhikari@ift.unesp.br (S.K. Adhikari), vladimir.loncar@ipb.ac.rs
(V. Lončar), dusan.vudragovic@ipb.ac.rs (D. Vudragović), antun.balaz@ipb.ac.rs (A. Balaž).

http://dx.doi.org/10.1016/j.cpc.2017.07.013
0010-4655/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2017.07.013
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2017.07.013&domain=pdf
http://dx.doi.org/10.17632/y8zk3jgn84.2
mailto:luis.young@usantoto.edu.co
mailto:anand@cnld.bdu.ac.in
mailto:adhikari@ift.unesp.br
mailto:vladimir.loncar@ipb.ac.rs
mailto:dusan.vudragovic@ipb.ac.rs
mailto:antun.balaz@ipb.ac.rs
http://dx.doi.org/10.1016/j.cpc.2017.07.013

504 L.E. Young-S et al. / Computer Physics Communications 220 (2017) 503–506

Reasons for the new version: Previously published Fortran programs [1,2] have now become popular tools
[3] for solving the GP equation. These programs have been translated to the C programming language [4]
and later extended to the more complex scenario of dipolar atoms [5]. Now virtually all computers have
multi-core processors and some have motherboards with more than one physical computer processing
unit (CPU), which may increase the number of available CPU cores on a single computer to several tens.
The C programs have been adopted to be very fast on such multi-core modern computers using general-
purpose graphic processing units (GPGPU) with Nvidia CUDA and computer clusters using Message
Passing Interface (MPI) [6]. Nevertheless, previously developed Fortran programs are also commonly used
for scientific computation andmost of them use a single CPU core at a time inmodernmulti-core laptops,
desktops, and workstations. Unless the Fortran programs aremade aware and capable of making efficient
use of the available CPU cores, the solution of even a realistic dynamical 1d problem, not to mention the
more complicated 2d and 3d problems, could be time consuming using the Fortran programs. Previously,
we published auto-parallel Fortran programs [2] suitable for Intel (but not GNU) compiler for solving the
GP equation. Hence, a need for the full OpenMP version of the Fortran programs to reduce the execution
time cannot be overemphasized. To address this issue, we provide here such OpenMP Fortran programs,
optimized for both Intel and GNU Fortran compilers and capable of using all available CPU cores, which
can significantly reduce the execution time.
Summary of revisions: Previous Fortran programs [1] for solving the time-dependent GP equation in 1d, 2d,
and 3d with different trap symmetries have been parallelized using the OpenMP interface to reduce the
execution time on multi-core processors. There are six different trap symmetries considered, resulting in
six programs for imaginary-time propagation and six for real-time propagation, totaling to 12 programs
included in BEC-GP-OMP-FOR software package.

All input data (number of atoms, scattering length, harmonic oscillator trap length, trap anisotropy,
etc.) are conveniently placed at the beginning of each program, as before [2]. Present programs introduce
a new input parameter, which is designated by Number_of_Threads and defines the number of CPU
cores of the processor to be used in the calculation. If one sets the value 0 for this parameter, all available
CPU cores will be used. For the most efficient calculation it is advisable to leave one CPU core unused for
the background system’s jobs. For example, on amachinewith 20 CPU cores such that we used for testing,
it is advisable to use up to 19 CPU cores. However, the total number of used CPU cores can be divided into
more than one job. For instance, one can run three simulations simultaneously using 10, 4, and 5 CPU
cores, respectively, thus totaling to 19 used CPU cores on a 20-core computer.

The Fortran source programs are located in the directory src, and can be compiled by the make
command using the makefile in the root directory BEC-GP-OMP-FOR of the software package. The
examples of produced output files can be found in the directory output, although some large density
files are omitted, to save space. The programs calculate the values of actually used dimensionless
nonlinearities from thephysical input parameters,where the input parameters correspond to the identical
nonlinearity values as in the previously published programs [1], so that the output files of the old
and new programs can be directly compared. The output files are conveniently named such that their
contents can be easily identified, following the naming convention introduced in Ref. [2]. For example,
a file named <code>-out.txt, where <code> is a name of the individual program, represents
the general output file containing input data, time and space steps, nonlinearity, energy and chemical
potential, and was named fort.7 in the old Fortran version of programs [1]. A file named <code>-
den.txt is the output file with the condensate density, which had the names fort.3 and fort.4
in the old Fortran version [1] for imaginary- and real-time propagation programs, respectively. Other
possible density outputs, such as the initial density, are commented out in the programs to have a
simpler set of output files, but users can uncomment and re-enable them, if needed. In addition, there
are output files for reduced (integrated) 1d and 2d densities for different programs. In the real-time
programs there is also an output file reporting the dynamics of evolution of root-mean-square sizes
after a perturbation is introduced. The supplied real-time programs solve the stationary GP equation,
and then calculate the dynamics. As the imaginary-time programs are more accurate than the real-time
programs for the solution of a stationary problem, one can first solve the stationary problem using the
imaginary-time programs, adapt the real-time programs to read the pre-calculated wave function and
then study the dynamics. In that case the parameter NSTP in the real-time programs should be set to
zero and the space mesh and nonlinearity parameters should be identical in both programs. The reader
is advised to consult our previous publication where a complete description of the output files is given
[2]. A readme.txt file, included in the root directory, explains the procedure to compile and run the
programs.

We tested our programs on a workstation with two 10-core Intel Xeon E5-2650 v3 CPUs. The
parameters used for testing are given in sample input files, provided in the corresponding directory
together with the programs. In Table 1 we present wall-clock execution times for runs on 1, 6, and 19
CPU cores for programs compiled using Intel and GNU Fortran compilers. The corresponding columns
‘‘Intel speedup’’ and ‘‘GNU speedup’’ give the ratio of wall-clock execution times of runs on 1 and 19 CPU
cores, and denote the actual measured speedup for 19 CPU cores. In all cases and for all numbers of CPU
cores, although the GNU Fortran compiler gives excellent results, the Intel Fortran compiler turns out to
be slightly faster. Note that during these tests we always ran only a single simulation on aworkstation at a
time, to avoid any possible interference issues. Therefore, the obtained wall-clock times are more reliable
than the ones that could be measured with two or more jobs running simultaneously. We also studied
the speedup of the programs as a function of the number of CPU cores used. The performance of the
Intel and GNU Fortran compilers is illustrated in Fig. 1, where we plot the speedup and actual wall-clock
times as functions of the number of CPU cores for 2d and 3d programs. We see that the speedup increases
monotonically with the number of CPU cores in all cases and has large values (between 10 and 14 for 3d

L.E. Young-S et al. / Computer Physics Communications 220 (2017) 503–506 505

programs) for the maximal number of cores. This fully justifies the development of OpenMP programs,
which enable much faster and more efficient solving of the GP equation. However, a slow saturation in
the speedup with the further increase in the number of CPU cores is observed in all cases, as expected.

Fig. 1. (a) Speedup for 2d and 3d programs compiled with the Intel (I) and GNU (G) Fortran compilers as a function of the number of CPU cores, measured on a workstation
with two Intel Xeon E5-2650 v3 CPUs. (b) Wall-clock execution time (in seconds) of 2d and 3d programs compiled with the Intel (I) and GNU (G) Fortran compilers as a
function of the number of CPU cores.

Fig. 2. Speedup of real2d-th program, compiled with the Intel Fortran 90 compiler and executed on 19 CPU cores on a workstation with two Intel Xeon E5-2650 v3 CPUs, as
a function of the number of spatial discretization points NX=NY.

Table 1
Wall-clock execution times (in seconds) for runs with 1, 6, and 19 CPU cores of different pro-
grams using the Intel Fortran (ifort) and GNU Fortran (gfortran) compilers on a workstation
with two Intel Xeon E5-2650 v3 CPUs, with a total of 20 CPU cores, and the obtained speedups
for 19 CPU cores.

of cores 1 1 6 6 19 19 19 19

Fortran Intel GNU Intel GNU Intel GNU Intel GNU
time time time time time time speedup speedup

imag1d 52 60 22 22 20 22 2.6 2.7
imagcir 22 30 14 15 14 15 1.6 2.0
imagsph 24 30 12 15 12 14 2.4 2.1
real1d 205 345 76 108 62 86 3.3 4.0
realcir 145 220 55 73 48 59 3.0 3.7
realsph 155 250 57 76 46 61 3.4 2.7

imag2d 255 415 52 84 27 40 9.4 10.4
imagaxi 260 435 62 105 30 55 8.7 7.9
real2d 325 525 74 107 32 50 10.1 10.5
realaxi 160 265 35 49 16 24 10.0 11.0

imag3d 2080 2630 370 550 200 250 10.4 10.5
real3d 19500 26000 3650 5600 1410 2250 13.8 11.6

506 L.E. Young-S et al. / Computer Physics Communications 220 (2017) 503–506

The speedup tends to increase for programs in higher dimensions, as they becomemore complex and
have to process more data. This is why the speedups of the supplied 2d and 3d programs are larger than
those of 1d programs. Also, for a single program the speedup increaseswith the size of the spatial grid, i.e.,
with the number of spatial discretization points, since this increases the amount of calculations performed
by the program. To demonstrate this, we tested the supplied real2d-th program and varied the number
of spatial discretization points NX=NY from 20 to 1000. The measured speedup obtained when running
this program on 19 CPU cores as a function of the number of discretization points is shown in Fig. 2. The
speedup first increases rapidly with the number of discretization points and eventually saturates.
Additional comments: Example inputs provided with the programs take less than 30 minutes to run on a
workstation with two Intel Xeon E5-2650 v3 processors (2 QPI links, 10 CPU cores, 25MB cache, 2.3 GHz).

© 2017 Elsevier B.V. All rights reserved.

Acknowledgments

V.L., D.V., and A.B. acknowledge support by the Ministry of Ed-
ucation, Science, and Technological Development of the Republic
of Serbia under projects ON171017 and III43007. P.M. acknowl-
edges support by the Science and Engineering Research Board,
Department of Science and Technology, Government of India under
project no. EMR/2014/000644. S.K.A. acknowledges support by the
CNPq of Brazil under project 303280/2014-0, and by the FAPESP
of Brazil under project 2012/00451-0. Numerical tests were par-
tially carried out on the PARADOX supercomputing facility at
the Scientific Computing Laboratory of the Institute of Physics
Belgrade.

References

[1] P. Muruganandam, S.K. Adhikari, Comput. Phys. Comm. 180 (2009) 1888.
[2] L.E. Young-S., D. Vudragović, P. Muruganandam, S.K. Adhikari, A. Balaž, Comput.

Phys. Comm. 204 (2016) 209.
[3] H. Fabrelli, et al., J. Opt. 19 (2017) 075501;

S.K. Adhikari, Laser Phys. Lett. 14 (2017) 065402;
A.N. Malmi-Kakkada, O.T. Valls, C. Dasgupta, Phys. Rev. B 95 (2017) 134512;
P.S. Vinayagam, R. Radha, S. Bhuvaneswari, R. Ravisankar, P. Muruganandam,
Commun. Nonlinear Sci. Numer. Simul. 50 (2017) 68;
O. Voronych, et al., Comput. Phys. Comm. 215 (2017) 246;
V. Veljić, A. Balaž, A. Pelster, Phys. Rev. A 95 (2017) 053635;
A.M. Martin, et al., J. Phys.: Condens. Matter. 29 (2017) 103004;
R.R. Sakhel, A.R. Sakhel, J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 105301;
E. Chiquillo, J. Phys. A 50 (2017) 105001;
G.A. Sekh, Phys. Lett. A 381 (2017) 852;
W. Wen, B. Chen, X. Zhang, J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 035301;
S.K. Adhikari, Phys. Rev. A 95 (2017) 023606;
S. Gautam, S.K. Adhikari, Phys. Rev. A 95 (2017) 013608;
S.K. Adhikari, Laser Phys. Lett. 14 (2017) 025501;
D. Mihalache, Rom. Rep. Phys. 69 (2017) 403;
X.-F. Zhang, et al., Ann. Phys. 375 (2016) 368;
G. Vergez, et al., Comput. Phys. Comm. 209 (2016) 144;
S. Bhuvaneswari, et al., J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 245301;

C.-Y. Lai, C.-C. Chien, Sci. Rep. 6 (2016) 37256;
C.-Y. Lai, C.-C. Chien, Phys. Rev. Appl. 5 (2016) 034001;
H. Gargoubi, et al., Phys. Rev. E 94 (2016) 043310;
S.K. Adhikari, Phys. Rev. E 94 (2016) 032217;
I. Vasić, A. Balaž, Phys. Rev. A 94 (2016) 033627;
R.R. Sakhel, A.R. Sakhel, J. Low Temp. Phys. 184 (2016) 1092;
J.B. Sudharsan, et al., J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 165303;
A. Li, et al., Phys. Rev. A 94 (2016) 023626;
R.K. Kumar, et al., J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 155301;
K. Nakamura, et al., J. Phys. A 49 (2016) 315102;
S.K. Adhikari, Laser Phys. Lett. 13 (2016) 085501;
A. Paredes, H. Michinel, Phys. Dark Universe 12 (2016) 50;
W. Bao, Q. Tang, Y. Zhang, Commun. Comput. Phys. 19 (2016) 1141;
A.R. Sakhel, Physica B 493 (2016) 72;
J. Akram, B. Girodias, A. Pelster, J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 075302;
J. Akram, A. Pelster, Phys. Rev. A 93 (2016) 033610;
T. Khellil, A. Balaž, A. Pelster, New J. Phys. 18 (2016) 063003;
D. Hocker, J. Yan, H. Rabitz, Phys. Rev. A 93 (2016) 053612;
J. Akram, A. Pelster, Phys. Rev. A 93 (2016) 023606;
S. Subramaniyan, Eur. Phys. J. D 70 (2016) 109;
Z.Marojevic, E. Goeklue, C. Laemmerzahl, Comput. Phys. Comm. 202 (2016) 216;
R.R. Sakhel, et al., Eur. Phys. J. D 70 (2016) 66;
K. Manikandan, et al., Phys. Rev. E 93 (2016) 032212;
S.K. Adhikari, Laser Phys. Lett. 13 (2016) 035502;
S. Gautam, S.K. Adhikari, Phys. Rev. A 93 (2016) 013630;
T. Mithun, K. Porsezian, B. Dey, Phys. Rev. A 93 (2016) 013620;
D.-S. Wang, Y. Xue, Z. Zhang, Romanian J. Phys. 61 (2016) 827;
S. Sabari, K. Porsezian, P. Muruganandam, Romanian Rep. Phys. 68 (2016) 990;
J. Akram, A. Pelster, Laser Phys. 26 (2016) 065501;
R.R. Sakhel, A.R. Sakhel, H.B. Ghassib, Physica B 478 (2015) 68;
J.B. Sudharsan, et al., Phys. Rev. A 92 (2015) 053601.

[4] D. Vudragović, I. Vidanović, A. Balaž, P. Muruganandam, S.K. Adhikari, Comput.
Phys. Comm. 183 (2012) 2021.

[5] R. Kishor Kumar, L.E. Young-S., A. Vudragović, P. Balaž, D. Muruganandam, S.K.
Adhikari, Comput. Phys. Comm. 195 (2015) 117.

[6] V. Lončar, A. Balaž, A. Bogojević, S. Škrbić, P. Muruganandam, S.K. Adhikari,
Comput. Phys. Comm. 200 (2016) 406;
V. Lončar, L.E. Young-S., S. Skrbić, P. Muruganandam, S.K. Adhikari, A. Balaž,
Comput. Phys. Comm. 209 (2016) 190;
B. Satarić, V. Slavnić, A. Belić, A. Balaž, P. Muruganandam, S.K. Adhikari, Comput.
Phys. Comm. 200 (2016) 411.

http://refhub.elsevier.com/S0010-4655(17)30232-1/sb1
http://refhub.elsevier.com/S0010-4655(17)30232-1/sb2
http://refhub.elsevier.com/S0010-4655(17)30232-1/sb2
http://refhub.elsevier.com/S0010-4655(17)30232-1/sb2
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3b
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3c
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3d
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3d
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3d
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3e
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3f
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3g
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3h
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3i
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3j
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3k
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3l
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3m
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3n
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3o
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3p
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3q
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3r
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3s
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3t
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3u
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3v
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3w
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3x
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3y
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3z
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a1
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a2
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a3
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a4
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a5
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a6
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a7
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a8
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a9
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a10
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a11
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a12
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a13
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a14
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a15
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a16
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a17
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a18
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a19
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a20
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a21
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a22
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg3a23
http://refhub.elsevier.com/S0010-4655(17)30232-1/sb4
http://refhub.elsevier.com/S0010-4655(17)30232-1/sb4
http://refhub.elsevier.com/S0010-4655(17)30232-1/sb4
http://refhub.elsevier.com/S0010-4655(17)30232-1/sb5
http://refhub.elsevier.com/S0010-4655(17)30232-1/sb5
http://refhub.elsevier.com/S0010-4655(17)30232-1/sb5
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg6a
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg6a
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg6a
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg6b
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg6b
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg6b
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg6c
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg6c
http://refhub.elsevier.com/S0010-4655(17)30232-1/rg6c

	OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross–Pitaevskii equation
	Acknowledgments
	References

