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Abstract

We use an efficient projection scheme for the Fock operator to analyze the size

dependence of silicon quantum dots (QDs) electronic properties. We compare the

behavior of hybrid, screened hybrid and local density functionals as a function of the

dot size up to ∼800 silicon atoms and volume of up to ∼20nm3. This allows comparing

the calculations of hybrid and screened hybrid functionals to experimental results over

a wide range of QD sizes. We demonstrate the size dependent behavior of the band

gap, density of states, ionization potential and HOMO level shift after ionization.

Those results are compared to experiment and to other theoretical approaches, such

as tight-binding, empirical pseudopotentials, TDDFT and GW.
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Introduction

Quantum dots (QDs) form a class of nanometer scale materials that present an efficient

way to tune the electronic and optical properties of materials by controlling their size.1–3

In particular, the optical band gap and electronic density of states are affected by quantum

confinement.1–3 Silicon based QDs are especially interesting as silicon is a highly abundant

element with a wide use in electronics, photovoltaics, and many other fields. They were

therefore the subject of both experimental4–9 and theoretical8–15 research.

Even a small QD can have hundreds of atoms and hence present a challenge for full

quantum calculations. Semi-empirical quantum methods such as tight-binding16 (TB) and

empirical pseudopotentials14 (PP) were successfully applied to silicon QDs. The advantage

of such methods is that they can easily treat much larger dots (up to million atoms), in

addition, their parameters can be tuned to achieve high agreement with experiment.

Desnity Functional Theory (DFT)17 is a first principles quantum approach that offers

a reasonable balance between computational cost and level of approximation. DFT with

purely local functionals such as the Local Density Approximation (LDA)17 was used to

calculate large silicon quantum dots up to 10,000 atoms,10 however, the LDA functional

approximation is known to underestimate the band gap. A generally successful approach

for the optical gap calculation is to use time-dependent DFT (TDDFT)18 but this method

is more computationally expensive and calculations for silicon QDs were performed up to

∼150 atoms.19,20

The use of hybrid,17 screened hybrid21–23 and range separated functionals24–29 is becoming

one the methods of choice in DFT calculations to achieve reliable results for the electronic

structure of molecules and solids. Screened hybrids such as the HSE21–23 functional were

shown to give a reliable prediction of electronic structure for both metallic and insulating

materials, thus, outperforming both purely local methods such as LDA and hybrid functional

methods. Recently, the method of optimally-tuned range separated functionals has shown

great success in predicting the correct gap for a large variety of molecules and molecular
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crystals.27–29

A computational barrier for such hybrid and screened hybrid calculations is the need to

calculate the non-local Fock exchange operator for systems with many electrons. We have

recently shown how the use of projection operators in the real-space method can dramatically

reduce the computational time for Hartree-Fock and hybrid functionals.30 In the current

work we demonstrate the implementation of screened hybrid functionals together with a

faster, FFT based Poisson solver,31 with an optional GPU implementation that can give a

significant additional acceleration. These implementations, enable us to analyze hydrogen

passivated silicon QDs with 30-800 silicon atoms (1200 atoms overall), and to examine the

performance of purely local, hybrid, and screened hybrid functionals for those systems.

This manuscript is organized as follows - we first review the real-space implementation

for the Fock projection scheme and the screening implementation for the HSE functional.

We then demonstrate the effect of quantum dot size on the Density of States (DOS) and

band gap with the HSE06,32 PBE033 and the LDA functionals. We compare our band

gap results to photoluminescence (PL) experiments and other theoretical calculations. An

additional behavior that we analyze with HSE06 and LDA is the ionization potential (IP)

and the HOMO (Highest Occupied Molecular Orbital) level shift after ionization. We show

that this shift does not depend much on the level of theory that is used and explain this by

electrostatic arguments.

Projection scheme and screening implementation

We have used the projection scheme for the Fock operator as described in Boffi et al.30

within the PARSEC pseudopotential code34–36 and repeat it very shortly for completeness.

The Fock operator can be described by:

K̂ψσ(r) =

N
∑

n=1

(
∫

dr1
ϕ∗

n,σ(r1)ψσ(r1)

|r− r1|

)

ϕn,σ(r) ≡

N
∑

n=1

Vn,ψ,σ(r)ϕnσ(r). (1)
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The use of the operator in Eq. 1 for an arbitrary orbital is too expensive and so we have

used the projection approximation:30,37

˜̂
K ≡ K̂ · P̂M + P̂M · K̂− P̂M · K̂ · P̂M (2)

where P̂M ≡
∑Nσ+M

n=1 |ϕn,σ〉〈ϕn,σ| , is the projection operaror, projecting over occupied and

first M un-occupied states. The details of this scheme are described in Boffi et al.,30 similar

approaches have been reported by Duchemin and Gygi37 and others38,39 in the plane waves

basis. The calculation of all Poisson integrals in Eq. 1 is calculated with an FFT based solver

for isolated boundary conditions with a numerically optimized kernel as described in Gabay

et al.31,40 The combination of projection with the numerically optimized kernel allows us to

study large systems which were prohibitively expensive in the traditional implementation.

Screening implementation - HSE

The Heyd-Scuseria-Ernzerhof (HSE) functional21 includes a fraction of screened Fock ex-

change and requires to add screening to the operator in Eq 1. Formally one can write the

energy for the HSE functional as:21

EHSE
XC (ω) = a · EHF,SR

X (ω)− a · EPBE,SR
X (ω) + EPBE

XC (3)

where SR stands for short range, a is 0.25 and ω = 0.2Å−1 for HSE06. The short range

part of the PBE exchange is implemented as in Heyd et al.21 and we write the screened

version of Eq. 1 as:

K̂SR(ω)ψσ(r) = a
N
∑

n=1

(
∫

dr1
ϕ∗

n,σ(r1)ψσ(r1)erfc (ω|r− r1|)

|r− r1|

)

ϕn,σ(r)

≡ a

N
∑

n=1

V SR
n,ψ,σ(r)ϕnσ(r) (4)
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Since erfc (ω|r − r1|) is a finite continuous function, we calculate the intergrals in Eq.

4 with a FFT solver and a numerically optimized kernel31 for the 1/r term, multiplied by

the erfc factor. In principle, this approach can be extended to any range separated hybrid

functional – for instance, while the screening function for the BNL25 functional is different,

it is also non-singular at the origin and this allowed us to use the same approach for its

implementation. Thus, this scheme enables us to study large systems using any hybrid,

screened hybrid and range separated functional with a moderate computational effort.

Results and Discussion

We have calculated the electronic properties of cube shaped silicon quantum dots as described

by Wilson et al.11 who have analyzed the size and shape dependence of the band gap of

quntum dots (QD) within LDA and tight binding. We have used in our calculations the

QDs: Si29H36, Si75H76, Si139H116, Si239H173, Si387H252, Si577H340, and Si809H428. All structures

were taken from the CSIRO Nanostructure Data Bank41 and were calculated without further

geometrical relaxation. We have used a real space grid spacing of h = 0.7a.u. and LDA based

norm-conserving pseudopotentials. All caclulations were performed on a single node with 2

Intel(R) Xeon(R) E5-2650 v2 processors with an overall number of 16 cores. Figure 1 shows

the calculated band gap with LDA, PBE0 and HSE06 as a function of effective diameter.

We estimate the effective cube edge size and effective diameter in the following way11 - there

are ∼50 silicon atoms in a nm3 cube, we therefore estimate a ∼ (Nsi/50)
(1/3) where a is the

effective cube edge size and Nsi is the number of silicon atoms in the QD. To compare our

results to spherical dots, we calculate the effective cube size for the sphere in the same way,

leading to the relation a = d× (π/6)1/3, where a is the effective cube edge size and d is the

effective sphere diameter. This way we compare dots of about the same volume, Wilson et

al.11 have shown that the calculated gaps of spherical dots are very close to that of cubic dots

with the same volume. The calculated HSE06 band gap of the largest QD that we studied,
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Si809H428, is 2.18eV. This value of the gap is larger than the value of the band gap for bulk

silicon calculated with HSE06 – 1.2eV.42,43 Within LDA, the calculated gap for Si809H428 is

1.23eV compared to 0.55eV of the bulk. The PBE0 band gap for the largest QD is 2.63 eV

compared to the bulk value of 1.71eV43-1.85eV.44
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Figure 1: Band gap comparison, PARSEC results are shown with blue ”x” and solid line for
LDA, blue asterisks and solid line for HSE06 and blue crosses and solid line for PBE0. The
experimental results of Wolkin et al.5 are shown with black filled circles and dashed line,
the experimental results of Park et al.6 are shown in magenta filled diamonds and dashed
line, the results of Furukawa et al.4 are shown with black empty squares and dotted lines
and with red filled triangles and dash dot line. The result of Sychugov et al.9 is shown with
a green filled pentagon.

Due to the large number of theoretical and experimental results we show in Figure 1 only

our calculations and the experimental results, the comparison to other theoretical results
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is shown in Figure 2. The calculated HSE06 results for the gap are 0.1-0.6eV higher than

all of the experimental optical gap measurements. The difference of the calculated HSE06

results from Wolkin et al.5 experimental results is 0.4-0.6eV with the larger values appearing

for the smaller dots. The experimental results of Park et al.6,7 generally agree with those

of Wolkin et al. besides a point at a diameter of 2.35nm which is higher and only 0.1eV

below the HSE06 line. The results of Furukawa et al.4 are ∼0.2eV higher than those of

Wolkin et al. and hence closer to the HSE06 line showing a difference of about 0.2eV and

in some cases 0.1eV. Recently, Sychugov et al.9 have performed both measurement and

empirical pseudopotential theory calculations for a spherical silicon QD with a diameter of

3nm, the experimental result for the optical gap was 1.86eV while the theoretical PP result

was 1.88eV. A 3nm diameter gives an interpolated value of ∼2.23eV on our HSE06 graph,

which is 0.37eV higher.

Figure 2 compares different theoretical calculations - Reboredo et al.14 PP calculations

almost agree with the experimental results of Wolkin et al.5 To estimate the optical gap,

Öğüt et al.15 have used LDA and the formula, Eopt
g = Eqp

g −Ecoulomb = Etot(N−1)+Etot(N+

1)− 2Etot(N)−Ecoulomb , where Etot is the LDA total energy and Ecoulomb is the estimated

electron-hole interaction energy, to calculate the optical gap, their results are almost the same

as our HSE06 results. Another theoretical result that agrees well with our HSE06 result is the

tight-binding calculations of Wilson et al.11 for cubic dots. As mentioned by several authors,

one should correct for the electron-hole or exciton binding energy to get the optical gap

from the fundamental gap.14,15,45 The GW approximation can yield accurate estimation of

the fundamental gap, the Bethe-Salpeter equation (BSE) and TDDFT calculations can yield

good estimations for the optical gap. Vasiliev et al.19 and Garoufalis et al.20 have performed

TDDFT calculations of QDs with up to 147 silicon atoms - the TDDLDA results of Vasiliev

et al. are close to the HSE06 line, same is true for the TDDFT/B3LYP results of Garoufalis

et al., their TDDFT/BP86 are closer to experiment. Tiago and Chelickowsky have compared

GW+BSE with TDLDA for silicon clusters up to Si147H100 - they got a value of 3.3eV for
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GW+BSE and 2.5eV with TDLDA for Si147H100 - the GW+BSE value is slightly above the

HSE06 value while the the TDLDA result is almost at the experimental values of Wolkin et

al.5 Recently, Govoni et al.46 have calculated the fundamental gap with G0W0 for QDs up to

293 silicons, Neuhauser et al.47 have used stochastic G0W0 to calculate the fundamental gap

for QDs up to 705 silicons. Interestingly, their value for the fundamental gap of Si705H300 is

exactly on top of the HSE06 line and also agrees with Öğüt et al.45 estimation for the optical

gap. HSE06 bulk value for silicon band gap (1.2eV) is very close to the experimental gap

(1.12eV), in the bulk silicon optical and fundamental gap are almost the same, but in nano

size QDs the optical gap is smaller because of the exciton binding energy. HSE06 is known

to yield values that are close to the optical gap in some materials, and we see here that it

is above the PL experimental results for the optical gap. While there is no formal proof we

can expect it to be between the fundamental and optical gap. It is therefore possible that

the G0W0 results for the largest dot slightly underestimates the fundamental gap.

There are two additional factors that are important for this comparison - the definition

of diameter is not always consistent and this can cause significant shifts in some of the values

of the smaller dots (less than 100 silicon). Specifically, our definition, of effective diameter,

coincides only with some of the works we compared to. We show some analysis of this in the

supporting information. Furthermore, we did not relax the geometry with HSE06, as LDA

often leads to shorter distances, geometrical relaxation of the dots with HSE06 might yield

small geometrical expansion with some reduction of the band gap, we estimate this effect as

too small to explain the difference from experiment.
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Figure 2: Band gap comparison with other theoretical calculations: Our PARSEC calcula-
tions are shown in solid blue lines, LDA with ”x”, HSE06 with asterisks and PBE0 with
crosses. The TB results of Wilson et al.48 are shown by magenta pentagons and dashed
line, the PP results of Reboredo et al.14 are shown by red squares and dashed line, Öğüt
et al.15 optical gap is shown by black filled squares and dotted line, the TDLDA results
of Vasiliev et al.19 are shown by red empty diamonds, Garoufalis et al.20 TDDFT/B3LYP
results are shown by black circles, Garoufalis et al.20 TDDFT/BP86 results are shown with
black triangles. Tiago et al.49 GW results are shown by red hexagons, Govoni et al.46 G0W0

results are shown by magenta triangles pointing down, Neuhauser et al.47 Stochastic G0W0

is shown by magenta triangles pointing up and a dashed line. Öğüt et al.15 quasi-particle
estimation is shown by a dotted red line. Wolkin et al.5 experimental results are shown with
small filled black circles and a dashed line.

We can further compare the HSE06, PBE0 and LDA results by examination of the band

gap difference between the methods (Figure 3a).
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Figure 3: Comparison of HSE06 and LDA band gaps

As is evident from Figure 3a, the band gap difference between HSE06 and LDA is de-

creasing with size (band gap difference of ∼ 0.6eV for the bulk). For the difference between

the PBE0 and HSE06 gap, we see a smaller change with size but the same trend. In this

case, the difference in the gaps is between 0.6 to 0.45 eV, compared to ∼0.5eV in the bulk.

Comparison of the HOMO and LUMO (Lowest Unoccupied Molecule Orbital) is shown in

Figure3b. It is evident that the HSE06 LUMO is very close to the PBE0 LUMO for all sizes

while the HSE06 HOMO is closer to the LDA HOMO but is almost in the middle between

the PBE0 HOMO and the LDA HOMO.

Another important indicator for the approach to bulk values is the behavior of the Density

of States (DOS). This is shown in Figure 4, where the convolution of eigenstates histogram

with a Gaussian of 0.2eV variance has been used. As is evident from the figure, the large

peak of virtual (empty) states is absent - this is because most calculations were performed

with a projection of only 4 virtual states. The use of only 4 virtual states is sufficient for

finding the LUMO but is clearly insufficient to represent the full manifold of virtual states

correctly. We show in the SI the effect of using more virtual states projection for the case

of Si239H116. It is interesting to note that as the size of the QDs increases, their occupied
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states DOS starts to show the three peaks typical for bulk silicon.
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Figure 4: Density of States (DOS) of occupied states for the different QD, the structure of
Si809H428 is shown for illustration. The graphs are not normalized and so larger peaks are
for larger dots.

Figure 5 shows the comparison of DOS of the largest QD with that of bulk Si. We

calculated the DOS of valence states of bulk Si within HSE06 using the PARATEC code. A

k-point mesh of 12 × 12 × 12 and energy cutoff of 30Ry was used for the calculation. As is

evident, the DOS of the QD is already very close to the bulk. The bulk graph was shifted

in energy to fit best to the QD peaks. The bulk DOS is slightly wider than the QD DOS.

This can be understood by the quantum confinement effect being still non-negligible in the

largest QD studied (for instance the band gap of the QD is still not the same as the bulk).
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Figure 5: HSE06 valence band density of states for Si809H428 (solid line) and bulk silicon
(dashed line)

Another property that is interesting to calculate and understand is the ionization poten-

tial (IP). The IP can be evaluated by subtracting the total energies of the neutral system

(N electrons) from its cation (N-1 electrons):

IP = Etot(N − 1)−Etot(N) (5)

We have calculated the cation total energies by removing one electron. We used spin

polarized calculations for the charged system without an additional geometrical relaxation.

We have calculated the IP with both LDA and HSE06, and compared our LDA results to

the results of Chelikowsky et al.10 who have calculated the IPs of spherical silicon QDs with
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LDA.
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Figure 6: Ionization Potential for LDA (red x symbols) and HSE06(black asterisks). We
compare our LDA results to the LDA spherical dots calculations of Chelikowsky et al.10

(blue circles).

Figure 6 shows very good agreement, for both the HOMO and ionization potential (IP),

between our LDA calculations to the calculations of Chelikowsky et al.10 The HSE06 results

for both the IP and the HOMO are slightly higher than the LDA results, but the difference

is relatively small compared to the band gap difference.
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Figure 7a shows that the HOMO and IP differences between HSE06 and LDA are quite

similar. Both show decay with size and the difference is less than 0.3eV for systems larger

than Si577H340. Figure 7b shows the HOMO level shift after ionization in the QDs as a

function of size. It is very clear that HOMO level shift is almost identical for LDA and

HSE06, we have repeated some of those calculations with PBE0 and got an almost similar

shift. Furthermore, it shows a very clear decay with the dot size. This behavior can be

explained by a simple electrostatic model - the HOMO is a delocalized orbital of the size of

the dot, the potential of the additional charge in the ion can be modeled as a constant times

1/r and so we can expect that the integral of the potential times the orbital would yield

a shift that behaves as 1/R where R is proportional to the size of the dot. The fact that

different levels of theory give the same value might suggest that the effect of exchange of the

missing electron is negligible compared to the electrostatic effect. Following Koopman’s50

or Janak’s51 theorems, we can expect that the HOMO level shift is the difference between

the first and second ionizations. We have calculated the second ionization for dots from size

29 till 239 silicon atoms and indeed got almost the same shift - those results are shown in
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the SI. We could also calculate EHOMO(N − 1)−EHOMO(N − 2), this shift also behaves as

EHOMO(N)−EHOMO(N − 1) for the larger dots. This suggests that the difference between

the third IP to the second IP is similar to the difference between the second IP to the

first. For large dots this makes sense, as we can assume that the top of valence is close to

degenerate and so as we ionize the main property that changes is the total charge - from

neutral to +1 and then to +2, hence creating an electrostatic shift of the potential.

Summary

We have calculated the electronic properties of nanometer size silicon QD with hybrid (PBE0)

and screened hybrid functionals (HSE06) up to systems of 1200 atoms. We demonstrated

the trend of band gap decreasing with the size of the QD and also the difference between

pure DFT calculations such as LDA and screened hybrids such as HSE06. We showed

that the difference between the band gaps of the two methods is also size dependent and

decreases with the size of the QD. The values we got from HSE06 are in general above the

reported optical band gap experimental measurements ( differences of 0.1 to 0.6 eV ). Some

TDDFT calculations give values around and below the HSE06 results. GW calculations give

a fundamental gap higher than the HSE06 value for most dot sizes. It is obvious that by

changing the screening parameter or the fraction of Fock exchange we can get band gaps that

agree well with experiment. However, this would be an expensive semi-empirical approach

and in that sense the use of PP or TB models is more reasonable. As optimally tuned range

separated functionals were shown to give accurate fundamental gaps with DFT27 and optical

gaps with TDDFT29 it would be highly interesting to evaluate them with our scheme for the

larger dots.

The IP with HSE06 is higher than the LDA IP, however, the difference in IP is signif-

icantly smaller than that of the band gap and also decreases with size. We showed that

the HOMO level shift and the difference between first and second ionization potentials are
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independent from the level of theory (HSE06, LDA and PBE0) that is used - this can be

explained by electrostatic arguments and the assumption that the HOMO in the larger dots

is already close to degenerate.

The projection scheme and faster Poisson solvers make the calculation of the larger dots

feasible even on a single node with 16 cores. As the parallelization of the Fock operator

is easy, further acceleration can be achieved by using many compute nodes. We have also

demonstrated the use of GPU to further accelerate the calculations. This opens up the

possibility of combining the two approaches and use multiple GPUs to allow the study

of nanostructures containing thousands of atoms using hybrid, screened hybrid and range

separated functionals.
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Appendix - Timing and GPU acceleration

The computational bottlenecks appear at two stages: First, in the outer SCF loop, The

Fock operator should be explicitly calculated for all occupied and few virtual states. This

requires the calculation of Poisson integrals for all pairs of states (O(N2
e )) . We initially used

conjugate gradient (CG) to solve the equivalent Poisson equation, with this Fock preparation

stage took more than 90% of the computational time.30 To improve the speed we have

switched to an FFT based Poisson integral solver31 which is ∼10 times faster. This reduced

the part of the Fock calculation to around 50% of the time. The next time consuming stage

is the projection itself. While the Projection has linear scaling with the number of electrons,

Ne, the eigensolver diagonalization process will require more Hamiltonian calculations as the
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system grows and so scales also as N2
e . This can be visualized in figure 8:
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Figure 8: Timing of Fock preparation (blue asterisks and a solid fit line) and of a single
diagonalization (red circles and a dashed fit line) as a function of system size.

We are therefore interested to accelerate with GPU the following stages:

• FFT based Poisson integrals calculations

• Projection operation

If the GPU memory is large enough to hold both |ϕn,σ〉 and K̂|ϕn,σ〉 the projection

operation can be done entirely in the GPU with a minimal data transfer cost. We have

used this approach with a TESLA K40C GPU card with 2880 cuda cores, 12GB DDR4

on-board memory and ∼800MHz clock rate, and managed to get ∼4 times acceleration in

the diagonalization time relative to 16 cores CPU for the Si577H340 cluster.
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Algorithm 1 Fock SCF cycle pseudocode with GPU

1: perform NLDA cycles, ĤLDA|ϕn,σ〉 = ǫn,σ|ϕn,σ〉

2: Calculate K̂[{ϕ}]|ϕn,σ〉 , FFT performed on GPU
3: while (dfock > tol) do
4: |ψn,σ〉 ← |ϕn,σ〉

5: K̂[{ψ}]|ψn,σ〉 ← K̂[{ϕ}]|ϕn,σ〉

6: Load |ψn,σ〉 and K̂[{ψ}]|ψn,σ〉 to GPU
7: while (SRE > SRETOL) do
8: ρσ =

∑

|ϕn,σ|
2

9: Linear mixing of VH(ρ, r) with VH(ρold, r)

10: Solve
(

−∇2

2
+ V̂ps + VH −

˜̂
K[{ψ}]

)

ϕn,σ = ǫn,σϕn,σ

11:
˜̂
K[{ψ}] is calculated with projection on GPU

12: Calculate Sum Residual Error (SRE) with respect to previous cycle

13: Calculate K̂[{ϕ}]|ϕn,σ〉, FFT performed on GPU

14: Calculate dfock =
∑

|〈ϕn,σ|K̂[{ϕ}]|ϕn,σ〉+ 〈ψn,σ|K̂[{ψ}]|ψn,σ〉−2〈ϕn,σ|
˜̂
K[{ψ}]|ϕn,σ〉|

15: Final result, energy and forces

The GPU implementation of both the Fock preparation stage and the projection is easily

integrated with the CPU code as described in algorithm 1.

It is possible to estimate the performance of the GPU projection by the following - suppose

we Ng grid points and Ne orbitals. The CPU time can be given by TCPU = a1 · Ng · Ne,

the GPU time has a transfer time Tdata = a2 ·Ng which is proportional to Ng and includes

the data transfer and also the kinetic term that is calculated on the CPU, we can therefore

write:

TGPU = a2 ·Ng + a3 ·Ng ·Ne ⇒ TGPU/TCPU =
1

a1
(a2/Ne + a3) (6)

Since the orbitals are loaded in the outer loop, during the projection we pay only the

data transfer of the input guess orbital. The result is that the data transfer time becomes

negligible when the number of eivenvalue is large. We have done the calculation with GPU

for clusters up to Si577H340.
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Figure 9: GPU vs. CPU (16 cores) diagonalization with projection timing

Supporting Information Available

The following files are available free of charge. Additional information is found in the Sup-

porting Information - (1) Calculation of Si239H116 Density of States with additional virtual

states. (2) second ionization data (3) possible effects of diameter definition.
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