
A GPU accelerated and error-controlled solver for the unbounded

Poisson equation in three dimensions

Lukas Exl ∗1,2

1Fak. Mathematik, Univ. Wien, Oskar-Morgenstern-Platz 1, 1090, Vienna.
2Inst. of Solid State Physics, TU Wien, Karlsplatz 13, 1040, Vienna.

November 14, 2018

Abstract. An efficient solver for the three dimensional free-space Poisson equation is pre-
sented. The underlying numerical method is based on finite Fourier series approximation. While
the error of all involved approximations can be fully controlled, the overall computation error
is driven by the convergence of the finite Fourier series of the density. For smooth and fast-
decaying densities the proposed method will be spectral accurate. The method scales with
O(N logN) operations, where N is the total number of discretization points in the Cartesian
grid. The majority of the computational costs come from fast Fourier transforms (FFT), which
makes it ideal for GPU computation. Several numerical computations on CPU and GPU vali-
date the method and show efficiency and convergence behavior. Tests are performed using the
Vienna Scientific Cluster 3 (VSC3). A free MATLAB implementation for CPU and GPU is
provided to the interested community.

Keywords: convolution via fast Fourier transform (FFT), GPU computing, free space Coulomb/
dipole-dipole potential, separable Gaussian-sum (GS) approximation

1 Introduction

The purpose of this paper is to provide the interested reader with a MATLAB implementation
of an efficient and mathematically analyzed method [1] for solving the free-space/unbounded
Poisson equation. More precisely, the method presented in this paper solves

−∆u(x) = ρ(x), x ∈ R3, lim
|x|→∞

|u(x)| = 0, (1)

via the well-known representation of the solution to (1) as the convolution of the density ρ with
the free-space Green’s function U(x) = 1

4π
1
|x|

u(x) = (U ∗ ρ)(x) =

∫
R3

U(x− y)ρ(y)dy, x ∈ R3. (2)

The problem (1) is fundamental in many fields of physics, e.g. quantum chemistry [2–7], par-
ticle physics [8, 9] or astrophysics [10]. Therefore, the provided implementation might serve as
improvement of existing simulation codes that use the high-level computing environment MAT-
LAB. However, the provided code could also be understood as an easily readable open source

∗lukas.exl@univie.ac.at

1

ar
X

iv
:1

61
2.

01
79

9v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 6
 D

ec
 2

01
6

prototype, ready for translation to other different programming languages.

In the following Sec. 2 the method is described mathematically, followed by a section about
computational aspects and approximation errors (see Sec. 3). Sec. 4 describes the usage of the
implementation by means of a test example. Validation of the implementation and tests for
computational efficiency (see Sec. 5) show practical applicability. Test runs are performed on
the Vienna Scientific Cluster 3 (VSC3) both on CPU nodes and Tesla GPU devices.

2 Method description

The method of this paper is in the class of Ewald type methods [3, 11, 12]. Those approaches
split the singular convolution kernel U into a smooth long-range part Us and a singular short-
range correction Uc. The smooth part of the convolution can then be treated with help of the
convolution theorem, i.e., U ∗ ρ = F−1(F(Us) · F(ρ)). This is usually done on an equispaced
Cartesian grid with the help of the quasi linearly scaling fast Fourier transform. Here, the
smoothness usually leads to fast converging Fourier series, which make the discrete approxima-
tion accurate even on coarser grids. However, the correction Uc still contains a singularity but
is also localized, hence, can be treated with a direct summation approach. Wile a direct eval-
uation of the convolution (1) would scale with O(N2) on a Cartesian grid with a total number
of N grid points, the original Ewald method [11] and parameter tuned variations of it scale
with O(N3/2) operations. The method described here scales with O(N logN) operations. This
is achieved by FFT for both parts, the smooth convolution and the correction. The smooth
kernel consists of a product of one-dimensional exponential functions (Gaussian-sum), which
allows the usage of highly accurate one-dimensional adaptive quadrature for computation of
the interaction kernel in Fourier space. Taylor expansion of the density in the near-zone allows
to treat the correction by analytical integration, where involved derivatives are computed by
FFT as well. The method is efficient and mathematically proven to yield full control over the
maximum computation error [1].
We now give a brief description of the method, where we also emphasize novel aspects relevant
to the implementation. A detailed mathematical description of the method including error
analysis was recently published by the author [1]. We adapt it here for the case of general
rectangular computational domains.
The computational box coincides with the domain of target points x, where the potential u
is computed. The smooth density ρ is assumed to vanish (up to double precision) outside the
computational box, so it is expected to be fast decaying. Our method makes use of a finite
Fourier series approximation of the density, which is assumed to be fast converging due to the
smoothness and compact support of ρ. The analysis in [1] assumes the computational domain
to be the unit square box B1 := [−1, 1]3. To generalize the method’s framework for the user’s
convenience, assume the density ρ to be compactly supported in the general rectangular box
B := [a1, b1]× [a2, b2]× [a3, b3]. We will first derive a ’standardized form’ of the problem, which
allows us to treat the key-approximations of the method independently of the concrete choice
of the computational box. Let c be the center of B such that B̃ := B− c is a rectangular box
centered at the origin. As a consequence of the compact support of the density, the convolution
integral (2) is actually over the domain B. Hence, we can write

u(x) =

∫
B̃
U(x̃− ỹ)ρ(ỹ + c)dỹ, x = x̃ + c ∈ B. (3)

2

Now we define λ := maxq=1,2,3{ bq−aq2 } and B1,λ := 1
λB̃ ⊆ B1. We get

u(x) = λ2
∫
B1,λ

U(x′ − y′)ρ(λy′ + c)dy′, x = λx′ + c ∈ B. (4)

Changing variables and extending the domain of integration to 2 ·B1,λ ⊇ B1,λ − x′, x′ ∈ B1,λ

leads to

u(x) = λ2
∫
2·B1,λ

U(y)ρλ;c(x′ − y)dy, x = λx′ + c ∈ B, (5)

where ρλ;c(x) := ρ(λx+c) with support in B1,λ. The key idea of the method is to approximate
the singular kernel U(x) = 1

4π
1
|x| with a Gaussian-sum in a region contained in the integration

domain 2 ·B1,λ but excluding a δ-ball around the origin (where U is singular). The latter step

is compensated by a near zone correction. More precisely, for δ ∈ (0,minq=1,2,3{ bq−aq2λ }) and
x = λx′ + c ∈ B we get

u(x) ≈ λ2
(∫

2·B1,λ

UGS(y)ρλ;c(x′ − y)dy +

∫
Bδ

(U − UGS)(y)ρλ;c(x′ − y)dy
)

=: λ2
(
I1(x) + Iδ(x)

)
,

(6)

where UGS(y) =
∑S

j=0wje
−τ2j |y|2 =

∑S
j=0wj

∏3
q=1 e

−τ2j y2q ≈ U(y), |y| ∈ [δ, 2] is a Gaussian-
sum (GS) approximation realized by sinc-quadrature [1, 13, 14]. The integrand in I1(x) is
smooth and its convolution kernel is separable (product of 1d functions). Hence, it can be
treated efficiently by an Fourier based approach. More precisely, it is computed by the inverse
Fourier transform of the product of the Fourier transform of the density with the G-tensor

Gk =

S∑
j=0

wjG
j
k with Gjk = Glk1k2k3 =

3∏
q=1

∫ 2

0
2lq e

−(τj lq)2y2q cos(
π

2
kqyq) dyq, (7)

where B1,λ = [−l1, l1] × [−l2, l2] × [−l3, l3]. The G-tensor can be computed accurately by one-
dimensional adaptive Gauss-Kronrod quadrature in a setup phase. The two Fourier transforms
in the (run-time) computation of I1 are efficiently implemented via the FFT with zero-padding,
which increases the effort by a factor of eight.
The correction integral Iδ is calculated by inserting the third order Taylor polynomial of the
shifted density ρλ;c;x′(y) := ρλ;c(x′−y) around 0, followed by analytical integration in spherical
coordinates. The contributions of odd derivatives in the Taylor expansion and the off-diagonal
elements of the Hessian cancel out. The remaining derivatives are computed from the finite
Fourier series of the density, which makes it a scalar multiplication. This step is realized by
using forward and backward FFT.

3 Computational aspects and approximation errors

For the concrete computation the computational box is discretized equidistantly with N :=
n1n2n3 Cartesian grid points, i.e., the q-th principal direction is discretized equidistantly with
nq points. The solver’s setup phase consists mainly of the precomputation of the G-tensor. The
two Fourier transforms (one forward, one backward) in the computation of I1 in (6) are of size
8N and scale with O(8N log 8N) operations utilizing the FFT. The evaluation of the near zone
correction makes use of two FFTs (one forward, one backward) of size N and therefore scales
with O(N logN) operations. Other operations (multiplications and additions) contribute with

3

linear scaling O(N).
Besides the error coming from the finite Fourier series approximation of the density, the (maximum-
) error of the convolution method is (i) in the computation of I1 due to the Gaussian-sum
approximation in [δ, 2] and (ii) in the computation of the correction Iδ due to the Taylor ex-
pansion of the density. For fixed δ the error (i) is controlled by a parameter ε > 0 in the order
of around machine precision, while the error (ii) amounts to δ6. The overall maximum-error
of the involved approximations is therefore in the order of max{ε, δ6}. In practice, δ will be
around 0.005− 0.001, hence, yielding an overall maximum-error of the involved approximations
of around ε. Thus, the overall computation error can be expected to be determined by the
convergence of the finite Fourier series of the density (spectral accuracy). It is also known from
the error analysis in [1] that the approximations of the method without the correction Iδ yield
a maximum-error in the order of max{δ2, ε} ∼ 10−6. If the error coming from the finite Fourier
series lies above this threshold, the correct Iδ will lead to no improvement. For coarse grids the
error from the Fourier series can be expected to exceed the threshold, such that δ does not have
to be chosen too small. This reflects in the computation time of the setup phase, since a larger
choice of δ leads to a smaller number S of terms in the precomputation of the G-tensor. The
heuristic choice of δ := min

bq−aq
50nq

∈ (0,minq=1,2,3{ bq−aq2λ }) for λ ≤ 25 minq nq depends on the

discretization size according to the just mentioned considerations. However, we take δ ≥ 10−3

as a minimum threshold, since the Iδ-correction yields accuracy in the order of δ6.

4 Usage of the solver

Usage of the solver is simple, see Listing 1. The user defines the computational box B and its
discretization by uniformly discretized edges. Next the GPU flag is set and the setup of the
solver is accomplished. In Listing 1 a Gaussian test density with compact support in B is chosen
which is sampled on the discretized computational box. The actual computation is performed
by the solver’s solve method. Afterwards the solver could be reused without renewed setup,
e.g. in large simulations where the potential has to be computed several times on the same
geometry. In Listing 1 the error computation is demonstrated as well, which is only possible
for the analytically given test density.

Listing 1: Usage of the GSPoisson3d solver.

%==

% Setup geometry

%==

% Define the computational box

x_min = -2.0;

y_min = -2.0;

z_min = -2.0;

x_max = +2.0;

y_max = +2.0;

z_max = +2.0;

% Number of discretization points for each principal direction

Jx = 2^6;

Jy = 2^6;

Jz = 2^6;

% Uniformly discretized axes

x = linspace(x_min , x_max , Jx);

4

y = linspace(y_min , y_max , Jy);

z = linspace(z_min , z_max , Jz);

%==

% Setup solver

%==

% GPU flag

use_gpu = false; % true;

% setup solver

solver = GSPoisson3d(x, y, z, use_gpu);

%==

% Density

%==

% example density

[f, u_ref] = problems.gaussian(x, y, z, 0.2);

if use_gpu == true

f = gpuArray(f);

u_ref = gpuArray(u_ref);

end

%==

% Actual computation

%==

tic;

u = solver.solve(f);

time = toc;

% Error

E = max(abs(u(:) - u_ref (:))) / max(abs(u_ref (:)));

if use_gpu == true

E = gather(E);

end

fprintf(’Maximum error: %.4e\n’, E)

fprintf(’Time: %.3f (s)\n’,time)

5 Numerical validation

We test our solver for different choices of the density and give maximum relative errors E
according to

E :=
‖u− u~h‖l∞
‖u‖l∞

=
maxx∈Th |u(x)− u~h(x)|

maxx∈Th |u(x)|
, (8)

where Th is the rectangular computational domain discretized uniformly in each direction with
mesh sizes ~h = (hx, hy, hz)

T . Errors and computation times are compared for the CPU and the
GPU case. In the following we denote our solver with GSPoisson3d solver. The computations
were submitted jobs on the Vienna Scientific Cluster 3 (VSC3) which consists of nodes with
Intel Xeon E5-2650v2 2.6GHz processors and Tesla K20m GPU devices. To accurately give the
timings we measure the average times of 100 computations.

5

5.1 Gaussian source

First we test with the Gaussian density

ρ(x) =
1

(2π)3/2σ3
e−|x−c|

2/(2σ2), (9)

where c ∈ R3 is the center of the computational box. The exact solution is known to be

u∗(x) =
1

4π|x− c|
Erf
(|x− c|√

2σ

)
. (10)

We vary the shape parameter σ in our tests and compare errors and computation times on CPU
and GPU, see Tab. 1 for the computational domain B = [−2, 2]3.

Table 1: Errors and timings for Gaussian density (9) in [−2, 2]3. Errors E, times tcpu and tgpu
on CPU and GPU respectively.

σ N E tcpu tgpu
0.20 163 1.659E-03 6.80E-03 1.20E-02
0.20 323 4.154E-09 1.91E-02 6.27E-03
0.20 643 6.197E-16 1.17E-01 1.17E-02
0.20 1283 1.052E-15 7.95E-01 5.29E-02

0.15 163 2.986E-02 4.37E-03 5.44E-03
0.15 323 2.937E-06 1.80E-02 6.26E-03
0.15 643 9.386E-16 1.17E-01 1.20E-02
0.15 1283 1.187E-15 8.66E-01 5.26E-02

0.10 163 3.802E-01 4.34E-03 6.39E-03
0.10 323 1.129E-03 1.91E-02 6.26E-03
0.10 643 2.624E-09 1.18E-01 1.10E-02
0.10 1283 1.593E-15 8.22E-01 5.26E-02

Fig. 1 shows the convergence of the method for example (9) with σ = 0.05 in B = [−2, 2]3 .

This examples show that the GSPoisson3d solver converges up to exponentially fast.
Fig. 2 compares computation times for CPU and GPU for the computations associated with
those of Fig. 1. Computation times show the N logN scaling. The GPU acceleration yields a
speed up of up to 10 in the case of larger N .

Finally, Tab. 2 shows results for the rectangular computational domain B = [−3, 2] ×
[−2, 3.5]× [−1, 5] and σ = 0.2.

5.2 Superposition of Gaussian sources

We test with the Gaussian density

ρ(x) =
1

2

(1

(2π)3/2σ31
e−|x−(c+d)|2/(2σ2

1) +
1

(2π)3/2σ32
e−|x−(c−d)|

2/(2σ2
2)
)
, (11)

6

16 32 64 128 256
n

10-15

10-10

10-5

100

re
l.

er
ro

r

GS solver

C e-n/4

Figure 1: Errors for the density in (9) in B = [−2, 2]3 with σ = 0.05.

Figure 2: Computation times for CPU and GPU on the Vienna Scientific Cluster 3 (VSC3) for
the density in (9) in B = [−2, 2]3 with σ = 0.05.

7

Table 2: Errors and timings for Gaussian density (9) in [−3, 2]× [−2, 3.5]× [−1, 5] and σ = 0.2.
Errors E, times tcpu and tgpu on CPU and GPU respectively.

N E tcpu tgpu
163 4.417E-02 6.65E-03 1.02e-02
323 1.857E-05 1.89E-02 7.58e-03
643 3.126E-12 1.29E-01 1.21e-02
1283 1.643E-12 8.18E-01 5.28e-02

where c,d ∈ R3 is the center of the computational box and a shift, respectively. The exact
solution is

u∗(x) =
1

2

(1

4π|x− (c + d)|
Erf
(|x− (c + d)|√

2σ1

)
+

1

4π|x− (c− d)|
Erf
(|x− (c− d)|√

2σ2

))
. (12)

We compare errors and computation times on CPU and GPU and give the results in Tab. 3.

Table 3: Errors and timings for Gaussian density (11) in [−2, 2]3 with d = (0.1,−0.05, 0.05)T

and σ1 = 0.2 and σ2 = 0.1. Errors E, times tcpu and tgpu on CPU and GPU respectively.

N E tcpu tgpu
163 5.663E-02 1.14E-02 2.12e-02
323 1.533E-03 2.26E-02 6.65e-03
643 5.920E-09 1.30E-01 1.17e-02
1283 1.246E-15 8.72E-01 5.26e-02

5.3 Bump function

Next we consider the following bump function as density (d,R > 0)

ρR,c(x) =

{
2dR2 3R4−2R2|x−c|2−|x−c|4−dR2|x−c|2

(R2−|x−c|2)4 e−dR
2 (R+|x−c|)/(R−|x−c|), |x− c| < R

0, |x− c| ≥ R,
(13)

where the exact solution is given as

u∗(x) =

{
e

−d
1−|x−c|2/R2 |x− c| < R

0, |x− c| ≥ R.
(14)

Tab. 4 shows the results in the rectangular domain [−3, 1] × [−2, 3] × [−2, 4] with d = 10
and R = 2.

5.4 Anisotropic Gaussian

We test for the anisotropic density (c = (cx, cy, cz)
T , σx, σy, σz > 0)

ρ(x) = −(
4(x− cx)2

σ4x
+

4(y − cy)2

σ4y
+

4(z − cz)2

σ4z
− 2

σ2x
− 2

σ2y
− 2

σ2z
) e−(x−cx)

2/σ2
x−(y−cy)2/σ2

y−(z−cz)2/σ2
z ,

(15)

8

Table 4: Errors and timings for the density in (13) in [−3, 1]× [−2, 3]× [−2, 4] with d = 10 and
R = 2. Errors E, times tcpu and tgpu on CPU and GPU respectively.

N E tcpu tgpu
163 2.070E-03 6.64E-03 1.05E-02
323 3.928E-06 2.26E-02 7.76E-03
643 9.264E-10 1.19E-01 1.18E-02
1283 4.973E-13 7.95E-01 5.26E-02

which is produced by Eqn. (1) and the prescribed exact solution

u∗(x) = e−(x−cx)
2/σ2

x−(y−cy)2/σ2
y−(z−cz)2/σ2

z . (16)

Tab. 5 shows the results for σ = (0.30, 0.20, 0.28)T on B = [−2, 2]3.

Table 5: Errors and timings for the density in (15) in [−2, 2]3 with σ = (0.30, 0.20, 0.28)T .
Errors E, times tcpu and tgpu on CPU and GPU respectively.

N E tcpu tgpu
163 4.208E-01 6.51E-03 1.73E-02
323 1.627E-04 2.07E-02 8.54E-03
643 1.466E-13 1.24E-01 1.17E-02
1283 1.349E-15 8.01E-01 5.29E-02

Table 6: Errors and timings for the density in (15) in B = [−2, 2] × [−4, 4] × [−6, 6] with
σ = (0.10, 0.20, 0.3)T . Errors E, times tcpu and tgpu on CPU and GPU respectively.

N E tcpu tgpu
163 1.011e+02 6.51E-03 1.73E-02
323 9.529e-01 2.07E-02 7.54E-03
643 1.544e-04 1.24E-01 1.16E-02
1283 7.839e-09 8.01E-01 5.29E-02
1623 8.105e-09 1.22E+00 1.08E-01

The next experiment takes σ = (0.10, 0.20, 0.30)T and a rectangular domain B = [−2, 2]×
[−4, 4] × [−6, 6], which is adjusted to the σ−values. Tab. 6 shows the results for different
mesh sizes. Convergence stagnates here at an error level of around 1e-9 most likely due to
significant loss of digits in the computation of the G-tensor. However, large aspect ratios
are known to be difficult cases. In fact, the next example shows that for flat domains B =
[−2, 2]×[−2L, 2L]2 for L = 2, 4, 8, 16 and adjusted σ = (0.20, 0.20L, 0.20L)T the error stagnates
and convergence gets worse for increasing L, compare with Fig. 3. Tests on prolongated domains
B = [−2, 2]2 × [−2L, 2L] show qualitatively comparable results. However, already relatively
coarse discretizations yield still acceptable error levels if the rectangular domain is not too flat
or prolongated.

9

Figure 3: Errors for the density in (15) in B = [−2, 2] × [−2L, 2L]2 for L = 2, 4, 8, 16 with
σ = (0.20, 0.20L, 0.20L)T .

5.5 Oscillating density

We now test for the oscillating density (σ, ω > 0)

ρ(x) = e−|x−c|
2/σ2

(6ω sin(ω|x− c|2)− 4ω2|x− c|2 cos(ω|x− c|2)) (17)

− (
4|x− c|2

σ4
− 6

σ2
) e−|x−c|

2/σ2
cos(ω |x− c|2)− 8ω|x− c|2

σ2
e−|x−c|

2/σ2
sin(ω |x− c|2)

(18)

which is produced by Eqn. 1 and the prescribed exact solution

u∗(x) = e−|x−c|
2/σ2

cos(ω |x− c|2). (19)

Tab. 7 shows the results for σ = 0.30 and ω = 20 on B = [−2, 2]3.

Table 7: Errors and timings for the density in (17) in [−2, 2]3 with σ = 0.30 and ω = 20. Errors
E, times tcpu and tgpu on CPU and GPU respectively.

N E tcpu tgpu
163 6.179E+00 6.76E-03 7.93E-03
323 7.921E-03 1.85E-02 7.53E-03
643 3.631E-08 1.30E-01 1.17E-02
1283 2.127E-15 8.24E-01 5.26E-02

As expected, the GSPoisson3d solver converges spectrally accurate for the oscillating density.

6 Conclusions

A solver for the solution of the free-space Poisson problem in three dimensions was presented and
implemented in MATLAB for CPU and GPU usage. The method is spectral accurate and quasi

10

linearly scaling. The computational domain can be a general rectangular box, where numerical
experiments indicate acceptable error levels for moderately flat or prolongated domains and
anisotropic densities. The main computational tasks of the algorithm come from (zero-padded)
FFTs. However, these operations are shown to be ideal for GPU acceleration, leading to a
speedup factor compared to CPU of about 10 for the Tesla GPU on the Vienna Scientific
Cluster 3 (VSC3). The proposed approach and provided MATLAB implementation 1 is shown
to be practically useful in terms of accuracy and efficiency. However, the code could also be
understood as an easily readable prototype for translation to different programming languages.

Acknowledgments

Financial support by the Austrian Science Fund (FWF) via the SFB ViCoM (grant F41) is ac-
knowledged. The computations were achieved by using the Vienna Scientific Cluster 3 (VSC3).

References

[1] L Exl, N J Mauser, and Y Zhang. Accurate and efficient computation of nonlocal potentials
based on Gaussian-sum approximation. J.Comput.Phys., 327:629–642, 2016.

[2] A R Leach. Molecular modelling: principles and applications. Pearson education, 2001.

[3] G J Martyna and M E Tuckerman. A reciprocal space based method for treating long
range interactions in ab initio and force-field-based calculations in clusters. J. Chem. Phys,
110(6):2810–2821, 1999.

[4] L Genovese, T Deutsch, A Neelov, S Goedecker, and G Beylkin. Efficient solution of
Poisson’s equation with free boundary conditions. J. Chem. Phys, 125(7):074105, 2006.

[5] L Genovese, T Deutsch, and S Goedecker. Efficient and accurate three-dimensional Poisson
solver for surface problems. J. Chem. Phys, 127(5):054704, 2007.

[6] L Füsti-Molnar and P Pulay. Accurate molecular integrals and energies using combined
plane wave and gaussian basis sets in molecular electronic structure theory. The Journal
of chemical physics, 116(18):7795–7805, 2002.

[7] W Bao, Y Cai, and H Wang. Efficient numerical methods for computing ground states
and dynamics of dipolar bose–einstein condensates. Journal of Computational Physics, 229
(20):7874–7892, 2010.

[8] A Arnold and C Holm. Efficient methods to compute long-range interactions for soft matter
systems. In Advanced computer simulation approaches for soft matter sciences II, pages
59–109. Springer, 2005.

[9] M M Hejlesen and J H Walther. A multiresolution method for solving the poisson equation
using high order regularization. Journal of Computational Physics, 326:188–196, 2016.

[10] R D Budiardja and C Y Cardall. Parallel FFT-based Poisson solver for isolated three-
dimensional systems. Computer Physics Communications, 182(10):2265–2275, 2011.

[11] P P Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der
Physik, 369(3):253–287, 1921.

1Available on the author’s webpage.

11

[12] D M Heyes. Electrostatic potentials and fields in infinite point charge lattices. The Journal
of Chemical Physics, 74(3):1924–1929, 1981.

[13] W Hackbusch and B N Khoromskij. Low-rank Kronecker-product approximation to multi-
dimensional nonlocal operators. Part i. Separable approximation of multi-variate functions.
Computing, 76(3-4):177–202, 2006.

[14] L Exl, C Abert, N J Mauser, T Schrefl, H P Stimming, and D Suess. FFT-based Kronecker
product approximation to micromagnetic long-range interactions. Math. Mod. Meth. Appl.
S., 24(09):1877–1901, 2014.

12

	1 Introduction
	2 Method description
	3 Computational aspects and approximation errors
	4 Usage of the solver
	5 Numerical validation
	5.1 Gaussian source
	5.2 Superposition of Gaussian sources
	5.3 Bump function
	5.4 Anisotropic Gaussian
	5.5 Oscillating density

	6 Conclusions

