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Abstract

This paper presents a high order hybrid discontinuous Galerkin/finite volume scheme for solving the equations of
the magnetohydrodynamics (MHD) and of the relativistic hydrodynamics (SRHD) on quadrilateral meshes. In this
approach, for the spatial discretization, an arbitrary high order discontinuous Galerkin spectral element (DG) method
is combined with a finite volume (FV) scheme in order to simulate complex flow problems involving strong shocks.
Regarding the time discretization, a fourth order strong stability preserving Runge–Kutta method is used. In the
proposed hybrid scheme, a shock indicator is computed at the beginning of each Runge–Kutta stage in order to flag
those elements containing shock waves or discontinuities. Subsequently, the DG solution in these troubled elements
and in the current time step is projected onto a subdomain composed of finite volume subcells. Right after, the DG
operator is applied to those unflagged elements, which, in principle, are oscillation-free, meanwhile the troubled
elements are evolved with a robust second/third order FV operator. With this approach we are able to numerically
simulate very challenging problems in the context of MHD and SRHD in one, and two space dimensions and with
very high order polynomials. We make convergence tests and show a comprehensive one- and two dimensional
testbench for both equation systems, focusing in problems with strong shocks. The presented hybrid approach shows
that numerical schemes of very high order of accuracy are able to simulate these complex flow problems in an efficient
and robust manner.

Keywords: discontinuous Galerkin spectral element methods; magnetohydrodynamics; shock capturing; divergence
cleaning; high-order methods

1. Introduction

High order numerical methods for solving partial differential equations are becoming the new standard in compu-
tational science and engineering because of the advantages provided by this family of numerical schemes. Among the
high-order methods, the discontinuous Galerkin schemes are the most renowned candidates and are playing a central
role because of all the attractive properties for solving the equations of fluid dynamics on complex geometries, and in
general, nonlinear hyperbolic systems of conservation laws [1–3]. In these schemes, high-order accuracy is obtained
through the approximation of the solution with a higher degree polynomial. The method has the capacity to handle
complicated geometries, and due to its locality, it is highly parallelizable. In 1971, the discontinuous Galerkin method
was originally introduced by Nitsche [4] for the approximation of elliptic equations. In 1973, Reed and Hill [5] pro-
posed the discontinuous Galerkin method for solving the steady-state neutron transport equation. The method was
recovered by Cockburn and Shu [6] to solve time dependent non-linear conservation laws. In the subsequent years, in
a series of papers, the general framework of the discontinuous Galerkin for nonlinear systems of conservation laws,
even in multiple space dimensions was established [7–9].
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High-order methods are not as robust as low-order methods. Because of hyperbolic conservation laws allow
discontinuities in their solution, these will produce spurious oscillations in the case the solution is computed with a
high-order scheme. This phenomenon is called the Gibbs phenomenon [10, 11]. As a consequence, the oscillations
will create unphysical states, and destroy conservation. Shock capturing methods have to be constructed and adapted
to a high order numerical scheme in order to overcome this difficulty. In the case of finite difference and finite volume
methods, the most used shock capturing strategies are those that employ slope/flux limiters [12, 13], and an adaptive
reconstruction operator [14, 15]. For discontinuous Galerkin schemes, several approaches have been developed, for
instance the generalized slope limiter [6], the moment limiter [16, 17], and the artificial diffusion [18, 19]. The family
of WENO reconstruction methods used as limiters in the discontinuous Galerkin methods has been well studied in the
last years [20–22]. The main drawback of the like-WENO limiters is that they have a huge computational overhead
when high-order approximations are used.

A very promising approach that allows to solve conservation laws even when shocks/discontinuities take place
consists in hybridizing high order numerical schemes with robust low order methods, and in this way we take ad-
vantage of the best features of each of them. For instance, a hybrid discontinuous Galerkin/finite volume scheme is
an excellent approach to tackle complex flows with shocks [23–26]. The main idea behind these schemes is to use a
high order discontinuous Galerkin scheme in flow regions where shocks and discontinuities are absent, and to employ
a robust finite volume method in flow regions with such shocks/discontinuities. A more complete strategy consists
in efficiently detecting troubled regions (with shocks, discontinuities, violation of positivity of some quantities of
interest like pressure and density) and then applying an adaptive mesh refinement algorithm in those regions along
with a robust finite volume scheme. Furthermore, this finite volume scheme can also have an adaptive reconstruction
operator that lower its order in the extreme case it cannot obtain a physically correct solution. As last option in this
adaptation, the algorithm will use a first order Godunov scheme. In this work we follow a simple, efficient and robust
strategy based on the works of [24, 26, 27], and it is essentially a combination of a high-order DG method with a
robust FV-WENO scheme on quadrilateral meshes. In the proposed hybrid scheme, an oscillations indicator is used
to mark those elements containing discontinuities. The DG solution in these troubled elements and in the current time
step is projected in to a subdomain made of finite-volume subcells, which are then evolved with a robust FV method.
The cells without oscillations are evolved with a high-order DG method.

Several high resolution shock-capturing and high order numerical formulations have been constructed in the last
years to solve the MHD and SRHD equations. For the MHD equations the finite difference methods [28, 29], and
the finite volume methods [30–33] have been the most widely used. For the SRHD equations several high resolution
shock capturing schemes based on finite difference and finite volume schemes have been successfully developed [34–
36], and also high order schemes [37–40]. The hybrid DG/FV scheme presented in this work will be used to solve
these equations in an efficient and robust manner, and using very high order polynomials. In the case of the MHD
equations, besides the shock capturing strategy, and additional stabilization procedure has to be developed in order
to maintain the solenoidal constraint [41, 42]. The constraint ∇ · B = 0 is not satisfied by the numerical scheme,
even for high order methods. The most used approaches to keep it are the divergence cleaning and the constrained
transport algorithms. The main idea of the divergence cleaning is to remove the numerical errors produced in the
computation of ∇·B. The Hodge projection [41], the 8-wave formulation [42], and the generalized Lagrange multiplier
(GLM) approach [43] belong to the family of divergence cleaning. The constrained transport schemes preserve the
solenoidal constraint of the magnetic field with machine accuracy, but introducing a staggered mesh [44]. In order
to keep as simple as possible the numerical method, in this work we will use the GLM approach for controlling
the solenoidal constraint of the magnetic field. In this approach a new scalar field ψ is introduced and couples the
solenoidal constraint with the evolution equation of the magnetic field. The divergence errors produced during the
numerical simulation are propagated to the boundary of the computational domain. This scheme is rather simple to
implement, and the produced errors in the computation are small enough to guarantee conservation of all physical
variables. In our algorithm we use the mixed hyperbolic/parabolic divergence cleaning as it is reported in [45].

The structure of this paper is as follows: in section 2 we briefly describe the MHD and SRHD equations written
in conservation form. The GLM divergence cleaning procedure is also taken into consideration in this section. In
section 3 the high order hybrid DG/FV method for conservation laws is discussed in detail. In section 4 several test
problems are shown and analyzed. This includes convergence tests, shock tube problems and two-dimensional flow
configurations with shocks for the MHD and SRHD equations. In section 5 the conclusions of this work are presented.
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2. Governing equations

2.1. MHD equations

Magnetohydrodynamics is a macroscopic theory concerned with the study of magnetic fields interacting with elec-
trically conducting fluids, ranging from laboratory to space plasmas. The ideal MHD equations are usually derived
as a combination of the Euler equations of the hydrodynamics and the Ampère’s law, but neglecting the displace-
ment current. As a system of conservation laws, the ideal MHD equations consist of the conservation of mass, the
conservation of momentum, the conservation of energy, and the induction equations:

∂ρ

∂t
+ ∇ · S = 0, (1a)

∂S
∂t

+ ∇ ·
(
S ⊗ v + P

)
= 0, (1b)

∂E
∂t

+ ∇ ·
(
Ev + P · v

)
= 0, (1c)

∂B
∂t

+ ∇ ·
(
B ⊗ v − v ⊗ B

)
= 0. (1d)

The conservative variables are the mass density ρ, the momentum density S, the energy density E and the magnetic
field B. The magnetic field is subject to the solenoidal constraint, that is

∇ · B = 0. (2)

The pressure tensor in equations (1b) and (1c) includes the hydrodynamic and the magnetic pressure

P =

(
p +

1
2
|B|2

)
I − B ⊗ B. (3)

Finally, an equation of state (EOS) is used to close the system. In this work we only consider the ideal gas EOS with
adiabatic exponent γ

p = ρε(γ − 1), (4)

where ε is the specific internal energy. This EOS can be written as a function of the total energy E, and the primitive
variables, ρ, v, and B

p = (γ − 1)
(
E −

1
2
ρ |v|2 −

1
2
|B|2

)
. (5)

2.1.1. Divergence cleaning
The solenoidal constraint given in equation (2) is a condition that the numerical method has to maintain in order to

obtain physically correct solutions. In this work we apply the GLM divergence cleaning because this is a simple and
reliable method [43, 46]. The mixed hyperbolic/parabolic divergence cleaning is used in this work [43]. This scheme
introduces a scalar field ψ in order to couple the solenoidal constraint (2) with the induction equation (1d). As result,
the following equations are obtained

∂B
∂t

+ ∇ ·
(
B ⊗ v − v ⊗ B + ψI

)
= 0, (6a)

∂ψ

∂t
+ ∇ ·

(
c2

hB
)

= −
c2

h

c2
p
ψ. (6b)

The MHD-GLM system consists in equations (1a), (1b), (1c), (6a), and (6b). Observe that this system is conservative
(except for the equation for the unphysical scalar field ψ).
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2.1.2. Eigenvalues of the MHD-GLM system
We solve the MHD equations with an explicit numerical scheme. Therefore, the computation of the eigenvalues is

required in order to compute the current time step (see section 3.3). From the Jacobian matrices for the MHD-GLM
equations we can get the eigenvalues of the MHD-GLM system. This matrices, denoted by Aα, are defined by

Aα =
∂fα(u)
∂u

, (α = x, y, z), (7)

with u the state vector of conservative variables (along the scalar field ψ) and f ≡ [f , g,h] the tensor of physical fluxes.
The fluxes f , g, h are respectively the flux in the x-direction, in the y-direction, and in the z-direction. The eigenvalues
of the Jacobian matrices in the x-direction, Ax, in nondecreasing order, are

λ1 = −ch, λ2 = vx − c f , λ3 = vx − ca, λ4 = vx − cs,

λ5 = vx, λ6 = vx + cs, λ7 = vx + ca, λ8 = vx + c f , λ9 = ch,
(8)

where c f , ca, and cs are the fast, Alfvén, and slow characteristic speeds. The cases for the y and z directions can be
easily derived from symmetry. In equation (8) we can see that there are three MHD waves families associated with
the characteristic speeds and an entropy mode. The three characteristic speeds are given by

ca = |bx| , cs =

√
1
2

(
a2 + b2 −

√(
a2 + b2)2

− 4a2b2
x

)
, c f =

√
1
2

(
a2 + b2 +

√(
a2 + b2)2

− 4a2b2
x

)
, (9)

where the following abbreviations were used

a2 =
γp
ρ
, b2 =

|B|2

ρ
, b2

x =
B2

x

ρ
. (10)

Two new eigenvalues appear in the MHD-GLM equations, namely λ1,9 = ±ch. These eigenmodes transport the
divergence errors to the boundaries at speed ch, and are also damped at a rate c2

h/c
2
p. Following [43], the value of the

constant cp is chosen after setting cr ≡ c2
p/ch = 0.18, and the magnitude of the wave speeds ch is set to the maximum

allowed speed in the ideal MHD equations (without divergence cleaning)

ch = max
α

(
max

(
|λ2,α|, |λ8,α|

))
, α = x, y, z. (11)

2.2. SRHD equations
Taking into account the effects of the special relativity, the SRHD equations are a generalization of the Euler

equations. A relativistic fluid may have as main features at least one of the following properties: (1) the fluid velocity is
close to the speed of light, and (2) the internal energy of the fluid is greater or approximate to its rest mass density [47].
The SRHD equations, written as a system of conservation laws [48, 49], and taking the speed of light c = 1, are given
by

∂D
∂t

+ ∇ · (Dv) = 0, (12a)

∂S
∂t

+ ∇ · (S ⊗ v + pI) = 0, (12b)

∂E
∂t

+ ∇ · S = 0. (12c)

The conserved quantities D, S and E are the mass density, the momentum density, and the total energy density,
respectively. They are all measured in the laboratory frame, and are related to quantities in the local rest frame of
the fluid, the so-called primitive variables (the rest-mass density ρ, the gas pressure p, and the specific enthalpy h),
through

D = ρΓ, (13a)

S = ρhΓ2v, (13b)

E = ρhΓ2 − p, (13c)
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where the Γ is the Lorentz factor defined by

Γ =
1

√
1 − v2

. (14)

The SRHD system (12) is closed with an EOS: h = h(p, ρ), also written as p = p(ρ, ε). The SRHD system is
hyperbolic for causal EOS [47, 50], i.e., for those where the local sound speed satisfies cs < 1, where cs is defined by

hc2
s = −ρ

∂h
∂ρ

(
ρ
∂h
∂p
− 1

)−1

. (15)

In this work, we employ an ideal gas EOS,

p = (γ − 1)(ε − ρ), or h = 1 +
γ

γ − 1
p
ρ
. (16)

Here γ = cp/cv is the ratio of specific heats and ε is the sum of the internal and rest-mass energy densities in the local
frame and is related to the specific enthalpy as

h =
ε + p
ρ

. (17)

With this choice of EOS, the speed of sound is given by

c2
s =

γp
ρh
. (18)

2.2.1. Eigenvalues of the SRHD system
The eigenvalues of the SRHD equations are also required for the explicit numerical scheme for computing the

time step. The Jacobian matrices Aα for the SRHD equations are defined by

Aα =
∂fα(u)
∂u

, (α = x, y, z), (19)

where u is the state vector of conservative variables, and f = [f , g,h] the tensor of physical fluxes. Assuming an ideal
gas EOS, the eigenvalues of the matrix Ax are given by

λ1 =
1

1 − v2c2
s

{
vx(1 − c2

s ) − cs

√
(1 − v2)

[
1 − vxvx − (v2 − vxvx)c2

s

]}
, (20)

λ2 =vx, λ3 = vx, λ4 = vx, (21)

λ5 =
1

1 − v2c2
s

{
vx(1 − c2

s ) + cs

√
(1 − v2)

[
1 − vxvx − (v2 − vxvx)c2

s

]}
. (22)

The cases for the matrices Ay and Az easily follows from symmetry. The eigenvalues of Ax represent the five character-
istic speeds associated with two sound wave modes (λ1 and λ5) and three entropy modes (λ2, λ3, λ4). The eigenvalues
satisfy the following relation: λ1 < λ2 = λ3 = λ4 < λ5.

2.2.2. Conservative to primitive variables conversion
In the SRHD system, the relation between the primitive and conservative variables is quite complex. In this work,

two strategies for expressing the primitive variables in terms of the conservative ones are followed: the first one, by
solving iteratively an equation for the pressure and then determining the other variables from this [48]. The second
one, which is more robust, consists in solving a quartic equation on the velocity v (as it is outlined in [51, 52], and
[49]). We combine both strategies in our algorithm, using the iterative scheme as base scheme, and when this fails,
the robust approach is used. The details of both algorithms can be found in [48, 49].
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3. Numerical methods

3.1. Discontinuous Galerkin methods
Let us consider the following system of conservation laws

∂u
∂t

+
∂f (u)
∂x

+
∂g(u)
∂y

+
∂h(u)
∂z

= 0, (23)

also written as
∂u
∂t

+ ∇x · f(u) = 0, (24)

where u ∈ Rm is the vector of conserved quantities, and f =
[
f , g,h

]
is the tensor of physical fluxes, with f , g, h ∈ Rm

being the flux functions in the directions x, y, and z, respectively. Next let us consider the test function φ = φ(x) =

φ(x, y, z), which is an arbitrary differentiable function defined in a subset Ωk ⊂ Ω ⊂ R3. We assume that the subset
Ωk corresponds to a cell in the discontinuous Galerkin scheme. The variational formulation consists in projecting the
residual of the partial differential equation (24) on the test function φ(x) and demanding that this projection is zero∫

Ωk

(
∂u
∂t

+ ∇x · f(u)
)
φ(x) dx = 0. (25)

The weak formulation of the equation (24) is obtained by integrating by parts the flux term in the equation (25)∫
Ωk

∂u
∂t
φ(x) dx +

∮
∂Ωk

f · n φ(x) ds −
∫

Ωk

f · ∇φ(x) dx = 0. (26)

So far, no approximation has been done on the vector u or the fluxes f , g, h. Depending in the discretization ansatz on
these functions, we have different flavors of the discontinuous Galerkin method. In this work we will focus on the very
efficient discontinuous Galerkin spectral element method (DGSEM) developed by Kopriva and Kolias [53], Kopriva
[54]. For an outstanding description and derivation of the method and how it is implemented, we recommend the
book by Kopriva [3]. In a recent work the DGSEM has been applied to solve the Navier–Stokes equations [55]. In
the DGSEM framework, a mapping from the physical domain, where we want the solution, to the reference domain,
where actually the equation is solved, is constructed. With the help of this transformation, we map the equation to the
reference domain and finally we solve the transformed equation in the reference domain. We stress that in the general
formulation of the discontinuous Galerkin, it is usual to solve the original equation in the physical space, where the
involved integrals are mapped to the reference element. In our case we map first the equation to the reference element
and then we solve it there. Therefore, we apply the discontinuous Galerkin formulation (26) not to the original
equation (24), but onto the mapped equation.

3.1.1. Coordinate transformation
Let us start by considering the domain Ω ⊂ R3 with boundary ∂Ω. We decompose Ω in K non-overlapping

hexahedral elements Ωk, which are further mapped onto the reference element [−1, 1]3 (see figure 1). A point in the
physical space is described by x = (x, y, z) = (x1, x2, x3), and a point in the reference element by ξ = (ξ, η, ζ) =

(ξ1, ξ2, ξ3). The mapping between the physical and the reference element is defined as x = X(ξ). Let us consider a
function f (x) = (x, y, z). Under a coordinate transformation, the derivative on the reference space is ∇ξ f = J∇x f ,
where J is the Jacobi matrix of the transformation x = X(ξ). Because we want to map the equations from the physical
space to the reference space, in practice, the coordinate transformation we need is the inverse, namely, ξ = X−1(x),
which is represented in matrix form by J−1.

Any point in the physical space can be represented by using two different basis vectors: The covariant basis
vectors ei, for i = 1, 2, 3, and the contravariant basis vectors ei, for i = 1, 2, 3. By definition, the covariant vectors are
tangent to the coordinate lines, while the contravariant are normal the coordinate lines. That is, they are defined by
the following expressions

ei =
∂x
∂ξi , i = 1, 2, 3, (covariant vectors), (27a)

ei = ∇ξi, i = 1, 2, 3, (contravariant vectors). (27b)
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ξ η

ζ

X−1(x)

Figure 1: Mapping from the physical element Ωi to the reference element [−1, 1]3.

Vectors can be written either in covariant basis or in contravariant basis. That is possible because these bases form a
base of the three-dimensional space. Now, coming back to the inverse of the Jacobi matrix, we use the definition of
covariant basis vectors and we then introduce them in the expression for J, yielding

J =
(
e1, e2, e3

)ᵀ
. (28)

Using the general formula for the inverse of a 3 × 3 matrix expressed in terms of the cross product and triple product,
we get

J−1 =
1

det(J)


(
e2 × e3

)ᵀ(
e3 × e1

)ᵀ(
e1 × e2

)ᵀ
 , (29)

where the Jacobian J = det(J) is given by

J = det(J) = ei ·
(
e j × ek

)
. (30)

From this last equation, we can easily see that the contravariant vectors ei = ∇ξi are related with the covariant vectors

ei =
∂x
∂ξi through

Jei = e j × ek, i, j, k are cyclic. (31)

3.1.2. Conservation laws under mappings
The divergence operator in the conservation law (24) has been applied in the physical space. This operator under

the coordinate transformation x = X(ξ) is given by

∇x · f =
1
J

3∑
i=1

∂

∂ξi

(
Jei · f

)
:=

1
J
∇ξ · f̃, (32)

with f̃ =
[
f 1, f 2, f 3] the tensor of contravariant fluxes and it is defined through its components by f i ≡

(
Jei · f

)
. The

conservation law in the reference element takes the form

∂u
∂t

+
1
J
∇ξ · f̃ = 0. (33)

Observe that u = u(ξ, t), f̃ = f̃
(
u(ξ, t)

)
, and J = J(ξ). The variational formulation of the transformed conservation

law is, after multiplying with a test function φ = φ(ξ),∫
Ω

(
∂u
∂t

+
1
J
∇ξ · f̃

)
φ dx = 0. (34)
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Transforming the integral to the reference element E = [−1, 1]3, and reminding that dx = J(ξ) dξ, we obtain the
variational formulation of the transformed equation on the reference element∫

E

(
J(ξ)

∂u
∂t

+ ∇ξ · f̃
)
φ(ξ) dξ = 0. (35)

Finally, the weak formulation of the equation (33) is obtained by integrating by parts the flux term in the equation (35)∫
E
J(ξ)

∂u
∂t
φ(ξ) dξ −

∫
E

f̃ · ∇ξφ(ξ) dξ +

∮
∂E

[
f̃ · ñ

]∗
φ(ξ) dσ = 0, (36)

where ñ is the unit normal vector to the surface at the faces of the reference element. Observe that for a given direction
in the reference space (e.g. ñ can be the normal unit vector at the face of the reference element in the direction +ξi)
we have that

f̃ · ñ = f · n = (f · n̂)‖n‖, (37)

where n is the normal vector at the surface in the physical space, which is computed from the metric terms evaluated
at the surfaces, and n̂ is the unit normal vector n̂ = n/‖n‖; the components of the vector n are calculated from

nl =

3∑
i=1

Jei
lñ

i, l = 1, 2, 3. (38)

Its norm represents the area of the face element in the physical space and it is given by

σ = ‖n‖ =

√√√ 3∑
l=1

(
Jei

l
)2
. (39)

The superindex i means that n is associated with ñ in the direction of the coordinate ξi as we pointed out before. We
will not use indices for this denomination and henceforth it will be understood from the context which direction it
corresponds. Therefore[

f̃ · ñ
]∗

=
[
f · n

]∗
=

[
f · n̂

]∗
σ. (40)

At cell interfaces the solution is double-valued (one value is obtained from the data inside the current cell and the
other value corresponds to the value calculated by the neighboring cell), just like the in the finite volume method.
This discontinuity at cell interfaces implies that the flux has to be calculated by introducing the so-called numerical
flux, and we write that in the variational formulation as

[
f · n̂

]∗. In the finite volume community these numerical
fluxes are computed usually with a Riemann solver. There is a large variety of Riemann solvers available for different
systems of conservation laws, see for example the book by Toro [56] for an exhaustive treatment of this topic. We
have to mention that the numerical flux in the normal direction is defined as a function of the left and right states at
the element interface: f ∗ = f ∗(uL,uR; n̂) =

[
f · n̂

]∗, and it is computed by solving a one-dimensional Riemann problem
for the states in the Gauss–Legendre quadrature points on the surface of the element. The Riemann solver used in our
computations is the very well known Rusanov numerical flux [57]. The Rusanov numerical flux is given by

f ∗(uL,uR) =
1
2
(
f (uL) + f (uL) − |λmax|(uL − uR)

)
, (41)

where λmax is the largest local wave speed, which guarantees the stability of the scheme. Finally, the weak form of the
equation (33) reads∫

E
J(ξ)

∂u
∂t
φ(ξ) dξ︸                  ︷︷                  ︸

Time Derivative Integral

−

∫
E

f̃ · ∇ξφ(ξ) dξ︸              ︷︷              ︸
Volume Integral

+

∮
∂E

[
f · n̂

]∗
σφ(ξ) dσ︸                   ︷︷                   ︸

Surface Integral

= 0. (42)
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x

y

−1 +1

−1

+1

ξ

η

X−1(x)

Figure 2: Mapping from the physical element Ωi to the reference element [−1, 1]2 in a two-dimensional domain. The blue-filled circles depict the
two-dimensional Gauss–Legendre quadrature points in the reference element, where the solution is computed, and the red-filled squares represent
the nodes where the boundary fluxes are calculated, and they are located at Gauss–Legendre quadrature points along the boundary.

3.1.3. Discretization on hexahedral elements
The discontinuous Galerkin spectral element method is a discretization method specially designed for the ap-

proximate solution of conservation laws on quadrilateral/hexahedral computational domains. The partial differential
equation is expressed in weak form and the solution and fluxes are approximated by using high-order Lagrangian
interpolants. We stress that the polynomials are represented in a nodal form. The integrals are approximated by
quadrature (in our case, Gauss quadrature), and the nodal points, where the solution is computed, are the Gauss–
Legendre quadrature points. Along the boundaries, the nodes are chosen to be also Gauss–Legendre quadrature points
in order to compute the boundary integrals. In the Figure 2 these nodal points are depicted for the two-dimensional
case. The ansatz discussed before will be used in the following for the purpose of discretizing each integral in the
equation (42).

In every hexahedral element, we approximate the vector of conserved variables and the contravariant fluxes by
polynomials, which basis functions are obtained from the tensor-product of one-dimensional Lagrange polynomials
of degree N. The state is given by

u =

N∑
i, j,k=0

ûi jkψi jk(ξ), (43)

with ûi jk the nodal degrees of freedom. The components of the contravariant fluxes are written as

f m(
u(ξ)

)
=

N∑
i, j,k=0

f̂ m
i jkψi jk(ξ), m = 1, 2, 3. (44)

The coefficients f̂ m
i jk are computed in terms of the covariant fluxes, as it was pointed out before

f̂ m
i jk = f̂ m

i jk
(
u(ξi jk)

)
=

3∑
l=1

Jem
l (ξi jk)fl

(
u(ξi jk)

)
. (45)

The basis functions ψi jk(ξ) used before have a tensor-product form

ψi jk(ξ) = `i(ξ1)` j(ξ2)`k(ξ3), (46)
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with `i the Lagrange polynomials

` j
(
ξ
)

=

N∏
i=0
i, j

(
ξ − ξi

)(
ξ j − ξi

) , (47)

with the property

` j
(
ξi
)

= δi j, i, j = 0, . . . ,N. (48)

Time derivative integral. In the time derivative integral in the equation (42), we insert the approximation for u given
in (43). Additionally, we assume that the test function is the same as the basis functions, φ = ψi jk (this is the Galerkin
ansatz), and finally we approximate the integrals by Gaussian quadrature

∂

∂t

∫
E
J(ξ) u(ξ) φ(ξ) dξ =

∂

∂t

∫ 1

−1

∫ 1

−1

∫ 1

−1
J(ξ)

( N∑
l,m,n=0

ûlmnψlmn(ξ)
)
ψi jk(ξ) dξ

= ωiω jωkJ(ξi jk)
dûi jk

dt
,

where we have made use of the property (48) of the Lagrange interpolating polynomials. The ωi are the weights in
the Gaussian quadrature.

Volume integral. The volume integral in the equation (42) involves the tensor f̃. This integral can be written as∫
E

f̃ · ∇ξφ(ξ) dξ =

3∑
d=1

∫
E

f d(u(ξ)
)∂φ(ξ)
∂ξd dξ

= ω jωk

N∑
λ=0

Dλi f̂ 1
λ jk ωλ + ωiωk

N∑
µ=0

Dµ j f̂ 2
iµk ωµ + ωiω j

N∑
ν=0

Dνk f̂ 3
i jν ων,

where we have introduced the differentiation matrix Dλi, which is defined as

Di j =
d` j(ξ)

dξ

∣∣∣∣∣
ξ=ξi

, i, j = 0, . . . ,N. (49)

Surface integral. The last integral we will compute is the surface integral in the equation (42). Observe that this
surface integral is the sum of the surface integrals over each face of the reference element∮

∂E

[
f · n̂

]∗
σφ(ξ) dσ =

6∑
l=1

∫
∂El

[
f · n̂l

]∗
σl φ(ξl) dσl

= ω jωk

([
f ∗σ

]+ξ1

jk `i(+1) +
[
f ∗σ

]−ξ1

jk `i(−1)
)

+ ωiωk

([
f ∗σ

]+ξ2

ik ` j(+1) +
[
f ∗σ

]−ξ2

ik ` j(−1)
)

+ ωiω j

([
f ∗σ

]+ξ3

i j `k(+1) +
[
f ∗σ

]−ξ3

i j `k(−1)
)
.

The vector ξl means that the points are on the surface ∂El, and σl is the area of the element face l. We will compute
only the integrals in the direction ±ξ1. Remember that the sign in the directions is included in the normal vector. The
numerical flux f ∗ =

[
f · n̂

]∗ on the faces ±ξ1 of the reference element E, as we pointed out before, are calculated by
using the states uL and uR. The state uL is obtained from the extrapolation of the inner state to the element boundaries
and the state uR from the extrapolation in the neighboring element (or in the case that the face to be evaluated is located
on the physical boundary, from the boundary conditions imposed in the problem). This extrapolation is carried out on
the Gauss–Legendre quadrature points on the face of the reference element. Therefore, the numerical fluxes on the
faces ±ξ1 (i.e. the faces at ξ1 = ±1) are approximated by

[
f · n̂l

]∗
σl

∣∣∣∣∣
l=±ξ1

= f ∗(±1, ξ2, ξ3)σ±ξ1 =

N∑
j,k=0

[
f ∗σ

]±ξ1

jk ` j(ξ2)`k(ξ3). (50)
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Semi-discrete formulation. Once discretized all integrals appearing in the equation (42), we are able to write down
the semi-discrete formulation of the DGSEM on hexahedral elements. Before we write the final equation, we define
some useful quantities, which can be precomputed and stored in memory. The operators to be defined are

D̂i j = −D ji
ω j

ωi
, ˆ̀i

(
±1

)
=
`i
(
±1

)
ωi

, i, j = 0, . . . ,N. (51)

The semi-discrete formulation has the following form

dûi jk

dt
= −

1
Ji jk

[ N∑
λ=0

D̂iλ f̂ 1
λ jk +

([
f ∗σ

]+ξ1

jk
ˆ̀i(+1) +

[
f ∗σ

]−ξ1

jk
ˆ̀i(−1)

) ]

−
1
Ji jk

[ N∑
µ=0

D̂ jµ f̂ 2
iµk +

([
f ∗σ

]+ξ2

ik
ˆ̀ j(+1) +

[
f ∗σ

]−ξ2

ik
ˆ̀ j(−1)

)]

−
1
Ji jk

[ N∑
ν=0

D̂kν f̂ 3
i jν +

([
f ∗σ

]+ξ3

i j
ˆ̀k(+1) +

[
f ∗σ

]−ξ3

i j
ˆ̀k(−1)

)]
.

(52)

The semi-discrete formulation given by equation (52) consists of one-dimensional DGSEM operators (the quantities
in square brackets), each of them applied along a direction.

3.2. Discretization of the GLM divergence cleaning

The equations for Bx and ψ are decoupled from the rest of the MHD-GLM system. In fact, cleaning a vector
quantity B with divergence errors results in the linear system

∂

∂t

(
Bx

ψ

)
+

(
0 1
c2

h 0

)
∂

∂x

(
Bx

ψ

)
=

 0

−
c2

h

c2
p
ψ

 . (53)

The numerical flux is then derived as the solution of the local Riemann problem with left-hand state (Bx,l, ψl)T and
right hand state (Bx,r, ψr)T as

Bx,m =
1
2

(Bx,r + Bx,l) −
1

2ch
(ψr − ψl), (54)

ψm =
1
2

(ψr + ψl) −
ch

2
(Bx,r − Bx,l). (55)

It is possible to employ for the quantities Bx and ψ the Riemann solver used in the full MHD system, but in this work
we use the exact solution (54) of the linear Riemann problem (53). Dedner et al. [43] suggest to use the solution (54)
as input for the Riemann solver used in the solution of the other conserved quantities.

There are basically two possible ways to deal with the source term in equation (6b). The first one consists in
adding this source term to the hyperbolic update, that is to the semi-discrete scheme (52) (see [58]). The second
one is based on an operator-splitting approach. Following the idea presented in [43], we first solve the homogeneous
MHD-GLM system in a so-called hyperbolic step, and then we consider the source term in the source step. The scalar
field ψ is then

ψ(∆t) = ψ(0) exp
(
−αp

ch

∆h/∆t

)
, with αp = ∆h

ch

c2
p
, (56)

where ψ(0) has been computed in the hyperbolic step, and ∆h = min (∆x,∆y,∆z) is the minimum mesh size. This
approach is very simple to implement and is unconditionally stable [43].
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3.3. Time discretization

The semi-discrete scheme (52) is solved explicitly using the so-called method of lines. The method of lines
acquires the accuracy order of the integrator used to solve the system of ordinary differential equations, under the
condition that the spatial discretization is of the same order of accuracy or higher [59]. The system of ordinary
differential equations (52) is solved with the family of strong-stability preserving Runge–Kutta Methods (SSPRK)
[60–62]. The main idea of these methods resides in assuming that the first-order forward Euler method is strongly
stable under the total variation norm (and in general, any given norm) and a suitable time step restriction. From this,
the aim is to construct a higher-order time discretization that preserves strong stability under the TVD norm, and
maybe, with a different time step restriction [60]. The SSPRK methods are desirable in problems with discontinuities
and strong shocks, because they guarantee that, as part of the time-integration process, no additional oscillations are
introduced.

The Courant–Friedrichs–Lewy (CFL) condition is a necessary condition for stability of any explicit one-level
numerical scheme [63]. It establishes that the domain of dependence of the solution is contained in the numerical
domain of dependence of the numerical method. This condition is applied to constraint the time step. For the discon-
tinuous Galerkin method, Cockburn and Shu [1] gave an approximate CFL condition for linear stability, and it has the
following form

∆t =
CCFL

2N + 1
min

k

(
∆x
|λk,x|

,
∆y
|λk,y|

,
∆z
|λk,z|

)
. (57)

3.4. Shock capturing

In the discontinuous Galerkin method is common that some unphysical states are produced in the intermediate
stages of the simulation (e.g., during the interpolation step, or the conservative to primitive variables conversion),
especially when the flow involves shocks waves or strong rarefactions, and very high-order are used (interpolation
order larger than second order). These unphysical states come from the loss of positivity of the density or the pressure,
or the generation of super-luminal speeds. Several shock capturing schemes have been considered in the past, like the
moment limiter [16, 17], the artificial viscosity [18, 19], and the WENO limiter [20–22]. It is very well known that
in the vicinity of a discontinuity, shock-capturing schemes will reduce the solution accuracy to first-order [64]. This
is because the location of the shock is proportional to the mesh size [65]. Taking this into account, it is natural to
construct a robust shock-capturing by considering only two stages: the shock detection and a further order reduction
of the scheme in the vicinity of the shock. This kind of schemes are called the fallback approaches [32, 38, 66]. For
robustness and efficiency reasons, the hybrid DG/FV approach [26, 27], which is based on the fallback approach (see
table 1), will be used as the main building block for the nonlinear stabilization of the solution when shocks take place.
The hybrid DG/FV is constructed in such a way that, in regions of smooth flows, the DGSEM method is employed, and
those parts of the flow having shocks, the DGSEM elements are interpreted as quadrilateral/hexahedral subdomains.
In each of these subdomains, the nodal DG solution values are used to build a new local domain composed now of
finite volume subcells, which are evolved with a robust finite volume method with third order WENO reconstruction.
In the following we will discuss with more detail the hybrid DG/FV algorithm.

3.4.1. Hybrid DG/FV shock capturing
The hybrid DG/FV shock capturing method used in this work consists basically in two steps: the first step is

detecting the elements in the DG computational domain that contain oscillating polynomials, which cause instabilities
in the computation and make the code to blow up. The second step is replacing the troubled elements with subdomains
made of (N + 1)d finite volume subcells each, with d the space dimension. Then the subdomains are evolved with a
robust finite volume method which uses a second or third order reconstruction operator, typically MUSCL (second
order) or WENO3 (third order).

Let us represent the solution in the DG reference element E at time level tn by un =
∑N

i, j,k=0 ûn
i jkψi jk(ξ). In the

context of DGSEM schemes, the reference element E has (N + 1)3 degrees of freedom. The DG solution is computed
in the (N + 1)3 quadrature points. The reference element E is then decomposed into (N + 1)3 equidistant FV subcells
Ei jk, in such a way that E =

⋃
i jk Ei jk, see figure 3. While in the DG reference element E the solution is represented by
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Table 1: Shock capturing strategy for the higher-order discontinuous Galerkin methods discussed in this work [27, 32, 38, 39, 66].

Checking of physical quantities
with restrictions

Positivity of density
Positivity of pressure
Maximum propagation speed (only in the relativistic case)

Detection of regions with strong
shocks

Shocks indicators
Oscillations indicators
Marking of troubled points/cells and direct neighbors

Special treatment in troubled
regions

Employment of robust Riemann solvers
Employment of robust first-order Godunov scheme
Employment of robust second/third order numerical scheme

Figure 3: Hybrid DG/FV. DG element with (N + 1)2 inner nodal points (the blue filled circles) where the solution is computed, and which is
approximated by a tensor-product of Lagrange polynomials of degree N (left). Corresponding FV subdomain made of (N + 1)2 equidistant subcells
(right), with the barycenter of every subcell shown (the blue filled circles), and the points where the numerical fluxes are computed with the finite
volume scheme (the white filled squares), and the borders of the subcells (dashed lines).

a polynomial, in the FV subdomain the solution at time level tn is represented by (N + 1)3 piecewise constant subcell
averages vn

i jk. These values are obtained from the DG polynomial itself by using L2 projection, that is

vn
i jk = P̂FV (un) =

1∣∣∣Ei jk

∣∣∣
∫

Ei jk

u(x, tn) dx. (58)

The inverse operator P̂DG = P̂−1
FV has to satisfy the following constraint: The integral conservation of the cell average

over the DG element∫
E

u(x, tn) dx =

∫
E

v(x, tn) dx. (59)

We solve then the conservation law for the subcell cell averages

∂v
∂t

+
1
J
∇ξ · f̃ = 0, (60)

by using a second/third order FV method, see [26, 33]. Summarizing, given the DG state un
i at time level n, the

oscillation indicator operator ÔI is applied to un
i , ∀i, and only the troubled elements are flagged for shock capturing.

For those not flagged elements, the state un is evolved with the DG solver operator D̂G, but if the element is marked
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Figure 4: Hybrid DG/FV. Flagged element surrounded by DG elements (left). The DG polynomial in the troubled cell is then projected onto a FV
subdomain made of (N + 1)2 subcells. For those subcells lying at the FV subdomain edges, neighboring elements are also projected onto a FV
subdomain in order to use the cell averages at edges for computing the reconstructed values at subcell interfaces (right).

as a troubled cell, then we use the operator P̂FV to project the state un onto a FV subcells subdomain of piecewise
cell averages, yielding vn; then we evolve the states vn in the FV subdomain with the FV solver operator F̂V, to get
vn+1. The solution vn+1 is then projected back onto the DG element with the projection operator P̂DG = P̂−1

FV. Since the
stencil of the reconstruction operator used in the FV subdomain needs at least two neighboring cell data (one left and
one right to the subcell of interest), those subcells at edges of the FV subdomain require boundary values, which are
obtained from the neighboring elements (see figure 4). A flow diagram for the DGSEM is depicted in the figure 5.

3.4.2. Finite volume schemes
For the sake of completeness, we briefly describe the foundations of the finite volume method with third-order

WENO reconstruction. Let us consider the following system of conservation laws on structured Cartesian meshes

∂u
∂t

+
∂f (u)
∂x

+
∂g(u)
∂y

+
∂h(u)
∂z

= 0. (61)

After the integration of the equation (61) over the computational cell Ωi jk =
[
xi− 1

2
, xi+ 1

2

]
×

[
y j− 1

2
, y j+ 1

2

]
×

[
zk− 1

2
, zk+ 1

2

]
,

we get the semi-discrete scheme

dui jk

dt
= −

f̂i+ 1
2 , jk
− f̂i− 1

2 , jk

∆x
−

ĝi, j+ 1
2 ,k
− ĝi, j− 1

2 ,k

∆y
−

ĥi j,k+ 1
2
− ĥi j,k− 1

2

∆z
. (62)

The quantity ui jk is the spatial average of u in the cell Ωi jk at time t

ui jk =
1∣∣∣Ωi jk

∣∣∣
∫

Ωi jk

u(x, y, z) dz dy dx, (63)
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FV Solver

ELSE
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END

Spatial Discretization

Loop over all Elements

Runge-Kutta Stage

Repeat for all Runge-Kutta stages

Write Solution to Disk
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End of Simulation

HYBRID DG/FV SCHEME
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•Prolong State to Faces

• Set Boundary Conditions
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•DG-to-FV Projection

• Set Boundary Conditions

•Perform Reconstruction

•Calculate Numerical Fluxes
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•Update Time Derivative

•FV-to-DG Projection

Figure 5: Flow diagram for the hybrid DG/FV method.

with
∣∣∣Ωi jk

∣∣∣ = ∆x∆y∆z, and f̂i± 1
2 , jk

, ĝi, j± 1
2 ,k

, and ĥi j,k± 1
2

are spatial averages of the physical fluxes over the cell faces xi± 1
2
,

y j± 1
2
, and zk± 1

2
, respectively, at time t

f̂i± 1
2 , jk

=
1∣∣∣σ jk

∣∣∣
∫
σ jk

f
(
u(xi± 1

2
, y, z)

)
dz dy,

ĝi, j± 1
2 ,k

=
1∣∣∣σik

∣∣∣
∫
σik

g
(
u(x, y j± 1

2
, z)

)
dz dx,

ĥi j,k± 1
2

=
1∣∣∣σi j

∣∣∣
∫
σi j

h
(
u(x, y, zk± 1

2
)
)

dy dx,

(64)

with the surfaces elements defined by σi j =
[
xi− 1

2
, xi+ 1

2

]
×

[
y j− 1

2
, y j+ 1

2

]
, σ jk =

[
y j− 1

2
, y j+ 1

2

]
×

[
zk− 1

2
, zk+ 1

2

]
, and σik =[

xi− 1
2
, xi+ 1

2

]
×

[
zk− 1

2
, zk+ 1

2

]
. The area of the faces are then

∣∣∣σi j

∣∣∣ = ∆x∆y,
∣∣∣σ jk

∣∣∣ = ∆y∆z, and
∣∣∣σik

∣∣∣ = ∆x∆z. The semi-
discrete scheme (62) is an exact relation as well as the averaged quantities (63) and (64). For the purpose of this work,
we approximate these integral as follows

f̂i± 1
2 , jk

=
f
(
u(xi± 1

2
, y j, zk)

)
∆y∆z

, ĝi, j± 1
2 ,k

=
g
(
u(xi, y j± 1

2
, zk)

)
∆x∆z

, ĥi j,k± 1
2

=
h
(
u(xi, y j, zk± 1

2
)
)

∆x∆y
. (65)
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The point-wise values u(xi± 1
2
, y j, zk), u(xi, y j± 1

2
, zk), u(xi, y j, zk± 1

2
) are reconstructed from the cell averages ui jk with a

third-order WENO scheme. Observe that two sets of reconstructed values at a given face are present: those obtained
through the use of the cell Ωi jk as the main cell in the reconstruction procedure and those associated with the neighbor-
ing cell. These are known as the left and right values at the face interface: uL and uR. Finally the fluxes are evaluated
by replacing f , g, and h by a monotone flux. We employ the same Riemann solver used in the DGSEM scheme, that
is the Rusanov numerical flux [57].

3.4.3. WENO reconstruction
The basic idea of the WENO schemes is based on an adaptive reconstruction procedure to obtain a higher-order

approximation on smooth regions while the scheme remains non-oscillatory near discontinuities [15]. In each sten-
cil, a polynomial is reconstructed from the cell averages ūi of the solution and later a weighted combination of all
these polynomials is constructed. The nonlinear weights are computed taking into account the smoothness of every
polynomial in its respective stencil.

Let us approximate the value of the function u(x) at the points xi− 1
2
, and xi+ 1

2
, by using polynomials of degree

N = 1. For the stencil S k we get the corresponding values u(k)
i− 1

2
, and u(k)

i+ 1
2
. Let us write down the stencils

S 1 = {Ii−1, Ii} , S 2 = {Ii, Ii+1} , (66)

where Ii =
(
xi− 1

2
, xi+ 1

2

)
. The corresponding interpolated values for the point xi− 1

2
are

u(1)
i− 1

2
=

1
2
(
ūi−1 + ūi

)
, u(2)

i− 1
2

=
1
2
(
3ūi − ūi+1

)
, (67)

and the corresponding interpolated values for the point xi+ 1
2

are

u(1)
i+ 1

2
=

1
2
(
−ūi−1 + 3ūi

)
, u(2)

i+ 1
2

=
1
2
(
ūi + ūi+1

)
. (68)

If we choose the large stencil

S = {Ii−1, Ii, Ii+1} , (69)

which is the union of all 2 stencils S k, then we are able to find an interpolation polynomial p(x) of degree at most 2,
satisfying p(x j) = u j for i − N ≤ j ≤ i + N and giving the approximations ui− 1

2
≡ p(xi− 1

2
), ui+ 1

2
≡ p(xi+ 1

2
),

ui− 1
2

=
1
6
(
2ūi−1 + 5ūi − ūi+1

)
, ui+ 1

2
=

1
6
(
−ūi−1 + 5ūi + 2ūi+1

)
, (70)

provided that the function is smooth in the large stencil S .
The WENO idea consists in choosing the final approximation as a convex combination of the approximations u(k)

i+ 1
2

ui+ 1
2

=

N+1∑
k=1

ωku(k)
i+ 1

2
, (71)

where ωk ≥ 0,
∑N+1

k=1 ωk = 1. The approximations calculated by using the large stencils can be written as a linear
convex combination of the approximations u(k)

i+ 1
2

based on the small stencils S i

ui+ 1
2

=

N+1∑
k=1

γku(k)
i+ 1

2
, (72)

where the constants γ j satisfy
∑N+1

j=1 γ j = 1, are usually referred to as the linear weights in the WENO literature. For
the third-order WENO scheme, the linear weights for the points xi− 1

2
, and xi+ 1

2
, are

xi− 1
2

: γ1 =
2
3
, γ2 =

1
2
, xi+ 1

2
: γ1 =

1
2
, γ2 =

2
3
. (73)
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The choice of the nonlinear weights ωk relies on the smoothness indicator βk, which measures the relative smoothness
of the function u(x) in the stencil S k. The larger this smoothness indicator βk, the less smooth the function u(x) is in
the stencil S k. The smoothness indicators for the third-order WENO scheme are

β1 = (ūi−1 − ūi)2 , β2 = (ūi − ūi+1)2 . (74)

Notice that these smoothness indicators are quadratic functions of the values of u(x) in the relevant stencils. Equipped
with these smoothness indicators, we can now define the nonlinear weights as

ωk =
ω̃k∑N
i=1 ω̃i

, with ω̃k =
γk

(ε + βk)2 . (75)

Here ε is a small positive number used to avoid the denominator becoming zero and is typically chosen to be ε = 10−6,
but in our calculations we have used ε = 10−24.

3.4.4. Oscillations indicators
In our a priori shock capturing strategy for discontinuous Galerkin methods, the first step consists in determining

which elements contain oscillating polynomials, that is, those elements where shock waves or discontinuities are
producing these kind of behavior in the approximating polynomials. The oscillation indicator is applied to every
element at each stage of the explicit Runge–Kutta time discretization. Once the troubled element is flagged, the next
step is to apply the hybrid DG/FV approach, where the DG element is used to build a new block made of finite volume
subcells, and which is evolved using a robust second/third order finite volume scheme. In this work we mainly use
the Persson indicator.

Persson indicator. The Persson indicator was developed by Persson and Peraire [18], and it measures cell-wise the
maximum energy decay in the highest and second highest degrees of freedom of the DG polynomial for the state
variable u:

η(u) = log10


max





NDOF(N)∑
j=NDOF(N−1)+1

(
û j

)2

NDOF(N)∑
j=1

(
û j

)2


,



NDOF(N−1)∑
j=NDOF(N−2)+1

(
û j

)2

NDOF(N−1)∑
j=1

(
û j

)2






, (76)

where NDOF(N) denotes the number of degrees of freedom for a DG polynomial of degree N and û j the jth degree of
freedom of the polynomial representation of u. Observe that this indicator takes into account the influence of odd/even
order effects in the DG polynomial. The typical variable used by the Persson indicator in order to determine if a cell
suffers of spurious oscillations is the pressure, since shock waves imply a jump in the pressure and not in the density.
With this is distinguished shock waves and contact discontinuities.

4. Numerical computations

In this section we will present several numerical calculations of the MHD and SRHD equations with the hybrid
DG/FV scheme. Convergence tests, and one- and two-dimensional flow problems involving shock waves are dis-
cussed. We emphasize on the employment of very high order polynomials for the discretization of the vector of
conservative quantities as well as the fluxes. In the two-dimensional computations the solution has been plotted in a
hybrid manner, that is we plot the DG polynomial solution along the FV subdomains with their corresponding subcell
distribution.
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Table 2: Convergence rates for the MHD equations with initial condition given by the smooth circularly polarized Alfvén wave. Results for L2
norm error of the x-component of magnetic field are given. The computations were performed with the pure DGSEM, and the hybrid DG/FV with
all elements flagged as troubled. The schemes use polynomial degrees N = 3, 5, 7, that is for orders of accuracy O(4), O(6) and O(8).

DGSEM Hybrid DG/FV

Method Elements L2 error L2 order L2 error L2 order

DG-P3

32 × 16 4.73 × 10−4 3.68 × 10−4

64 × 32 2.95 × 10−5 4.01 5.19 × 10−5 2.83
128 × 64 1.77 × 10−6 4.06 6.37 × 10−6 3.03
256 × 128 9.55 × 10−8 4.21 7.76 × 10−7 3.04

DG-P5

16 × 8 2.18 × 10−7 6.72 × 10−4

32 × 16 3.35 × 10−9 6.02 8.38 × 10−5 3.00
64 × 32 4.70 × 10−11 6.16 9.83 × 10−6 3.09

128 × 64 6.44 × 10−13 6.19 1.13 × 10−6 3.12

DG-P7

8 × 4 9.29 × 10−8 7.19 × 10−4

16 × 8 4.82 × 10−10 7.59 9.52 × 10−5 2.92
32 × 16 2.33 × 10−12 7.69 1.21 × 10−5 2.98
64 × 32 1.10 × 10−14 7.72 1.46 × 10−6 3.05

4.1. Magnetohydrodynamics

4.2. Propagation of a smooth circularly polarized Alfvén wave

In order to check the order of accuracy of the algorithm with high order polynomials, we need to know a smooth
exact solution of the MHD equations. The propagation of a smooth circularly polarized Alfvén wave is an example
of such exact solution. Therefore it is suitable for performing a convergence test. Following Mignone et al. [45],
the simulation parameters are set as follows: the two-dimensional computational domain has dimensions Lx = 1.0
and Ly = 0.5, and nx = 2ny, where nx is the number of elements in x-direction, and ny is the number of elements in
y-direction. The Alfvén wave travels along the diagonal of the domain, and forms an angle α = arctan(0.5) ≈ 26.6◦

with respect to the x-axis. The primitive variables are set in the following way: the density is set to ρ = 1, and the
pressure p = 0.1. Let us define the quantities v0 = 0.1, B0 = 0.1, and x‖ = (x cosα + y sinα). The components of the
velocity and magnetic field perpendicular to the wave vector are given by v⊥ = v0 sin(2πx‖) and B⊥ = B0 sin(2πx‖),
and the velocity and magnetic field in z-direction are vz = v0 cos(2πx‖) and Bz = B0 cos(2πx‖). The perpendicular
components v⊥ and B⊥ can be written as linear combination of Bx and By through B⊥ = By cosα − Bx sinα, and
B‖ = Bx cosα + By sinα. An ideal gas EOS with adiabatic exponent γ = 5/3 is used. Periodic boundary conditions
are prescribed everywhere. The errors and the rate of convergence are reported in the table 2, for computations at
simulation time t = 1, and for polynomials of degree N = 3, 5, 7. From this table we can observe that the experimental
order of convergence (EOC) is achieved by the pure DGSEM, but the hybrid DG/FV scheme with all elements flagged
as troubled is third order accurate, the order of the WENO3 reconstruction.

4.3. One-dimensional Riemann problems

Here, we run a series of one-dimensional Riemann problems, which have been extensively used to check the
robustness of numerical schemes for conservation laws. We analyze the test problems reported in [28, 31, 67]. These
problems are characterized by the appearance of different shock patterns after the breaking of the membrane. In order
to clarify, a Riemann problem is an initial-value problem for a conservation law defined as

∂u
∂t

+
∂f (u)
∂x

= 0,

u(x, 0) =

uL(x) for x < xm,

uR(x) for x > xm,

(77)
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Table 3: Riemann problems for the magnetohydrodynamics equations. The initial states have been taken from Ryu and Jones [28]. The adiabatic
index is set to γ = 5/3 and the computational domain is the interval [0, 1]. For the problems 1 and 2, the magnetic field components have to be
divided by

√
4π.

Test State ρ vx vy vz p Bx By Bz

RP-1 wL 1.00 10.00 0.00 0.00 20.00 5.00 5.00 0.00
wR 1.00 −10.00 0.00 0.00 1.00 5.00 5.00 0.00

RP-2 wL 1.08 1.20 0.01 0.50 0.95 2.00 3.60 2.00
wR 1.00 0.00 0.00 0.00 1.00 2.00 4.00 2.00

RP-3 wL 1.00 0.00 0.00 0.00 1.00 0.70 0.00 0.00
wR 0.30 0.00 0.00 1.00 0.20 0.70 1.00 0.00

RP-4 wL 1.00 0.00 0.00 0.00 1.00 0.75 1.00 0.00
wR 0.125 0.00 0.00 0.00 0.10 0.75 −1.00 0.00

where xm is the position of the initial discontinuity, and uL and uR are two constant states written in conservative
variables. Typically, the initial condition in a hyperbolic boundary-value problem is provided in terms of the primitive
variables [56]. Therefore, in this work, the left state will be represented by wL =

(
ρ, vx, vy, vz, p, Bx, By, Bz

)
L and the

right state by wR =
(
ρ, vx, vy, vz, p, Bx, By, Bz

)
R. These vectors are written in primitive variables, in contrast with the

vectors uL and uR. For the four Riemann problems discussed, the one-dimensional domain is the closed interval [0, 1].
The membrane is localized in the point xm = 0.5. An ideal gas EOS with adiabatic index γ = 5/3 is assumed for
all Riemann problems. Dirichlet boundary conditions are imposed at domain boundaries. The computational domain
is decomposed into 500 elements, for all polynomials degrees. The hybrid DG/FV scheme used for solving these
problems employs polynomials of degree N = 2, 4, 6. The four initial conditions are given in table 3, and the exact
solutions have been obtained with the exact Riemann solver developed by Torrilhon [68], and they are plotted as red
lines (see figure 6). The description of the flow patterns is presented below together with some comments regarding
the capabilities of the hybrid DG/FV scheme with WENO3 reconstruction in the FV solver.

Riemann problem 1 (RP-1). The flow pattern features, after the breaking of the membrane, two fast shocks, one weak
slow shock, one slow rarefaction and one contact discontinuity. In the figure 6 (top) are depicted plots of the density,
thermal pressure, and the y-component of the magnetic field at simulation time t = 0.08. The discontinuities are very
well captured. Very small oscillations are observed for all polynomials degrees.

Riemann problem 2 (RP-2). This problem comprises multiple weak discontinuities, namely, two fast shocks, two
slow shocks, two rotational discontinuities and one contact discontinuity. The shocks travel from each side of the
contact discontinuity. In the figure 6 (second row, from top) are depicted plots of the density, thermal pressure, and
the y-component of the magnetic field at simulation time t = 0.2. Thanks to the subcell resolution of the hybrid
DG/FV scheme with WENO3 reconstruction, we observe a very good agreement with the exact solution.

Riemann problem 3 (RP-3). In this problem are present a switch-on slow rarefaction wave. The following flow
structures are developed: a hydrodynamic rarefaction, a switch-on slow rarefaction, a contact discontinuity, a slow
shock, a rotational discontinuity, and a fast rarefaction. In the figure 6 (second row, from bottom) are depicted plots
of the density, thermal pressure, and the y-component of the magnetic field at time t = 0.16. All structures mentioned
before are present in the figure, from left to right. The discontinuities have been very well captured and they are
oscillations-free.

Riemann problem 4 (RP-4). This problem is characterized by the formation of the so-called compound structures.
These structures involve a shock and a rarefaction wave traveling together. Besides, the test involves a left-going slow
compound wave. In the figure 6 (bottom) are depicted plots of the density, thermal pressure, and the y-component of
the magnetic field at simulation time t = 0.1. The flow pattern in the figures, from left to right, are a left-going fast
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Figure 6: Plots for the Riemann problems RP-1, RP-2, RP-3, and RP-4. The initial states have been provided in the table 3. An ideal gas EOS with
adiabatic index γ = 5/3 is used. The hybrid DG/FV scheme used for solving these problems employs polynomials of degree N = 2, 4, 6.
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Figure 7: Magnetic field loop advection. Contour plots of the magnetic pressure without divergence cleaning (top) and with divergence cleaning
(bottom) at time t = 0 (left) and at time t = 2 (right). The solution was computed with a hybrid DG/FV scheme with polynomial degree N = 5.
The computational domain is Ω = [−1.0,+1.0] × [−0.5,+0.5], and it has been discretized by using a mesh of 180 × 90 elements.

rarefaction, a left-going slow compound wave, a contact discontinuity, a right-going slow shock wave, and a right-
going fast rarefaction wave. The hybrid DG/FV scheme with WENO3 reconstruction produces a solution that is in
good agreement with the exact solution, except in the compound wave and contact discontinuity.

4.4. Multidimensional test problems
4.4.1. Magnetic field loop advection

The high-order DGSEM is not able by itself to maintain the solenoidal constraint ∇ · B = 0. It requires an addi-
tional procedure to tackle this issue. Here we employ the divergence cleaning of Dedner et al. [43], with cr = 0.18,
and ch determined by the maximum propagation speed in the system. The magnetic field loop advection is designed to
assess the capability of the numerical scheme to keep the solenoidal constraint. The problem consists in a cylindrical
current distribution, which is advected along some direction of the computational domain. The main feature of the
loop is that it remains in magnetostatic balance, and therefore, after some periods, its profile should be kept. Without
a divergence cleaning algorithm, the magnetic loop will smear over the time [69].

The problem setup is as follows: the computational domain is Ω = [−1.0,+1.0] × [−0.5,+0.5]. The density and
the pressure are initially set to ρ = 1 and p = 1 in the whole domain. The initial velocity profile is given by

vx = v0nx, vy = v0ny, vz = 0, (78)

where v0 =
√

5 is the magnitude of the velocity, and nx = 2/
√

5 and ny = 1/
√

5 are the components of the unit vector
in the loop travel direction. The magnetic field is uniform everywhere, except for the loop structure of radius R = 0.3.
For r ≤ R we have

Bx = −B0y/r, By = +B0x/r, Bz = 0, (79)

where r =
√

x2 + y2, and B0 = 10−3 is the magnitude of the magnetic field, and it is chosen in such a way that the
magnetic pressure is smaller than the gas pressure. An ideal gas EOS with adiabatic index γ = 5/3 is used. Regarding
the discretization, the computational domain is made of 180 × 90 elements. A polynomial degree N = 5 is employed
in the hybrid DG/FV scheme. We set periodic boundary conditions at the boundaries of the computational domain.
The simulation time is t = 2, and in the figure 7 is depicted the magnetic pressure at times t ∈

{
0.0, 2.0

}
. Observe that

the loop profile is only kept when the divergence cleaning is used in the algorithm.
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Figure 8: Current sheet problem. Contour plots of the density at times t = 5.0 (left) and t = 7.5 (right). The calculations were performed with a
hybrid DG/FV scheme, with polynomial degree N = 4. The computational domain is Ω = [−0.5,+0.5] × [−0.5,+0.5], and it has been discretized
by using a mesh of 120 × 120 elements.

4.4.2. Current sheet
In this test problem, a region is uniformly filled with a gas at rest. The initial setup of the magnetic field is such that

this switches signs at the slices x = +0.25 and x = −0.25. This configuration is perturbed with a sinusoidal velocity
function in y, which generates nonlinear, linearly polarized Alfvén waves. These Alfvén waves turn into magnetosonic
waves due to the magnetic pressure does not remain constant. The two current sheets at x = ±0.25 originate magnetic
reconnection. The magnetic reconnection drives highly over-pressurized regions, which launch magnetosonic waves
transverse to the field, causing magnetic energy to be transformed into thermal energy [70]. Large magnetic field
gradients are produced in the proximity of the points where the magnetic reconnection takes place. This problem is
useful to check if the numerical scheme is capable of handling magnetic reconnection and shock waves.

The computational domain is Ω = [−0.5,+0.5] × [−0.5,+0.5]. The density and the pressure are uniform in the
whole computational domain, with ρ = 1.0, and p = 0.5β. The parameter β = 0.1 is the ratio of gas pressure to
magnetic energy density. The components of the velocity are vy = vz = 0, and vx = A sin(2πy), where A = 0.1
is a parameter that is typically used to test the robustness of the algorithm. The magnetic field components are
Bx = Bz = 0, and By = 1 for |x| > 0.25 and By = −1 otherwise. An ideal gas EOS with adiabatic index γ = 5/3 is
assumed. Periodic boundary conditions are set at all four boundaries of the domain. The problem runs up to final time
t = 10. In the figure 8 are depicted the density at times t = 5.0 and t = 7.5. At time t = 5 the solution is plotted along
with the mesh. The FV subcells are located in those regions with strong shocks. Magnetic islands emerge and merge
each other. The numerical results are similar to those computed with a high-order finite volume scheme [33]. Due
to the complex structures present in this problem along with the large gradients in the flow variables, it is usual that
a high-order method without an appropriate shock-capturing strategy crashes. We stress the robustness of the hybrid
DG/FV scheme for this kind of problems, even for long time runs.

4.4.3. Orszag–Tang vortex
The Orszag–Tang vortex was first analyzed by Orszag and Tang [71] for the incompressible MHD equations.

Nowadays this test is widely used to assess the capacity of the numerical scheme for handling the formation and the
interactions of MHD shocks in the context of the compressible MHD equations [69, 72–74]. Initially, the flow profile
consists in the superposition of a velocity vortex with a magnetic vortex. This configuration is rather unstable, which
originates a broad range of MHD waves, interacting with each other, making a transition towards turbulence.

The density and the pressure are uniform in the whole domain, with ρ = γ2 and p = γ. With this choice of the
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Figure 9: Orszag–Tang vortex problem. Contour plots of the density (left) and the pressure (right) at time t = 0.5. The calculations were performed
with a hybrid DG/FV scheme, with polynomial degree N = 5. The computational domain is Ω = [0, 1]× [0, 1], and it has been discretized by using
a mesh of 120 × 120 elements.

density and pressure, the sound speed is cs = 1. The initial velocity profile is given by

vx = − sin(2πy), vy = + sin(2πx), vz = 0, (80)

and the magnetic field is

Bx = − sin(2πy), By = + sin(4πx), Bz = 0. (81)

An ideal gas EOS with adiabatic index γ = 5/3 is assumed. The computational domain is Ω = [0, 1]× [0, 1], and it has
been decomposed into 120×120 elements. Periodic boundary conditions are set at the boundaries of the domain. The
simulation time is t = 1.0, and in the figure 9 are depicted the density and gas pressure at time t = 0.5. For the plot
of the density, the mesh is also presented. The FV subdomains are evolved with a third-order finite volume WENO
scheme. The hybrid DG/FV method is quite stable and robust even for this kind of supersonic flow configurations.
Observe that the contours are not smooth. This is because we have chosen a small threshold for deciding where to use
a FV solver and where a DG solver. We wanted to use as much DG cells as possible for this problem. The polynomial
degree we employed is N = 5. The divergence cleaning of Dedner et al. [43] was used, with cr = 0.18, and ch

determined by the maximum propagation speed in the system. Additionally, in the figure 10 is plotted the pressure
along the slices y = 0.4277 and y = 0.3125 at time t = 0.5. Computations were made with a very high-order finite
difference WENO5 scheme (mesh of 6002 cells) and the hybrid DG/FV method with N = 5 (mesh of 1202 elements).
The profiles match very well, except at boundaries, where a slight shift is observed. It is also noticeable the lack of
oscillations in these slices for the hybrid DG/FV scheme, considering the finite difference as reference solution.

4.4.4. Cylindrical blast wave
This problem features a cylindrical region located in the center of a domain. The cylindrical region is filled with

a magnetized overpressured gas. After the system is released, strong shock waves move outwards [72, 75, 76]. The
computational domain is Ω = [0, 1] × [0, 1]. The density and pressure are uniform in the whole domain, with ρ = 1
and p = 0.1. In the cylindrical region (x − xc)2 + (y − yc)2 < R, with (xc, yc) = (0.5, 0.5), and R = 0.1, the pressure
is p = 10.0. The initial velocity is zero, vx = vy = vz = 0, and the magnetic field is Bx = By = Bz = 1/

√
2. An

ideal gas EOS with adiabatic index γ = 5/3 is employed. Periodic boundaries are also assumed. The simulation
time is t = 0.5, and in the figure 11 are depicted the density and pressure at time t = 0.1. The computational
domain is decomposed into 120×120 elements. The spatial discretization is the hybrid DG/FV scheme with WENO3
reconstruction operator. The polynomial used for the simulation has degree N = 5. The divergence cleaning of Dedner
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Figure 10: Orszag–Tang vortex problem. Plots of the pressure along the slices y = 0.3125 (left) and y = 0.4277 (right) at time t = 0.5. The
computations were done with a very high-order finite difference WENO5 scheme and the hybrid DG/FV method with N = 5.

et al. [43] was employed, with cr = 0.18. The FV solver is able to capture the shocks arising after the release of the
cylindrical region. The solution of this very difficult problem with the hybrid scheme confirms the robustness of the
shock-capturing approach. Very small oscillations can be observed in the contour lines of the pressure plot.

4.4.5. Rotor problem
This problem consists in a high-density, rapidly spinning fluid in a low-density fluid. Initially, the rotor and the

ambient medium are subject to an uniform magnetic field. The rotating fluid launches torsional Alfvén waves into
the fluid at rest [77]. The problem setup is as follows: in the ambient medium, the initial density and pressure are
uniform, with ρ = 1.0 and p = 1.0, and the velocity is zero, vx = vy = vz = 0. In the interior of the cylindrical rotor
(0.0 ≤ (x − xc)2 + (y − yc)2 ≤ 0.1, with (xc, yc) = (0.5, 0.5)), the fluid density is ρ = 10.0, and the pressure is the same
as in the ambient fluid. The fluid inside rotor has an angular velocity ω such that v = ωr = 1 at r = 0.1. We applied
a linear taper to the velocity and the density. This taper is applied only in the region 0 ≤ r ≤ 0.105 in such a way
that the density and the velocity have the same values that those of the ambient fluid. Finally, the components of the
magnetic field are Bx = 5.0, By = 0, and Bz = 0 in the whole computational domain.

The computational domain is Ω = [0, 1]× [0, 1]. An ideal gas EOS with γ = 7/5 is employed. Dirichlet boundary
conditions are assumed. The computational domain is discretized using 120 × 120 elements. The polynomial used in
the calculations has degree N = 5. For the treatment of the solenoidal constraint, the divergence cleaning of Dedner
et al. [43] has been employed. The simulation time is t = 0.5, and in the figure 12 are depicted the density (along the
mesh), pressure, Mach number, and the magnitude of the magnetic field at time t = 0.25. In the figure 13 is plotted
the pressure along the slices x = 0.5 and y = 0.5 at time t = 0.25. The computations were done with a very high-order
finite difference WENO5 scheme and the hybrid DG/FV method with N = 5. Observe the good agreement with the
solution obtained with the high-order finite difference scheme. A lack of oscillations is also noticeable. We point
out the difference at boundaries in this plot. This is an effect of the boundary conditions implemented in the hybrid
DG/FV scheme. A similar behavior also occurs for other computations with open boundaries in this work.

4.5. Relativistic hydrodynamics

4.5.1. Convergence test
We start by performing a convergence test of the hybrid DG/FV scheme for the SRHD equations. We consider a

exact solution of the SRHD equations proposed by He and Tang [78]. The problem consists in a wave propagating in
the physical domain [0, 2/

√
2] × [0, 2] at an angle θ = 30◦ relative to the horizontal axis. The initial profile is

ρ = 1 + A sin (φ(0)) , vx = v0, vy = 0, p = 1, (82)
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Figure 11: Cylindrical blast wave. Contour plots of the density (left) and pressure (right) at time t = 0.1 obtained with a hybrid DG/FV scheme,
with polynomial degree N = 5. The computational domain is Ω = [0, 1] × [0, 1], and it is discretized by using a mesh of 120 × 120 elements.

with A = 0.2, and v0 = 0.2. This problem has the exact solution

ρ = 1 + A sin (φ(t)) , vx = v0, vy = 0, p = 1. (83)

The function φ(t) is defined as follows

φ(t) = 2π
(
(x cos θ + y sin θ) − (vx cos θ + vy sin θ)t

)
. (84)

The discretization of the computational domain satisfies Ny = 2Nx, where Nx, and Ny are, respectively, the number of
elements in x- and y-direction. Periodic boundary conditions are imposed. In the table 4 are shown the convergence
rates of the rest-mass density for the SRHD equations solved with the DGSEM and the hybrid DG/FV methods. The
simulation time is t = 1, and for polynomials of degree N = 3, 5, 7. Observe that the EOC is achieved by the pure
DGSEM, but the hybrid DG/FV scheme with all elements flagged as troubled is third order accurate, the order of the
WENO3 reconstruction.

4.5.2. One-dimensional Riemann problems
In this section we will present four one-dimensional Riemann problems for the SRHD equations. These problems

comprise the standard testbench for SRHD [79, 80]. Like for the MHD equations, for all test cases in this section
we will assume that the one-dimensional domain is the interval [0, 1]. The membrane is localized at xm = 0.5. The
numerical solution computed with the hybrid DG/FV scheme with polynomials of degree N = 2, 4, 6 is compared
with the exact solution obtained from the exact Riemann solver by Rezzolla and Zanotti [81]. The left and right vector
states in primitive variables are written as wL =

(
ρ, vx, vy, p

)
L and wR =

(
ρ, vx, vy, p

)
R, respectively.

Riemann problem 1 (RP-1). The initial condition is given by the following left and right states

wL =
(
10, 0, 0, 40/3

)
, wR =

(
1, 0, 0, 0

)
. (85)

The EOS corresponds to the ideal gas EOS with adiabatic index γ = 5/3. This test problem is also known as the
mildly relativistic blast wave [35, 82, 83]. The zero pressure in the right state is approximated by p ≈ 2/3 × 10−6 for
numerical reasons. Due to this very small value of the pressure, any oscillation generated in the approximate solution
of the pressure will break up the simulation. A very robust shock capturing scheme is then required for handling such
kind of problems. Plots of the rest-mass density, pressure, and the x-component of the velocity are depicted in the
figure 14 (top). The domain has been discretized with 500 elements, and a polynomial of degree N = 5 is used in the
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Figure 12: Rotor problem. Contour plots of the density, pressure, Mach number, and the magnitude of the magnetic field at time t = 0.25. These
calculations were performed with a hybrid DG/FV scheme, with polynomial degree N = 5, and with WENO3 reconstruction in the FV solver. The
computational domain is Ω = [0, 1] × [0, 1], and it has been discretized by using a mesh of 120 × 120 elements.
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Figure 13: Rotor problem. Plots of the y-component of the magnetic field along the slice y = 0.5 (left) and plots of the x-component of the magnetic
field along the slice x = 0.5 (right) at time t = 0.25. The computations were done with a very high-order finite difference WENO5 scheme and the
hybrid DG/FV method with N = 5.

Table 4: Convergence rates for the SRHD equations with initial condition given by the smooth flow problem. Results for L2 norm error of the
rest-mass density are given. The computations were done with the pure DGSEM, and the hybrid DG/FV with all elements flagged as troubled. The
schemes use polynomial degrees N = 3, 5, 7, that is for orders of accuracy O(4), O(6) and O(8).

DGSEM Hybrid DG/FV

Method Elements L2 error L2 order L2 error L2 order

DG-P3

32 × 16 3.18 × 10−4 4.76 × 10−4

64 × 32 1.87 × 10−5 4.08 5.85 × 10−5 3.03
128 × 64 1.05 × 10−6 4.16 7.08 × 10−6 3.05
256 × 128 5.75 × 10−8 4.19 8.56 × 10−7 3.05

DG-P5

16 × 8 4.38 × 10−7 5.13 × 10−4

32 × 16 7.21 × 10−9 5.93 6.52 × 10−5 2.98
64 × 32 1.13 × 10−10 6.00 7.23 × 10−6 3.17

128 × 64 1.63 × 10−12 6.11 7.98 × 10−7 3.18

DG-P7

8 × 4 1.47 × 10−7 1.37 × 10−3

16 × 8 6.98 × 10−10 7.72 1.98 × 10−4 2.79
32 × 16 3.26 × 10−12 7.74 2.79 × 10−5 2.83
64 × 32 1.62 × 10−14 7.65 3.28 × 10−6 3.09

hybrid DG/FV scheme. Dirichlet boundary conditions are set at both sides of the interval. The final simulation time
is t = 0.4. The waves present in this problem are a left-going transonic rarefaction wave, a contact discontinuity and a
right-going shock wave. The fluid behind the shock wave is traveling with a lightly relativistic speed v = 0.72c to the
right. In this dense shell behind the shock, the fluid is compressed. The fluid is thermodynamically relativistic because
it is heated in such a way that the internal energy is much larger than the rest-mass energy, but mildly relativistic
dynamically. The calculations are oscillations-free. This shows the robustness of the shock-capturing method.

Riemann problem 2 (RP-2). This problem, also called the highly relativistic blast wave, has the following initial state

wL =
(
1, 0, 0, 103), wR =

(
1, 0, 0, 10−2). (86)
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Figure 14: One-dimensional Riemann problems. Plots for the Riemann problems RP-1, RP-2, RP-3, and RP-4. The computations were performed
with the hybrid DG/FV scheme with polynomials of degree N = 2, 4, 6, and with WENO3 reconstruction operator in the FV solver.
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The ideal gas EOS with adiabatic index γ = 5/3 has been employed. The interval is discretized with 500 elements.
Dirichlet boundary conditions have been utilized at domain edges. The final simulation time is t = 0.4. Plots of the
rest-mass density, pressure, and the x-component of the velocity are depicted in the figure 14 (second row, from top
to bottom). After the breakup of the membrane, a dense intermediate state is formed, and it is located between the
right-traveling shock wave and the rarefaction wave moving to the left. Observe that the shock wave and the contact
discontinuity are very close to each other. The very thin and dense shell is rather well resolved thanks to the subcell
resolution of the hybrid DG/FV method. It is noticeable from the plots the lack of oscillations.

Riemann problem 3 (RP-3). The transverse blast wave problem has initial conditions similar to the RP-2, except that
the transverse velocity in the right state is non-zero. The initial left and right states are

wL =
(
1, 0, 0, 103), wR =

(
1, 0, 0.99, 10−2). (87)

We have employed the ideal gas EOS with adiabatic index γ = 5/3. The domain has 500 elements, and the final
simulation time is t = 0.4. Plots of the rest-mass density, pressure, and the x-component of the velocity are depicted in
the figure 14 (second row, from bottom to top). It worths to mention that in Newtonian hydrodynamics the transverse
momentum is not coupled with the longitudinal one and it thus is simply advected. The momentum equations in
SRHD are coupled to each other through the Lorentz factor. This introduces new physical effects, especially with
non-zero transverse velocities [84, 85]. Observe that the solution is in very good agreement with the exact solution,
and the computed solution is oscillation-free.

Riemann problem 4 (RP-4). In the planar shock reflection an ideal cold fluid collides a wall. Afterwards a shock
wave propagates backwards, leaving the gas behind at rest. The initial state is given by

w =
(
1, 0.99999, 0, 0.01

)
(88)

The reflecting wall is located in x = 1, and at x = 0 transmissive boundary conditions are imposed. An ideal gas
EOS with adiabatic index γ = 4/3 is used. The domain is discretized with 500 elements. The final simulation time
is t = 1.5. The exact solution of this problem was first obtained by Blandford and McKee [86]. Plots of the rest-
mass density, pressure, and the x-component of the velocity computed with the hybrid DG/FV scheme are depicted
in the figure 14 (bottom). Close to the wall (x = 1), the numerical solution of the rest-mass density does not show
an undershooting, as it occurs in the solution computed with finite-volume or finite difference methods [36]. The
undershooting is due to the wall heating phenomenon [87]. The shock has been very well captured with the hybrid
scheme, but some small oscillations are still visible around it.

4.5.3. Two-dimensional Riemann problems
Two-dimensional Riemann problems are now considered. The initial states have been taken from [38, 88]. The

computational domain is Ω = [−1, 1]×[−1, 1], and it has been divided into four quadrants. The separating membranes
are located along the axes x and y. In these Riemann problems are present all essential features typically found in a
two-dimensional flow, for instance, shock reflections, shock interactions, vortices, etc. We write the initial states for
every quadrant (Q1, Q2, Q3, and Q4)

Q1 :=
{
(x, y) ∈ [−1, 1]2

∣∣∣ x ≥ 0, y ≥ 0
}
,

Q2 :=
{
(x, y) ∈ [−1, 1]2

∣∣∣ x < 0, y ≥ 0
}
,

Q3 :=
{
(x, y) ∈ [−1, 1]2

∣∣∣ x < 0, y < 0
}
,

Q4 :=
{
(x, y) ∈ [−1, 1]2

∣∣∣ x ≥ 0, y < 0
}
.

(89)

For all Riemann problems, an ideal gas EOS with adiabatic index γ = 5/3 is used, and transmissive boundary condi-
tions are used in all faces of the computational domain.
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Figure 15: Two-dimensional Riemann problem RP-5. Contour plots of the rest-mass density (left) and pressure (right) at t = 0.8. The solution was
obtained with a hybrid DG/FV scheme with polynomials of degree N = 5. The domain Ω = [−1, 1] × [−1, 1] was decomposed into 120 × 120
elements.

Riemann problem 5 (RP-5). The domain is subdivided into four quadrants, where the states in primitive variables are
given by

wQ1 =
(
0.035145216124503, 0, 0, 0.162931056509027

)
,

wQ2 =
(
0.1, 0.7, 0, 1

)
,

wQ3 =
(
0.5, 0, 0, 1

)
,

wQ4 =
(
0.1, 0, 0.7, 1

)
.

(90)

The final simulation time is t = 0.8. In the figure 15 are depicted contour plots of the rest-mass density (along
the mesh) and pressure. This problem features contact discontinuities and shock waves. After the breakup of the
membranes, two contact discontinuities are originated on the left and bottom of the domain, and in the first quadrant
two curved front shocks appear. In the third quadrant a like-jet structure moving in south-west direction is present
[88]. The hybrid DG/FV scheme is quite robust and allows to compute in a multidimensional fashion such complex
flow patterns. The approximated solution computed with the hybrid DG/FV scheme using polynomials of degree
N = 5 on a mesh of 120 × 120 elements in good agreement with the reported in the literature [40, 88].

Riemann problem 6 (RP-6). The initial condition is given by the following states in primitive variables

wQ1 =
(
0.5, 0.5,−0.5, 5

)
,

wQ2 =
(
1, 0.5, 0.5, 5

)
,

wQ3 =
(
3,−0.5, 0.5, 5

)
,

wQ4 =
(
1.5,−0.5,−0.5, 5

)
.

(91)

The final simulation time is t = 0.8. In the figure 16 are shown contour plots of the rest-mass density and the Lorentz
factor. The mesh with the FV subcells is also shown. From the plots can be seen the interaction of four vortex sheets,
which form a spiral with very low rest-mass density in the center of the domain. The hybrid DG/FV scheme using
polynomials of degree N = 5 on a mesh of 120 × 120 elements has an excellent behavior in the very low density
region, which means that the scheme does not produce negative densities or pressures even in regions with cavitation.
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Figure 16: Two-dimensional Riemann problem RP-6. Contour plots of the rest-mass density (left) and Lorentz factor (right) at t = 0.8. The solution
was obtained with a hybrid DG/FV scheme with polynomials of degree N = 5. The domain Ω = [−1, 1] × [−1, 1] was decomposed into 120 × 120
elements.

Riemann problem 7 (RP-7). In this two-dimensional Riemann problem, the initial condition is given as follows

wQ1 =
(
1, 0, 0, 1

)
,

wQ2 =
(
0.5771,−0.3529, 0, 0.4

)
,

wQ3 =
(
1,−0.3529,−0.3529, 1

)
,

wQ4 =
(
0.5771, 0,−0.3529, 0.4

)
.

(92)

The final simulation time is t = 0.8. In the figure 17 are shown contour plots of the rest-mass density and the Mach
number computed with a hybrid DG/FV scheme using polynomials of degree N = 5 on a mesh of 120×120 elements.
In this problem, the planar rarefaction waves originated after the breakup of the membranes interact each other. This
interaction generates two symmetric shock waves in the zone where the rarefaction waves have interplayed. Observe
the FV subdomains in and around the regions where the rarefaction waves are present.

4.5.4. Cloud-shock interaction
In this problem, we follow the initial setup given by He and Tang [78]. An ideal gas EOS with adiabatic index

γ = 5/3 is employed in the simulation. The computational domain is Ω = [0, 2]×[0, 1]. Dirichlet boundary conditions
are imposed. The center of the cylindrical cloud is located in the point (1.4, 0.5) and its radius is r = 0.15. The initial
state for the cloud in primitive variables is wc = (3.1538, 0, 0, 0.05). The left traveling shock wave at time t = 0 is
located at x = 1.6, with left and right states given by

wL = (1, 0, 0, 0.05),
wR = (1.86522508063118,−0.19678110737829, 0, 0.15).

(93)

We discretize the computational domain with 160 × 80 elements. In the figure 18 are depicted contour plots of the
rest-mass density and Mach number at simulation time t = 3.0. The mesh and the FV subdomains are also plotted.
The computations were done with the hybrid DG/FV scheme with polynomials of degree N = 5. The profile of the
bubble after the interaction with the shock wave is in good agreement with the reported in the literature [36, 78]. The
computation was stable and negative densities or pressures were not generated.
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Figure 17: Two-dimensional Riemann problem RP-7. Contour plots of the rest-mass density (left) and Mach number (right) at t = 0.8. The solution
was obtained with a hybrid DG/FV scheme with polynomials of degree N = 5. The domain Ω = [−1, 1] × [−1, 1] was decomposed into 120 × 120
elements.
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Figure 18: Relativistic cloud-shock interaction. Contour plots of the rest-mass density (left), and Mach number (right) at time t = 3.0. The
computations were done with a hybrid DG/FV scheme with polynomials of degree N = 5. The computational domain is the Ω = [0, 2]× [0, 1], and
it is discretized by using a mesh of 160 × 80 elements.

5. Conclusions

In this work we have presented the buildings blocks of a high-order hybrid DG/FV scheme for MHD and SRHD.
The hybrid scheme is based on a discontinuous Galerkin spectral element on quadrilateral/hexahedral meshes as main
spatial discretization operator, and it is employed basically in regions with smooth flows. For those regions containing
discontinuities, a robust second/third order finite volume scheme is used as shock capturing approach. In order to
handle discontinuities, an oscillations indicator is used to detect and to mark the elements containing them. These
troubled elements are projected onto a subdomain made of FV subcells, and then evolved with the robust FV method.
In this way the very high-order hybrid method is capable of solving problems with shock waves. Time discretization
is performed with a fourth-order SSPRK method. The solenoidal constraint is maintained with the GLM divergence
cleaning. From our experience in the area of very high-order FV-WENO schemes for computational astrophysics
[33, 36], the DGSEM domains are evolved using the conservative variables, while in the FV subdomains the solution
is computed by employing the primitive variables. This choice provides more stability to the computations.

A comprehensive testbench for MHD and SRHD was discussed. One- and two-dimensional test problems were
presented. Convergence tests have been also discussed in order to check the order of accuracy of the hybrid scheme for
both equations systems. The computations show that the hybrid scheme converges to the theoretical order of accuracy.
For problems with shocks, the hybrid scheme captures very well the discontinuities, even in very cases with extreme
density or pressure conditions. Polynomials up to sixth order degree were used. These results demonstrated that the
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hybrid DG/FV scheme is an excellent candidate as a numerical solver for equations systems typical in computational
astrophysics. Among other outstanding properties of the hybrid scheme we can mention: the method is highly par-
allelizable [26], allows unstructured quadrilateral/hexahedral meshes, and it is very robust when strong shocks take
place in the simulation. Further research is focused on hybrid DG/FV schemes with quad-/octree based adaptive mesh
refinement in order to simulate in a more efficient manner small structures in magnetohydrodynamic and relativistic
turbulence simulations. Furthermore, the proposed method can also be used in the context of polygon/polyhedron
computational meshes. Some similar work has been done in that direction by other researchers [89]. This will be
useful for some CFD codes for astrophysics which make use of DG schemes on moving unstructured grids defined as
the Voronoi tessellation of a set of mesh-generating points, which will require such efficient shock-capturing schemes.
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