
ar
X

iv
:1

70
9.

06
78

0v
2

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
7

Fe
b

20
18

How to Differentiate Collective Variables in Free Energy

Codes: Computer-Algebra Code Generation and

Automatic Differentiation

Toni Giorgino1

Institute of Neurosciences, National Research Council (CNR-IN),
Corso Stati Uniti 4, I-35127, Padua, Italy

Abstract

The proper choice of collective variables (CVs) is central to biased-sampling
free energy reconstruction methods in molecular dynamics simulations. The
PLUMED 2 library, for instance, provides several sophisticated CV choices,
implemented in a C++ framework; however, developing new CVs is still time
consuming due to the need to provide code for the analytical derivatives of
all functions with respect to atomic coordinates. We present two solutions
to this problem, namely (a) symbolic differentiation and code generation,
and (b) automatic code differentiation, in both cases leveraging open-source
libraries (SymPy and Stan Math respectively). The two approaches are
demonstrated and discussed in detail implementing a realistic example CV,
the local radius of curvature of a polymer. Users may use the code as a
template to streamline the implementation of their own CVs using high-
level constructs and automatic gradient computation.

Keywords: Molecular Dynamics, Free Energy, Biased sampling,
Metadynamics, Symbolic, C++

Email address: toni.giorgino@cnr.it (Toni Giorgino)
1Present address: Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR-IBF),

c/o Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133
Milan, Italy

Preprint submitted to Computer Physics Communications February 28, 2018

http://arxiv.org/abs/1709.06780v2

PROGRAM SUMMARY
Program Title:

Practical approaches to the differentiation of collective variables in free energy
codes: computer-algebra code generation and automatic differentiation
Licensing provisions:

GNU Lesser General Public License Version 3 (LGPL-3)
Programming languages:

C++, Python
Nature of problem:

The C++ implementation of collective variables (CVs, functions of atomic coordi-
nates to be used in biased sampling applications) in biasing libraries for atomistic
simulations, such as PLUMED [1], requires computation of both the variable and
its gradient with respect to the atomic coordinates; coding and testing the analyt-
ical derivatives complicates the implementation of new CVs.
Solution method:

The paper shows two approaches to automate the computation of CV gradients,
namely, symbolic differentiation with code generation and automatic code differ-
entiation, demonstrating their implementation entirely with open-source software
(respectively, SymPy and the Stan Math Library).
Additional comments:

The paper’s accompanying code serves as an example and template for the methods
described in the paper; it is distributed as the two modules curvature codegen

and curvature autodiff integrated in PLUMED 2’s source tree; the latest version
is available at https://github.com/tonigi/plumed2-automatic-gradients .

References

[1] Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G. PLUMED 2:
New feathers for an old bird. Computer Physics Communications. 2014
Feb;185(2):604-13.

1. Introduction

Biased approaches to molecular dynamics (MD) enable the sampling of
events whose occurrence would otherwise be prohibitively rare on the time
scales affordable by direct (unbiased) integration of the equations of motion.
Central to the possibility to obtain converged estimates of thermodynamic
quantities is the search of appropriate projections of the system state [1]; in
turn, this enables the search of a reaction coordinate to effectively push the
specific system out of free energy minima. When an appropriate reaction
coordinate is selected, the sampling of a system can be accelerated through a

2

https://github.com/tonigi/plumed2-automatic-gradients

number of biased sampling methods, such as umbrella sampling [2], metady-
namics [3], SuMD [4] and others [5], most of which enable the reconstruction
of the free energy landscape, and in some cases the kinetics [6, 7], on the
space spanned by the chosen variables. The availability of a wide range
of functions of atomic coordinates (collective variables or CVs) is thus a
valuable asset in the construction of proper reaction coordinates [8].

PLUMED 2 is a widely-used engine to perform biased sampling simula-
tions in atomistic simulations [9]. Part of PLUMED’s success is due to the
number and variety of collective variables implemented (see e.g. [10, 11, 12]),
enabling projections of the system state on “axes” of intuitive value, and
the number of CVs implemented in PLUMED 2 has been growing steadily
(Figure 1). Users can incorporate their own CVs coding them in C++; how-
ever, the implementation of complex functions is complicated by the need
to compute gradients with respect to atomic coordinates, which increases
the complexity and debugging time of the corresponding source codes.

Here, we present two approaches to automatically implement CV gradi-
ents:

1. a symbolic differentiation with code generation approach, where the
SymPy computer algebra system (CAS) [13] is used to derive the ex-
pressions and automatically produce an equivalent C function (Sec-
tion 2); and

2. an automatic code differentiation approach, using the reverse-mode
code differentiation capabilities provided by the Stan Math library [14]
(Section 3).

We demonstrate the two approaches on the simple (yet non trivial) case
of a CV computing the local curvature of a polymer, approximated as the
radius of curvature of a circle passing through three consecutive atoms. The
two approaches provide identical numerical results and are based on mature
and well-known open source libraries. Their different characteristics will be
presented in the discussion section.

Example code is made available as open-source respectively in PLUMED 2’s
curvature codegen and curvature autodiffmodules; from there, the cor-
responding source files can be used as templates for the implementation of
customized CVs.

1.1. Background

A CV is a function of a system’s state through the coordinates of its n
particles, namely: [15]

f(x) = f(x1, . . . ,xn)

3

●●

●

●●●●●

●
●

●●
●●
●

●●●

●

●●

●
●

●
●
●
●●
●●

●●

●●

●● ●

●

●●
●●●

●

●●●

●

●

●

●●●

●
●

●

●●
●
●

●
● ●

●●

●

●●

●
●

●

● ●

●

● ●

●

●●●

●

●

●

●

●

●

2012

2013

2014

2015

2016

2017

0

25

50

75

0 50 100 150 200 250

Lines of code / 1,000

N
u

m
b

e
r

o
f

c
o

ll
e

c
ti
v
e

 v
a

ri
a

b
le

s

Figure 1: Growth of the number of CVs in PLUMED 2 and the corresponding code base
(lines of C++ code in the master branch, including headers and inline documentation; the
count also includes support functions, command line utilities and file readers).

4

Applying biases to CVs implies that the system is subject to a potential V
which depends on the coordinates solely through f :

V (x) = V1(f(x))

The bias potential translates to forces acting on each atom, which are
computed in the biasing library and passed to the molecular dynamics (MD)
engine. The MD code adds them to those due to the force field, and inte-
grates the equations of motion. From the chain differentiation rule,

F(x) = −∇xV1(f(x)) = −
∂V1(f)

∂f
∇xf(x)

here ∂V1/∂f is the generalized force, set by the chosen biasing scheme (e.g.,
a time-dependent sum of Gaussians in the case of metadynamics), while
∇xf depends only on the functional form of f and the system state x.
Implementation of a CV requires the programmer to write code for f(x)
and its derivatives with respect to all of the arguments (number of involved
atoms times three Cartesian components).

1.2. Radius of curvature

To illustrate the methods, we shall use as an example the radius of
curvature at a given atom along a polymer. A natural choice for this quantity
is to compute the radius R of the circle (circumcircle) passing through three
given points r1, r2 and r3 (Figure 2), e.g. the centers of consecutive Cα
atoms. The diameter 2R is obtained elementarily via the sine rule as the
ratio between a side of the triangle formed by the points and the sine of the
opposing angle, i.e., calling rij = ri − rj and θ123 the angle at r2,

2R =
|r13|

sin θ123
with cos θ123 =

r12 · r23
|r12||r23|

(1)

The above expression is compact in vector notation, but the expres-
sions for its gradient in Cartesian coordinates, i.e. the components of
∇xR(r1, r2, r3) with x = (r1x, r1y, . . . , r3z), are unwieldy (see the notebook
CurvatureCodegen.ipynb).

1.3. Edge cases and inverse radius

Computer-assisted code generation does not automatically guarantee
that the functions are well-defined in all conditions. Of special relevance
are singularities on edge cases, such as collinearity (R → ∞) in the curva-
ture example. Edge cases are generally set aside when deriving expressions

5

Figure 2: The radius of curvature as a collective variable R(r1, r2, r3).

“on paper”, but their occurrence in computer code, however rare, must be
caught to avoid crashes in simulations.

In the example of this paper the user-visible INVERSE flag is added to
the curvature collective variables in order to illustrate a possible approach
to removing singularities, and to show how CV computations can be made
to depend on user-defined parameter. The idea is that the reciprocal of the
radius is a better-behaved collective variable, lacking the singularity (infinite
radius) for the case of three collinear points (which may arise e.g. when the
initial configuration of a polymer is generated artificially). Of note, this
solution does not eliminate a singularity in the gradient, whose limit for
collinear atoms is still undefined.

2. Generating code with a computer algebra system

CAS manipulate mathematical expressions in symbolic form. They usu-
ally build internal representations of expression as trees, which are subject to
transformations encoding algebraic manipulations (such as differentiation)
as pattern-matching rules. When desired, the trees can be evaluated numer-
ically, printed, or transformed in other languages. It is therefore tempting to
use CAS to generate lengthy mathematical expressions for later compilation
and inclusion in CV code.

We used the SymPy package [13] to implement the collective variable
as a mathematical expression, compute its gradient symbolically, and con-
vert the function and the gradient into C code for inclusion in PLUMED.
SymPy turned out to be suitable for this task because of three reasons: it
is open source and freely available; it provides excellent symbolic manipula-
tion and simplification features (among others); and generates stand-alone

6

A. Variable declaration

In [1]: from sympy import *

init_session() # Output omitted

In [2]: var("r_1x r_1y r_1z \

r_2x r_2y r_2z \

r_3x r_3y r_3z")

r_1=Matrix([r_1x, r_1y, r_1z])

r_2=Matrix([r_2x, r_2y, r_2z])

r_3=Matrix([r_3x, r_3y, r_3z])

In [3]: r_12=r_1-r_2

r_23=r_2-r_3

r_13=r_1-r_3

B. Function definition

In [4]: side2 = r_13.dot(r_13)

cos2a = r_12.dot(r_23)**2 /

(r_12.dot(r_12) * r_23.dot(r_23))

sin2a = 1-cos2a

R2 = side2/sin2a/4

R = sqrt(R2)

R

Out[4]:

1

2

√

√

√

√

√

√

(r1x − r3x)
2 +

(

r1y − r3y

)2
+ (r1z − r3z)

2

−

((r1x−r2x)(r2x−r3x)+(r1y−r2y)(r2y−r3y)+(r1z−r2z)(r2z−r3z))
2

(

(r1x−r2x)
2+(r1y−r2y)

2

+(r1z−r2z)
2
)(

(r2x−r3x)
2+(r2y−r3y)

2

+(r2z−r3z)
2
) + 1

C. Gradient computation

In [5]: from sympy.tensor.array import derive_by_array

mgrad_1=derive_by_array(R,r_1).tomatrix()

mgrad_2=derive_by_array(R,r_2).tomatrix()

mgrad_3=derive_by_array(R,r_3).tomatrix()

Long expressions omitted; use e.g. mgrad_1 to show.

D. Code generation

In [6]: from sympy.utilities.codegen import codegen

codegen([("curvature_radius",R),

("curvature_radius_grad", [

Eq(MatrixSymbol("g1",3,1),mgrad_1),

Eq(MatrixSymbol("g2",3,1),mgrad_2),

Eq(MatrixSymbol("g3",3,1),mgrad_3)])],

to_files=True,

prefix="curvature_codegen",

project="plumed_curvature",

language="C")

Code is now in curvature_codegen.[ch]. Include it and call the

`curvature_radius()' and `curvature_radius_grad()' functions from C++

Figure 3: Symbolic differentiation with code generation approach – A SymPy Jupyter
notebook generating C code for the collective variable R and its gradient. (See also
the calling code in the module curvature codegen/Curvature.cpp, and the notebook
CurvatureCodegen.ipynb containing the extended version of this figure.)7

C code which does not rely on external libraries. It has been used for code-
generation purposes in other contexts [16].

Figure 3 shows the steps required for this approach, i.e.:

A. Atom coordinates are introduced as SymPy symbols.

B. The collective variable is defined following eq. (1); note the use of
vector algebra.

C. Symbolic computation of ∇xR(r1, r2, r3).

D. Code generation is performed with the codegen() function, which
translates R and mgrad in the files curvature codegen.[ch].

The code generated is included via a wrapper, which makes the func-
tions curvature radius and curvature radius grad available for use in
the Curvature class. The rest of the code does not depend on the specific CV
function, and can be reused from the example’s source (Curvature.cpp),
available in PLUMED’s curvature codegen module. The module also con-
tains amulticolvar implementation, enabling the use of aggregated curvature
radius values along a polymer (e.g., its mean, minimum and so on).

An extended version of the notebook of Figure 3 distributed with the
source code also demonstrates how substitution operators were used within
the CAS to check the results of the derivations with respect to known values
and limits towards edge cases (in this case, collinear points). There was no
need to generate separate expressions for the inverse radius, whose gradient
is trivially implemented in C++ via the chain rule.

Finally, depending on the symmetry of the CV and the number of atoms
involved, it may be more natural to differentiate with respect to atoms’
distance vectors rather than coordinates, and then apply the chain rule in
the calling code. The code generation steps proceed straightforwardly as
above (final examples in the notebook).

2.1. Symbolic Common Subexpression Elimination

Inspection of the code generated by the “naive” CAS approach in Fig-
ure 3 shows repeatedly-computed expressions that could be made more ef-
ficient with the introduction of intermediate variables. This is due to the
fact that the translation of a formula derived by contemporary CAS sys-
tems into code form usually happens all at once on the basis of the ex-
plicit expression, which may be unnecessarily (or even intractably) com-
plex; in particular, the translation does not re-use the subexpressions which
are generated during differentiation. As an example, consider the deriva-
tive d

dx
exp(exp(f(x)) = exp(exp(f(x))) exp(f(x))f ′(x): even though the

8

exp(f(x)) subexpression could in principle be evaluated just once, this sim-
plification can not be rendered in the mathematical formula.

SymPy can indeed exploit opportunities for common subexpression elim-

ination (CSE) at a symbolic level, as demonstrated in the section Common

subexpression elimination of the notebook. The source code of the gradi-
ent function generated by codegen() contains approximately 1,980 floating-
point (FP) operators. The symbolic CSE step, in contrast, produces the
source code of an equivalent gradient function containing just 101 FP oper-
ators (the radius function has 44).

It is important to note that most of the redundant arithmetic operations
are optimized by the compiler anyway, because CSE is a standard pass in
current compiler optimizations; however, the extent of subexpressions that
are going to be recognized at this low-level pass is hard to assess a priori.
In Section 4 we report actual FP counts measured on naive and CSE code
downstream of the compiler optimization passes.

3. Automatic code differentiation

A different and independent approach to gradient computation is through
automatic code differentiation, a powerful method which calculates gradients
of functions defined by (in principle) arbitrary algorithms. In short, the gra-
dient computation “mirrors” each elementary step executed by the function
being derived by keeping track of the partial derivatives (“adjunct”) of each
variable, propagating them via the chain rule; the components of a gradient
are computed together in a single pass. It has the same computational com-
plexity as the original code and hence, for example, loops of arbitrary length
can be differentiated even when the number of iterations is only known at
run time (see [14] for a thorough explanation).

We rely on Stan Math, a header-only library part of the Stan probabilis-
tic programming language, to provide reverse-mode automatic differentia-
tion for C++ code [17, 14]. The library uses template-based metaprogram-
ming, meaning that expressions can be written with the same semantics used
for common floating-point operations, while in reality operator overloading
is used to construct the code and data structures necessary for differentia-
tion.

In practice, a convenient way to introduce this in PLUMED is to wrap
the function to be differentiated in a C++ functor, as shown in Figure 4.
Apart from boilerplate semantics, the body of function can be written as
customary, with the following assumptions:

9

1 struct curvature_fun {

2 private:

3 bool inverse; // List of parameters

4 public:

5 curvature_fun(bool inverse): inverse(inverse) {}

6

7 template <typename T>

8 T operator()(const Matrix<T, Dynamic, 1>& x)

9 const {

10 // Split into 3D vectors for convenience

11 Matrix<T, 3, 1> r1, r2, r3;

12 r1 = x.segment(0,3);

13 r2 = x.segment(3,3);

14 r3 = x.segment(6,3);

15

16 Matrix<T, 3, 1> r12, r32, r13;

17 r12 = r1-r2; // Triangle sides

18 r32 = r3-r2;

19 r13 = r1-r3;

20

21 T cos2_a = pow(r12.dot(r32),2.0)

22 / r12.dot(r12) / r32.dot(r32);

23 T sin2_a = 1.0 - cos2_a;

24

25 T radius2 = r13.dot(r13) / sin2_a / 4.0;

26 T radius = sqrt(radius2); // Eq. (1)

27

28 if(inverse)

29 radius = 1.0/radius;

30

31 return(radius);

32 }

33 };

Figure 4: Automatic code differentiation approach – Automatically differentiable code
implementing the radius of curvature CV. The “abstract” type T is used for variables
and parameters. The use of Eigen types allows writing Eq. (1) in a compact vector
form close to the textbook one. See CurvatureAutoDiff.cpp in the PLUMED module
curvature autodiff for full code.

10

• arguments are passed as one single-column Matrix object (typically
as long as the number of atomic coordinates involved in the collective
variable);

• arguments and return value should all be of “type” T;

• parameters, if needed, can passed through the functor constructor (see
section 3.2 for details).

The gradient computation is transparent for the programmer. The col-
lective variable’s compute()method, invoked by PLUMED at each time step
of the simulation, will call stan::math::gradient(), perform any vector
reshaping necessary, then set the derivatives to inform the rest of the code of
the bias forces to be applied. The compute method is thus largely indepen-
dent on the CV at hand, and can be re-used unchanged from the complete
example provided in the CurvatureAutoDiff.cpp file.

3.1. Linear algebra and special functions

The example code expresses the curvature function concisely by using
dot() inner product operators; they operate between two 3× 1 vectors (the
sides of the triangle), declared of type Eigen::Matrix<T,1,3>. Eigen, a
template-based linear algebra library, defines operations on dense and sparse
vectors and matrices, and is part of Stan Math. Its scope is in fact much
larger, providing e.g. determinants, eigenvectors and many decomposition
types [18].

In addition to the code differentiation features, the Stan Math library
provides a remarkable range of special functions and distributions, whose
enumeration is beyond the scope of this paper. Functions can also be de-
fined through differential equations and differentiated with respect to their
parameters, thanks to SUNDIALS’ CVodes library [14, 17, 19].

3.2. Dealing with parameters

Functors expect only an N-dimensional vector of variables; lines 3–5 of
Figure 4 show how additional parameters (e.g. set by the user in PLUMED’s
input file) can be passed to the functor constructor.

Note that parameters should not be passed via the arguments (e.g., as
variables in addition to the atom coordinates) because, besides restricting
their types to floating point numbers, the function would be unnecessarily
differentiated with respect to them (although reverse mode differentiation is
relatively efficient in this regard).

11

Floating-point ops. CPU time (ns)
Method R and ∇R ∇R only R and ∇R ∇R only

Code generation 173 137 125.98 ± 0.07 110.36 ± 0.02
Code generation, symbolic CSE 128 92 60.19 ± 0.01 48.48 ± 0.11
Automatic differentiation 148 — 532.61 ± 7.82 —

Table 1: Number of floating-point operations and CPU time required by one evaluation
of the gradient of the curvature function with the approaches presented in the paper. One
iteration of either the curvature function and its gradient, or gradient only, as indicated
in the column headers, is measured; time spent in the interface with the free energy code
is not included. (Medians and inter-quartile ranges over 10 × 107 calls; Intel Xeon CPU
E5-2697 v4 at 2.30GHz, GCC version 6.1.0, optimization O3.)

4. Performance considerations

In order to estimate real-world performance, i.e. downstream of opti-
mizations performed automatically by modern compilers, we compared the
optimized executables in terms of FP instructions actually executed by the
CPU. Measurements were obtained through hardware FP counters, namely
FP COMP OPS EXE:SSE SCALAR DOUBLE and vector analogs. Table 1 reports
the performance of the functions performing the radius and gradient com-
putations, in terms of number of double-precision FP instructions, and CPU
time required per calculation (medians and inter-quartile ranges over 10 runs
of 107 evaluations each).

In Section 2.1 we reported that the number of FP operators found in the
naive and symbolic CSE-generated source codes differed by a factor of 20.
The dramatic difference is not reflected in the compiled code, indicating that
the compiler optimized out almost all of the redundant expressions. The
high-level CSE step was still beneficial, reducing the final FP instruction
count by further 45 (out of 137).

Interestingly, the automatic differentiation approach used roughly the
same number of floating-point operations as the CAS-generated code. Its
actual run time was longer, likely due to non-FP operations such as method
calls, expected because of the use of objects representing variables along
with their adjoints. Note also that run times varied widely with “fast-
math”-like optimizations, and that hardware counters may be affected by
approximations [20].

Finally, we remark that all of the above measurements included the FP-
intensive part of the calculations only. If speed is a concern, the overhead
at the interface with the free-energy code (e.g., reshaping coordinate arrays)
should be accounted, as it may dwarf the cost of the functions proper.

12

5. Discussion

The two approaches discussed yield, as expected, numerical results equal
within machine precision. Which of the two is preferred depends on the
complexity of the specific problem being addressed.

On the one hand, symbolic differentiation may be closer to the “class-
room” approach, where a closed form expression is derived top-down. CAS
assist the development of the final formulas, e.g. enabling complex substi-
tutions, differentiations, and simplifications. Symbols can also be replaced
by values and evaluated at any time necessary, which is generally useful
for quickly checking the consistency of equations with known results. Also,
structuring computations as “notebook” format, while optional, is an ap-
proach favoured by most CAS as a means to keep a readable and repro-
ducible record of the steps leading to a particular formula or code [21].

The most important limitation of CAS code generators is that they do
not handle generic functions defined as algorithms (e.g., loops until con-
vergence). As discussed above, the automatic code differentiation approach
largely solves the issue: it is therefore expected to be the preferred way to
implement very complex CVs in real-world problems. The vastly increased
generality comes at some expense of convenience, for the edit-compile-run
cycle is somewhat at odds with notebook-style readability and the interac-
tive testing it affords. Performance-wise, the approaches are very close in
terms of amount of the floating-point calculations required; and at least in
the same order of magnitude in terms of CPU time.

An even more high-level language approach than the ones presented here
would be to evaluate mathematical functions in an embedded Python inter-
preter, an approach recently implemented in PLUMED (also used in [22]).
This may be desirable for casual coding, but likely inefficient, as the critical
portion of the calculations would happen in an interpreted language.

The code templates presented have been tested in combination with soft-
ware version widely in use at the time of writing (Table 2). The libraries are
under active development, so code may require minor adaptations with fu-
ture releases. Regression testing and continuous integration of the PLUMED
code base ensure that incompatibilities, should they arise, will be spotted
timely.

6. Conclusion

This paper presented two methods intended to substantially reduce the
barrier to the development of functions of atomic coordinates. While the

13

Software Version

Plumed 2.4.0
Python (Anaconda) 3.6.4

SymPy 1.0
Stan Math library 2.16.0

GCC 6.1.0
Clang++ 3.8.1
Intel ICC 18.0.1

Table 2: Software versions tested.

resulting code may not as optimized as hand-written one, it is hoped that
the approaches presented will enable the extension of free energy codes with
further CVs, significant from the points of view of structural biology, biolog-
ical relevance, or closeness to experimental observables, whose complexity
would have otherwise made their implementation prohibitive.

7. Acknowledgements

I would like to thank Prof. G. Bussi and Prof. C. Camilloni for discus-
sions on the applications of automatic differentiation and comments on the
manuscript. I acknowledge CINECA awards under the ISCRA initiative
for the availability of high performance computing resources and support.
Research funding from Acellera Ltd. is gratefully acknowledged.

8. References

References

[1] A. Laio, F. L. Gervasio, Metadynamics: a method to simulate rare
events and reconstruct the free energy in biophysics, chemistry and
material science, Reports on Progress in Physics 71 (12) (2008) 126601.
doi:10.1088/0034-4885/71/12/126601.

[2] G. M. Torrie, J. P. Valleau, Nonphysical sampling distribu-
tions in Monte Carlo free-energy estimation: Umbrella sam-
pling, Journal of Computational Physics 23 (2) (1977) 187–199.
doi:10.1016/0021-9991(77)90121-8.

[3] A. Laio, M. Parrinello, Escaping free-energy minima, Proceedings of the
National Academy of Sciences of the United States of America 99 (20)
(2002) 12562–12566. doi:10.1073/pnas.202427399.

14

http://dx.doi.org/10.1088/0034-4885/71/12/126601
http://dx.doi.org/10.1016/0021-9991(77)90121-8
http://dx.doi.org/10.1073/pnas.202427399

[4] V. Salmaso, M. Sturlese, A. Cuzzolin, S. Moro, Exploring
Protein-Peptide Recognition Pathways Using a Supervised Molec-
ular Dynamics Approach, Structure 25 (4) (2017) 655–662.e2.
doi:10.1016/j.str.2017.02.009.

[5] D. Hamelberg, J. Mongan, J. A. McCammon, Accelerated molec-
ular dynamics: A promising and efficient simulation method for
biomolecules, The Journal of Chemical Physics 120 (24) (2004) 11919–
11929. doi:10.1063/1.1755656.

[6] L. Mollica, S. Decherchi, S. R. Zia, R. Gaspari, A. Cavalli, W. Roc-
chia, Kinetics of protein-ligand unbinding via smoothed potential
molecular dynamics simulations, Scientific Reports 5 (2015) srep11539.
doi:10.1038/srep11539.

[7] H. Sun, Y. Li, M. Shen, D. Li, Y. Kang, T. Hou, Character-
izing Drug–Target Residence Time with Metadynamics: How To
Achieve Dissociation Rate Efficiently without Losing Accuracy against
Time-Consuming Approaches, Journal of Chemical Information and
Modelingdoi:10.1021/acs.jcim.7b00075.

[8] T. Giorgino, A. Laio, A. Rodriguez, METAGUI 3: A graphical user
interface for choosing the collective variables in molecular dynamics
simulations, Computer Physics Communications 217 (2017) 204–209.
doi:10.1016/j.cpc.2017.04.009.

[9] G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi,
Plumed 2: New feathers for an old bird, Computer Physics Communi-
cations 185 (2) (2014) 604–613. doi:10.1016/j.cpc.2013.09.018.

[10] G. A. Tribello, F. Giberti, G. C. Sosso, M. Salvalaglio, M. Parrinello,
Analyzing and Driving Cluster Formation in Atomistic Simulations,
Journal of Chemical Theory and Computation 13 (3) (2017) 1317–1327.
doi:10.1021/acs.jctc.6b01073.

[11] D. Branduardi, F. L. Gervasio, M. Parrinello, From A to B in free
energy space, The Journal of Chemical Physics 126 (5) (2007) 054103.
doi:10.1063/1.2432340.

[12] M. Bonomi, C. Camilloni, Integrative structural and dynamical biol-
ogy with PLUMED-ISDB, Bioinformatics 33 (24) (2017) 3999–4000.
doi:10.1093/bioinformatics/btx529.

15

http://dx.doi.org/10.1016/j.str.2017.02.009
http://dx.doi.org/10.1063/1.1755656
http://dx.doi.org/10.1038/srep11539
http://dx.doi.org/10.1021/acs.jcim.7b00075
http://dx.doi.org/10.1016/j.cpc.2017.04.009
http://dx.doi.org/10.1016/j.cpc.2013.09.018
http://dx.doi.org/10.1021/acs.jctc.6b01073
http://dx.doi.org/10.1063/1.2432340
http://dx.doi.org/10.1093/bioinformatics/btx529

[13] A. Meurer, C. P. Smith, M. Paprocki, O. Čert́ık, S. B. Kirpichev,
M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rath-
nayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta,
S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel,
S. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, A. Scopatz,
SymPy: symbolic computing in Python, PeerJ Computer Science 3
(2017) e103. doi:10.7717/peerj-cs.103.

[14] B. Carpenter, M. D. Hoffman, M. Brubaker, D. Lee, P. Li, M. Betan-
court, The Stan Math Library: Reverse-Mode Automatic Differentia-
tion in C++, arXiv:1509.07164 [cs]ArXiv: 1509.07164.

[15] G. Fiorin, M. L. Klein, J. Hénin, Using collective variables to drive
molecular dynamics simulations, Molecular Physics 111 (22-23) (2013)
3345–3362. doi:10.1080/00268976.2013.813594.

[16] A. Mushtaq, K. Olaussen, Automatic code generator for higher order
integrators, Computer Physics Communications 185 (5) (2014) 1461–
1472. doi:10.1016/j.cpc.2014.01.012.

[17] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Be-
tancourt, M. Brubaker, J. Guo, P. Li, A. Riddell, Stan: A probabilistic
programming language, Journal of Statistical Software, Articles 76 (1)
(2017) 1–32. doi:10.18637/jss.v076.i01.

[18] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org
(2010).

[19] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, C. S. Woodward, SUNDIALS: Suite of Nonlinear and Dif-
ferential/Algebraic Equation Solvers, ACM Trans. Math. Softw. 31 (3)
(2005) 363–396. doi:10.1145/1089014.1089020.

[20] V. M. Weaver, D. Terpstra, S. Moore, Non-determinism and
overcount on modern hardware performance counter implementa-
tions, in: 2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2013, pp. 215–224.
doi:10.1109/ISPASS.2013.6557172.

[21] F. Perez, B. E. Granger, IPython: A System for Interactive Scien-
tific Computing, Computing in Science Engineering 9 (3) (2007) 21–29.
doi:10.1109/MCSE.2007.53.

16

http://dx.doi.org/10.7717/peerj-cs.103
http://arxiv.org/abs/1509.07164
http://dx.doi.org/10.1080/00268976.2013.813594
http://dx.doi.org/10.1016/j.cpc.2014.01.012
http://dx.doi.org/10.18637/jss.v076.i01
http://eigen.tuxfamily.org
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1109/ISPASS.2013.6557172
http://dx.doi.org/10.1109/MCSE.2007.53

[22] R. Galvelis, Y. Sugita, Neural Network and Nearest Neighbor Al-
gorithms for Enhancing Sampling of Molecular Dynamics, Journal
of Chemical Theory and Computation 13 (6) (2017) 2489–2500.
doi:10.1021/acs.jctc.7b00188.

17

http://dx.doi.org/10.1021/acs.jctc.7b00188

	1 Introduction
	1.1 Background
	1.2 Radius of curvature
	1.3 Edge cases and inverse radius

	2 Generating code with a computer algebra system
	2.1 Symbolic Common Subexpression Elimination

	3 Automatic code differentiation
	3.1 Linear algebra and special functions
	3.2 Dealing with parameters

	4 Performance considerations
	5 Discussion
	6 Conclusion
	7 Acknowledgements
	8 References

