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Abstract

A computation-oriented representation of uncertain kinetic systems is introduced and
analysed in this paper. It is assumed that the monomial coefficients of the ODEs belong
to a polytopic set, which defines a set of dynamical systems for an uncertain model. An
optimization-based computation model is proposed for the structural analysis of uncertain
models. It is shown that the so-called dense realization containing the maximum number
of reactions (directed edges) is computable in polynomial time, and it forms a super-
structure among all the possible reaction graphs corresponding to an uncertain kinetic
model, assuming a fixed set of complexes. The set of core reactions present in all reaction
graphs of an uncertain model is also studied. Most importantly, an algorithm is proposed
to compute all possible reaction graph structures for an uncertain kinetic model.

Keywords: reaction networks, uncertain models, reaction graphs, algorithms, convex optimiza-
tion

1 Introduction
Kinetic models in the form of nonlinear ordinary differential equations are widely used for
describing time-varying physico-chemical quantities in (bio-)chemical environments [46]. More-
over, the kinetic system class is dynamically rich enough to characterize general nonlinear
behaviour in other application fields as well, particularly where the state variables are nonneg-
ative and the model has a networked structure, such as in the modelling of process systems,
population or disease dynamics, or even transportation processes [14, 5, 38]. In biochemical
applications, the exact values (or even sharp estimates) of the model parameters are often not
known, making the models uncertain [6]. Even when we have measurements of sufficient quan-
tity and quality, the lack of structural or practical identifiability may result in highly uncertain
models even with the most sophisticated estimation methods [10, 34, 8, 7]. This inherent un-
certainty was a key factor in the development of Chemical Reaction Network Theory (CRNT),
where (among other goals) a primary interest is to study the relations between the network
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structure and the qualitative properties of the corresponding dynamics, preferably without the
precise knowledge of model parameters. From the earlier results of CRNT, we have to mention
the well-known Deficiency One and Deficiency Zero Theorems [12, 32] opening the way towards
a structure-based (essentially parameter-free) dynamical analysis of biological networks. Recent
particularly important findings in this area are the identification of biologically plausible struc-
tural sources of absolute concentration robustness [31], and the proof of the Global Attractor
Conjecture [1, 9].

The efficient treatment of uncertain quantitative models is a fundamental task in mathemat-
ics, physics, (bio)chemistry and in related engineering fields [4, 13]. An important early result is
[15], where the solutions of linear compartmental systems are studied with uncertain flow rates
that are assumed to belong to known intervals. In [22] a probabilistic framework is proposed for
the representation and analysis of uncertain kinetic systems. In [28] an analytical expression is
computed for the temperature dependence of the uncertainty of reaction rate coefficients, and
a method is proposed for computing the covariance matrix and the joint probability density
function of the Arrhenius parameters. A recent outstanding result is [29], where a deterministic
computation interpolation scheme for uncertain reaction network models is proposed, which is
able to handle large-scale models with hundreds of species and kinetic parameters.

The description of model uncertainties using convex sets is often a computationally appeal-
ing way of solving model analysis, estimation or control problems [40, 3]. From the numerous
applications, we mention here only a few selected works from different fields. In [41], a stabi-
lization scheme was given for nonlinear control system models, where the uncertain coefficients
of smooth basis functions in the system equations are assumed to form a polytopic set. An
interval representation of fluxes in metabolic networks was introduced in [26], which enables
the computation of the α-spectrum even from an uncertain flux distribution. In [24], a nonlinear
feedback design method is proposed which is able to robustly stabilize parametrically uncertain
kinetic systems using the convexity of the constraint ensuring the complex balance property.
Recently, a new approach was given for the stability analysis of general Lotka-Volterra models
with polytopic parameter uncertainties in [2].

It is known from the fundamental dogma of chemical kinetics that the reaction graph struc-
ture corresponding to a kinetic ODE-model is generally non-unique, even in the case when the
rate coefficients are assumed to be known [16, 46, 30]. This property is usually called dynamical
equivalence, macro-equivalence or confoundability in the literature [10, 16]. The first solution
to the inverse problem, namely the construction of one possible reaction network (called the
canonical network) for a given set of kinetic differential equations was described in [17]. The
notion of dynamical equivalence was extended by introducing linear conjugacy of kinetic sys-
tems in [18] allowing a positive diagonal transformation between the solutions of the kinetic
differential equations. The simple factorization of kinetic models containing the Laplacian ma-
trix of the reaction graph allows the development of efficient methods in various optimization
frameworks for computing reaction networks realizing or linearly conjugate to a given dynam-
ics with preferred properties such as density/sparsity [33], weak reversibility [20], complex or
detailed balance [35], minimal or zero deficiency [21, 23]. Using the superstructure property of
the so-called dense realizations, it is possible to algorithmically generate all possible reaction
graph structures corresponding to linearly conjugate realizations of a kinetic dynamics [45, 43].

Even if the monomials of a kinetic system are known, the parameters (i.e., the monomial
coefficients) are often uncertain in practice. For example, one may consider the situation when a
kinetic polynomial ODE model with fixed structure is identified from noisy measurement data.
In such a case, using the covariance matrix of the estimates and the nonnegativity/kinetic
constraints for the system model, we can define a simple interval-based (see, e.g. [26]), or more
general (e.g., polytopic or ellipsoidal) uncertain model [25, 37]. Based on the above, the goal of
this paper is to extend and illustrate previously introduced notions, computational models and
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algorithms for kinetic systems with polytopic uncertainty.

2 Notations and computational background
In this section we summarize the basic notions of kinetic polynomial systems and the generalized
model defined with uncertain parameters.

The applied general notations are listed below:
R the set of real numbers
R+ the set of nonnegative real numbers
N the set of natural numbers
Hn×m the set of matrices having entries from a set H with n rows and m columns
[M ]ij the entry of matrix M with row index i and column index j
[M ].j the jth column of matrix M
Rj the jth coordinate of vector R
0n the null vector in Rn

1n a vector in Rn with all coordinates equal to 1
eni a vector in Rn for which the ith coordinate is 1 and all the others are zero

2.1 Kinetic polynomial systems and their models

Nonnegative polynomial systems are defined in the following general form:

ẋ =M · ϕ(x) (1)

where x : R → Rn
+ is a nonnegative valued function, M ∈ Rn×p is a coefficient matrix and

ϕ : Rn
+ → Rp

+ is a monomial-type vector-mapping. The invariance of the nonnegative orthant
with respect to the dynamics (1) can be ensured by prescribing sign conditions for the entries
of matrix M depending on the exponents of ϕ, see [46, 14].

In this paper, we treat kinetic models as a general nonlinear system class that is suitable
for the description of biochemical reaction networks. Hence, we do not require that all models
belonging to the studied class are actually chemically realizable. Several physically or chemically
relevant properties such as component mass conservation, detailed or complex balance can be
ensured by adding further constraints to the computations (see, e.g. [19]).

Definition 2.1. A chemical reaction network (CRN) can be characterized by three sets
[11, 12].
species: S = {Xi | i ∈ {1, . . . , n}}
complexes: C = {Cj =

n∑
i=1

αjiXi | αji ∈ N, j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}}

reactions: R ⊆ {(Ci, Cj) | Ci, Cj ∈ C}
For all i, j ∈ {1, . . .m}, i 6= j the reaction Ci → Cj is represented by the ordered pair (Ci, Cj),
and it is described by a nonnegative real number kij ∈ R+ called reaction rate coefficient.
The reaction Ci → Cj is present in the reaction network if and only if kij is strictly positive.

The relation between species and complexes is described by the complex composition
matrix Y ∈ Rn×m, the columns of which correspond to the complexes, i.e.

[Y ]ij = αji i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (2)

The presence of the reactions in the CRN is defined through the rate coefficients as the off-
diagonal entries of the Kirchhoff matrix Ak ∈ Rm×m which is a Metzler compartmental
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matrix with zero column-sums. Its entries are defined as:

[Ak]ij =

kji if i 6= j

−
m∑

l=1,l 6=i

kil if i = j
i, j ∈ {1, . . . ,m} (3)

According to this notation, the reaction Ci → Cj takes place in the reaction network if and only
if [Ak]ji is positive, and [Ak]ji = 0 implies that (Ci, Cj) /∈ R. Since a chemical reaction network
is uniquely characterized by the matrices Y and Ak, we refer to a CRN by the corresponding
pair (Y,Ak).

If mass action kinetics is assumed, the equations governing the dynamics of the concen-
trations of the species in the CRN defined by the function x : R → Rn

+ can be written in
the form:

ẋ = Y · Ak · ψY (x) (4)

where ψY : Rn
+ → Rm

+ is the monomial function of the CRN with coordinate functions

ψY
j (x) =

n∏
i=1

x
[Y ]ij
i , j ∈ {1, . . . ,m} (5)

The nonnegative polynomial system (1) is called a kinetic system if there exists a reaction
network (Y,Ak) so that its dynamics satisfies the equation [46]:

M · ϕ(x) = Y · Ak · ψY (x) (6)

As it has been mentioned in the Introduction, reaction networks with different sets of com-
plexes and reactions may be governed by the same dynamics. If Equation (6) is fulfilled, then
the CRN (Y,Ak) is called a dynamically equivalent realization of the kinetic system (1).

The description of the polynomial system (1) can be transformed so that the monomial
function ϕ is equal to ψY (and p = m holds) while the described dynamics remains the same.
After the transformation and simplification based on the properties of polynomials, Equation
(6) can be simplified to:

M = Y · Ak (7)

Reaction networks have another representation, which is more suitable for illustrating the
structural properties. It is a weighted directed graph G(V,E) called the Feinberg-Horn-
Jackson graph or reaction graph for brevity [46]. The complexes are represented by the
vertices, and the reactions by the edges. Let the vertices vi and vj correspond to the complexes
Ci and Cj, respectively. Then there is a directed edge vivj ∈ V (G) with weight kij if and only
if the reaction Ci → Cj takes place in the CRN.

2.2 Uncertain kinetic systems

For the uncertainty modelling, we assume that the monomial coefficients in matrix M are
constant but uncertain, and they belong to an n ·m dimensional polyhedron.

Remark 2.2. In previous sections the set of uncertain parameters is noted as a polytope or a
polytopic set, but from now on we use the notion of a polyhedron as well. The former one is
defined as the convex hull of its vertices, while the latter one is the intersection of halfspaces,
and the two definitions are not equivalent in general. However, in the examined problems it is
assumed that the parameters of the kinetic models are bounded, and a bounded polyhedron is
equivalent to a bounded polytope.
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We represent the matrix M as a point denoted by M̃ in the Euclidean space Rnm. In the
uncertain model it is assumed that the possible points M̃ are all the points of a closed convex
polyhedron P , which is defined as the intersection of q halfspaces. The boundaries of the
halfspaces are hyperplanes with normal vectors n1, . . . , nq ∈ Rnm and constants b1, . . . , bq ∈ R.
Applying these notations, the polyhedron P can be described by a linear inequality system as

P = {M̃ ∈ Rnm | M̃> · ni ≤ bi, 1 ≤ i ≤ q}} (8)

For the characterization of the polyhedron P not only the possible values of the parameters
should be considered, but also the kinetic property of the polynomial system. This can be
ensured (see [17]) by prescribing the sign pattern of the matrix M as follows:

[Y ]ij = 0 =⇒ [M ]ij ≥ 0, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (9)

These constraints are of the same form as the inequalities in Equation (8), for example the
constraint M̃j ≥ 0 can be written by choosing the normal vector ni to be the unit vector −enmj
and bi to be the null vector 0nm.

We note that there is a special case when the possible values of the parameters of the
polynomial system are given as intervals, and the polyhedron P is a cuboid.

It is possible to define a set L of finitely many additional linear constraints on the variables to
characterize a special property of the realizations, for example a set of reactions to be excluded,
or mass conservation on a given level, see e.g. [45]. These constraints can affect not only the
entries of the coefficient matrix M but the Kirchhoff matrix of the realizations as well. If the
Kirchhoff matrix Ak of the realization is represented by the point Ãk ∈ Rm2−m storing the
off-diagonal elements, and r is the number of constraints in the set L, then the equations can
be written in the form

M̃> · αi + Ãk

>
· βi ≤ di (10)

where αi ∈ Rnm, βi ∈ Rm2−m and di ∈ R hold for all i ∈ {1, . . . , r}. These constraints do not
change the general properties of the model, and as it will be shown in Section 2.3, it can be
modelled as a linear programming problem.

In the case of the uncertain model, we will examine realizations assuming a fixed set of
complexes. Therefore, the known parameters are the polyhedron P , the set L of constraints
and the matrix Y . Hence a constrained uncertain kinetic system is referred to as the triple
[P , L, Y ], but we will call it an uncertain kinetic system for brevity.

Definition 2.3. A reaction network (Y,Ak) is called a realization of the uncertain kinetic
system [P , L, Y ] if there exists a coefficient matrix M ∈ Rn×m so that the equation M = Y ·Ak

holds, the point M̃ is in the polyhedron P and the entries of the matrices M and Ak fulfil the
set L of constraints. Since the matrix Y is fixed but the coefficients of the polynomial system
can vary, this realization is referred to as the matrix pair (M,Ak).

2.3 Computational model

Assuming a fixed set of complexes, a realization (M,Ak) of an uncertain kinetic system [P , L, Y ]
can be computed using a linear optimization framework.

In the constraint satisfaction or optimization model, the variables are the entries of the ma-
trix M and the off-diagonal entries of the matrix Ak. The constraints regarding the realizations
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of the uncertain model can be written as follows:

M̃> · ni ≤ bi, i ∈ {1, . . . , p} (11)
M = Y · Ak, (12)
[Ak]ij ≥ 0, i 6= j, i, j ∈ {1, . . . ,m} (13)
m∑
j=1

[Ak]ij = 0, j ∈ {1, . . . ,m} (14)

Equations (11) ensure that the parameters of the dynamics correspond to a point of the poly-
hedron P . Dynamical equivalence is defined by Equation (12), while Equations (13) and (14)
are required for the Kirchhoff property of matrix Ak to be fulfilled. Moreover, the constraints
in the set L can be written in the form of Equation (10).

The objective function of the optimization model can be defined according to the desired
properties of the realization, for example in order to examine if the reaction Ci → Cj can be
present in the reaction network or not, the objective can be defined as max[Ak]ji.

We apply the representation of realizations of the uncertain model as points of the Euclidean
space Rm2−m+nm. The coordinates with indices i ∈ {1, . . . ,m2 −m} characterize the Kirchhoff
matrix of the realization and the remaining coordinates j ∈ {m2−m+1, . . .m2−m+nm} define
the coefficient matrixM of the polynomial system. Due to the linearity of the constraints in the
computational model, the set of possible realizations of an uncertain kinetic system [P , L, Y ]
is a convex bounded polyhedron denoted by Q.

3 Structural analysis of realizations of the uncertain
kinetic model

In this section we summarize some of the special structural properties of the realizations of an
uncertain kinetic system [P , L, Y ].

3.1 Superstructure property of the dense realizations

A dynamically equivalent or linearly conjugate realization of a kinetic system with a fixed
set of complexes having maximal or minimal number of reactions is called dense or sparse
realization, respectively [33, 20]. It is known that for any kinetic system there might be several
different sparse realizations, however, the dense realization is structurally unique and it defines
a superstructure among all realizations, see [19].

The directed graph G(V,E) is called a superstructure with respect to a set G of directed
graphs with labelled vertices, if it contains every graph in the set G as subgraph, and it is mini-
mal under inclusion. By the definition it follows that for any set G there exists a superstructure
graph and it is unique.

In the case of dynamical equivalent and linearly conjugate realizations of kinetic systems
the superstructure is the reaction graph of a dense realization, that contains all the reaction
graphs representing realizations of the kinetic system as subgraphs, not considering the edge
weights. This means that the set of reactions that take place in any of the realizations is the
same as the set of reactions in the dense realization.

Dense and sparse realizations can be introduced in the case of the uncertain model as well,
that are useful during the structural analysis.

Definition 3.1. A realization (M,Ak) of the uncertain kinetic system [P , L, Y ] is called a
dense (sparse) realization if it has maximal (minimal) number of reactions.
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It can be proved that the superstructure property holds for uncertain kinetic systems as
well, and the proof is based on the same idea as in the non-uncertain case, see [44].

Proposition 3.2. A dense realization (M,Ak) of an uncertain kinetic system [P , L, Y ] deter-
mines a superstructure among all realizations of the model.

Proof. If the point D in the polyhedron Q of possible realizations represents a dense realization,
then the superstructure property is equivalent to the property that any coordinate with index
i ∈ {1, . . . ,m2 −m} of an arbitrary point in Q can be positive only if the same coordinate of
D is positive. Let us assume by contradiction that there is another realization R ∈ Q so that
there is an index j ∈ {1, . . . ,m2 −m} for which Dj = 0 and Rj > 0 hold.

Since the polyhedron Q is closed under convex combination, the point

T = c ·D + (1− c) ·R c ∈ (0, 1)

is also in Q. The coordinates with indices of the set {1, . . . ,m2 − m} of all the points in
Q are nonnegative, therefore such a coordinate of the convex combination is positive if the
corresponding coordinate of D or R is positive. Consequently, T has more positive coordinates
with indices j ∈ {1, . . . ,m2−m} than the dense realization does, which is a contradiction.

It follows from Proposition 3.2 that the structure of the dense realization is unique. If there
were two different dense realizations, then the reaction graphs representing them would contain
each other as subgraphs, which implies that these graphs are structurally identical.

The dense and sparse realizations are useful for checking the structural uniqueness of the
uncertain model.

Proposition 3.3. The dense and sparse realizations of an uncertain kinetic system [P , L, Y ]
have the same number of reactions if and only if all realizations of the model are structurally
identical.

Proof. According to the definitions if in the dense and sparse realizations there is the same
number of reactions, then in all realizations there must be the same number of reactions.
Since the structure of the dense realization is unique, there cannot be two realizations with
the maximal number of reactions but different structures, therefore all realizations must be
structurally identical to the dense realization.

The converse statement is trivial: If all the realizations of the model are structurally identical,
then the dense and sparse realizations must have identical structures, too.

3.2 Polynomial-time algorithm to determine dense realizations

A dense realization of the uncertain kinetic system can be computed by the application of a
recursive polynomial-time algorithm. The basic principle of the method is similar to the one
presented in [44]: To each reaction a realization is assigned where the reaction takes place, if it is
possible. In general, the same realization can be assigned to several reactions. Therefore, there
is no need to perform a separate computation step for each reaction. The convex combination
of the assigned realizations is also a realization of the uncertain model. If all the coefficients of
the convex combination are positive then all reactions that take place in any of the assigned re-
alizations are present in the convex combination as well. Consequently, the obtained realization
represents a dense realization, where all reactions are present that are possible.

The computation can be performed in polynomial time since it requires at most m2 − m
steps of LP optimization and some minor computation.
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Remark 3.4. It follows from the operation of the algorithm that if there are at least two
realizations assigned to reactions as defined, then there are infinitely many dense realizations,
since at least one coefficient of the convex combination can be chosen arbitrarily from the interval
(0, 1).

In the algorithm the assigned realizations are represented as points in Rm2−m+nm and are
determined using the following procedure:

FindPositive([P , L, Y ], H) returns a pair (R,B). The point R ∈ Q represents a realization of
the uncertain model [P , L, Y ] for which the value of the objective function

∑
j∈H Rj considering

a set H ⊆ {1, . . . ,m2−m} of indices is maximal. The other returned object is a set B of indices
where k ∈ B if and only if Qk > 0. If there is no realization fulfilling the constraints then the
pair (0, ∅) is returned.

In the algorithm we apply the arithmetic mean as convex combination, i.e. if the number of
the assigned realizations is k then all the coefficients of the convex combination are 1

k
.

Algorithm 1 (Computes a dense realization)
Input: [P , L, Y ]
Output: Result
1: H := {1, . . . ,m2 −m}
2: B := H
3: Result := 0 ∈ Rm2−m+nm

4: loops := 0
5: while B 6= ∅ do
6: (R,B) := FindPositive([P , L, Y ], H)
7: Result := Result+R
8: H := H \B
9: loops := loops+ 1

10: end while
11: Result := Result/loops
12: if Result = 0 then
13: There is no realization with the given properties.
14: else
15: Result is a dense realization.
16: end if

Proposition 3.5. The realization returned by Algorithm 1 is a dense realization of the un-
certain kinetic system.

Proof. Since the set of all possible solutions can be represented as a convex polyhedron, the
point Result computed as the convex combination of realizations is indeed a realization of
the uncertain kinetic system [P , L, Y ]. Let us assume by contradiction that the returned point
Result does not represent the dense realization. Then there is a reaction (Ci, Cj) which is present
in the dense realization but it does not take place in Result. By the operation of the algorithm
it follows that there must be a realization assigned to the reaction (Ci, Cj), consequently this
reaction takes place in the realization computed as the convex combination of the assigned
realizations as well. This is a contradiction.
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3.3 Core reactions of uncertain models

A reaction is called core reaction of a kinetic system if it is present in every realization of the
kinetic system [34]. It is possible that there are no core reactions, but there can be several of
them as well. If all the realizations are structurally identical, then by Proposition 3.3 it follows
that each reaction is a core reaction. The notion of core reactions can be extended to the case
of uncertain models in a straightforward way.

Definition 3.6. A reaction Ci → Cj is called a core reaction of the uncertain kinetic system
[P , L, Y ] if it is present in each realization of the model, considering all possible coefficient
matrices M for which M̃ ∈ P holds.

Let [P , L, Y ] and [P ′, L, Y ] be two uncertain kinetic systems considering the same sets of
complexes and additional linear constraints so that the polyhedron P ′ is a subset of P . If the
sets of core reactions in the models are denoted as CP and CP ′ , respectively, then CP ⊆ CP ′

must hold. This property holds even if P ′ is a single point in Rnm and [P ′, L, Y ] is a kinetic
system defined as an uncertain kinetic system.

The set of core reactions of an uncertain kinetic system can be computed using a polynomial-
time algorithm. This method has been first published in [39] for a special case, where the
coefficients of the polynomial system have to be in predefined intervals, therefore the polyhedron
P is a cuboid. Since the model applies only the property that all the constraints characterizing
the model are linear, it can be applied without any modification to uncertain kinetic systems
as well.

The question whether a certain reaction is a core reaction of a kinetic model or not, can
be answered by solving a linear optimization problem. If this question has to be decided for
all possible reactions, the computation can be done more effectively than doing separate opti-
mization steps for every reaction. The idea is to minimize the sum of variables representing the
off-diagonal entries of the Kirchhoff matrix. Generally, several variables in the minimized sum
are zero in the computed realization, which means that the reactions corresponding to these
variables are not core reactions. This step is repeated with the remaining set of variables until
the computation does not return any non-core reactions. Finally, the remaining variables need
to be checked one-by-one.

In the algorithm we refer to sets of indices corresponding to the off-diagonal entries of the
Kirchhoff matrix Ak by their characteristic vectors. The set B ⊆ {1, . . . ,m2 −m} represented
by the vector b ∈ {0, 1}m2−m, which is defined as

bi =

{
1 if i ∈ B
0 if i /∈ B

(15)

The procedure applied during the computation is more formally the following:

FindNonCore([P , L, Y ], b) computes a realization of the uncertain kinetic system [P , L, Y ]
represented as a point R ∈ Rm2−m+nm, for which the sum of the coordinates with indices in
the set B ∈ {1, . . . ,m2−m} is minimal. The procedure returns the vector c, the characteristic
vector of the set C which contains the indices corresponding to zero entries of the Kirchhoff
matrix of the realization R, i.e. C ⊆ {1, . . . ,m2 −m} and [i ∈ C ⇐⇒ Ri = 0].

We also need to utilize some operations on the sets represented by their characteristic vectors:
b ∗ c represents the set B ∩ C, i.e. it is an element-wise ‘logical and’
c represents the complement of the set C, i.e. it is an element-wise negation.

9



Algorithm 2 (Computes the set of core reactions)
Inputs: [P , L, Y ]
Output: b

1: b := 1m2−m

2: c := b
3: while c 6= 0 do
4: c := FindNonCore([P , L, Y ], b)
5: c := c ∗ b
6: b := b ∗ c
7: end while
8: for i = 1 to m2 −m do
9: if bi 6= 0 then

10: c := FindNonCore([P , L, Y ], em
2−m

i )
11: b := b ∗ c
12: end if
13: end for
14: if b = 0 then
15: There are no core reactions of the model [P , L, Y ].
16: else
17: The vector b characterizes the core reactions of the model [P , L, Y ].
18: end if

Proposition 3.7. Algorithm 2 computes the set of core reactions of an uncertain kinetic
system [P , L, Y ] in polynomial time.

Proof. Let us assume by contradiction that the algorithm does not return the proper set of
core reactions. There can be two different types of error:

a) Let us assume that there is an index i for which the corresponding reaction is a core
reaction, but according to the algorithm it is not. In this case there must be a realization R
computed by the algorithm so that Ri is zero. This is a contradiction.

b) Let us assume that there is an index j for which the corresponding reaction is not a core
reaction but the algorithm returns the opposite answer. Consequently, after the while loop of
the computation (from line 8) the coordinate bj must be equal to 1. Then the remaining possible
core reactions are examined one by one, therefore the procedure FindNonCore([P , L, Y ], em

2−m
j )

is also applied. According to the assumption the realization R computed by the procedure must
be so that Rj is zero, which also yields a contradiction.

The computation according to the algorithm can be performed in polynomial time, since it
requires the solution of at most m2 −m LP optimization problems and some additional minor
computation steps.

4 Algorithm to determine all possible reaction graph struc-
tures of uncertain models

In this section we introduce an algorithm for computing all possible reaction graph structures
of an uncertain kinetic system [P , L, Y ]. The proposed method is an improved version of the
algorithm published in [43], where all the optimization steps can be done parallelly. We also
give a proof of the correctness of the presented method. Before presenting the pseudocode of
the algorithm, we give a brief explanation of its data structures and operating principles.
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We represent reaction graph structures by binary sequences, where each entry encodes
the presence or lack of a reaction. During the algorithm, all data (i.e. the Kirchhoff and the
coefficient matrices) of the realizations are computed, but only the binary sequences encoding
the directed graph structures are stored and returned as results.

According to the superstructure property described in Proposition 3.2, only the reactions
belonging to the dense realization need representation and storage. Moreover, if there are core
reactions as well, then the coordinates corresponding to these can also be omitted. Both sets
can be computed in polynomial time as it has been presented in Sections 3.2 and 3.3.

Let us refer to the set of reactions in the dense realization and the set of core reactions in
the uncertain kinetic system [P , L, Y ] as DP and CP , respectively. Then a realization of the
uncertain model [P , L, Y ] can be represented by a binary sequence R of length z, where z is
the size of the set DP \ CP of non-core reactions in the dense realization. To define the binary
sequence R it is necessary to fix an ordering on the set of non-core reactions. The coordinate
Ri is equal to 1 if and only if the ith non-core reaction is present in the realization, otherwise
it is zero.

It is easy to see that knowing its structure, a realization can be determined in polynomial
time: For each reaction Ci → Cj which is known not to be present in the realization the
constraint [Ak]ji = 0 needs to be added to the constraint set L, and a dense realization of
the (constrained) model has to be computed. Since it is known that there exists a realization
where all non-excluded reactions take place, all of them have to be present in the computed
constrained dense realization, consequently it will have exactly the prescribed structure.

During the computation the initial substrings of the binary sequences have a special role.
Therefore, for all k ∈ {1, . . . z} a special equivalence relation =k is defined on the binary
sequences. We say that R =k W holds if for all i ∈ {1, . . . k} the coordinate Ri is equal to Wi.
The equivalence class of the relation =k that contains the sequence R as a representative is
referred to as Ck(R). (We note that in general there are several representatives of an equivalence
class.) The elements of an equivalence class Ck(R) can be characterized by a set of linear
constraints added to the model. According to this property and Proposition 3.2, the dense
realization in Ck(R) determines a superstructure among all the realizations in the same set.
The procedure FindRealization applied during the algorithm computes dense realizations of
the uncertain model determined by the initial substrings. A realization is referred to as a pair
(R, k) if the corresponding realization represents the dense realization in Ck(R). The realizations
represented by such pairs get stored for some time in a stack S, the command ‘push (R, k) into
S’ puts the pair (R, k) into the stack and ‘pop from S’ takes a pair out of the stack and returns
it. The number of elements in the stack S is denoted by size(S).

The result of the entire computation is collected in a binary array called Exist, where all
the computed graph structures are stored. The indices of the elements are the sequences as
binary numbers, and the value of element Exist[R] is equal to 1 if and only if a realization with
the structure encoded by R has been found.

Considering the data structures, the main difference between the proposed method and the
algorithm presented in [43] is that the sequences encoding the reaction graph structures are
stored in only one stack in our current solution. Furthermore, the optimization steps using the
sequences popped from this stack can be run in parallel. However, in this case the use of the
binary array Exist is necessary.

Within the algorithm we repeatedly apply two subroutines:

FindRealization((R, k), i) computes a dense realization of the uncertain kinetic system [P , L, Y ],
for which the representing binary sequenceW is in Ck(R), and for every index j ∈ {k+1, . . . , i}
the coordinate Wj is zero. It is possible that among the first k coordinates there are more ze-
ros than required, therefore the computed sequence W is compared to the sequence R. The
procedure returns the sequence W only if W =k R holds, otherwise −1 is returned. If the
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optimization task is infeasible then the returned object is also −1.

FindNextOne((R, k)) returns the smallest index i for which k < i and Ri = 1 hold. If there
is no such index, i.e. Rj is zero for all k < j, then it returns z+1, where we recall that z is the
length of the sequences that encode the graph structures.

Let the sequence D = 1 represent the dense realization. Then the pseudocode of the algo-
rithm for computing all possible graph structures can be given as follows.

Algorithm 3 (Computes all reaction graph structures of an uncertain kinetic system)
Inputs: [P , L, Y ], D, z
Output: Exist
1: push (D, 0) into S
2: Exist[D] := 1
3: while size(S) > 0 do
4: (R, k) := pop from S
5: i := FindNextOne((R, k))
6: if i < z then
7: push (R, i) into S
8: end if
9: while i < z do

10: W := FindRealization((R, k), i)
11: if W < 0 then
12: BREAK
13: else
14: i := FindNextOne(W, i)
15: Exist[W ] := 1
16: if i < z then
17: push (W, i) into S
18: end if
19: end if
20: end while
21: end while

Using the description of the algorithm, we can give formal results about its main properties.

Proposition 4.1. Algorithm 3 computes all possible reaction graph structures representing
realizations of an uncertain kinetic system [P , L, Y ].

Proof. Let us assume by contradiction that there is a realization of the uncertain kinetic system
[P , L, Y ] represented by the sequence V which is not returned by Algorithm 3. Let R be
another sequence that was stored in the stack S as (R, p) at some point during the computation,
for which V =p R holds and p is the greatest such number. If p = 0 then D is suitable to be R,
and by the operation of the algorithm it follows that p < z holds. (If p were equal to z, then V
would be equivalent to R which is a contradiction.)

There is a point during the computation when (R, p) is popped out from the stack S. Let us
assume that FindNextOne(R, p) returns i and FindNextOne(V, p) returns j. In this case i ≤ j
must hold since R represents the superstructure in Cp(R) and if i were equal to j then p would
not be maximal.

For the examination of sequence R, the procedure FindRealization((R, p), i) is applied first
(line 10), and it must return a valid sequence W1, since its constrains are fulfilled by the

12



realization V as well. If FindNextOne(W1, p) is j1 then j1 ≤ j must hold, since W1 rep-
resents the superstructure in Ci(W1) and V is also in Ci(W1). If j1 was equal to j then p
would not be maximal. Otherwise, the computation can be continued by calling the proce-
dure FindRealization((R, p), j1). It must return a valid sequence W2 for which we get that
FindNextOne(W2, p) = j2 ≤ j holds by applying similar reasoning as above.

These steps must lead to contradiction either by p not being maximal or by creating an
infinite increasing sequence of integers that has an upper bound.

It follows that every possible reaction graph structure that represents a realization of the
uncertain kinetic system [P , L, Y ] is returned by the algorithm.

Remark 4.2. Since the calculations of procedure FindRealization((R, k), i) are independent of
the results of previous calls of the same procedure, the order of the calls is irrelevant regarding
the result of the entire computation.

Remark 4.3. The proof of Proposition 3.2 in [43] can be applied for verifying the property that
during the computation according to Algorithm 3 every reaction graph structure is returned
only once.

Remark 4.4. We can also give an upper bound to the number of required optimization steps
by considering the realizations (R, k) regarding k. For all k the number of possible realizations
R stored in the stack S is at most 2k. When such a realization is popped from the stack the
required optimization steps is at most z − k. Consequently, a rough upper bound to the number

of optimization steps required during Algorithm 3 can be given as
z−1∑
k=0

2k(z − k).

5 Illustrative examples
In this section we demonstrate the operation of the algorithms presented in this paper on
two examples in case of different degrees and types of uncertainties, and even in the case of
additional linear constraints.

5.1 Example 1: a simple kinetic system

The model that serves as a basis for this example was presented previously in [36, 45]. The
uncertain model is generated using the kinetic system

ẋ1 = 3c1 · x32 − c2 · x31
ẋ2 = −3c1 · x32 + c2 · x31, (16)

where c1, c2 > 0. We consider realizations on a fixed set C = {C1, C2, C3} of complexes, where
the complexes C1 = 3X2, C2 = 3X1, C3 = 2X1 +X2 are formed of the species X1 and X2. It
follows that the characterizing matrices Y and M of the kinetic system referred to as [M,Y ]
are

Y =

[
0 3 2
3 0 1

]
M =

[
3c1 −c2 0
−3c1 c2 0

]
During the numerical computations the parameter values c1 = 1 and c2 = 2 were applied.

A. Uncertainty defined by independent intervals
This model represents a special case in the class of uncertain kinetic systems defined in Section
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2.2, since the possible values of every coefficient of the kinetic system are determined by in-
dependent upper and lower bounds that are defined as relative distances. Let us represent the
entry [M ]ij of the coefficient matrixM by the coordinate M̃l of the point M̃ ∈ R6. Moreover, let
the relative distances of the upper and lower bounds of M̃l be given by the real constants γl and
ρl from the interval [0, 1], respectively. Then the equations defining the polyhedron PA ⊂ R6 of
the uncertain parameters can be written in terms of the coordinates M̃l as

M̃
>
· e6l ≤ (1 + γl) · [M ]ij (17)

M̃
>
· (−e6l ) ≤ (ρl − 1) · [M ]ij (18)

In the examined uncertain kinetic system [PA, L, Y ] no additional linear constraints are con-
sidered, i.e. L = ∅.

In [45] all possible reaction graphs – with the indication of the reaction rate constants defined
as functions of the parameters c1 and c2 – representing dynamically equivalent realizations of
the kinetic system [M,Y ] have been presented. Obviously, these structures must appear among
the realizations of the uncertain kinetic model [PA, ∅, Y ] as well, but there might be additional
possible structures among the realizations of the uncertain kinetic system.

Interestingly, the result of the computation was that in the case of any degree of uncertainty
(γl, ρl ∈ [0, 1) for all l ∈ {1, . . . 6}), the sets of possible reaction graph structures of the uncertain
model [PA, ∅, Y ] and that of the non-uncertain system [M,Y ] are identical. This result might
be contrary to expectations, but for this small example it is easy to prove that the obtained
graph structures are indeed correct for all positive values of the parameters c1 and c2. For this,
we divide the computation into smaller steps.

It has been shown in [43] that in the case of dynamically equivalent realizations the com-
putation can be done column-wise (since the jth column of matrix Ak depends only on the
jth column of matrix M). These computations can be performed separately, and all the pos-
sible reaction graph structures can be constructed by choosing a column structure for every
index j ∈ {1, . . . ,m} and building the Kirchhoff matrix Ak of the realization from them. Con-
sequently, if in the case of the jth column the number of different structures is pj, then the

number of structurally different realizations is
m∏
j=1

pj.

First the original kinetic system [M,Y ] is examined. To make the notations less complicated,
the entries of the Kirchhoff matrix are denoted by the corresponding reaction rate coefficients,
i.e. [Ak]ij = kji for all i, j ∈ {1, 2, 3}, i 6= j.

In the case of the first column we get:

Y ·

−k12 − k13k12
k13

 =

[
3c1
−3c1

]
k12, k13 ∈ R+ =⇒ k12 ∈ [0, c1], k13 =

3

2
c1 −

3

2
k12 (19)

It can be seen that for every positive value of the parameter c1 the two corresponding reaction
rates can realize 3 of the 22 = 4 possible structurally different solutions. Both can be positive,
or either one can be positive while the other one is zero. (Possible outcomes are for example:
k12 = 1

2
c1, k13 = 3

4
c1 or k12 = 0, k13 = 3

2
c1 or k12 = c1, k13 = 0.) The fourth case, when both

k12 and k13 are zero is possible only when [M ].1 = [0 0]>, which requires the corresponding
parameters of uncertainty ρi to be at least one.

In the case of the second column, 3 of the 4 possible outcomes can be realized and a similar
reasoning can be applied:

Y ·

 k21
−k21 − k23

k23

 =

[
−c2
c2

]
k21, k23 ∈ R+ =⇒ k21 ∈ (0,

c2
3
), k23 = c2 − 3k21 (20)
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In the third column there is no uncertainty because there are only zero entries in [M ].3. Con-
sequently, in the case of [Ak].3 only 2 solutions are possible. The two corresponding reactions
can either be both present or both missing.

Y ·

 k31
k32

−k31 − k32

 =

[
0
0

]
k31, k32 ∈ R+ =⇒ k31 ∈ R+, k32 = 2k31 (21)

It follows from the above computations that the number of possible reaction graph structures
is 3 · 3 · 2 = 18, and the generated structures are identical to the ones presented in [45]. This
number could be larger only if all the reaction rates in the first or second column of Ak can be
zero, but this requires the entries in the corresponding column [M ].1 or [M ].2 to be zero.

B. Uncertainty defined as a general polyhedron
Now we examine the uncertain kinetic system that was also generated from the kinetic system
[M,Y ], but the set PB of possible coefficients is defined as a more general polyhedron.

If the matrix M of coefficients is represented by the point M̃ ∈ R6 so that M̃
>

=
[M11,M12,M13,M21,M22,M23], then let the equations determining the polyhedron PB be the
following:

M̃
>
· (−e61) ≤ 0

M̃
>
· (−e65) ≤ 0

M̃
>
· e63 = 0

M̃
>
· e66 = 0 (22)

M̃
>
· [1, 1, 0, 1, 1, 0]> = 0

M̃
>
· [0,−1, 0,−1, 0, 0]> ≤ 7

M̃
>
· [−1, 0, 0, 0, 1, 0]> ≤ −1

In this case, again, no additional linear constraints are considered in the uncertain model, i.e.
we examine the uncertain model [PB, ∅, Y ]. The computation of all possible reaction graph
structures shows that in addition to the structures realizing the non-uncertain kinetic system
[M,Y ], there are 6 more possible structures, presented in Figure 1.

It can be seen that the point M̃>
1 = [3,−2, 0,−3, 2, 0] corresponding to the original kinetic

system is in the polyhedron PB, therefore the 18 structures determined by its realizations must
be among the realizations of the uncertain kinetic system. Then we can apply a reasoning similar
to that in Section 5.1.A. Since the entries in column [M ].3 are all zero in every point of PB,
only the two outcomes that appear in the case of the original kinetic system [M,Y ] are possible
in the case of this column. The uncertain model can have more realizations than the original
kinetic system only if all the reaction rates in at least one of the columns [Ak].1 or [Ak].2 can be
zero. This is possible only if all the entries in [M ].1 or [M ].2 are zero. From the constraints of the
polyhedron PB it follows that [M ]11 ≥ 1, consequently the column [M ].1 cannot be zero. But
[M ].2 can have only zero entries, for example the point M̃2 = [3, 0, 0,−3, 0, 0]> ∈ PB satisfies
this property. For the columns of the matrices M and M2 the following hold: [M2].1 = [M ].1
and [M2].3 = [M ].3. Therefore, for the first and third columns of Ak there are 3 and 2 possible
outcomes, respectively. Since in the case of the second column there is one additional possible
outcome, the number of further reaction graph structures (compared to the original kinetic
system [M,Y ]) is 3 · 2 = 6. It is easy to see that these are exactly the ones presented in Figure
1 with the indicated reaction rate coefficients for an arbitrary p > 0.
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Figure 1: Possible reaction graph structures of the uncertain kinetic system [PB, ∅, Y ] in addition
to the realizations of the kinetic system [M,Y ] published in [45].

5.2 Example 2: G-protein network

The G-protein (guanine nucleotide-binding protein) cycle has a key role in several intracellular
signalling transduction pathways. The G-protein located on the intracellular surface of the
cell membrane is activated by the binding of specific ligand molecules to the G-protein coupled
receptor of the extracellular membranes surface. The activated G-protein dissociates to different
subunits which take part in intracellular signalling pathways. After the termination of the
signalling mechanisms, the subunits become inactive and bind into each other [27].

We examined the structural properties of the yeast G-protein cycle using the model pub-
lished in [42]. The model involves a so-called heterotrimeric G-protein containing three different
subunits. In response to the extracellular ligand binding, the protein dissociates to G-α and
G-βγ subunits, where the active and inactive forms of the G-α subunit can also be distinguished.

The reaction network model involves the following species: R and L represent the receptor
and the corresponding ligand, respectively, RL refers to the ligand-bound receptor, G is the
G-protein located on the intracellular membrane surface, Ga and Gd denote the active and the
inactive forms of the G-α subunit and Gbg is the G-βγ subunit.

The model can be characterized as a chemical reaction network (Y,Ak), where the structures
of the complexes and the reactions are defined by the complex composition matrix Y ∈ R7×10

and the Kirchhoff matrix Ak ∈ R10×10 as follows:
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Y =



1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 1 0



Ak =



−0.4 0 0 0 0 0 0 0 0 4000
0 −14 0.322 0 0 0 0 0 0 0
0 10 −0.322 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1000 0
0 0 0 0 −11000 0 0 0 0 0
0 0 0 0 11000 0 0 0 0 0
0 0 0 0 0 0 −0.01 0 0 0
0 0 0 0 0 0 0.01 0 0 0
0 0 0 0 0 0 0 0 −1000 0
0.4 4 0 0 0 0 0 0 0 −4000


The kinetic system that is realized by the model is ẋ =M ·ψY = Y ·Ak ·ψY , i.e. M = Y ·Ak ∈
R7×10. The reaction graph structure of the G-protein model can be seen in Figure 2 with the
indication of the linkage classes. (The linkage classes are the undirected connected components
of the reaction graph.)

Figure 2: Reaction graph structure of the heterotrimeric G-protein cycle.

The computation of all possible reaction graph structures and the solution of the linear
equations shows that the heterotrimeric G-protein cycle with the given parametrization is not
just structurally but also parametrically unique. Thus the prescribed dynamics without uncer-
tainty cannot be realized by any other set of reactions or different reaction rate coefficients
using the given set of complexes.

A. Uncertainty defined with independent relative distance intervals

We have examined the uncertain kinetic systems defined by relative parameter uncertainty
as it was presented in Section 5.1.
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First we examined the uncertain model [P0.1, ∅, Y ], where the uncertainty coefficients γl
and ρl for all l ∈ {1, . . . , 70} are 0.1 and there are no additional linear constraints in the
model. By computing all possible reaction graph structures and the set of core reactions of this
uncertain kinetic system, we obtained that all the reactions in the original G-protein cycle are
core reactions. Moreover, in the dense realization there are 10 further reactions, and these can
be present in the realization independently of each other. Consequently, the total number of
different graph structures is 210 = 1024. Figure 3 shows the number of possible reaction graph
structures with different number of reactions. The dense realization for this case is shown in
Figure 4.

Figure 3: The number of structurally different realizations of the uncertain kinetic system
[P0.1, ∅, Y ] with different number of reactions.

If we increase the relative uncertainty to 0.2, we obtain the uncertain kinetic system [P0.2, ∅, Y ]
with γl = ρl = 0.2 for i = 1, . . . , 70. In this case, the reaction RL → 0 is no longer a core reac-
tion, and it can also be added or removed independently of all other reactions (which remain
independent of each other). Therefore, the number of possible structures becomes 211 = 2048.

Figure 4: Reaction graph structure of the dense realization of the uncertain kinetic system
[P0.1, ∅, Y ]. The core reactions are drawn with dashed lines.
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B. Constrained uncertain model

We have also examined the possible structures in the case of constrained uncertain models.
The set L1 of constraints prohibits every reaction between different linkage classes. It can be
seen in Figure 5 that the dense realization of the uncertain kinetic system [P0.1, L1, Y ] has 3
reactions that are exactly the ones that are present in the dense realization of [P0.1, ∅, Y ] and do
not connect different linkage classes. These reactions are independent of each other, therefore
the number of structurally different realizations is 23 = 8 in the case of the uncertain kinetic
system [P0.1, L1, Y ] and 24 = 16 for the model [P0.2, L1, Y ]. The sets of core reactions are the
same as in the case of the unconstrained model for both degrees of uncertainty.

Figure 5: Reaction graph structure of the dense realization of the uncertain kinetic system
[P0.1, L1, Y ]. The core reactions are drawn with dashed lines.

The independence of non-core reactions is a special property of the studied uncertain model.
As a consequence of this and the superstructure property of the dense realization, the dense
realization of the constrained model will contain each reaction of the unconstrained model that
is not excluded by the constraints.

We emphasize that the dense realizations in the above example contain all mathematically
possible reactions that can be compatible with the studied uncertain models. If, using prior
knowledge, the biologically non-plausible reactions are excluded and/or certain relations be-
tween model parameters are ensured via linear constraints, then the described methodology is
still suitable to check the structural uniqueness of the resulting uncertain kinetic model.

6 Conclusion
The set of reaction graph structures realizing uncertain kinetic models was studied in this
paper. For this, an uncertain polynomial model class was introduced, where the coefficients of
monomials belong to a polytopic set. Thus, an uncertain kinetic model includes a set of kinetic
ordinary differential equations. Using the convexity of the parameter set, it was proved that the
unweighted dense reaction graph containing the maximum number of reactions corresponding
to an uncertain model, forms a superstructure among the possible realizations assuming a fixed
complex set. This means that any unweighted reaction graph realizing any kinetic ODE within
an uncertain model is a subgraph of the unweighted directed graph of the dense realization.

To search through the possible graph structures, an optimization-based computational
model was introduced, where the decision variables are the reaction rate coefficients, and the
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entries of the monomial coefficient matrix. It was shown that the dense realization can be
computed in polynomial time using linear programming steps. An algorithm was proposed to
compute those ‘invariant’ reactions (called core reactions) of uncertain models, that are present
in any realization of the uncertain model. Most importantly, an algorithm with correctness
proof was also proposed in the paper for enumerating all possible reaction graph structures for
an uncertain kinetic model.

The theoretical results and proposed algorithms were illustrated on two examples. The
examples show that the proposed approach is suitable for the structural uniqueness analysis of
uncertain kinetic models.
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