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Abstract

We present the results of an effort to accelerate a Rational Hybrid Monte Carlo (RHMC) pro-
gram for lattice quantum chromodynamics (QCD) simulation for 2 flavors of staggered fermions
on multiple Kepler K20X GPUs distributed on different nodes of a Cray XC30. We do not use
CUDA but adopt a higher level directive based programming approach using the OpenACC
platform. The lattice QCD algorithm is known to be bandwidth bound; our timing results
illustrate this clearly, and we discuss how this limits the parallelization gains. We achieve more
than a factor three speed-up compared to the CPU only MPI program.

Keywords : Lattice gauge theory, Graphics Processing Units, Rational Hybrid Monte Carlo,
MPI parallelization

1 Introduction

At length scales of about a femtometer (10−15m), i.e., at sub-nuclear scales, the building blocks
of nature are Fermions called quarks interacting among themselves by exchanging Bosons called
gluons. This is the strong interaction, which is responsible for the stability of the proton and thus
of matter itself.

Quantum Chromodynamics (QCD), which is the theory of strong interactions, is a quantum field
theory with a SU(3) gauge symmetry group. The gauge symmetry ensures that all color charges,
whether quarks or gluons, interact with the same strength and transform into each other following
the rules of the SU(3) group. The strength of the interaction is characterized by a coupling which
is a dimensionless number.

At high probe energies the coupling is small and analytic calculations can be carried out in QCD
using an expansion in the small coupling which is called perturbation theory. At lower energies,
which we are interested in, this coupling becomes strong so that perturbation theory cannot be
used. The only known systematic way of carrying out computations at this energy scale is by
formulating the theory on a space-time lattice [1].

Lattice QCD computations, particularly implementations of the Rational Hybrid Monte Carlo
(RHMC) algorithm, have been large users of high performance computing resources. In this paper
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we discuss parallelization of the full RHMC QCD code on mixed CPU/GPU nodes using MPI with
OpenACC as a tool for GPU coding. Both these aspects are new. We outline the formulation of
the computational problem in Sections 2 and 3. In Section 4 we give the parallelization scheme
which we utilize. A review of the state of the art in putting QCD on GPUs is given in Section 5.
In Section 6 we give details of the implementation using OpenACC. Section 7 has results on the
performance of the code. A short summary can be found in Section 8. In an appendix we give a
Mathematica code which generates a high precision rational approximation to the fourth root of a
matrix.

2 Defining lattice QCD

In an Euclidean quantum theory one needs to compute expectation values of physically observable
quantities by performing a functional integral over the quark fields (denoted by ψ and ψ) and gauge
fields (denoted U). The relative weight of each configuration is proportional to exp[−S(ψ̄, ψ, U)]
where S is called the action functional, and will be defined shortly. The expectation value of an
observable O is defined by the functional integral

〈O〉 =
1

Z

∫

ψ,ψ,U
O(ψ,ψ,U) e−S(ψ,ψ,U). (1)

The normalization Z is called the partition function and is given by the requirement that the
identity operator has expectation value of unity. We will restrict ourselves to the case where the
action functional is positive, and the expectation values may be obtained by a Monte Carlo method
[2].

Lattice QCD makes this possible by replacing the four-dimensional space-time continuum by
a hypercubic lattice of points, with lattice spacing a (see Fig. 1). Each point is now labeled by
four integers (ix, iy, iz , it). Each site may be given the address l = (((it − 1)Nz + (iz − 1))Ny +
(iy − 1))Nx + ix where Nx is the total number of points in the x direction, Ny the total number
of points in the y direction and so on. The volume of the lattice is V = NxNyNzNt. Quark fields
are placed on lattice sites and the gauge fields on the links between the lattice sites. The gauge
fields, U , are 3 × 3 (complex) unitary matrices with determinant unity. They require storage of
72V double precision words. The quark fields are (anti-commuting) Grassman variables. Since
these have no efficient representation on computers, they are integrated out. The part of the action
which involves quark fields is Sf = ψM [U ]ψ, and M [U ] is a linear operator involving the gauge
fields U , called the Dirac operator. Integration over the Dirac fields gives the weight

∫

ψ̄,ψ
e−Sf = detM [U ]. (2)

In the next section we will define the Dirac operator, and also explain a trick for replacing the
determinant by the positive definite quantity detM †[U ]M [U ]. Although the Dirac operator is
sparse, there is no efficient algorithm for the computation of the determinant. The best work-
around turns out to be the introduction of a local Boson (pseudo-Fermion) field φ, which allows us
to write

detM †[U ]M [U ] =

∫

φ
e−φ

†(M†M)−1φ. (3)

The pseudo-Fermion fields are three component complex fields and hence require storage of 6V
double precision words. The inversion of the sparse positive definite operator M †M on the pseudo-
fermion field φ is easily accomplished by some version of a conjugate gradient algorithm.

The functional integral in eq. (1) can now be replaced by

〈O〉 =
1

Z

∫

φ,U
O(U) exp−S, (4)
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Figure 1: A 2-dimensional lattice. The matter fields ψ̄, ψ are placed on sites while the gauge fields
U are placed on links. Here a is the lattice spacing. As a→ 0 one recovers the continuum theory.
ψ̄xUxyψy depicts the action of the Dirac operator. The directed product U1U2U

†
3U

†
4 gives us the �

in eq. (5).

with the action

S = φ†(M †[U ]M [U ])−αφ+
1

6g2

∑

µ,ν

(3− tr �µν), (5)

and µ and ν are (non-parallel) directions on the lattice, and� is defined in Fig. 1. The dimensionless
parameter g is called the bare coupling of QCD. The exact definition of M [U ] determines the value
of α needed. The quantity α is related to the number of fermionic species under consideration; our
choice is given in Section 3.2. Evaluation of the second term in S would take time linear in V .
The matrix M †M has size of order V 2, but is so sparse that it has order V non-zero entries. As a
result, evaluating the first term would also take time of order V . The time to obtain decorrelated
measurements would take typically time of order V , making the cost of such an algorithm of order
V 2.

3 Computing lattice QCD

3.1 The Algorithm

To generate configurations of U and φ distributed according to eq. (4), the algorithm of choice is
known as Hybrid Monte Carlo (HMC) [3], since this scales in CPU time as V 5/4. HMC consists of
three steps—

1. Introduce a random Gaussian noise p (conjugate to U) without affecting the correlation
between φ and U . Then exp[−S] in eq. (4) goes over to

exp[−H], H =
1

2
p2 + S. (6)

To create φ according to the correct distribution, generate another Gaussian random vector
ξ and set

φ =
(

M †M
)α/2

ξ. (7)

2. Using H as a Hamiltonian, obtain the molecular dynamics (MD) equations for p and U .
The MD equation for U is given by U̇ = ipU while the one for p is given by Ḣ = 0 where
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Figure 2: Even-odd decomposition of sites of a 2-dimensional lattice.

the dot denotes derivative with respect to simulation-time. Integrate the molecular dynamics
equations obtained from the Hamiltonian for a certain number of steps (simulation-time steps)
to obtain a proposed new configuration of U(τ) and p(τ).

3. Accept the proposed configuration U(τ), p(τ) according to

Pacc = min

{

1,
exp [−H(U(τ), p(τ))]

exp [−H(U(0), p(0))]

}

where (U(0), p(0)) is the configuration in step 1.

The steps 1 − 3 constitute a so-called trajectory. The simulation consists of going over several
thousands of trajectories and storing the configurations of U generated.

3.2 Even-odd decomposition of the staggered fermion matrix

Our primary aim is to do lattice QCD at finite temperature with two light dynamical quarks and
the formulation ideally suited for it is called staggered Fermions with α = 1

2 . There are some special
properties of this formulation which has a direct impact on the computational problem.

The staggered Fermion matrix (where certain phases have been absorbed into the U ’s) is given
by

Mik = 2mδik +
∑

µ

(Ui,µδi,k−µ − U †
i−µ,µδi,k+µ)

M †
ik = 2mδik −

∑

µ

(Ui,µδi,k−µ − U †
i−µ,µδi,k+µ)

If a lattice site has address l, we call it even or odd depending on whether l is even or odd (see Fig.
2). Reordering the lattice so that the even sites and odd sites are grouped together, we can rewrite
M and M † as

M =

(

moo Doe

Deo mee

)

M † =

(

moo D†
oe

D†
eo mee

)
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From the explicit expressions, we can see that D†
oe = −Doe and D†

eo = −Deo. Therefore
det(M †M) is given by

det
(

M †M
)

= det

[(

moo D†
oe

D†
eo mee

)

(

moo Doe

Deo mee

)

]

= det

(

m2
oo +D†

oeDeo 0

0 m2
ee +D†

eoDoe

)

From the block diagonal form, we get, det
(

M †M
)

= det
(

M †M
)

oo
det
(

M †M
)

ee
and det

(

M †M
)

oo
=

det
(

M †M
)

ee
. Thus finally det(M) =

√

det (M †M) = det
(

M †M
)

ee
This is known as the half lat-

tice formulation of the staggered quarks [4]. This halves the computational load of applying M †M
on φ.

4 Slicing for parallelization

From the previous Section, it can be seen that there are three main types of operations which need
to be carried out in the simulation.

1. Generation of large arrays of random numbers for p and φ.

2. Computation of
(

M †M
)− 1

2 φ.

3. Carrying out a Metropolis accept/reject step at the end of each trajectory.

While steps 1 and 3 have to be carried out only once per trajectory, step 2 needs to be carried out
at each integration step of the MD equations and typically there are about 100 integration steps
per trajectory. Our main aim therefore will be to speed-up step 2.
(

M †M
)− 1

2 and
(

M †M
)

1

4 can be expressed as rational approximations in the form

(

M †M
)

1

b
= c0 +

∑

k

ck
(M †M) + dk

. (8)

There are known algorithms to compute ck and dk and we use the MiniMax approximation function
of Mathematica to compute them for both b = 4 and b = −2 (see the appendix for the corresponding
mathematica notebook). The number of coefficients required to reach a certain degree of approxi-
mation depends upon the smallest eigenvalue ofM †M (since the largest is fixed) and for our lightest
masses we use about 30 coefficients to achieve an error below 10−11. This approximation has the

advantage that
(

M †M
)− 1

2 φ can be computed using a shifted conjugate gradient [5] using the same
number of shifts as we have coefficients [6].

The shifted conjugate gradient involves repeated application of
(

M †M
)

on vectors and this
process is relatively easily parallelizable. Currently the hardware which is ideally suited for matrix-
vector operations is the Graphics Processing Unit (GPU) and this is the hardware of our choice for
doing the simulations.

Unfortunately GPUs do not come with very large amounts of memory (our hardware consists
of Kepler GPUs with 6 GB of memory per card). The lattice sizes we need to consider do not fit
on a single GPU and we are forced to split the lattice among multiple GPUs which are located on
different nodes. Also it is very inefficient to repeatedly copy data from the CPU memory to GPU
memory. We therefore have to divide the lattice among different nodes in such a manner that the
basic matrix-vector operation can be done before one has to shift the data between the CPU and
GPU memories or between different nodes.

5
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Figure 3: Maximal distribution of the lattice among different nodes. The decomposition shown is
along the z direction, using only with two z-slices on each node.

Finite temperature physics is simulated by shrinking one of the extents of the lattice (typically
Nt) depending on the temperature. Therefore to maximize the number of nodes on which we can
divide the lattice, we choose to divide the lattice along the z direction. Our distribution scheme is
depicted in Fig. 3.

The application of M †M on a vector involves the application of Doe and Deo in succession. In
order to do this efficiently we need to hold at least two z-slices on each node. At the same time,
we have to hold two more z-slices as boundaries in each direction. Thus if we have K z-slices for
computation on each node (K even and at least 2), we have to hold K + 4 z-slices in memory.
Transferring the boundary data presents a significant bandwidth bound for the code, as we show
in Section 7.

5 Lattice QCD on GPUs

The first successful attempt to run lattice simulations on GPUs was presented in [7]. At that time
programming GPUs required lower level programming using OpenGL APIs. With the introduction
of CUDA [8] (a C like high level language for programming GPUs) by NVIDIA in 2007, GPUs
started being adopted more and more for scientific computing. The initial results were quite
encouraging and the cost effectiveness of the GPUs was demonstrated [9]. Shortly afterwards
a repository of CUDA codes for various types of lattice QCD simulations (QUDA) was created
and it is maintained and updated on the QUDA website [10]. The performance of GPUs doubles
and quadruples if one uses single or half precision instead of the full double precision. This led to
exploration of mixed precision routines in lattice QCD simulations [11][12]. Simulations on multiple
GPUs followed soon after. Initially it was multiple GPUs on a single node [13] and then on GPUs
on different nodes. It was soon realized that putting only the conjugate gradient inverter on the
GPU was not enough and that one needed to put the whole trajectory on the GPU [14] to minimize
data transfer between the CPU and the GPU.

A slightly different direction was adopted in [15] where the authors used CUDA libraries to
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accelerate their lattice simulations.
CUDA was launched by NVIDIA and runs only on NVIDIA GPUs. A more general pro-

gramming language like OpenCL is needed for programming other GPUs such as the Radeons
manufactured by AMD. OpenCL packages for lattice simulations were presented in [16] and [17].

An object oriented approach to lattice QCD simulations on accelerators has been under devel-
opment for some time in Japan under the name Bridge++ [18][19][20].

The performance of a full simulation code on GPUs using the Wilson fermions with the clover
improvement was reported in [21] using QUDA routines wherever possible. Dirac operators with
lattice chiral symmetry were handled in [22]

Pure Yang-Mills theory (i.e. without dynamical quark fields) simulation codes have also been
ported to GPUs [23].

Lattice QCD simulation codes are bandwidth bound as one has to move more data compared
to the number of floating point operations on them (i.e. FLOPS/Bytes < 1). This ratio varies
for different fermion formulations [24] and is the worst for the staggered fermion formulation. On
GPUs, the bandwidth available per compute core is much lower than the CPU and this is the
worst bottleneck to affect the performance of the GPU program. This problem is compounded
for MPI based multi-GPU codes as the GPU cannot launch MPI commands and the data must
be transferred back to the CPU for each MPI call. We are therefore addressing the most difficult
parallelization problem and in this article we examine carefully how the bandwidth limitation affects
our results and scaling.

Mixed precision routines are often used to boost performance of GPU codes. Moreover since
data movement is a bottleneck one often stores and moves only two rows (or columns) of the (3×3)
complex link matrix and recovers the third by orthogonalization. This is often known as data
compression. It was observed that for light quark masses, mixed precision routines often led to
convergence problems for the multi-shift conjugate gradient [25]. We therefore use fully double
precision routines. It was pointed out in [24] that for single and half precision data, compressed
storage boosted performance significantly while the effect was much less for double precision data.
In our code we have not yet used any data compression but hope to try it out soon.

6 Implementation in OpenACC

CUDA gives the programmer fine-grained control of the GPU, but it also makes the code hardware
specific and the programmer has to take care of initializing the device and synchronizing it at the
end of a parallel region. Another option is to use a directive based programming similar to OpenMP.
OpenACC provides one such option. Our programs use GPUs through OpenACC directives. The
recently introduced OpenMP 4.0 standard allows specification of accelerators and parts of the
program to be offloaded to the accelerators [26] as part of the standard OpenMP instruction set.

OpenACC is a programming standard for parallel computing on GPUs developed by Cray,
CAPS, NVIDIA and PGI.

The OpenACC Application Program Interface (API) lists a collection of compiler directives to
specify loops and regions of code to be offloaded from a host CPU to an attached GPU, providing
portability across operating systems, host CPUs and GPUs. The directives allow programmers
to create a high-level CPU+GPU program without the need to explicitly initialize the GPU or
manage data and program transfers between the CPU and the GPU [27].

OpenACC codes are similar to OpenMP codes in their directive structure. An additional
requirement is the creation of a data region which tells the compiler when to move certain data
items to the GPU or bring them back to the CPU. The first attempts at using OpenACC for
lattice QCD simulations were reported in [28] and [29]. In this article we concentrate mainly on
multi-GPUs and we illustrate some (mainly MPI) constructs below using snippets of our code in
FORTRAN. For code examples of a single node implementation see [30](FORTRAN) and [31](C).
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A data region is created with the ACC data command and ended with a ACC end data command
as shown below. The directive copy means that the variables should be copied into the GPU at
the start of the data region and copied out at its end. copyin means it should be copied into the
GPU but need not be copied back to the CPU. Similar to copyin, there is also a copyout. The
directive create means the variable is defined on the GPU only. Only array variables need to be
declared in the ACC data declaration.1

!$ACC data copy(nitcg,qg,ua)

!$ACC+ copyin(irsnd,ilsnd,ilrcv,irrcv,iblk)

!$ACC+ create(ap,rbndg,lbndg,qv,w1,fg)

!$ACC parallel loop present(irsnd,rbndg,ap)

do i=1,ms*mt

l=irsnd(i)

rbndg(i,1)=ap(l,1)

rbndg(i,2)=ap(l,2)

rbndg(i,3)=ap(l,3)

enddo

!$ACC update host(rbndg)

call MPI_SENDRECV(rbndg,3*ms*mt,MPI_DOUBLE_COMPLEX,rneib,0,lbndg,

1 3*ms*mt,MPI_DOUBLE_COMPLEX,lneib,0,MPI_COMM_WORLD, STATUS, ierr)

!$ACC update device(lbndg)

!$ACC parallel loop present(ilrcv,lbndg,ap)

do i=1,ms*mt

l=ilrcv(i)

ap(l,1)=lbndg(i,1)

ap(l,2)=lbndg(i,2)

ap(l,3)=lbndg(i,3)

enddo

!ACC end data

The blocking call MPI_SENDRECV may be replaced by the equivalent non-blocking call
call MPI_Isend(rbnd,3*ms*mt,MPI_DOUBLE_COMPLEX,rneib,0,MPI_COMM_WORLD,req(1),ierr)

call MPI_IRecv(lbnd,3*ms*mt,MPI_DOUBLE_COMPLEX,lneib,0,MPI_COMM_WORLD,req(2),ierr)

call MPI_WAITALL(2,req,MPI_STATUSES_IGNORE,ierr)

if necessary. “req” is an integer array of length 2.
Loops are parallelized by the directive parallel loop. If arrays are referenced inside the loop,

their status must be declared. They must either be present on the GPU or be declared with
present_or_copy attribute. For multi-dimensional arrays, the order of the dimensions are impor-
tant. For example for the array ap, the ordering we used for GPU operation was ap(V,3) while
for CPU operation we used the ordering ap(3,V) where V is the lattice volume. There can be a
substantial penalty in performance if a non-optimal ordering is used. For a detailed discussion see
[30]. We also noticed that it was faster to use parallel loops for vector operations rather than make
BLAS calls. For reduction operations too we found that parallel loops with the reduction variable
explicitly defined performed much better than the corresponding BLAS function. This holds for
both Fermi and Kepler GPUs. For details see [30].

MPI commands are launched from the CPU. So arrays used in the communication must first
be sent to the host using the update host directive. After the communication is over, the result
must be sent to the GPU using the update device directive. Due to these array transfers between
GPU and CPU, MPI calls from a GPU region of the code are expensive and should be avoided

1With the advent of unified memory for GPUs, declaring separate data regions can be avoided [32]. Whether it
will improve performance will need to be tested.
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as much as possible. The recently introduced GPU-aware MPI and GPU Direct RDMA may cut
down these overheads but as our machine does not support them yet we were unable to test their
efficacy.

We need two sets of MPI calls repeatedly. Once when Doe and Deo are applied on the pseud-
ofermion φ and once when the gauge fields U are updated in a MD integration step. The array
involved in the communication of the gauge fields is about 24 times the size of the array required
for communication of the boundary slices of the pseudofermion and we found that each MPI call
involving the boundary gauge fields added about 1.5% to the total execution time for our largest
lattice. The communication of gauge fields is needed right at the start of each step of integration.
We found it was better to perform the communication from the CPU and copy the entire data
required for each single step of the integration to the GPU. This was cheaper than the alternative,
which would have been to keep the whole data on the GPU for an entire trajectory (100 integration
steps) and copy the boundary data to the CPU at each step of integration. An understanding of
this counter-intuitive observation could possibly be reached by profiling the code. Unfortunately,
we are unable to do this at the moment due to version problems. We hope to come back to this issue
in future. On the other hand, for the single node program, where there is no MPI communication,
keeping the whole data on the GPU for the entire trajectory improves performance significantly
[30].

One more point worth mentioning is that in comparison to the older Fermi GPUs which per-
formed best with very light loops [28], on the Kepler, loops with a heavier load seemed more
beneficial. Our experience was that on the Kepler GPU we gained by combining two light loops
into a slightly heavier single loop. This is probably because the computing capacity of the individ-
ual Kepler cores is quite a bit higher than the Fermi cores [33]. We believe this trend has continued
to the Pascal and will continue further with the Volta GPU. It might therefore be beneficial to
revisit the load in individual loops as one updates the GPU generation.

7 Results

In this Section we present the results of our test runs for different lattice volumes and number
of GPUs. All the tests were carried out on a Cray XC30 which has a 2.8 Ghz 10 core (with
8 cores available for computation) Intel Ivybridge processor and a K20X GPU per node. The
XC30 has three stages of interconnections. The nodes on a single chassis have a backplane with
a bandwidth of 14 Gbps. Different chassis on a single cabinet are connected by copper cables
again with a bandwidth of 14 Gbps and finally the inter-cabinet connection is through optical
cables with a bandwidth of 12.5 Gbps [34]. This gives a nearest node point to point latency
of < 1.4µs. We use the Cray Fortran compiler for the Cray Programming Environment 2.5.5.
and link with the Cray scientific library for the CPU and the GPU cray-libsci/16.07.1 and cray-
libsci acc/16.03.1 respectively. The MPI version we use is cray-mpich/7.4.1 and the CUDA toolkit
version is cudatoolkit/7.5.18-1.0502.10743.2.1. Since lattice QCD programs are bandwidth bound
[24], it is useful to keep in mind that the CPU memory bandwidth is about 32 GB/s [34] while the
GPU memory bandwidth is about 180 GB/s [35].

All our runs were carried out for the same input parameters viz. the quark mass in lattice units
was 0.002, the coupling 1/(6g2) was taken to be 5.6. The number of conjugate gradient iterations
varied between 5800 and 6600. These numbers are quite close to the actual runs that we do. We
have discussed earlier, in Section 4, that when a lattice of size N4 is split between k nodes, so that
each node works on K = N/k slices, then the number of lattice points on each node is actually
(K + 4)N3.

In Table 1 we compare the timings of identical runs on the CPU and the GPU for a 324 lattice
on 2, 4, 8 and 16 nodes. We see that the GPU runs are between 3 and 3.4 times faster than
the CPU depending on how big the lattice on a single node is. We obtain the performance of
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Table 1: Comparing the performance of the CPU and GPU MPI program with varying number of
nodes (k) for a 324 lattice.

k CPU time GPU time gain

2 32h45m58.86s did not fit −
4 19h40m46.52s 5h47m20.46s 3.4
8 13h14m13.25s 4h4m53.60s 3.24
16 9h40m56.24s 3h14m7.00s 2.99

 0
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Figure 4: Volume scaling on various lattice sizes. The ratio of the slopes of the two lines (which is
about 3.27) gives the average speed-up on the GPU.

our code in GigaFLOPS by instrumenting the CPU program with the Cray performance analysis
tools as reported in [30]. The GPU performance is obtained by scaling the CPU results by the
timing ratio between the CPU and GPU runs. This gives us about 30 GFLOPS/node for the
multi-shift conjugate gradient on a MPI program using 16 nodes. Single node implementations in
OpenACC reach about 40 GFLOPS for the multi-shift conjugate gradient [30] while single node
CUDA implementations can reach about 50 GFLOPS [36] on the K20X GPU.

Since bandwidth bounds lattice QCD program performance, it is of interest to estimate the
memory bandwidth obtained by individual OpenACC kernels. This is difficult in a MPI program
as data communication and kernel execution can take place simultaneously. However, some idea of
the bandwidth usage can be obtained by examining the single node performance for the program
running a 164 lattice using the Cray performance analysis tools. We found that simple array
operations like multiplication of all elements by a scalar reached about 161 GB/s while inner
product type kernels clocked 98 GB/s. Matrix-vector type operations like the Dirac operator Doe

on a vector touched about 150 GB/s and the heaviest kernel which updates three large arrays and
consumes about 60% of the shifted conjugate gradient time returned a figure of about 90 GB/s.

In Fig. 4 we plot the run timings of different lattice volumes against the number of lattice points
present on each node. The timings for the different runs fall beautifully on two straight lines: one
for the CPU and one for the GPU. The ratio of the slopes of the two lines (which is about 3.27)
gives the average speed-up factor in going from the CPU to the GPU. The straight lines are of the
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Table 2: Slopes and intercepts for the straight lines describing the scaling of different lattice volumes
on the CPU and the GPU as a function of K, the number of z-slices on each node.

description slope (a) intercept (b)

324 lattice on CPU 5909 ± 46 23508 ± 427
404 lattice on CPU 12370 ± 425 43615 ± 2250
284 lattice on GPU 1015 ± 5 5974 ± 42
324 lattice on GPU 1533 ± 3 8574 ± 17

form y = ax where a is computed from one lattice volume (data point) for the CPU runs and one
lattice volume for the GPU runs. Except for the 404 lattice on 5 CPU nodes (with 768000 lattice
points on each node), the rest of the points just fall on the same straight line. The 5 node run for
404 lattices has a higher percentage of cache misses than the other smaller volumes. We checked
that the slope of the lines did not vary significantly if any of the other lattice volumes were used
to compute a.

We explore this feature in a bit more detail in Fig. 5. In this figure we plot the run times
against K, the number of z-slices on each node. The points are well described by a straight line of
the form y = ax+ b. A linear fit to each of the lattice volumes on the CPU and the GPU gives the
slope a and the intercept b for the four lines (see Table 2). It seems odd that the time required is
finite even when K = 0, i.e., there is no computation. However, from our earlier discussion, it is
clear that this time is needed to move the boundary data between the memory and the CPU (left)
or the GPU (right).

The ratios of the intercepts, b, must be the ratio of the number of words transferred. On the
CPU this ratio should be (32/40)3 = 0.512. This is in agreement with the observed ratio of the
intercepts, which is 0.54 ± 0.03. On the GPU the ratio should be (28/32)3 = 0.67. The observed
ratio of intercepts is 0.697 ± 0.005, which is close to, but not in full agreement with the expected
value. The little discrepancy may be due to various reasons. In the GPU computation there
are transfers between CPUs as well as between CPU and GPU, and the bandwidths for these are
different. In addition, the asymmetry in data access time for a core can be much higher in the GPU
than in the CPU. Understanding the slight discrepancy between measurement and expectation may
need more instrumentation of the code than was available to us.

The ratios of the slopes should be understood in terms of the amount of computation performed.
Numerically these should be the same ratios as for the intercepts. On the CPU the ratio of slopes
is 0.48 ± 0.02, which is consistent with 0.512 at the 95% confidence level. This is also the case on
the GPUs, where the observed ratio is 0.662 ± 0.004 and the expected one is 0.67.

Finally in Fig. 6, we show a strong scaling plot for the lattice size 10 × 403. The points are
fitted well by a curve of the form a/k+ b where k stands for the number of GPUs used. A non-zero
value of b is due to the non-parallelized part of the code. From Amdahl’s law we obtain the parallel
speed up of any program to be s = 1/[(1 − P ) + P/k] where P is the fraction of parallel code in
the program and k is the number of parallel threads. The fit shown in Fig. 6 implies that P is
approximately 87%. We plan to examine the remaining 13% in future to see whether some fraction
of this can also be parallelized. The single node point is a non-MPI program. It is a coincidence
that the single node run timing lies practically on the MPI curve. It was not used for obtaining a
and b. Actually the single node program was slowed down slightly to reduce its memory footprint
as otherwise a 10× 403 lattice does not fit on a single K20X card.
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Figure 5: Wall-clock time against number of z-slices used in computation, for two different lattice
sizes. The intercept of the lines on the y-axis give an estimate of the time required to move the
boundary slices from the memory to the CPU (left) or the GPU (right).
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Figure 6: Strong scaling plot showing wall-clock time vs nodes for a 10 × 403 lattice on the GPU.
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8 Summary

In this article we have described our implementation of a lattice QCD simulation program using
an RHMC algorithm on the Ivybridge-K20X (CPU-GPU) heterogeneous architecture using the
OpenACC programming paradigm. We find the OpenACC platform easy to use and it offers the
possibility of a unified code that can run on both the CPU and the GPU once OpenACC is included
in the OpenMP standard. Of course, to gain efficiency, some amount of data structure reorganiza-
tion will be necessary as one migrates from one hardware to another, but the programming barrier
will be much reduced.

Lattice QCD simulation programs are bandwidth bound. This is very clearly seen in our scaling
plots. One important aspect of the bandwidth bound is that when slicing up the lattice for parallel
handling a deep boundary has to be kept. We used naive staggered quarks where the boundary is
two slices in each direction. “Improved” quarks often have deeper boundaries, leading to further
memory transfer bottlenecks. It is possible that putting the boundary data in a separate array may
alleviate such bottlenecks but that is a study for the future.

Although the theoretical maximum gain of a GPU accelerator is a factor of about 5.6 over the
CPU, we achieve a factor of 3.4 in our runs. We obtain about 30 GFLOPS/node for the multi-shift
conjugate gradient on a MPI program on 16 nodes. This parallel performance is to be compared to
the nearly 40 GFLOPS which has been obtained using OpenACC [30] or 50 GFLOPS using CUDA
[36] for similar multi-shift conjugate gradients on single K20X GPUs.
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Appendix : Mathematica code for the rational approximation

Below we present a Mathematica code to compute the rational approximation to the function
x

1

4 in the interval xmin and xmax. xmin and xmax are given by bounds on the smallest and
largest eigenvalues of M †M where M is the massive Dirac operator. For staggered fermions,
in the convention we use, xmin has to be < (2ma)2 and xmax has to be > 32. Since the error of the
approximation increases towards the lower or upper ends, we choose the range of approximation to
be slightly larger than the spectral bound of the operator.

For the code snippet below ma = 0.005 and so xmin was chosen as 5× 10−5. xmax was always
kept at 34. The degree of the polynomials in the numerator and the denominator was chosen to be
24 each so that the approximation is of the form given in eq.(8).

<< FunctionApproximations‘

xmin = 5*10^(-5) ;

xmax = 34 ;

degnum = 24 ;

degden = 24 ;

mmlist = MiniMaxApproximation[x^(1/4),{x,{xmin,xmax},degnum,degden},

Bias -> -0.4, Brake -> {85,85}, MaxIterations -> 1000, WorkingPrecision -> 1000];

mmfunc = mmlist[[2,1]];

mf1 = Apart[mmfunc];

coeff0 = mf1[[1]];

mf2 = (mf1 - coeff0)[[2]];

rn = SetPrecision[Table[RandomReal[{1^(-2),34},24]], 80];
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rhs = SetPrecision[Table[mf2/.x -> rn[[i]], {i,1,24}], 80];

rrts = SetPrecision[Roots[mf2[[2]]^(-1) == 0, x],80];

lhs = SetPrecision[Table[((x-rrts[[i,2]])/.x -> rn[[j]])^(-1),{j,24},{i,24}], 80];

coeff = Table[SetPrecision[LinearSolve[lhs,rhs], 80]];

mf = SetPrecision[coeff0 + Sum[coeff[[i]]/(x-rrts[[i,2]]),{i,1,24}], 16]

This coefficients are in coeff0 and the table coeff and the shifts are in the table rrts. This
approximation has an error of < 10−12 throughout the approximation range. A higher degree of
approximation can be achieved by increasing the degree of the polynomials in the numerator and
the denominator.

An approximation may also be obtained by choosing the degree of the numerator to be n − 1
and the degree of the denominator as n. That would set coeff0=0. Then mf2=mmfunc. However
we found that keeping coeff0 halved the error of the approximation without increasing the number
of shifts required in the conjugate gradient.
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