
GPU parallel simulation algorithm of Brownian
particles with excluded volume using Delaunay

triangulations

Francisco Cartera,∗, Nancy Hitschfelda, Cristóbal Navarrob, Rodrigo Sotoc

aDepartment of Computer Science, FCFM, Universidad de Chile, Santiago, Chile
bInstitute of Informatics, Universidad Austral de Chile, Valdivia, Chile
cPhysics Department, FCFM, Universidad de Chile, Santiago, Chile

Abstract

A novel parallel simulation algorithm on the GPU, implemented in CUDA

and C++, is presented for the simulation of Brownian particles that display

excluded volume repulsion and interact with long and short range forces. When

an explicit Euler-Maruyama integration step is performed to take into account

the pairwise forces and Brownian motion, particle overlaps can appear. The

excluded volume property brings up the need for correcting these overlaps as

they happen, since predicting them is not feasible due to the random displace-

ment of Brownian particles. The proposed solution handles, at each time step,

a Delaunay triangulation of the particle positions because it allows us to ef-

ficiently solve overlaps between particles by checking just their neighborhood.

The algorithm starts by generating a Delaunay triangulation of the particle ini-

tial positions on CPU, but after that the triangulation is always kept on GPU

memory. We used a parallel edge-flip implementation to keep the triangula-

tion updated during each time step, checking previously that the triangulation

was not rendered invalid due to the particle displacements. We designed and

implemented an exact long range force simulation with an all-pairs N -body sim-

ulation, tiling the particle interaction computations based on the warp size of

the target device architecture. For the short range force simulation, we devel-

∗Corresponding author
Email address: francisco.carter@ug.uchile.cl (Francisco Carter)

Preprint submitted to Computer Physics Comunnications March 8, 2017

ar
X

iv
:1

70
3.

02
48

4v
1

 [
cs

.D
C

]
 7

 M
ar

 2
01

7

oped a parallel algorithm that builds and uses Verlet lists in order to handle the

particle neighborhood in parallel. The algorithm is validated with two models

of active colloidal particles. Upon testing the parallel implementation of a long

range forces simulation, the results show a performance improvement of up to

two orders of magnitude when compared to the previously existing sequential

solution. The algorithm for the short range force presents a similar performance

improvement regarding the parallel long range implementation.

Keywords: Parallel computing, Particle dynamics, Brownian dynamics,

Overlap correction, Delaunay Triangulations, CUDA, GPGPU, N-body

simulation

1. Introduction

A colloidal suspension is a mixture of microscopical insoluble particles dis-

persed throughout a continuous fluid, where particle sizes range from 1 nm to

10 µm. Colloidal suspensions appear in several natural and artificial substances

as the milk, mud, inks, cosmetics or latex paint, for example. Also, they are

used in many intermediate industrial processes The interactions between col-

loidal particles of various kinds [1] have effects on the physical and chemical

properties of the mixture such as its viscosity or light dispersion. To study

these and other properties it is necessary to simulate particle systems of grow-

ing numbers (N ≥ 104). Also, colloids are being used as models for active

systems, to describe the motion of self-propelled microorganisms [2, 3, 4].

Colloids can be modelled as hard bodies subject to Brownian diffusive mo-

tion. Colloidal particles can typically interact through the fluid in what is called

hydrodynamic interactions, via electrostatic forces for charged colloids, which

can be screened in an electrolyte, or with van der Waals forces [1]. In out of

equilibrium conditions, phoretic forces also appear [5]. Except for the hydrody-

namic forces, these interactions can be modelled with good approximation as

pairwise additive forces, which in out of equilibrium conditions can eventually

break the action-reaction symmetry.

2

The simulation of colloidal dispersions, can be divided on two main prob-

lems executed in sequence: updating the positions of the particles due to the

interparticle interactions, according to some integration rule and ensuring that

the bodies do not overlap because of their movement, in order to respect the

excluded volume interaction. These problems are specific instances of the n-

body simulation and collision detection respectively [6]. In some contexts, the

simulation of colloidal particles is referred as Brownian dynamics.

There are two main methods for solving overlaps between particles: cor-

recting all of them at once after they happen or use an event-driven approach,

integrating the system until the collision instant, process the involved particles

and repeat until the system reaches the target time step. The last method, is

particularly useful when inertia is important and collisions result in rebounces

as in granular materials [7, 8]. It requires knowing the positions of the involved

bodies at the time of collision, which becomes difficult when random Brownian

motion is present. For the simulation of colloidal particles, which lack of iner-

tia and excluded volume acts like a boundary condition rather than producing

collisions, the first method is more suited.

This work focuses on designing and implementing a novel parallel simulation

algorithm for 2D colloidal particle interacting with short and long range pair-

wise forces, with periodical boundaries, excluded volume and Brownian motion.

The algorithm implementation takes advantage of the data-parallel comput-

ing capabilities of the GPU architecture, which have proven to be effective at

accelerating the simulation process of several computational physics problems

[9, 10, 11]. The interactions forces are allowed to be non-reciprocal as in the

case of active particles [12, 13]. The main contribution of this work consists of

a new and efficient method of resolving particle overlaps by using Delaunay tri-

angulations, which are maintained periodically and fully on the graphics card.

The starting positions and triangulation are initialized on the host while all the

simulation code is executed on the device. The random values are also gen-

erated on the graphics card, both on the initialization and simulation phases.

The algorithm uses a GPU edge-flip implementation to keep the triangulation

3

fulfilling the Delaunay condition during each time step and to correct inverted

triangles in case they are generated due to the particle displacements. For the

short range force simulation, we developed a parallel algorithm that builds and

uses Verlet lists in order to handle the particle neighborhood in parallel. The al-

gorithm is validated with two models of active colloidal particles. Upon testing

the parallel implementation of a long range forces simulation, the results show a

performance improvement of up to two orders of magnitude when compared to

the previously existing sequential solution. The algorithm for the short range

force presents a similar performance improvement regarding the parallel long

range implementation.

The paper is organized as follows: Section 2 describes the specific conditions

and properties that the simulated systems must operate under. Section 3 lists

previous related work used to solve similar problems. Section 4 details the

designed solution with its subcomponents, data structures, and optimizations.

The implementation of the algorithm is described in Section 5. Sections 6 and

7 cover the tests, benchmarks, validation and used methodology, presenting the

running time and performance results when compared to the other implemented

solutions. Finally, section 8 rounds up the obtained results.

2. Desctiption of the model

This section contains the description of the involved concepts and properties

of this problem that may differentiate it from other body simulation problems,

such as the excluded volume and stochastic component of particle movement.

2.1. Preliminaries

Let P = {p1, p2, ..., pN} be a set of N bodies on a d -dimensional space. The

n-body simulation is the computation of the interactions over each body in P ,

where Fi corresponds to the interaction over pi by effect of Pi = P \{pi}, the set

of all other bodies in the system. The interaction forces F typically depend on

the distance rij between two bodies as F ∼ r−qij . If q > d the force is said to be

4

short ranged, while if q ≤ d, it is considered a long range force. When the forces

are long ranged, the set Pi cannot be reduced in n-body simulations and an exact

evaluation of the forces has a cost O(N2). Approximate solutions for long range

interactions as the Barnes-Hut algorithm reduce the cost to O(N logN) [14].

But for short range forces, the interactions can be truncated and, therefore,

Pi can be reduced to the neighborhood of particles close to pi. In this case,

the evaluation of the forces costs O(N ∗ NNL) on average, where NNL is the

average number of neighbors of a body [15]. Since the construction of the list

is O(N2) for evaluating all pairwise distances between bodies, it is possible to

partition the simulation domain in cells so that close bodies get binned together

in the same cells. Assignment of bodies to their respective cells takes O(N)

time [16, 17].

The simulation domain is a two-dimensional L×L, periodical box across the

X and Y axes, meaning that the particles wrap around the box as they move

across its boundaries. For the distance calculations between particles, including

force calculations, we follow the minimum-image convention, in which a particle

interacts with another via its real position or its image depending on which is

the shortest.

2.2. Particle interaction without excluded volume

Microscopic particles move in an overdamped regime, with no inertia. When

subject to a force ~F , the equation of motion is simplified to d~r/dt = γ ~F , where

γ is the mobility. Absorbing the mobility coefficient into the force, which will

then have velocity units, in a time step ∆t, the integration rule for updating the

position of a particle over time is performed using the Euler-Maruyama method:

~ri(t+ ∆t) = ~ri(t) + ~Fi(t)∆t+ ~ξ
√
D∆t, (1)

where ~Fi is the deterministic velocity obtained from the interactions between the

particle i and Pi, D is the diffusion coefficient, and ~ξ is a random vector, where

the components follow a normal distribution of zero mean and unit variance,

5

and corresponds to a noise added that takes into account the diffusive Brownian

motion [18].

The force model we use for the simulations describes the interaction of self-

diffusiophoretic active particles [12]. In this model, particles can be of different

type, characterized by two charges, α and µ; the former is responsible of creating

the concentration field, while the second describes the response of a particle to

the field, leading to the following interaction law:

~Fi =
∑
k 6=i

µiαk
~f(~ri − ~rk), (2)

where ~f(~r) = ~r/r3 for the studied long range force, while ~f(~r) = ~r/r7 for the

short range interaction. Note that if αi 6= µi, the action-reaction symmetry is

broken and self-motion is possible. Charged colloidal particles are included in

this model if αi = µi = qi, equal to the electric charge of the particles.

0 1 2 3 rij

f

Figure 1: Cutoff of the short range forces. For distances larger than rcutoff, the force is small

and therefore is set to zero to speed up calculations. The jump at rcutoff has been exaggerated

for illustration purposes.

Since the short range force decays much faster with distance compared to

the long range force, its calculation considers a cutoff radius from which the

value of the force is considered zero, as shown on Figure 1. The short range

6

force is then computed as:

~Fij(~rij) =

µiαk
~f(~rij), if rij ≤ rcutoff

0, otherwise

(3)

We used rcutoff = 2.5σ for the simulated short range force in our experiments,

where σ is the particle diameter.

2.3. Excluded volume

The simulated particles are represented as hard disks with a uniform di-

ameter σ. Although here we consider only monodisperse colloids, it is direct

to extend the method to polydisperse systems where radii dot not differ too

much. Since the integration rule (1) ignores the excluded volume condition, it

can happen that the updated positions produce overlaps between two or more

particles, resulting in a physical impossibility. In order to ensure this property,

at the end of each time step, the members of all overlapping pairs (pi, pj) are

moved apart from each other in a way that corrects the overlaps:

~r1′ = ~r1 − δ∗
(~r2 − ~r1)

|~r12|
~r2′ = ~r2 − δ∗

(~r1 − ~r2)

|~r12|
, (4)

where ~r1 and ~r2 are the original positions and ~r1′, ~r2′ the updated positions. If

δ∗ = (σ − | ~r12|)/2, the particles would move in opposite directions from each

other along n̂ = (~r2 − ~r1)/|~r12|, leaving the particles in tangential contact. If

δ∗ = σ−|~r12|, the movement is proportional to the magnitude of the previously

existing overlap, simulating a bounce effect resulting from the collision at some

instant t∗ ≤ t+∆t. This last value is the one used for processing the overlaps in

the simulation and guarantees that no accumulation is produced at the contact

distance.

2.4. Stochastic displacements

The particle displacements on (1) have a random noise component ~ξ, mod-

eled as a random variable with standard normal (or Gaussian) distribution with

zero mean and standard deviation σ̂ =
√
D∆t. Reducing ∆t, the determinis-

tic and stochastic displacements in each time step are reduced. However, for

7

a Gaussian distribution, it is always possible that large values are generated

(at the tail of the distribution), leading to excessively large displacements (see

Figure 2). To avoid these problems, the simulation ignores values larger than

3 standard deviations. We considered two methods in order to achieve this, as

shown on Figure 3:

(a) Reroll the values outside the range [−3σ̂, 3σ̂].

(b) Truncate the values to the range [−3σ̂, 3σ̂].

0.683

0.954

0.997

µ̂− 3σ̂ µ̂+ 3σ̂

µ̂− 2σ̂ µ̂+ 2σ̂

µ̂− σ̂ µ̂+ σ̂

x

Figure 2: Normal distribution with mean µ̂ and standard deviation σ̂. The probability to get

numbers in the ranges [µ̂ − σ̂, µ̂ + σ̂], [µ̂ − 2σ̂, µ̂ + 2σ̂], and [µ̂ − 3σ̂, µ̂ + 3σ̂] are 0.683, 0.954,

and 0.997, respectively.

µ̂− 3σ̂ µ̂+ 3σ̂ µ− 3σ µ+ 3σ

Figure 3: Distributions that result after discarding values larger than 3σ̂ from the original

Gaussian distribution. Two methods are used. Left: Rerolling values out of range. Right:

Truncating the generated values. In this case, Dirac-delta contributions of small amplitude

appear at µ̂± 3σ̂.

Both methods produce probability distributions different from each other

and from the original; while the first alternative raises the probability of all

values in range, the second one raises the probability at the edges. These mod-

ifications do not generate a noticeable statistic distortion, since the considered

8

range includes 99.7% of the possible values. In our simulations, we opted for the

second method, which turns out to be faster and better suited for parallel exe-

cution, since it needs to generate a single random number instead of a variable

quantity of random values in the first method.

3. Related work

For short-range forces calculation, the standard technique is the use of Verlet

lists [19, 16, 17]. The authors in [20, 21] parallelize the list construction by

having a O(N2) list of all possible pairs of bodies. A predicate checking closeness

between the pair members is evaluated over all elements of the list, which can

then be used for a key-value sort to group all the neighboring pairs consecutively

in the array. A parallel scan operation allows to get the number of elements that

must be copied to the neighbor list. The authors then combine this algorithm

with fixed cell partitioning in order to replace distance calculations with less-

expensive cell neighborhood checks.

For the parallel n-body simulation, with full calculation of the O(N2) forces,

Nyland et al. [22] developed a grid-style tiling algorithm, reading the parti-

cles from the global space and storing them on GPU shared memory, increas-

ing performance as multiple threads read from that space at a lower latency.

Partitioning the load/store process on groups of p particles allows fitting an

arbitrary input size on the hardware-limited shared memory size. Burtscher

and Pingali [23] parallelized the Barnes-Hut simulation [14], which computes an

approximation for the force, representing the cell hierarchy kd-tree as multiple

arrays for each node field. It uses atomic lock operations to build the tree in

parallel, throttling the threads that failed to get the lock so they do not waste

bandwidth with unsuccessful lock requests. The tree is then filled with the cen-

ter of mass data, starting from lower nodes in the tree according to the order

of allocation for the scan. Bedorf et al. [11] uses a Z-order curve to sort the

particles spatially. Each thread is assigned to a particle, applying a mask value

to it to determine the octree cell the particle should be assigned. The linking

9

of the tree is made by assigning a thread to each cell node and then doing a

binary search over the corresponding Z-order key to find both the parent and

child nodes, if appropiate.

To detect and process collisions, Hawick and Playne [24] developed a multi-

GPU algorithm with a tiling scheme similar to the one used by Nyland et al. [22].

If a pair of particles overlap, the associated threads store the index of its colliding

neighbor and the time at which the collision occurred. The collisions then are

resolved iteratively starting from the earliest, redoing the previous process in

order to find possible new collisions.

Finally, for overlap correction, Strating [25] describes a brute-force sequen-

tial algorithm that checks all pairs of bodies for possible overlaps and corrects

them following equation (4). The algorithm may need to iterate an unbounded

number of times at each time step because some corrections may generate new

overlaps with neighboring particles.

4. Algorithm

This section describes the parallel algorithm in detail. It includes the gen-

eration of the initial data, data structures, overlapping detection and correc-

tion, and Delaunay condition updates, among others, putting emphasis in what

threads are doing at each time step.

4.1. Overview

The simulation consists of two phases: (i) sequential initialization of the

simulation data, followed by a host to device transfer and (ii) a parallel simu-

lation phase. The initial positions are initialized over a triangular mesh with

N∗ ≥ N vertex, where each vertex represents a particle and their types are

assigned randomly according to the specified concentrations. A sample of N

particles is selected from the mesh by Reservoir Sampling [26], resulting in the

input particle set, which is homogeneous in space.

The n-body algorithm for the long range force is based on a grid-style tiling,

which uses the shared memory of the multiprocessor assigned to each thread

10

block to store the particles in groups. In this algorithm each thread is mapped

to exactly one particle in the system, and since it is possible to lack action-

reaction symmetry on the force, no redundant computation is done unlike the

cases where ~fij = −~fji.

Once the forces are calculated, the particles are advanced one time step

using eqn (1). As a result, particle overlaps can appear. When ∆t is small

enough, for hard disks of similar or equal radii, only neighbor particles can

overlap. Then, to detect and correct overlaps, instead of a brute-force algorithm

that would check all O(N2) pairs, only neighbors are checked. The Delaunay

triangulation [27] is particularly well suited to detect neighbors for monodisperse

or slightly polydisperse disks. In dense systems, the overlap corrections can be

highly non-local, as the correction of on pair can generate a sequence of other

overlaps that need correction. It is therefore not clear a priori the computational

cost of this stage, which is the reason why we consider both short and long range

interaction forces.

The Delaunay triangulation can be built constructively or from an existing

triangulation. Lawson’s algorithm [28] accepts a triangulation as input and

transforms it into a Delaunay triangulation via a finite sequence of edge-flip

operations [27]. Based on the Lawson algorithm, Navarro et al. [29] developed

a parallel implementation for generating quasi-Delaunay triangulations, so it is

possible to keep the triangulation updated without need of host-device memory

transfers. These are quasi-Delaunay because exact predicates are too expensive

on the GPU; nevertheless, this approximate construction is sufficient for our

problem. However, since the input for the Navarro et al. algorithm must be

a valid triangulation, we must first correct potential triangle inversions with

invalid edge intersections, which can result from the particle displacements.

With this strategy, the Delaunay triangulation of the particle positions is built

only once from scratch on the host [30, 31], which is transferred to the device.

Thereafter, the triangulation is maintained updated after each time step on the

device.

11

Algorithm 1 Particle system simulation

Require: P = {p1, ..., pN} list of particle positions

Ensure: P = {p1, ..., pN} list of positions updated to current time

1: procedure runSimulation(P)

2: Generate starting position of N particles

3: Build the Delaunay triangulation

4: for t← 0 to Tf do

5: Integrate the N particles on t+ ∆t

6: Correct inverted triangles

7: Update Delaunay triangulation

8: Correct overlaps between particles

9: end for

10: end procedure

4.2. Data structures

We store the simulation data as a Structure of Arrays (SoA) on global device

memory, using total O(N) space. The particle data consists of their position

(xi, yi) and their charges (αi, µi), stored as floating point vector types 1 in or-

der to increase bandwidth utilization [32]. We use an additional buffer array

for positions so that writes are not done at the same adresses for reads, avoid-

ing a synchronization step. We store the simulation parameters that remain

unchanged during a same instance on a constant device memory structure [32],

such as N,D,∆t, σ and derived constants σ2 and
√
D∆t. Additionally, we store

the triangulation data using the same scheme as [29].

4.3. Inverted triangle detection

There are two possible reasons for a triangle inversion: an edge gets inverted

because the distance vector between its terminal vertex changes orientation or

because one of its vertex crosses the edge opposite to it. The first problem means

1float2 or double2.

12

that the particles went through each other, which is a physical impossibility

and must not be allowed, and can only takes place for large ∆t. The criterion

~r0
ij · ~r1

ij < 0 is used to determine if the above situation happened on the current

time step, where ~rij = ~rj − ~ri is the distance vector between the compared

particles, and ~r0
ij and ~r1

ij are evaluated with current and previous positions,

respectively. The buffer array allows to compare the distances before and after

integration, and the edges of the triangulation show the pairs that need checking.

Once an invalid movement is detected, the last positions are discarded and

integration is repeated with a lower ∆t value than the currently used.

Finally, the inverted triangle detection becomes equal to checking if a vertex

crossed (towards a neighboring triangle) any of the edges that enclose it, which

is equivalent to point-in-triangle detection. Using the barycentric coordinates

d, s, and t on triangles (see Figure 4),

~e0 = ~v2 − ~v1 d2 = ~e2 × ~e0 (5)

~e1 = ~v3 − ~v1 s2 = ~e1 × ~e0 (6)

~e2 = ~v4 − ~v1 t2 = ~e2 × ~e1 (7)

the criterion used to detect the edges that must be flipped is

flip(v1,v2,v3,v4) =

(s2 ≤ 0) ∧ (t2 ≤ 0) ∧ (s2 + t2 ≥ d2), if d2 < 0

(s2 ≥ 0) ∧ (t2 ≥ 0) ∧ (s2 + t2 ≤ d2), otherwise

(8)

v3 v4

v1

v2

~e0

~e1 ~e2

(a) Starting situation.

v3
v4

v1

v2

~e0

~e1 ~e2

(b) Inverted triangle.

Figure 4: Inverted triangle detection using barycentric coordinates. Particle sizes are scaled

down compared to distances.

13

Figure 4 shows the vectors used on the predicate that checks if the original

edge must be flipped. The predicate becomes true when applied to edge (v1, v2)

in (b), because point v4 lies inside the triangle (v1, v2, v3). This means that

(v1, v2) must be replaced with (v31, v4), as in a common edge-flip operation.

In this case, v3 and v4 are stored as opposite vertices to edge (v1, v2) in the

triangulation data structure in GPU device memory.

a b

c

d

e

(a) Starting situation.

a b

c

d

e

(b) Particle b moves over the edge bc.

a b

c

d

e

(c) Edge flip between ab and cd.

a b

c

d

e

(d) Edge flip between cd and be.

Figure 5: Inverted triangle correction. The cyan shaded triangle was inverted by the movement

of particle b. Particle sizes are scaled down compared to distances.

It is worth noting on Figure 5 that the movement of point b across edge (c, d)

creates an intersection between it and edge (b, e). The edge flip between (a, b)

and (c, d) removes the inverted triangle, restoring the local triangulation. The

triangulation may still not satisfy the Delaunay property, so additional edge

14

flips may be needed on further steps. For this stage, we use the Navarro et al.

algorithm [29].

a

b c

d

e

f

(a) Starting situation.

a

b c

d

e

f

(b) Particle f after integration.

a

b c

d

e

f

(c) Edge flip between be and cf.

a

b c

d

e

f

(d) Edge flip between ce and df.

Figure 6: Inverted triangle correction with two edge flips. Particle sizes are scaled down

compared to distances.

Figure 6 shows a situation where particle f moves across edges (b, e) and

(c, e), needing two consecutive flips in order to restore the local triangulation.

While function 8 cannot properly evaluate this case or similar movements across

further distances, this kind of inversion can be detected allowing to revert the

step. Anyway, small time steps guarantee that this situation is extremely un-

likely to happen.

4.4. Overlap correction

The overlap correction uses the topological information contained in the

edges of the Delaunay triangulation, which allows for each particle fast access

to the neighborhood of particles that may be overlapping with it. The algorithm

maps threads to edges in such a way that each thread handles one edge of the

triangulation. A thread gets the positions of the particles that form the edge,

15

checking if there exists an overlap between them (rij < σ). If the check is

positive, the algorithm computes the displacements of the involved particles

according to (3) Since the same particle can be part of many edges at once, the

algorithm sums atomically the displacements in a global array, in order to avoid

concurrency hazards.

Algorithm 2 Overlap correction

Require: P0 starting positions, E triangulation edges

Ensure: P1 displacements over each particle

1: procedure correctOverlaps(P0, P1, E)

2: for i← 0 to |E| do

3: ei ← E[i]

4: bi ← P0[ei.first]

5: bj ← P0[ei.second]

6: rij ← dist(bi, bj)

7: if rij < σ then

8: δ ← σ − rij
9: atomicAdd(P1[ei.x], −δ ~rij)

10: atomicAdd(P1[ei.y], δ ~rij)

11: end if

12: end for

13: end procedure

Once the algorithm computes the total displacements, it maps each thread

with a particle in the same way as described previously for edges. Each thread

then updates the position of its particle, applying the periodic boundary con-

ditions when necessary. It is possible that the updated positions may still have

some of the previous overlaps or even have some newly generated ones. In this

case, the algorithm repeats the previous process until no overlaps are present.

16

A

B

C D

(a) Starting situation.

A

B

C
D

(b) After correction.

Figure 7: Possible instability with the parallel overlap correction. The displacement over

C caused by the overlaps with A and B can be greater than needed, which can generate a

larger overlap with a neighboring particle D. This problem is prevented by truncating the

displacements to a maximum amount.

When adding the partial displacements on a particle, it may happen, if

these point in the same direction, that the resulting total displacement is ex-

cessively large (see Figure 7). These displacements, larger to what is needed

to solve the overlap, can generate new overlaps. Eventually, the correction of

the new overlaps can result in an instability, where the displacements increase

with alternating sign and the iterative procedure does not converge. A solution

is truncating the displacement with the heuristic value σ/4 (half the particle

radius), preventing the emergence of the instability.

Finally, it is worth mentioning that the parallel correction algorithm pre-

sented here does not correspond to a parallelization of the sequential algorithm

of Strating [25], which displaces particles sequentially, while in our case the

displacements are added and performed in parallel. Hence, due to the chaotic

dynamics of the system, the small differences in these algorithms will produce

different outputs for finite ∆t.

4.5. Long range forces

An improvement to the long range force calculation consists on using the

intrinsic warp shuffle instruction, which allows a thread access to the registers

of other threads belonging to the same warp. Each thread is assigned a lane

number that identifies it from the other warp members, allowing them to read

different particles from global memory. Then, each warp member takes turns in

17

propagating the data of its corresponding particle to the other threads, who can

read it via the shfl() instruction by passing as argument the lane number of

the thread currently in turn. Once the whole warp has shared the data among

its members, each member reads a particle from global memory and repeats

the same process until all particles have been visited. The main advantage of

this optimization is a greater efficiency of memory accesses, since most of the

time the threads are sharing data at registry level instead of more expensive load

requests on global memory. Also, the concurrent execution of the warp members

makes unnecessary the explicit synchronization of the inner warp shuffle loop.

Algorithm 3 Particle system integration

Require: P0 particle array (xi, yi, αi, µi)

Ensure: P1 particles with updated positions

1: procedure integrate(P0, P1)

2: for i← 0 to |P | do

3: li ← threadIdx.x & (warpSize− 1)

4: ~bi ← P0[i]

5: ~vi ← 0

6: for j ← 0 to |P |; j ← j + warpSize do

7: ~bj ← Pi[j + li]

8: for k ← 0 to warpSize do

9: ~bk ← shfl(~bj , k)

10: ~rik ← dist(~bi,~bk)

11: ~vi ← ~vi − ~rik · (αiµk)/r3
ik

12: end for

13: syncthreads()

14: end for

15: end for

16: P1[i].x← ~bi.x+ ~vi.x∆t+ ~ξi.x
√
D∆t

17: P1[i].y ← ~bi.y + ~vi.y∆t+ ~ξi.y
√
D∆t

18: end procedure

18

The .x and .y operators reference the data of the vectorized CUDA structures

for each respective variable. For example, the noise ~ξi has x̂ and ŷ components,

so it is grouped as a single vector for increased memory performance [32].

5. Implementation

The parallel algorithms described in the previous section were implemented

on CUDA 7.5 and C++ 11, using function templates to choose between float

and double precision formats at compile time. We use the CGAL library [30]

to create the 2D periodic Delaunay triangulation, which is then sent to device

memory alongside the particle data before starting the simulation. The random

numbers used on the parallel implementations when initializing the starting

positions and generating noise during integration are created with the XOR-

WOW pseudorandom number generation algorithm of the cuRAND library [33],

using the host and device APIs respectively. Each configuration has two particle

types, although the program can support a variable number of particle types for

simulating. For comparison purposes, we also implemented a fully sequential

long range forces algorithm with the overlap correction discussed on [25], and a

parallel short range forces algorithm using Verlet lists and a discrete grid over

the simulation box. The neighbor list computation during the Verlet lists con-

struction in parallel is similar to the one described on [34], grouping together

all the particles that belong in the same cells.

When the simulation finishes, the final positions are brought back to host

memory and written to an output file. The visualizations on Figures 8, 13, 14

and 15 were generated reading the respective output files.

6. Performance results

Parameters:. We generated inputs for 11 different values of N and 5 parameter

configurations, as described on Table 1. The starting positions are generated

semi-randomly as described on section 4, keeping the same seed value for the

random number generator across all simulation instances.

19

config φ1 α1 µ1 φ2 α2 µ2 ρ

0 0.7 1 1 0.3 1 −1 0.79

1 0.5 1 1 0.5 1 −1 0.52

2 0.5 1 1 0.5 −1 −2 0.52

3 0.5 −1 1 0.5 1 −2 0.79

4 0.5 1 1 0.5 −1 −4 8.73 · 10−2

Table 1: Parameters used for the tests, where each configuration is identified by a digit and

all of them contain two types of particles. φi is the concentration of particles of type i, αi, µi

are the charges used in the force calculation, and ρ is the packing fraction of particles on the

simulation box.

Each configuration has two types of particles with charges αi, µi. The frac-

tion of particles of each type is given by φi = Ni/N , where Ni is the number

of particles of each type and N = N1 + N2 is the total number of particles.

The area fraction ρ = N(σ/2)2/L2 is a measure of the particle density. To

study scaling times, we change the length of the simulation box to keep density

constant when increasing N :

L(N) =

√
Nπ(σ/2)2

ρ
(9)

The values for N start at 210, raising the exponent by 1 until N = 220. Finally,

we kept constant the values for σ = 1,∆t = 0.01, D = 0.01, δ = 1.0 for all

configurations and input sizes.

Figure 8 displays the particle positions after 104 time steps for each con-

figuration. The election of the parameters help to test the algorithms under

different conditions of fluidity, density and homogeneity. For c0, there is an

asymmetric attraction between particles of type 1 and 2, resulting in an homo-

geneous mixture, with fluid-like motion. In c1, there is a larger concentration

of type 2 particles, which self-attract forming a dense cluster, segregated from

type 1 particles, which self-repel forming in a gas-like state. In configuration c2,

equal particles repel, while dissimilar particles attract, favouring the formation

20

of chain-like structures, where 1 and 2 particles alternate. In c3, the situation

is the opposite, where equal particles attract, while dissimilar particles repel,

leading to the formation of dense segregated clusters. Finally, the interactions

in c4 are analogous to those of c2, in a dilute regime, resulting in the formation

of small clusters.

System:. We ran the tests on a machine with a Tesla K40c GPU and a Intel(R)

Xeon(R) CPU E5-2640 v3 @ 2.60GHz. The tests for both the sequential and

parallel implementations were made on the same machine.

Compilation:. We compiled the program using nvcc V7.5.17 with compiler op-

tions --std=c++11 -gencode arch=compute 30,code=sm 30. For the sequen-

tial code, we used g++ 4.9.2 with options --std=c++11 -O3.

Metric:. We ran simulations for 100 iterations, long enough to ensure that par-

ticle collisions happen frequently, except for the first iterations where the bodies

are separated from each other. There we compute the average execution time

and iteration averages for overlap correction cycles and edge flips.

The average execution time per time step, presented in Figure 9, shows two

interesting features. First, for the case with long range forces the execution time

is O(N2), while for short range forces it is O(N). Since both include the overlap

correction algorithm, this implies that the execution time for the later is O(N).

Second, except for small systems, in the case of long range forces the execution

time does not depend on the configuration, while for the short range forces,

there is a clear dependence, with increasing complexity for c4, c1, c2, c0, c3 (the

same order of complexity is observed for long range forces at small N). This

result is consistent with a cost O(N) for the overlap correction, with a prefactor

that may depend on the density and extension of the clusters.

21

(a) Configuration 0 (b) Configuration 1

(c) Configuration 2 (d) Configuration 3

(e) Configuration 4

Figure 8: Particle positions after 104 iterations, with N = 4096 and ∆t = 0.01. Type 1

particles are in green and type 2 in blue. The configurations and particle types for each

system are described on Table 1.

22

103 104 105 106

100

101

102

103

104

105

particles

T
im

e
(m

s)
c0
c1
c2
c3
c4

(a) Long range forces.

103 104 105 106

10−1

100

101

102

particles

T
im

e
(m

s)

c0 c1
c2 c3
c4

(b) Short range forces.

Figure 9: Average execution time per time step for simulations using long and short range

forces, using the parameters shown on Table 1.

To study the dependence of different configurations on the complexity of the

overlap correction, in Figure 10 we plot the average per time step of iterations

needed to correct all overlaps. The increasing complexity for c4, c1, c2, c0, c3

is consistent with the previous results on Figure 9, because in c3 most of the

particles participate in corrections, while in c2 almost half of the particles are

excluded due to repulsion between same-type particles. However, this does not

explain why c4 has the least complexity factor, even though half of the particles

overlap. This happens because all the overlaps on c4 are corrected on the first

iteration, which is probably due to the small size of the clusters. The number

of iterations follow the same order in complexity as the execution time. Except

for c4 where clusters are disconnected, the number of iterations grow with N .

This effect is due to the percolation of the large clusters, which cover the entire

box and, therefore, the corrections become non-local and system size dependent.

This growth is nevertheless weak, following an approximate logarithmic law. It

is also noteworthy that the curves for long range forces are constant on c4, c1

and c0, slightly grow on c2 and is relatively greater on c3.

23

103 104 105 106

0

10

20

30

particles

#
it

er
at

io
n
s

Overlap correction with Delaunay triangulation

c0 c1
c2 c3
c4

(a) Long range forces.

103 104 105 106
0

2

4

6

8

10

12

particles

#
it

er
a
ti

o
n
s

Overlap correction with Verlet lists

c0
c1
c2
c3
c4

(b) Short range forces.

Figure 10: Average overlap correction iterations per time step for short and long range forces

simulation, using the parameters shown on Table 1.

We also measured the performance of the Delaunay triangulation update

algorithm, reporting the average of edge flip iterations made for both inverted

triangle corrections and Lawson’s algorithm. The curves obtained on Figure 11

are less regular than the previous results, but keep the same general tendency.

Unlike the curves for overlap correction, on where c4 shows much smaller values

than the other configurations, here the curve is comparable to c0 and c1. This

happens because the underlying triangulation for c4 has a great number of

slivers, formed by the small particle density that forms relatively long edges.

Then, according to the inverted triangle condition on section 4, it is more likely

for c4 to produce inverted triangle than the other configuration, whose triangles

are more equilateral. The average for edge-flip iterations for long range forces

has linear growth for all configurations, noting that c2 and c3 are the hardest

cases to solve, as is the case on Figure 10. Though the number of iterations

grows with N , it still remains negligible regarding the total time of a time step,

so it is not a priority target for optimization.

24

103 104 105 106

1

2

3

particles

#
it

er
a
ti

o
n

s

Edge-flip iterations per time step

c0 c1
c2 c3
c4

Figure 11: Average edge-flip iterations per time step for long range forces integration, using

the simulation parameters shown on Table 1. The short range forces algorithm is not analyzed,

since it does not use Delaunay triangulations.

Finally, we compared the n-body algorithms for long range forces, used on

the different implementations without considering overlap corrections. shuffle

is the presented optimization using warp-shuffle, while sharedMem is the GPU

device memory algorithm described on section 4, observing a performance im-

provement of up to 2.4 times from optimizing the parallel implementation for all

tested values of N . It is also noteworthy that the optimized n-body algorithm

allows simulation of N = 106 particles at the same time that the sequential im-

plementation solves the problem for 105 bodies. For input sizes relevant to this

study (N ≥ 104), the time used by the sequential implementation is two orders

of magnitude higher than the parallel solution, which allows the simulation of

bigger particle systems for a longer physical time.

25

103 104 105 106

100

101

102

103

104

105

particles

T
im

e
(m

s)

Integration of a time step

shuffle
sharedMem

CPU

Figure 12: Comparison between execution times in milliseconds for both implementations of

the quadratic n-body algorithm, using configuration c0 described on Table 1.

7. Validation

In order to verify that the developed overlap correction algorithm is efficient

enough, we made two validation experiments. First, we test the locality of the

correction, that is, how far it propagates though the system. For configurations

c0 and c3 we print the result after 105 time step iterations, painting with red

the particles that took part in overlaps during the last simulated time step.

Particles that did not take part in overlaps were painted green, so that every

particle has a color. We repeat the process for decreasing values of ∆t, expecting

that the number of overlaps will decrease as the time step produces smaller

movements. The results on Figure 13 allows us to verify the complexity factor

associated to each configuration that shows up on the previous performance

curves. Configuration c0 involves much less particles on overlap corrections than

c3 upon lowering the time step. This decrease in execution time by reducing ∆t

does not compensate, however, for the larger number of steps that are needed

to achieve an specified physical time.

26

(a) ∆t = 10−2 (b) ∆t = 10−3 (c) ∆t = 10−4

(d) ∆t = 10−2 (e) ∆t = 10−3 (f) ∆t = 10−4

Figure 13: Overlap correction locality visualizations of configurations c0 and c3. The red

particles participated in at least one overlap correction on the same time step, while green

particles did not.

The second validation consists in testing the overlap correction on another

colloidal model. We consider the Active Brownian Particle (ABP) model [4],

where particles move in 2D with velocities of fixed magnitude V0, with a di-

rection that is specified by the director angle θi. The integration rule for the

positions after an interval ∆t is:

~ri(t+ ∆t) = ~ri(t) + V0(cos θix̂+ sin θiŷ)∆t. (10)

In the same time interval, the angles θi are subjected to diffusive rotational

Brownian motion, of amplitude D, and therefore evolve as:

θi(t+ ∆t) = θi(t) +
√

2D∆t ni, (11)

where ni is a random Gaussian variable of zero mean and unit variance.

27

We simulate the system with the same parameters used in Ref. [35], for two

different packing fractions, obtaining the same phenomenlogy. At large packing

fractions, the system evolves to the formation of a dense percolating dynamic

cluster (see Fig. 14). Reducing the packing fraction, small clusters form, which

merge in a slow coarsening process in the course of time as shown in Fig. 15.

(a) 2500 iterations. (b) 5000 iterations.

(c) 7500 iterations. (d) 10000 iterations.

Figure 14: Snapshots of an ABP system N = 104, L = 105.9, D = 0.01 and packing fraction

ρ = 0.7.

28

(a) 2500 iterations. (b) 5000 iterations.

(c) 7500 iterations. (d) 10000 iterations.

Figure 15: Snapshots of an ABP system rescaled to fit the packing fraction ρ = 0.4. The

other parameters are the same as presented on Figure 14.

8. Discussion

We presented algorithms for simulating colloidal particles subject to Brow-

nian motion, interacting with short or long range force interactions, and pre-

senting excluded volume. The overlap correction algorithm using Delaunay tri-

angulations is a novel method. The algorithms implemented in CUDA for sim-

ulation are fully parallel, transferring data back to host only for measurements

or outputs. The overlap correction algorithm can be used independently from

29

the forces calculation, allowing to simulate different colloidal models including

changed particles or self-propelled active systems. The Delaunay triangulation

and the parallel edge-flip algorithm proved to be useful for solving overlaps

efficiently. This opens the possibilty for using the Delaunay triangulation for

solving related problems in the simulation, such as short range force calculation

or approximated n-body simulations. The parallel n-body implementation was

also successfully adapted and optimized to the particular conditions of colloidal

particles, which opens up simulations of up to two orders of magnitude the

number of particles used on the previous sequential implementation.

Acknowledgements

The authors would like to thank the NVIDIA GPU Research Center of the

Department of Computer Science of the Universidad de Chile for supplying the

equipment used for the tests presented here. This work was partially supported

by the FONDECYT projects No. 1140778 and No. 3160182, and by project

No. ENL009/15, VID, Universidad de Chile.

References

References

[1] W. B. Russel, D. A. Saville, W. R. Schowalter, Colloidal dispersions,

Cambridge university press, 1989.

[2] T. Vicsek, A. Zafeiris, Collective motion, Physics Reports 517 (3) (2012)

71–140.

[3] M. C. Marchetti, J. Joanny, S. Ramaswamy, T. Liverpool, J. Prost,

M. Rao, R. A. Simha, Hydrodynamics of soft active matter, Reviews of

Modern Physics 85 (3) (2013) 1143.

[4] P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier,

Active brownian particles, The European Physical Journal Special Topics

202 (1) (2012) 1–162.

30

[5] J. L. Anderson, Colloid transport by interfacial forces, Annual review of

fluid mechanics 21 (1) (1989) 61–99.

[6] C. A. Navarro, N. Hitschfeld-Kahler, L. Mateu, A survey on parallel

computing and its applications in data-parallel problems using GPU

architectures, Communications in Computational Physics 15 (2) (2014)

285–329.

[7] B. Andreotti, Y. Forterre, O. Pouliquen, Granular Media: Between Fluid

and Solid, Cambridge University Press, 2013.

[8] T. Pöschel, T. Schwager, Computational Granular Dynamics: Models and

Algorithms, Springer, 2005.

[9] M. Weigel, Performance potential for simulating spin models on {GPU},

Journal of Computational Physics 231 (8) (2012) 3064–3082.

[10] M. Weigel, Simulating spin models on {GPU}, Computer Physics

Communications 182 (9) (2011) 1833–1836.

[11] J. Bédorf, E. Gaburov, S. Portegies Zwart, A sparse octree gravitational

N-body code that runs entirely on the GPU processor, Journal of

Computational Physics 231 (7) (2012) 2825–2839.

[12] R. Soto, R. Golestanian, Self-assembly of catalytically active colloidal

molecules: Tailoring activity through surface chemistry, Physical Review

Letters 112 (6).

[13] R. Soto, R. Golestanian, Self-assembly of active colloidal molecules with

dynamic function, Physical Review E 91 (5) (2015) 052304.

[14] J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm,

Nature 324 (6096) (1986) 446–449.

[15] Z. Yao, J. S. Wang, G. R. Liu, M. Cheng, Improved neighbor list

algorithm in molecular simulations using cell decomposition and data

31

sorting method, Computer Physics Communications 161 (1-2) (2004)

27–35.

[16] M. P. Allen, D. J. Tildesley, Computer simulation of liquids, Oxford

university press, 1989.

[17] D. Frenkel, B. Smit, Understanding molecular simulation: from

algorithms to applications, Vol. 1, Academic press, 2001.

[18] M. S. Miguel, R. Toral, Stochastic Effects in Physical Systems,

Instabilities and Nonequilibrium Structures VI 5 (2000) 35–120.

arXiv:9707147.

[19] L. Verlet, Computer ”experiments” on classical fluids. I.

Thermodynamical properties of Lennard-Jones molecules, Physical

Review 159 (1) (1967) 98–103.

[20] T. J. Lipscomb, S. S. Cho, Parallel Verlet Neighbor List Algorithm for

GPU-Optimized MD Simulations Categories and Subject Descriptors,

ACM Conference on Bioinformatics, Computational Biology and

Biomedicine (2012) 321–328.

[21] A. J. Proctor, T. J. Lipscomb, A. Zou, J. A. Anderson, S. S. Cho,

Performance analyses of a parallel verlet neighbor list algorithm for

gpu-optimized MD simulations, in: Proceedings of the 2012 ASE

International Conference on BioMedical Computing, BioMedCom 2012,

2013, pp. 14–19.

[22] L. Nyland, M. Harris, J. Prins, Fast N-Body Simulation with CUDA,

Simulation 3 (1) (2007) 677–696.

[23] M. Burtscher, K. Pingali, An efficient CUDA implementation of the

tree-based barnes hut n-body algorithm, in: GPU Computing Gems

Emerald Edition, 2011.

32

http://arxiv.org/abs/9707147

[24] K. A. Hawick, D. P. Playne, Hard-sphere collision simulations with

multiple GPUs, PCIe extension buses and GPU-GPU communications,

Conferences in Research and Practice in Information Technology Series

127 (2012) 13–21.

[25] P. Strating, Brownian dynamics simulation of a hard-sphere suspension,

Physical Review E 59 (2) (1999) 2175–2187.

[26] J. S. Vitter, Random sampling with a reservoir, ACM Transactions on

Mathematical Software 11 (1) (1985) 37–57.

[27] M. De Berg, O. Cheong, M. Van Kreveld, M. Overmars, Computational

Geometry: Algorithms and Applications, Vol. 17, 2008.

[28] C. L. Lawson, Transforming triangulations, Discrete Mathematics 3 (4)

(1972) 365–372.

[29] C. Navarro, N. Hitschfeld, E. Scheihing, Quasi-delaunay triangulations

using gpu-based edge-flips, Communications in Computer and

Information Science 458 (2014) 36–49.

[30] The CGAL Project, CGAL User and Reference Manual, 4.8.1 Edition,

CGAL Editorial Board, 2016.

[31] N. Kruithof, 2D periodic triangulations, in: CGAL User and Reference

Manual, 4.8.1 Edition, CGAL Editorial Board, 2016.

[32] NVIDIA, Cuda C Programming Guide, Programming

Guides (September) (2015) 1–261.

[33] NVIDIA, CURAND Library: Programming Guide, Version 7.0 (2015).

[34] S. Green, Particle simulation using cuda, NVIDIA whitepaper 6 (2010)

121–128.

[35] Y. Fily, M. C. Marchetti, Athermal phase separation of self-propelled

particles with no alignment, Physical Review Letters 108 (23) (2012)

00319007.

33

	1 Introduction
	2 Desctiption of the model
	2.1 Preliminaries
	2.2 Particle interaction without excluded volume
	2.3 Excluded volume
	2.4 Stochastic displacements

	3 Related work
	4 Algorithm
	4.1 Overview
	4.2 Data structures
	4.3 Inverted triangle detection
	4.4 Overlap correction
	4.5 Long range forces

	5 Implementation
	6 Performance results
	7 Validation
	8 Discussion

