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Abstract

We propose a greedy algorithm for the compression of Wannier functions into
Gaussian-polynomials orbitals. The so-obtained compressed Wannier functions
can be stored in a very compact form, and can be used to efficiently parameterize
effective tight-binding Hamiltonians for multilayer 2D materials for instance. The
compression method preserves the symmetries (if any) of the original Wannier
function. We provide algorithmic details, and illustrate the performance of our
implementation on several examples, including graphene, hexagonal boron-nitride,
single-layer FeSe, and bulk silicon in the diamond cubic structure.

1 Introduction

Since their introduction in 1937 [31], Wannier functions have become a widely used
computational tool in solid state physics and materials science. Theses functions provide
insights on chemical bonding in crystalline material [13], they play an essential role in
the modern theory of polarization [9], they can be used to parametrize tight-binding
Hamiltonians for the calculation of electronic properties [7], and are useful in several
other applications [13].

Maximally localized Wannier functions (MLWFs) were introduced by Marzari and
Vanderbilt [14] and are obtained by minimizing some spread functional [14, 25, 13].
Several algorithms for generating MLWFs are implemented in the Wannier90 computer
program [17]. In the general case, MLWFs obtained by the standard Marzari-Vanderbilt
procedure are not centered at high-symmetry points of the crystal (typically atoms
or centers of chemical bonds), and do not fulfill any symmetry properties [25, 29],
which complicates their physical interpretation. Symmetry-adapted Wannier functions
(SAWFs) are centered at high-symmetry points and are associated with irreducible
representations of a non-trivial subgroup of the space group of the crystal (precise
definitions are given in Appendix). They are the solid-state counterparts of symmetry-
adapted molecular orbitals [12] that are fruitfully used in quantum chemistry. SAWFs
were investigated in [4, 10, 30, 11, 26, 5, 24, 23, 20, 3] from both the theoretical and the
numerical point of view. An algorithm for generating maximally-localized SAWFs was
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recently proposed by Sakuma [22], which makes it possible to enforce the center and
symmetries of the Wannier functions during the spread minimization procedure, and
has been implemented in the Wannier90 package.

In this work, we propose a numerical method for compressing Wannier functions
into a finite sum of Gaussian-polynomial functions, referred to as Gaussian-type orbitals
(GTOs), which preserves the centers and the possible symmetries of the original Wannier
functions. Such compressed representations enable the characterization of a Wannier
function by a small number of parameters (the shape parameters of the Gaussians and
the polynomial coefficients) rather than by its values on a potentially very large grid. In
addition, they can be used to accelerate the parameterization of tight-binding Hamilto-
nians or more advanced reduced models from Wannier functions computed from Density
Functional Theory. Indeed, matrix elements of effective Hamiltonians can be computed
very efficiently using GTOs; this fundamental remark by Boys [2] was instrumental
for the development of numerical methods for quantum chemistry. Gaussian-type ap-
proximate Wannier functions should be particularly useful for simulating multilayer
two-dimensional materials [8, 6], especially when Fock exchange terms are considered,
which is the case for hybrid functionals.

This article is organized as follows. In Section 2, we describe our approach for com-
pressing a given symmetry-adapted Wannier function W into a finite sum of GTOs W̃p

sharing the same center and symmetries as W . Note that our procedure is also valid
if the Wannier function has no symmetry (in this case the symmetry group is reduced
to the identity matrix). The main idea is to construct a sequence W̃0, W̃1, W̃2, · · · of
successively better approximations of W (for the relevant metric, see Section 2.1), by
means of an orthogonal greedy algorithm [27, 28]. The basics of greedy algorithms and
symmetry-adapted Wannier functions are briefly summarized in Sections 2.2 and 2.3
respectively. An overall description of our algorithm is given in Section 2.4 and imple-
mentation details are provided in Section 2.5. Greedy methods are very well adapted
to the compressing problem under consideration, but our implementation is not neces-
sarily optimal: many variants of the numerical scheme described in Section 2.5 can be
considered, and there is clearly room for improvement to reduce the number of GTOs
necessary to reach a given accuracy. The purpose of this work is to assess the efficiency
of greedy methods in this setting, and to stimulate further work. The performance
of our current implementation is illustrated in Section 3 on four examples: three two-
dimensional materials, namely graphene, hexagonal boron-nitride (hBN), and FeSe, and
bulk silicon in the cubic diamond structure.

2 Theory

2.1 Error control

Consider a real-valued Wannier function W : R3 → R, which we would like to approx-
imate by a finite sum of well-chosen Gaussian-polynomial functions. First, we have to
specify the norm with which the error between W and its approximation W̃ will be
measured. We will consider here the L2 and H1 norms respectively defined by

‖u‖L2 =

(ˆ
R3

|u(r)|2 dr
)1/2
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and

‖u‖H1 =

(ˆ
R3

|u(r)|2 dr +

ˆ
R3

|∇u(r)|2 dr
)1/2

. (1)

Requiring that ‖W −W̃‖H1 is small is far more demanding than simply requesting that
‖W −W̃‖L2 is small. In using approximate Wannier functions to calibrate tight-binding
models, it is important to require ‖W − W̃‖H1 to be small. Indeed, while the errors on
the overlap integrals can be controlled by L2-norms:∣∣∣∣ˆ

R3

Wi(r)Wj(r) dr−
ˆ
R3

W̃i(r)W̃j(r) dr

∣∣∣∣ ≤ ‖Wi‖L2‖Wi−W̃i‖L2 +‖W̃i‖L2‖Wj−W̃j‖L2 ,

the errors on the kinetic energy integrals appearing in effective one-body Hamiltonians
matrix elements

〈Wi|H|Wj〉 =
1

2

ˆ
R3

∇Wi(r) · ∇Wj(r) dr +

ˆ
R3

V(r)Wi(r)Wj(r) dr

are controlled by the L2-norms of the gradients, hence by the H1-norms of the functions.
The H1-norm also allows one to control the errors on the potential integrals, even in
presence of Coulomb singularities. Our greedy algorithm has been implemented in
the Fourier representation, and can therefore minimize the error between the Wannier
function W and its GTO representation for any value of the Sobolev exponent s.

Note that the L2 and H1-norms are particular instances of the Sobolev norms Hs,
s ∈ R, defined on the Solobev spaces

Hs(R3) =

{
u : R3 → R s.t.

ˆ
R3

(1 + |k|2)s|û(k)|2 dk <∞
}
,

where û is the Fourier transform of u, by

‖u‖Hs :=

(ˆ
R3

(1 + |k|2)s|û(k)|2 dk
)1/2

. (2)

The L2-norm corresponds to s = 0, due to the isometry property of the Fourier trans-
form: ˆ

R3

|û(k)|2 dk =

ˆ
R3

|u(r)|2 dr.

Likewise, definition (2) agrees with definition(1) for s = 1 since
ˆ
R3

|k|2|û(k)|2 dk =

ˆ
R3

|ikû(k)|2 dk =

ˆ
R3

∣∣∣∇̂u(k)
∣∣∣2 dk =

ˆ
R3

|∇u(r)|2 dr.

In the numerical examples reported in Section 3, we will consider the cases s = 0 and
s = 1.

2.2 Greedy algorithms in a nutshell

Greedy algorithms [27, 28] are iterative algorithms that, among other things, construct
sequences of approximations W̃0, W̃1, W̃2, ... of some target function W ∈ Hs(R3),
with the following properties:
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• each approximate function W̃p is a sum of p "simple" functions belonging to some
prescribed dictionary D ⊂ Hs(R3):

W̃p(r) =

p∑
j=1

φ
(p)
j (r),

with φ
(p)
j ∈ D. In our case, D will be a set of symmetry-adapted Gaussian-

polynomial functions;

• the errors ‖W − W̃p‖Hs decay to 0 when p→∞.

Greedy algorithms therefore provide systematic ways to approximate a given function
W ∈ Hs(R3) by a finite sum of simple functions with an arbitrary accuracy. The set D of
elementary functions cannot be any subset Hs(R3) (for instance D cannot be chosen as
the set of radial functions since only radial functions can be well approximated by finite
sums of radial functions). The convergence property ‖W − W̃p‖Hs → 0 is guaranteed
provided the set D is a dictionary of Hs(R3), that is, a family of functions Hs(R3)
satisfying the following three conditions:

1. D is a cone, that is, if φ ∈ D, then tφ ∈ D for any t ∈ R;

2. Span(D) is dense in the Sobolev space Hs(R3). This means that any function
W ∈ Hs(R3) can be approximated with an arbitrary accuracy ε > 0 by a finite
linear combination of functions of D, and therefore by a finite sum of functions
of D since D is a cone: for any ε > 0, there exists a finite integer p ∈ N∗, and p
functions φ(p)

1 , ... φ(p)
p in D such that∥∥∥∥∥∥W −

 p∑
j=1

φ
(p)
j

∥∥∥∥∥∥
Hs

≤ ε.

Greedy algorithms provide practical ways to construct such approximations;

3. D is weakly closed in Hs(R3). This technical assumption ensures the convergence
of the greedy algorithm [27].

Given a dictionary D, the greedy method then consists of

• initializing the algorithm with (for instance) W̃0 = 0;

• constructing iteratively a sequence W̃1, W̃2, W̃3, · · · of more accurate approxima-
tions of the target Wannier function W of the form

W̃p(r) =

p∑
j=1

φ
(p)
j (r), (3)

where φ(p)
j are functions of the dictionary D;

• stopping the iterative process when ‖W − W̃p‖Hs ≤ ε, where ε > 0 is the desired
accuracy (for the chosen Hs-norm).
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We will use here the orthogonal greedy algorithm for constructing W̃p+1 from W̃p, which
is defined as follows:

Algorithm 1 (Orthogonal greedy algorithm).

Step 1: Compute the residual at iteration k:

Rp(r) = W (r)− W̃p(r);

Step 2: find a local minimizer φp+1 to the optimization problem

min
φ∈D

Jp(φ), where Jp(φ) := ‖Rp − φ‖2Hs ; (4)

Step 3: solve the unconstrained quadratic optimization problem

(c
(p+1)
j )1≤j≤p+1 ∈ argmin


∥∥∥∥∥∥W −

p+1∑
j=1

cjφ
(p)
j + cp+1φp+1

∥∥∥∥∥∥
2

Hs

, (cj)1≤j≤p+1 ∈ Rp+1

 ;

(5)

Step 4: set φ(p+1)
j = c

(p+1)
j φ

(p)
j , 1 ≤ j ≤ p, and φ(p+1)

p+1 = c
(p+1)
p+1 φp+1.

Note that Step 3 is easy to perform since (5) is nothing but a least square problem
in dimension (p+ 1) (p is of the order of 10 to 103 in practice). Step 2 will be described
in detail in Sections 2.4 and 2.5. The next section is concerned with the choice of the
dictionary D.

2.3 Symmetry-adapted Wannier functions and Gaussian-type orbitals

We assume that we are dealing with a periodic material with space group G = RoGp,
where R is a Bravais lattice embedded in R3, and Gp a finite point group (a finite
subgroup of the orthogonal group O(3)). The Bravais lattice R is two-dimensional for
2D materials such as graphene or hBN, and three-dimensional for usual 3D crystals.
We also assume that we are given a symmetry-adapted Wannier function W centered
at a high-symmetry point q ∈ R3 of the crystalline lattice, and corresponding to a
one-dimensional representation of the subgroup

G0
q := {Θ ∈ Gp | Θq ∈ q +R}

of Gp. For completeness, we include the basics of the theory of symmetry-adapted
Wannier functions in the Appendix. Note that our method can straightforwardly be
extended to the case of two-dimensional irreducible representations of G0

q. We now
translate the origin of the Cartesian frame to point q. Setting G0 := G0

q to simplify the
notation, the function W satisfies in this new frame the invariance property

∀Θ ∈ G0, (ΘW )(r) = W (Θ−1r) = χ(Θ)W (r), (6)

where χ is the character of this one-dimensional representation.

Our goal is to approximate the Wannier function W by a finite sum of GTOs. In
order to reduce the number of GTOs necessary to obtain the desired accuracy, while
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enforcing the symmetries of the approximate Wannier functions W̃p, we use a dictionary
consisting of symmetry-adapted Gaussian-type orbitals (SAGTOs) of the form

φSA
α,σ,Λ(r) =

1

|G0|
∑

Θ∈G0

χ(Θ) (Θϕα,σ,Λ)(r) =
1

|G0|
∑

Θ∈G0

χ(Θ)ϕα,σ,Λ(Θ−1r), (7)

where |G0| is the order of the group G0, and

ϕα,σ,Λ(r) =

 ∑
(nx,ny ,nz)∈I

λnx,ny ,nz(rx − αx)nx(ry − αy)ny(rz − αz)nz
 exp

(
− 1

2σ2
|r−α|2

)

is a Gaussian-polynomial function centered at α ∈ R3 with standard deviation σ > 0.
The set I is a carefully chosen subset of

{
(nx, ny, nz) ∈ N3 | nx + ny + nz ≤ L

}
(to-

tal degree lower than or equal to L) determined by the symmetries of the SAWF.
Note that for 2D materials on the xy plane, it is more appropriate to chose I ⊂{

(nx, ny, nz) ∈ N3 | nx + ny ≤ L‖, nz ≤ L⊥
}
. Any function φSA

α,σ,Λ of the dictionary
thus satisfies the same symmetry property

∀Θ ∈ G0, (ΘφSA
α,σ,Λ)(r) = φSA

α,σ,Λ(Θ−1r) = χ(Θ)φSA
α,σ,Λ(r)

as the Wannier function W to be approximated.

2.4 A greedy algorithm for compressing SAWF into SAGTO

It can be shown that the set

DSA :=
{
φSA
α,σ,Λ, α ∈ R3, σ ∈ [σmin, σmax], Λ ∈ RIα

}
, (8)

where 0 < σmin < σmax < ∞ are given parameters (chosen by the user), and Iα is a
carefully chosen nonempty subset of N3 depending on the center α of the SAGTO, is a
dictionary for the closed subspace

Hs,SA(R3) :=
{
f ∈ Hs(R3) | ∀Θ ∈ G0, (Θf)(r) = f(Θ−1r) = χ(Θ)f(r)

}
of Hs(R3) for any s ∈ R+.

For example, in the case of Graphene and hBN (see Section 3), we use the same set
for each α ∈ R3:

Iα = {(0, 0, 1), (0, 0, 3), (0, 0, 5)}, ∀α ∈ R3.

More refine strategies will be considered in future works.

The main practical difficulty in Algorithm 1 is the computation of a local minimum
to Problem (4). This problem can be formulated as

min
α∈R3, σ∈[σmin,σmax], Λ∈RI

Jp(α, σ,Λ), where Jp(α, σ,Λ) := ‖Rp − φα,σ,Λ‖2Hs . (9)

The above minimization problem can in turn be written as:

min
α∈R3, σ∈[σmin,σmax]

J̃p(α, σ), (10)
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where
J̃p(α, σ) = min

Λ∈RI
Jp(α, σ,Λ). (11)

Since the map Λ 7→ Jp(α, σ,Λ) is quadratic in Λ, problem (11) can be solved explicitly
at a very low computational cost, and the gradient of J̃p(α, σ) with respect to both
α and σ can be easily computed from the solution of problem (11) by the chain rule.
We can then use a constrained optimization solver to find a local minimizer to the
four-dimensional optimization problem (10).

2.5 Algorithmic details

2.5.1 Construction of MLWFs

The Bloch energy bands and wave-functions of the periodic Kohn-Sham Hamiltonian are
obtained using VASP with pseudo-potentials of the Projector Augmented Wave (PAW)
type [1], the PBE exchange-correlation functional [19], a plane-wave energy cutoff Ec

and a grid Q of the Brillouin zone Γ∗. For 2D materials, the height η of the supercell is
chosen sufficiently large to eliminate the spurious interactions between the material and
its periodic images. The Bloch eigenfunctions belonging to the energy bands of interest
are combined into a basis of MLWFs using the Marzari-Vanderbilt algorithm [14] as
implemented in the Wannier90 computer program [17]. The final output is a set of
Wannier functions which are known to be localized at a certain point and exponentially
decaying for materials with suitable topological properties such as the ones considered
in Section 3 (see [18]). Using a sufficiently large rectangular box,

Ω := [xmin, xmax]× [ymin, ymax]× [zmin, zmax] ⊂ R3,

we can neglect the exponentially vanishing values of the Wannier function under consid-
eration outside the box. The numerical values of the Wannier function W are given on
a Cartesian gridM spanning the box and containingM = MxMyMz points. The Wan-
nier functions obtained in this manner are in general not perfectly symmetry-adapted,
as the Marzari-Vanderbilt algorithm does not take symmetries into account. However,
in practice, the MLWFs we generated are close enough to SAWFs so that it was possible
to identify a high-symmetry center and an associated point group. To test our compres-
sion method, we symmetrize the MLWFs according to the identified point group before
applying the greedy procedure.

2.5.2 Optimization Procedure in the Discrete Setting

We present next the discrete formulation of problem (11). The discrete data representing
the Wannier functionW centered at q ∈ R3 are composed of: i) the symmetry group G0

and ii) the point values (W (r))r∈M at each point of the cartesian gridM. Because we
seek to minimize in particular the H1-norm of the residual, we introduce an auxiliary
Fourier representation of the data. Indeed, computing gradients is a fast (diagonal)
operation in momentum space. The Fast Fourier Transform algorithm (FFT) can be
used to efficiently transform data from position to momentum space. In particular,
we obtain the unnormalized discrete representation of the Fourier transform û of any
function u as point values (û(k))k∈K on a secondary Cartesian momentum-space grid
that we denote by K, containing the same number of points as the real-space grid, i.e

7



|K| = |M| = M . Let us recall that the FFT algorithm requires Mx, My and Mz to be
even numbers so that the momentum grid K is centered at zero. The Hs–norm (2) of
u then has a discrete approximation given by

‖u‖2Hs ≈
|Ω|
M2

∑
k∈K

(
1 + |k|2

)s |û(k)|2 . (12)

At every greedy iteration p ≥ 0, the exact cost functional Jp is approximated in the
discrete setting by the functional JMp defined as:

JMp (α, σ,Λ) :=
|Ω|
M2

∑
k∈K

(
1 + |k|2

)s ∣∣∣R̂p(k)− φ̂α,σ,Λ(k)
∣∣∣2 , (13)

where we recall that the residual Rp is computed from the approximation W̃p at step p
of the target Wannier function W ,

Rp(r) = W (r)− W̃p(r).

Note that while the Fourier transform of the SAGTO function φα,σ,Λ which appears in
this expression can be analytically computed, it is faster and more consistent to evaluate
directly the Fourier transform of the residual numerically using the FFT algorithm.

For the implementation of the minimization problem (10) with the discrete error
functional (13), we use a constrained optimization solver to find a local minimizer to
the non-convex minimization problem

min
α∈Ω, σ∈[σmin,σmax]

J̃Mp (α, σ), (14)

the minimization over the coefficients Λ of the SAGTO being performed explicitly for
fixed α, σ by solving the least-square problem

J̃Mp (α, σ) = min
Λ∈RI

JMp (α, σ,Λ). (15)

We tested both the Sequential Quadratic Programming (SQP) and the Interior-Point
(IP) specializations of the fmincon optimization routine implemented in the Matlab
Optimization Toolbox [15]. To accelerate the computation, the gradient (but not the
Hessian matrix) is also provided to the optimizer routine. Note that it is straightforward
to compute explicitly the gradient by the chain rule in the case of the discrete error
functional in (14) from the solution of the inner problem in (15) (its expression is
quite cumbersome). The iterative procedure is stopped when one of the following two
convergence criteria is met: (i) the norm of the gradient is smaller than δ = 10−10; (ii)
the relative step size between two successive iterations is smaller than τmin = 10−12. In
practice, our numerical tests show that both optimization routines (SQP or IP) provide
similar results, with the IP method being slightly faster.

As usual with non-convex optimization problems, it is very important to provide a
suitable initial guess for the parameters, in the present case the center of the Gaussian
α0 ∈ Ω and its variance σmin ≤ σ0 ≤ σmax. We propose here the following initialization
procedure. First, the initial center position α0 is chosen as a maximizer of the absolute
value of the residual Rp:

α0 ∈ argmax
r∈Ω

|Rp(r)|. (16)
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Next, two different heuristic guesses are proposed to determine a suitable initial value
σ0, assuming that the function |Rp| resembles locally a Gaussian function centered at
α0,

|Rp(r)| ≈ |Rp(α0)| exp

(
−|r−α0|2

2σ2

)
. (17)

A first guess for σ0 is obtained by a local data fit,

σ0
1 = argmin

σ>0

∑
r∈M∩B(α0)

(
1

2σ2

∣∣r−α0
∣∣2 + log

∣∣∣∣ Rp(r)

Rp(α0)

∣∣∣∣)2

,

where B(α0) is a cubic box centered at α0 of side length 2rcutoff , with rcutoff a user-
defined parameter. This is in fact a linear least-squares fit, yielding the explicit formula:

σ0
1 =


∑

r∈M∩B(α0)

∣∣r−α0
∣∣4

−2
∑

r∈M∩B(α0)

∣∣r−α0
∣∣2 log

∣∣∣∣ Rp(r)

Rp(α0)

∣∣∣∣


1/2

. (18)

A second guess is provided by a property linking the variance of the standard normalized
Gaussian g(r) = (2πσ2)−1/2 exp

(
− 1

2σ2 |r|2
)
to its full width at half maximum, denoted

ωh:
ωh[g]

σ
= 2
√

2 log 2.

The full width at half maximum is not well defined for arbitrary (non-radial) functions.
We choose here to sample the full-width at half maximum along one-dimensional slices
in all three directions x, y, z around α0 and retain the smallest value. For an arbitrary
function u assumed to have its maximum magnitude at the origin, we let:

ωh[u] := min
d∈{x,y,z}

inf

{
|γ+ − γ−| : γ− < 0 < γ+ and

∣∣∣∣u (γ±ed)

u (0)

∣∣∣∣ ≤ 1

2

}
,

where ed is the standard unit vector in the direction d ∈ {x, y, z}. This leads to a
second initial guess for the variance:

σ0
2 =

ωh

[
Rp(· −α0)

]
2
√

2 log 2
. (19)

In practice, we project the values σ0
1 given by (18) and σ0

2 given by (19) on the interval
[σmin, σmax] and choose

σ0 = argmin
i=1,2

Jp(α0, σ0
i ,Λ

0). (20)

Again, we do not claim that this procedure is optimal; it however gives satisfactory
results for all the test cases we ran.
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3 Numerical results

Our greedy algorithm allows us to compress a SAWF defined on a cartesian grid with
M = MxMyMz points into a sum of SAGTOs parameterized by p(4+ |I|) real numbers,
where p is the number of SAGTOs in the expansion

W̃ SA
p (r) =

p∑
j=1

φSA
αj ,σj ,Λj (r),

and where each φSA
αj ,σj ,Λj

is characterized by (4+ |I|) real parameters. The compression
gains for the four numerical examples detailed below, namely three 2D materials (single-
layer graphene, hBN, and FeSe), and one bulk crystal (diamond-phase silicon), are
collected in Table 1. The numerical parameters used in the construction of the original
Wannier functions (as described in Section 2.5.1) are given in Table 2.

Material M |I| ε p p(4 + |I|) Compression ratio

Graphene 3237696 3
0.1 115 805 4022
0.02 1036 7252 446

hBN 4021248 3
0.1 137 959 4193
0.03 1500 10500 383

Si 110592 3
0.1 424 2968 38
0.02 1500 10500 10

FeSe 4032000 2
0.1 133 798 5052
0.02 1610 9660 417

Table 1 – Compression gains obtained with our implementation of the orthogonal greedy
minimizing the H1-norm of the residual for Wannier functions of graphene, hBN, FeSe,
and bulk silicon, for different tolerance levels ε.

Material Ec[eV ] Q η [Å] M
Graphene 500 25× 25× 1 20 168× 132× 146

hBN 500 25× 25× 1 20 192× 154× 136
FeSe 500 19× 19× 1 25 120× 120× 280
Si 300 7× 7× 7 − 48× 48× 48

Table 2 – Numerical parameters used for the construction of the original Wannier
functions using VASP and Wannier90.

3.1 Graphene and single-layer hBN

The space groups of graphene and single-layer hBN are respectively

G = Dg80 := Ro D6h, (space group of graphene),
G = P6m2 := Ro D3h, (space group of single-layer hBN),

10



where R is the 2D Bravais lattice embedded in R3 defined as

R = Za

 √3/2
1/2
0

+ Za

 0
1
0

 , (21)

where a > 0 is the lattice parameter (which takes different values for graphene and
hBN). The group D6h is a group of order 24, and has 12 irreducible representations,
while the group D3h is a group of order 12, and has 6 irreducible representations. The
points O, A, B and C represented in Figure 1 are high-symmetry points of graphene
(left) and hBN (right); their symmetry groups are respectively

GO ≡ D6h, GA ≡ D3h, GB ≡ D3h, GC ≡ D2h, (graphene),
GO ≡ D3h, GA ≡ D3h, GB ≡ D3h, GC ≡ D1h, (single-layer hBN).

O

C
A

B

O

C
A

B

Figure 1 – The honeycomb lattices of graphene (left) and hBN (right). The black dots
represent carbon atoms, the red dots boron atoms, and the green dots nitrogen atoms.
The blue dots O, A, B, and C represent some high-symmetry points.

Let σh be the reflection operator with respect to the horizontal plane containing the
graphene sheet. The two irreducible representations of the subgroup Cs = (E, σh) of
D6h and D3h give rise to the decomposition of L2(R3) as

L2(R3) = L2
+(R3)⊕ L2

−(R3),

where
L2

+(R3) = Ker(σh − 1), L2
−(R3) = Ker(σh + 1).

The bands associated with L2
+(R3) are the σ bands, the ones associated with L2

−(R3)
the π bands. The bands of interest for graphene and single-layer hBN are the valence
and conduction bands closer to the Fermi level. For graphene, these are the π bands
originating from the 2pz orbitals of the carbon atoms.

The SAWF functions for graphene and single-layer hBN considered here are centered
at point A and are transformed according to the (one-dimensional) A′′2 representation
of D3h, whose character is given in Table 3.

Graphical representations of the original Wannier functions generated by Wannier90
and of their compressions into Gaussian orbitals obtained with the VESTA visualization
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D3h E 2C3 (z) 3C′2 σh (xy) 2S3 3σv linear quadratic cubic
functions functions functions

A′′2 +1 +1 -1 -1 -1 +1 z - z3, z(x2 + y2)

Table 3 – Character of the A′′2 representation of the group D3h

package [16], are displayed in Figures 2 (graphene) and 3 (hBN). The decays of the
L2 and H1-norms of the residuals along the iterations of our implementation of the
orthogonal greedy algorithm aiming at minimizing the H1-norm of the residual, are
plotted in Figure 4.

Figure 2 – Wannier function of graphene generated with VASP and Wannier90 (left),
and its compression into Gaussian orbitals (right). Positive and negative iso-surfaces
corresponding to 15% of the maximum value are plotted. .

3.2 Single-layer SeFe

The space group of single-layer FeSe is

G = P4/nmm := Ro D4h,

where R is the 2D square lattice of R3 defined as

R = Za

 1
0
0

+ Za

 0
1
0

 , (22)

where a > 0 is the lattice parameter. The groupD4h is of order 16 and has 10 irreducible
representations. The symmetry group of the high-symmetry point A represented in
Figure 5 is GA = C2v.

The Wannier function considered here corresponds to a d−type orbital on an Fe
atom centered at point A and is transformed according to the one-dimensional A1

12



(a) (b)

Figure 3 – Wannier function of single-layer hBN generated with VASP and Wannier90
(left), and its compression into Gaussian orbitals (right). Positive and negative iso-
surfaces corresponding to 15% of the maximum value are plotted.
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Figure 4 – Decays of the L2 and H1-norms of the residual for our implementation of the
orthogonal greedy algorithm minimizing the H1-norm of the residual (left: graphene,
right: hBN)

representation of C2v, whose character is given in Table 4. Graphical representations
of the original Wannier function and of its compression into Gaussian orbitals are given
in Figure 6. The decays of the L2 and H1-norms of the residual along the iterations of
our implementation of the orthogonal greedy algorithm minimizing the H1-norm of the
residual are plotted in Figure 9.
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(a) side view (b) top view

Figure 5 – Crystalline structure of FeSe (2D layer with a finite thickness). The brown
balls represent Fe atoms and the green balls represent Se atoms. The spotted point A
corresponds to the high-symmetry point at which the Wannier function is centered.

C2v E C2 (z) σv(xz) σv(yz) linear quadratic cubic
functions functions functions

A1 +1 +1 +1 +1 z x2, y2, z2 z3, x2z, y2z

Table 4 – Character of the A1 representation of the group C2v.

(a) (b)

Figure 6 – Wannier function of single-layer FeSe generated with VASP and Wannier90
(left), and its compression into Gaussian orbitals (right). Positive and negative iso-
surfaces corresponding to 12% of the maximum value are plotted.
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3.3 Diamond-phase silicon

The space group of diamond-phase silicon is

G = Fd3m := RoOh

where R is the Bravais lattice of R3 defined as

R = Za

 1
0
1

+ Za

 1
1
0

+ Za

 0
1
1

 , (23)

where a > 0 is the lattice parameter. The group Oh is of order 48 and has 10 irreducible
representations. The Wannier function considered here corresponds a py−type orbital
centered at the high-symmetry point A represented in Figure 7 whose symmetry group
is GA = C2v.

It is transformed according to the one-dimensional irreducible representation A1

of the group C2v. Let us mention the following point : since the basis x̂ = (1, 0, 1),
ŷ = (1, 1, 0) and ẑ(0, 1, 1) is not orthonormal in R3, the symmetry operators C2(z),
σv(xz) and σv(yz) must be adapted to this geometry. Indeed, the two-fold rotation C2

is about the axis of direction (0, 1, 1) and the two reflexions σv are defined with respect
to the planes P1 and P2 of cartesian equations x + z = 0 and y + z = 0 respectively.
Graphical representations of the original Wannier function and of its compression into

Figure 7 – Crystalline structure of Silicon. The brown balls represent Si atoms and the
spotted point A corresponds to the high-symmetry point where the Wannier function
is centered.

Gaussian orbitals are given in Figure 8. The decays of the L2 and H1-norms of the
residual along the iterations of our implementation of the greedy algorithm aiming at
constructing H1-norm approximations of the Wannier function are plotted in Figure 9.
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(a) (b)

Figure 8 – Wannier function of bulk Silicon (diamond phase) generated by Wannier90
(left), and its compression into Gaussian orbitals (right). Positive and negative iso-
surfaces corresponding to 10% of the maximum value are plotted.
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Figure 9 – Decays of the L2 and H1-norms of the residual for our implementation of
the orthogonal greedy algorithm minimizing the H1-norm of the residual (left: FeSe,
right: diamond-phase sillicon)

Appendix: symmetry-adapted Wannier functions

A.1 Space group of a periodic material

Consider a periodic material with M nuclei of charges z1, · · · , zM per unit cell. The
nuclear charge distribution in the material is of the form

ν =
∑
R∈R

M∑
m=1

zmδRm+R,

16



where R is the Bravais lattice of the crystal (embedded in R3 if the material is a 2D
material), δa the Dirac mass at point a ∈ R3, and R1, · · · ,RM ∈ R3 the positions of
the nuclei laying in the unit cell. The space group G = R o Gp of the crystal is the
semidirect product of R and a finite point group Gp (a finite subgroup of O(3)). Recall
that the composition law in RoGp is defined as

∀g1 = (R1,Θ1), g2 = (R2,Θ2), g1g2 = (Θ1R2 + R1,Θ1Θ2),

and that the natural representation of G in R3 is given by

∀g = (R,Θ) ∈ G, ∀r ∈ R3, ĝr = (̂R,Θ)r = Θr + R.

Note that

∀g = (R,Θ) ∈ G, g−1 = (−Θ−1R,Θ−1) and ∀r ∈ R3, ĝ−1r = Θ−1(r−R).

The space group of the crystal is the largest group (for an optimal choice of the origin
of the Cartesian frame) leaving ν invariant:

∀g ∈ G, ĝν :=
∑
R∈R

M∑
m=1

zmδĝ(Rm+R) = ν.

The group G has a natural unitary representation Π = (Πg)g∈G on L2(R3) defined
by

∀g = (R,Θ) ∈ G, (Πgψ)(r) = ψ(ĝ−1r) = ψ(Θ−1(r−R)).

Denoting by E the identity matrix of rank 3, and by τ = (τa)a∈R3 the natural unitary
representation on R3 on L2(R3) defined by

∀a ∈ R3, ∀φ ∈ L2(R3), (τaφ)(r) = φ(r− a),

we have Π(R,E) = τR for all R ∈ R, so that (τR)R∈R is an abelian subgroup of Π.

A.2 Bloch transform

Let us now recall the basics of Bloch theory. We denote by Γ a unit cell of the Bravais
lattice R, by

L2
per(Γ) :=

{
u ∈ L2

loc(R3,C), u R-periodic
}
, 〈u|v〉L2

per
:=

ˆ
Γ
u(r) v(r) dr,

the Hilbert space of locally square-integrable R-periodic functions C-valued functions
on R3, by R∗ the dual lattice of R and by Γ∗ the first Brillouin zone. The Bloch
transform associated with R (see e.g. [21, Section XIII.16]) is the unitary transform

L2(R3,C) 3 φ 7→ (φk)k∈Γ∗ ∈ H =

 ⊕
Γ∗
L2

per(Γ) dk

where
ffl

Γ∗ is a notation for the normalized integral |Γ∗|−1
´

Γ∗ , where H is endowed with
the inner product

〈(φk)k∈Γ∗ |(ψk)k∈Γ∗〉H =

 
Γ∗
〈φk|ψk〉L2

per
dk,
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and where, for a smooth fast decaying function φ, the periodic function φk is given by

φk(r) =
∑
R∈R

φ(r + R)e−ik·(r+R).

The original function φ is recovered from its Bloch transform using the inversion formula

φ(r) =

 
Γ∗
φk(r) eik·r dk.

Consider a one-body Hamiltonian

H = −1

2
∆ + Vper, Vper ∈ L2

per(Γ),

describing the electronic properties of the material (we ignore spin for simplicity). In
the absence of symmetry breaking, H commutes with all the unitary operators in Π =
(Πg)g∈G. In particular, H commutes with the translations τR, R ∈ R, and is therefore
decomposed by the Bloch transform:

H =

 
Γ∗
Hk dk,

meaning that there exists a family (Hk)k∈Γ∗ of self-adjoint operators on L2
per(Γ) such

that for any φ in the domain of H, φk is almost everywhere in the domain of Hk and

(Hφ)k = Hkφk.

It is well-known that

Hk =
1

2
(−i∇+ k)2 + Vper = −1

2
∆− ik · ∇+

1

2
|k|2 + Vper.

The operator Hk can in fact be defined for any k ∈ R3, and it holds

∀k ∈ R3, ∀K ∈ R∗, Hk+K = VKHkV
∗
K, (24)

where VK is the unitary operator on L2
per(Γ) defined by

∀u ∈ L2
per(Γ), (VKu)(r) = e−iK·ru(r).

As a consequence, for all k ∈ R3 and K ∈ R∗, Hk and Hk+K are unitary equivalent, and
therefore have the same spectrum. Not every Πg a priori commutes with the translation
operators τR, R ∈ R. The operator Πg is therefore not in general decomposed by the
Bloch transform. On the other hand, denoting by U = (UΘ)Θ∈Gp the natural unitary
representation of Gp in L2

per(Γ) defined by

∀Θ ∈ Gp, ∀u ∈ L2
per(Γ), (UΘu)(r) = u(Θ−1r),

the Bloch representation of the operator Πg, g = (R,Θ) ∈ G, has a simple form:

[Π(R,Θ)]k,k′ = e−ik·RUΘδk′,Θ−1k,

that is:
[Π(R,Θ)φ]k(r) = e−ik·RφΘ−1k(Θ−1r).
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Since H commutes with all the Πg’s, this implies that the family (Hk)k∈Γ∗ satisfies the
covariance relation

∀k ∈ Rd, ∀Θ ∈ Gp, HΘk = UΘHkU
∗
Θ.

For each k ∈ R3, the operator Hk is self-adjoint on L2
per(Γ) and is bounded below. If

R is a three-dimensional lattice (3D crystal), then Hk has a compact resolvent and its
spectrum is purely discrete. If R is a two-dimensional lattice (2D material), then the
essential spectrum of Hk is a half-line [Σk,+∞).

A.3 Symmetry-adapted Wannier functions

We assume here that H has a finite number n ≥ 1 of bands isolated from the rest
of the spectrum, that is that there exist two continuous R-valued R-periodic func-
tions k 7→ µ−(k) and k 7→ µ+(k) such that µ−(k) < µ+(k), µ±(k) /∈ σ(Hk) and
Tr (1[µ−(k),µ+(k)](Hk)) = n for all k ∈ R3. We denote by ε1,k ≤ ε2,k ≤ · · · ≤ εn,k
the eigenvalues of Hk laying in the range [µ−(k), µ+(k)] (counting multiplicities). The
functions k 7→ εn,k are Lipschitz continuous, and, in view (24), are also R-periodic.

A generalized Wannier function associated to these n bands is a function of the form

∀r ∈ R3, W (r) =

 
Γ∗
uk(r) eik·r dk, uk ∈ Ran(1[µ−(k),µ+(k)](H)), ‖uk‖L2

per
= 1.

Let q be a site of the unit cell of the crystalline lattice1. We denote by

Gq = {g = (R,Θ) ∈ G | ĝq = Θq + R = q}

the finite subgroup of G leaving q invariant. The point q is called a high-symmetry
point if Gq is not trivial. Setting RΘ = q−Θq, we have

Gq =
{
g = (RΘ,Θ), Θ ∈ G0

q

}
,

where G0
q is a subgroup of Gp.

A symmetry-adapted Wannier function centered at a high-symmetry point q is a
Wannier function W such that

1. the finite-dimensional space

HW,q := Span (ΠgW, g ∈ Gq)

is Πg-invariant for any g ∈ Gq;

2. (Πg|HW,q)g∈Gq defines an irreducible unitary representation β of Gq.

Let nβ := dim(HW,q) be the dimension of this representation and (W
(β)
i,1 )1≤i≤nβ be a

basis of HW,q such that W (β)
1,1 = W . Let (dβ(Θ))Θ∈G0

q
∈ (Cnβ×nβ )nq be the matrix

representation of the group G0
q in

H0
W,q := Span

(
ΠΘτ−qW, Θ ∈ G0

q

)
, where ΠΘ := Π(0,Θ).

1Here the lattice is not in general a Bravais lattice. For graphene and hBN, this is a honeycomb
lattice.
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We therefore have

∀Θ ∈ G0
q, ΠΘ

(
τ−qW

(β)
i,1

)
=

nβ∑
i′=1

d
(β)
i′,i (Θ)

(
τ−qW

(β)
i′,1

)
,

so that

∀(RΘ,Θ) ∈ Gq, Π(RΘ,Θ)W
(β)
i,1 =

nβ∑
i′=1

d
(β)
i′,i (Θ)W

(β)
i′,1 .

If the representation β is one-dimensional (nβ = 1), then (dβ(Θ))Θ∈G0
q
is the character

of the corresponding representation of G0
q ⊂ Gp in H0

W,q.

Let J = |Gp|/|Gq| ∈ N∗. Then, there exist (gj)1≤j≤J ∈ GJ such that

G =
J∑
j=1

∑
R∈R

(R|E)gjGq.

More precisely, there exist (gj)1≤j≤J ∈ GJ such that

• for each 1 ≤ j ≤ J , qj := ĝjq ∈ Γ;

• any g ∈ G can be decomposed in a unique way as

g = (R|E)gjgq

for a unique triplet (R, j, gq) ∈ R× |[1, J ]| ×Gq.

For each 1 ≤ i ≤ nβ , 1 ≤ j ≤ J and R ∈ T , we set

W
(β)
i,j,R = Π(R|E)gjW

(β)
i,1 ,

and we then define

HW = Span
(
W

(β)
i,j,R, 1 ≤ i ≤ nβ, 1 ≤ j ≤ J, R ∈ R

}
.

In other words, HW is the closure of the vector space generated by the mother SAWF
W and all the SAWFs obtained by letting the elements of G act on W .

The space HW ⊂ H2(R3) is both H-invariant and Π-invariant, and for any g ∈ G,
the action of Πg on W

(β)
i,j,R can be computed as follows. Let (R′, j′, g′q) the unique

element of R× |[1, J ]| ×Gq such that g(R|E)gj = (R′|E)gj′g
′
q. We have

ΠgW
(β)
i,j,R = ΠgΠ(R|E)gjW

(β)
i,1 = Πg(R|E)gjW

(β)
i,1 = Π(R′|E)gj′g

′
q
W

(β)
i,1

= Π(R′|E)gj′
Πg′qW

(β)
i,1 = Π(R′|E)gj′

( nβ∑
i′=1

d
(β)
i′,i (Θ

′
q)W

(β)
i′,1

)

=

nβ∑
i′=1

d
(β)
i′,i (Θ

′
q)W

(β)
i′,j′,R′ .
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The index j′ is the unique integer in the range |[1, J ]| such that

ĝ(qj + R) ∈ qj′ +R.

The explicit expressions of R′ and Θ′q as functions of (R, j) and g = (R,Θ) are the
following

Θ′q = Θ−1
j′ ΘΘj , R′ = ĝqj − qj′ + ΘR.

Constructing a basis of SAWFs for the n bands defined by the functions µ− and µ+

amounts to finding s ∈ N∗ high-symmetry points q1, · · · ,qs, and s SAWFs Wannier
functions W1, · · · ,Ws respectively centered at the points q1, · · · ,qs, such that

 ⊕
Γ∗

Ran
(
1[µ−(k),µ+(k)](H)

)
dk = HW1 ⊕ · · · ⊕ HWs .

This is the purpose of the numerical method introduced in [22].
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