
Afterlive: A performant code for Vlasov-Hybrid

simulations

Patrick Kiliana,∗, Cedric Schreinera,b,c, Felix Spaniera

aNorth-West University, Potchefstroom, South Africa
bJulius-Maximilians-Universität, Würzburg, Germany

cMax-Planck-Institute for Solar System Research, Göttingen, Germany

Abstract

A parallelized implementation of the Vlasov-Hybrid method [1] is presented.
This method is a hybrid between a gridded Eulerian description and La-
grangian meta-particles. Unlike the Particle-in-Cell method [2] which simply
adds up the contribution of meta-particles, this method does a reconstruc-
tion of the distribution function f in every time step for each species. This
interpolation method combines meta-particles with different weights in such
a way that particles with large weight do not drown out particles that rep-
resent small contributions to the phase space density. These core properties
allow the use of a much larger range of macro factors and can thus represent
a much larger dynamic range in phase space density.

The reconstructed phase space density f is used to calculate momenta of
the distribution function such as the charge density ρ. The charge density ρ
is also used as input into a spectral solver that calculates the self-consistent
electrostatic field which is used to update the particles for the next time-step.

Afterlive (A Fourier-based Tool in the Electrostatic limit for the Rapid
Low-noise Integration of the Vlasov Equation) is fully parallelized using
MPI and writes output using parallel HDF5. The input to the simulation
is read from a JSON description that sets the initial particle distributions
as well as domain size and discretization constraints. The implementation
presented here is intentionally limited to one spatial dimension and resolves
one or three dimensions in velocity space. Additional spatial dimensions can
be added in a straight forward way, but make runs computationally even

∗Corresponding author.
E-mail address: mail@petschge.de

Preprint submitted to Computer Physics Communications April 12, 2018

ar
X

iv
:1

80
4.

03
90

1v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
1

A
pr

 2
01

8

more costly.

Keywords: Vlasov-hybrid; collisionless plasma; electrostatic; particle mesh

PROGRAM SUMMARY
Manuscript Title: Afterlive: A performant code for Vlasov-Hybrid simulations
Authors: Patrick Kilian, Cedric Schreier and Felix Spanier
Program Title: Afterlive (A Fourier-based Tool in the Electrostatic limit for the
Rapid Low-noise Integration of the Vlasov Equation)
Journal Reference:
Catalogue identifier:
Licensing provisions: GNU Public Licence
Programming language: C++
Computer: any workstation or cluster that has a modern C++ compiler (e.g. g++
4.9 or later) an MPI implementation and the required external libraries
Operating system: Linux / Unix
RAM: depending on problem size and number of resolved velocity dimensions be-
tween 100 MB and 1 TB; 24 bytes per phase point marker, 24 bytes per grid point
and species in phase space, some scratch space
Number of processors used: depending on problem size between one and a few
hundred processors
Keywords: Vlasov-hybrid, collisionless plasma, electrostatic, particle mesh, spec-
tral, parallel, phase space marker
Classification: 19.3 Collisionless Plasmas
External routines/libraries: C++ compiler (tested with g++ 4.8, 4.9, 5.3 and 6.3),
MPI 1.1 (tested with OpenMPI 1.6.5, 1.8.1, and 1.10.2 and MPICH 3.1), HDF5
with support for parallel I/O(tested with version 1.8.13, 1.8.15, 1.8.16 and 1.10.0),
FFTW3 (tested with version 3.3.3, 3.3.4 and 3.3.5), Blitz++ (tested with version
0.10), Jansson (tested with version 2.7.1, 2.7.3, 2.7.5 and 2.9.1) and pkg-config
Nature of problem: Kinetic simulations of collisionless plasma are often done with
particle-in-cell codes which also mix Eulerian (fields on a grid) and Lagrangian
(freely flowing meta-particles to track particle densities) description. In these codes
however computational meta-particles are added up in the deposition scheme.
Thus particles are usually equal weights and the noise level is considerable. Purely
Eulerian codes must go to great length to yield a stable scheme without excessive
numerical diffusion.
Solution method: In this method a Eulerian description of the electrostatic field
is also combined with a Lagrangian description of particles, but the distribution
function f is reconstructed over the full phase space in a way that avoids drowning
out particles with a low phase space weight. This allows for the use of a wide range

2

of macro factors for different tracer particles and an excellent dynamic range in
densities.
Restrictions: The current implementation handles one dimension in space and one
or three dimensions in velocity only and is applicable to electrostatic scenarios.
Using the two extra components of the velocity is computationally costly.
Unusual features: The configuration is stored in JSON files.
Running time: minutes to hours; 106 to 107 marker updates per second and CPU.

1. Introduction

This paper provides and discusses a simulation code for the study of
collisionless, electrostatic, one-dimensional plasma. In this context collision-
less means that Coulomb interactions at very short distances between two
particles are rare and don’t contribute significantly to the dynamics of the
charged particles compared to the effect of the electromagnetic fields that are
collectively generated by all particles. This is often the case in astrophysical
plasmas as they are usually sufficiently dilute and warm to have a very large
number of particles within a Debye sphere.

A lot of these cases also can very effectively be described as electrostatic.
In this limit only the effect of charge density fluctuations that produce elec-
tric fields are considered, whereas the magnetic fields that are produced by
fluctuations in the current density are ignored. For a plasma with flow speeds
much slower than the speed of light and without large scale structures in the
flow field that produce strong currents this is well justified. The big advan-
tage of this approach is the possibility to calculate the electric field directly
from the charge density distribution ρ. This removes the need to calculate the
coupled time evolution of the electric and magnetic field, which introduces
a severe limitation on the time-step through a CFL condition involving the
spatial discretization scale and the speed of light. The downside is of course
that interactions of the plasma with electromagnetic waves (such as radio
waves) cannot be studied.

Neglecting collisions and magnetic fields generated by the plasma are of-
ten excellent approximations to reality. Restricting the plasma to a single
spatial dimension is much harder to justify. Nevertheless there is a long his-
tory and large number of simulation codes that do exactly that. The reason
is that computer codes are much easier to write, understand and run in this
limit. There are no tedious repetitions of code that reiterate the same idea

3

for different dimensions or loops over the spatial dimensions mixed into the
essential structure of the code. The limited number of independent dimen-
sions (essentially x, vx and t) makes the selection and creation of plots easy.
Furthermore the computational effort is usually small and can be handled on
individual machines. We therefore present Afterlife in a 1d1v configuration
to provide as much clarity in the code as possible. The user may first get
acquainted with the VHS method and its implementation before performing
the transition to the 1d3v configuration that is also supported by the code.
This possible configuration is also the reason for the use of a MPI-based
domain decomposition instead of a perhaps easier to understand paralleliza-
tion based on OpenMP. The CPU power and size of main memory necessary
for simulations with multiple dimensions cannot easily be provided by a sin-
gle machine. Hybrid parallelization using both OpenMP and MPI has been
considered, but is more complicated and is not necessary due to the good
scalability of the code.

Even with highly scalable codes and the largest available supercomputers
it is not feasible to track the motion of each individual particle in the plasma.
And to a large extent we are not even interested in the trajectory of a single
particle but rather in the overall evolution of the system. In the approxima-
tion described above and considering only the 1d1v case for ease of notation
the evolution of the system is given by the Vlasov-Poisson system.

The Vlasov equation gives the time evolution of the phase space density
fα (x, vx, t) of each species α in the plasma:

dfα
dt

=
∂fα
∂t

+ vx ·
∂fα
∂x

+ qαEx (x, t) · ∂fα
∂vx

= 0 . (1)

The phase space density is a continuous quantity that describes the density
of particles as a function of position, velocity and time, ignoring the dis-
crete nature of the particles. Due to the immense number of particles under
consideration this is, however, an excellent approximation.

The evolution equation for the space space density is coupled with the
Poisson equation for the electrostatic field Ex (x, t) that depends on the net
charge density ρ (x, t) that is produced by all species in the plasma:

∂

∂x
Ex (x, t) = 4πρ (x, t) = 4π

∑
α

qα

∫ ∞
−∞

f (x, vx, t) dv . (2)

Analytic solutions to this coupled set of equations can only be obtained
for special cases. Nevertheless an analytic approach can be very useful to

4

find equilibria or properties of small amplitude waves. In many other cases
we have to resort to numerical methods.

Over the decades many different ideas on how to discretize the equations
for phase space density and field evolution have been studied and even more
different implementations have be written. This paper does not aim to cover
all the different approaches, but it is worthwhile to mention a few main lines
of thought to give context to the Vlasov-Hybrid simulation as one possible
method among many others, with is own advantages and drawbacks.

The large and diverse family of Eulerian codes discretizes phase space.
Following Liouville’s theorem, the evolution of the phase space density of each
species resembles the dynamics of an incompressible fluid. Consequently, all
methods from computational fluid dynamics can be used to solve the time
evolution by describing the flow of the incompressible fluid on the grid in
phase space. From the phase space density fα all desired moments of the
distribution function can be calculated, including in particular the charge
density ρ which then allows for the computation of the electric field.

The discretization can be performed directly for position x and velocity v
in a 1d1v setup or for the components of the respective vectors in higher di-
mensional implementations of phase space, as proposed e.g. by [3]. A modern
implementation of this approach is the Vlasiator code (see [4]) that contains
many clever implementation details to fit as much of the six dimensional
phase space into memory as possible.

The advantage of direct discretization is the very detailed description of
features in phase space, including strongly non-thermal velocity distributions
and the ability to represent both regions with high and low particle density
accurately. The problem is that the phase space density develops structures
on small separations in the velocity direction and consequently large gradients
in v. This was first noted by [5] for a similar problem in galaxy formation but
is a general problem with this approach. One possible solution is periodic
smoothing as suggested by [6] and [3]. However, this can lead to unwanted
diffusivity. An interesting approach to deal with this problem was published
in [7], where a very high resolution in x and v is suggested to prevent problems
with structures at small scales. The trade-off is that the distribution function
at each point in phase space in only represented by a single bit and density
variations are captured using dithering. This method does not seem to be
in use any more, most likely due to the fact that access to individual bits is
relatively expensive on modern CPUs.

An alternative to the direct discretization of position and velocity com-

5

ponents is to transform the phase space density to another suitable basis and
discretize it there. For the spatial direction this is nearly exclusively done us-
ing Fourier transforms, as this makes solving the Poisson equation relatively
easy. For the velocity direction it is possible to use the basis of Hermite poly-
nomials (see e.g. [8], [9] or more recently [10]) or to use a Fourier transform as
well (see e.g. [11], [12], [13] [14] or the very approachable derivation by [15]).
All these methods trade the problem of the generation of structures at small
scales for the problem of generating modes at high mode numbers, i.e. high
wave numbers in the case of a Fourier transformed velocity direction or alter-
natively high order Hermite polynomials. The more explicit nature of these
features at small scales, however, allows for a more deliberate treatment.

Beyond the discretization of the phase space density on a grid in x-v or
some other suitable orthonormal basis it is also possible to treat the flow
of the incompressible fluid using finite volume methods (see e.g. [16] or
[17]). The advantage of this method is that the conservation of phase space
density and therefore particle number can be guaranteed by construction.
[18] contains a recent review on the trade-offs of this approach.

A problem shared by all approaches that aim to describe the time evolu-
tion of the phase space density as an incompressible fluid is the fact that the
six dimensional phase space is actually fairly high dimensional. Splitting the
amount of available main memory even on a large supercomputer over six
dimensions limits the resolution and dynamic range of each direction. Many
simulation codes therefore neglect either a spatial direction or a velocity di-
rection, dropping the number of dimensions to five. Removal of a spatial
direction requires an assumption about the geometry of the problem, such as
the existance of an invariant direction or rotational symmetry. In the case of
strong magnetization it is possible to average over the gyration and remove
one velocity component. This leads to the class of gyrokinetic codes that is
widely used in the controlled fusion community, such as the Gene code (see
e.g. [19]). A mathematically careful treatment of the guiding-center model
and some other special cases can be found in [20].

The main alternative to the Eulerian view of discretizing phase space
and considering the time evolution of the phase space density as the flow
of an incompressible fluid is the (semi-)Lagrangian view of discretizing the
phase space density into independent phase space elements. The challenge is
then to find evolution equations for the phase space elements and to ensure
their correct interaction through the electrcostatic field. In the case where a
constant portion of the phase space density (or weight) is carried by a phase

6

space element, one ends up with evolution equations that are identical to the
evolution equation for a single, physical particle albeit with modified charge
qα and mass mα. The ratio between the two quantities is conserved. This
leads to the view of the phase space elements as macro particles.

The simplest possible simulation code does not even need to solve for
the electric field, but could directly sum the Coulomb force on each particle
that is exerted by all other particles. In the electrostatic limit, where time
retardation effects are absent, this is straight forward. The downside is of
course that the effort to calculate the force on each of the N particles scales
as O (N2). A simulation with twice the number of particles (either due to
double the particle density or double the domain size) will take four times as
long. Even on fast computers that are available today this limits the total
simulation size that is feasible.

A possibility to make simulations with a larger number of phase space
elements feasible is to reuse the idea of tree codes that has been employed
extensively in the field of galaxy formation and dynamics (see [21]). As
the name already indicates, particles are stored in a tree-like data structure
where the low order multipole moments of sub-trees are propagated upwards
in the tree. To compute the action on a single particle, the forces from nearby
particles are considered directly (the tree is traversed down to lead nodes)
while for far away sub-trees only the aggregate multipole moments are used.
This reduces the computational effort to O (N log(N)). An approachable
review of this method can be found in [22]. For an example on the use in
plasma simulations see [23] and the description of the highly scalable PEPC
code by [24].

The most widely used option is to deposit the charge density carried
by the phase space elements (on possible other low order moments of the
distribution function such as the electric current) onto a spatial grid and
compute the electrostatic potential on the grid. The Poisson equation can
be solved in the Fourier domain or using by a standard multigrid solver. The
electric field can be obtained from the electric potential by means of numerical
differentiation. Alternatively the electric field can be computed directly from
the charge distribution. There is tradeoff to the exact implementation choice
but in any case two important advantages are realized. The deposition of
charge and the calculation of the force scale as O (N) in the particle number
N and we get direct access to the electric field, which allows for additional
diagnostics and physical insights.

The use of Lagrangian phase space samples to compute the time evo-

7

lution of the phase space density combined with an Eulerian grid for the
computation of the electric field leads to a wide variety of semi-Lagrangian
methods. The main distinguishing element between the three main families
of semi-Lagrangian methods is the fate of the tracer particles after one time
step.

If the phase space elements are kept as is and reused for all further time
steps one ends up with the very popular family of particle-in-cell (PiC) codes.
The big advantage of the PiC method is that the spatial grid never needs
to resolve more than three dimensions and that a rather limited number of
particles per cell suffice to get acceptable coverage of velocity space, inde-
pendent of the number of velocity dimensions. Both the deposition of the
charge density ρ onto the grid (by means of one contribution for every macro
particle) and the back reaction of the electric field onto each particle require
interpolation. It is essential that the same scheme is used for both interpo-
lation steps, to avoid spurious self forces. The choice of the interpolation, or
in other words the shape of the particle, allows for some trade-off between
speed and memory use on one side and numerical noise on the other side.
However, no golden bullet is available and the limited number of particles per
cell leads to unrealistically large fluctuations in the charge density. Increas-
ing the number of particles reduces the noise only as O

(
N−1/2

)
. A very good

introduction to PiC codes can be found in the book [25] or the in papers that
started the field (e.g. [26], [27], [28], [2]) or the code descriptions of widely
used modern PiC codes (e.g. [29], [30] or [31]). Nearly all PiC codes and a
number of other simulation codes use the particle update scheme defined in
the hard to find but excellent paper by [32].

If keeping the particles leads to a lot of numerical noise, it is of course
tempting to reconstruct the phase space density f from the tracer particles.
From the reconstructed phase space density all desired moments can be cal-
culated, including the charge density that is used to compute the electric
field for the next update step. It is also used to create new tracer particles
that are advanced for one time step. This method is discussed for example in
[6] and is quite useful to remove beam instabilities that can occur in plasma
simulations with phase space elements at equal spacing ∆v in the velocity
dimension. The downside of the method is that the reconstruction of f and
subsequent resplitting into phase space elements introduces a lot of numerical
diffusion in phase space.

Framed in this way the approach of the Vlasov-Hybrid Simulation method
(see e.g. [33], [1] or [34]) becomes a lot more obvious. In this method, the

8

phase space density is decomposed in phase space elements that are updated
in each time step. From the ensemble of tracer particles the full phase space
density is reconstructed on a grid in such a way that numerical noise is min-
imized. From the reconstructed phase space density f all desired moments
can be calculated, including the charge density. The resulting electric field
can be computed following any standard method and can act on the phase
space elements. This approach allows for schemes with much lower noise, but
still uses very simple evolution equations for the phase space markers instead
of solving incompressible fluid equations. To limit numerical diffusion the
same phase space elements are kept and advected in all further time steps.
As this is the method of choice in this paper a more detailed description is
given in the following section.

The fact that such a large number of simulation methods has been de-
veloped and that no single method has won out already shows that the ad-
vantages and disadvantages of the different methods have to be weighted
carefully for each individual problem that is to be studied numerically. Re-
views that try to critically compare the methods go back to at least [12],
but continue to the present day. This paper is not the place to try to give
a final verdict on the topic. Hopefully the previous paragraphs are however
helpful to give the reader an impression of the multitude of options that are
available in the field of kinetic plasma simulations.

Beyond the kinetic simulations there is the wide and fruitful field of mag-
netohydrodynamics (see e.g. [35], [36] [37] and [38] for papers on popular
codes and references therein as an introduction to the topic). Once fluid
description for plasma species enter the picture it is also possible to consider
multi-fluid descriptions (see e.g. [39], [40] or [41]) or hybrid descriptions that
treat some species kinetically and others as a fluid (see e.g. [42], [43]).

2. Description of the Method

As mentioned previously the crucial step in this method is the recon-
struction of the phase space density f on a grid in x− vx space based on the
Lagrangian phase space markers. The interpolation from a single marker to
the grid cells follow a standard cloud-in-cell (area weighting) scheme that is
also used in many particle-in-cell codes. As illustrated in Fig. 1 each particle
with position (x, vx) in phase space is considered to be a cloud of constant
density that spans a ∆x · ∆vx area, same as a grid cell. This area overlaps
several grid cells and consequently the particle contributes information about

9

Figure 1: Interpolation from a phase space marker at (x, vx) to the phase space densities
f on the grid follow a standard cloud-in-cell scheme (area weighting). The particle is
described by a cloud of uniform density that is centered on the particle’s position in phase
space and that has the same extend as a grid cell. The overlap with each cell can then
be computed easily and produces the weight αij that determines the contribution of the
particle to the phase space density in the different cells.

phase space density to more than one grid point. The relative contributions
αij are calculated by the overlap between the extended particle and the grid
cells. When three velocity components are considered f is reconstructed on a
four dimensional grid in x−vx−vy−vz space and each particle is considered
to be a cloud of constant density that spans a ∆x ·∆vx ·∆vy ·∆vz volume.
The ∆vi are not necessarily equal, but the code does this by default as it
is often convenient to do so. The user is however free to change this, as it
might be useful e.g. in the case of large temperature anisotropies.

The crucial difference to a particle-in-cell code is the way in which the
contributions of different phase space markers to a single grid point are com-
bined. Instead of taking a naive sum over marker particles

f (i, j) =
∑
l

αij,l · fl , (3)

the Vlasov-Hybrid-Simulation method (VHS) by [1] uses a smarter recon-
struction of f :

f (i, j) =
∑
l

αij,l · fl /
∑
l

αij,l . (4)

The difference is rather important. Instead of simply splitting the phase space
density fl that is assigned to each particle over a few cells and depositing it

10

there, the VHS method tries to estimate the true phase space density f based
on the phase space weights assigned to the particle. This means that particles
with low fl can actually lower the reconstructed phase space density f in a
cell instead of being drowned out.

This possibility has one important consequence for the initial choice of
phase space markers and the weight they are assigned. In particle-in-cell
simulations usually all markers have the same weight (or macro factor), as
particles with smaller weight cannot effectively modify the deposited charge
distribution but still incur the full computational cost. Phase space regions
with low density will initially be filled with few marker particles and set the
limit on the chosen weight. Regions with high density will be filled with a
larger number of particles that have the same weight and sum to the desired
density. The only trade-off that can be made in the simulation design is
between the ability to represent low density regions and the total particle
number or simulation cost.

In a VHS simulation phase space markers can have quite different asso-
ciated weights and can represent phase space regions of different densities
much more efficiently. The simple approach chosen for the implementation
described below puts the same number of phase space markers into each
grid cell and sets their weights to produce the desired initial phase space
distribution. This is however not the only possibility and simulations where
additional resolution of some phase space patches later in the simulation is
desired might want to track those patches back to the initial state and add
more phase space markers to these regions.

In a typical one-dimensional particle-in-cell simulation one in 370 particles
will have a velocity outside the range −3vth ≤ vx ≤ 3vth. Inside the range
there is good coverage with a few hundred particles per cell, which is easily
achievable. A VHS code with typical parameters of 50 cells per vth in vx
direction and four particles per phase space cell on the other hand needs
1200 particles per ∆x and has the memory overhead from the phase space
grid and a slightly more expensive particle deposition. However, if coverage
out to ±5vth is desired the particle-in-cell code would need 1.7 · 106 particles
per cell while the number for the VHS code only increases to a moderate 2000.
This nicely demonstrates how much better the VHS code is at representing
low density parts of phase space. This is even more noticeable when more
velocity dimensions are resolved as a larger fraction of the phase space has
small contributions in f as a lot of grid cells are far away from the mean in
at least one velocity dimension.

11

The ability to capture fine structures and low-density regions in phase
space and the possibility of particles with low weight to effectively moder-
ate the influence of particles from the center of the distribution with large
weights leads to a scheme that has a very low level of numerical noise in the
reconstructed charge density and resulting electric field. The energy in this
numerical noise of the electric field is much smaller than in a particle-in-cell
simulation. This means that the range of energies between the kinetic ener-
gies of the particles down to the noise floor is much larger. Consequently the
dynamic range over which processes such as Landau damping can be studied
is much larger.

Figure 2: After initialization and marker creation, as well as after every marker update,
the full distribution function f(x, vx, t) is reconstructed on a grid. This is the crucial
step that allows to calculate moments of the distribution function such as ρ(x, t) both for
output and for the calculation of the self-consistent, electrostatic field E(x, t). This field
only depends on the net charge density ρ and is calculated using a spectral solver. It is
then used to update the marker population for the next time-step.

While the reconstruction of the phase space density that was described
so far is the crucial difference to a particle-in-cell code, the rest of the code
follows the well-known structure of other semi-Lagrangian codes, as shown
in Fig. 2.

12

The code starts by reading the configuration file that describes the phys-
ical properties of the desired initial state, the numerical properties of the
chosen discretization and parameters that describe the desired output. The
exact format is implementation dependent and is described in more detail in
section 3.3.

The description loaded from the configuration is sufficient to allocate all
necessary data structures and to create the phase space markers that repre-
sent the initial distribution function. Setup of the initial fields is trivial, as
only Ex is relevant to the particle dynamics. It is set to zero as no large scale
electric fields are expected in a quasi-neutral plasma in a periodic domain.

Following the initialization the regular time-stepping scheme is started.
First of all the phase space density f is reconstructed on the grid, based on
the Lagrangian marker particles. Once the reconstructed phase space density
is known, it is straight forward to integrate over the velocity direction(s) of
the grid to get moments of the distribution function, such as charge density
ρ (x) or the current jx (x). Only the net charge density of all species together
is necessary for the time-stepping, but the individual contribution of each
species is both easier to calculate and can be useful to study and understand
the physics. This is also the reason for calculating higher moments that
don’t enter the update cycle directly. After the net charge density has been
obtained it can be used to solve Poisson’s equation for the electrostatic field.
Both multi-grid solvers and spectral solvers work fine. In principle even direct
integration should work in periodic domains. The resulting electric field is
used for output as well as for the calculation of the force on each marker
particle. For this the electric field on the grid is interpolated to the position
of each particle using the same area weighting scheme that has been used in
the reconstruction step. From the local electric field it is easy to calculate
the force and therefore the acceleration for each particle, which allows to
calculate the new velocity and position. With that step the new state of
all particles is available both for output and to start the whole scheme for
an additional cycle if the desired end of the simulation is not reached yet.
Following this rough overview of the general structure of a code implementing
the VHS method, the next section will go into some of the details and design
choices that went into the implementation that accompanies this paper.

13

Figure 3: The phase space is discretized in x and vi directions. In the spatial direction
the domain is split into Nx cells, each ∆x wide. In the velocity directions each cell extends
over an interval ∆vi and Nv,i cells cover the range from vdrift − 5 vth to vdrift + 5 vth. The
initial drift and thermal speeds can be different in different velocity components, allowing
for the study of e.g. temperature anisotropies. All grid quantities are collocated at the
center of the grid cells, as indicated by the red dots. Particle based quantities (indicated by
the dot with green fill and black outline) are deposited onto the grid using the cloud-in-cell
interpolation method (area weighting) described in Fig. 1.

3. Description of the Implementation

3.1. Implementation decisions

A lot of operations in the code require interaction with the reconstructed
distribution function on the phase space grid. An important point in the
design is therefore the choice of the discretization of phase space. Figure 3
shows what the accompanying code uses. The spatial dimension is split
into Nx cells that span the range from 0 to L. Each cell has a width of
∆x = L/Nx. Each resolved velocity direction is split into Nv,i cells and
spans from vdrift,i− 5 vth,i to vdrift,i + 5 vth,i. Each species has its own velocity
range, covering ten times the thermal speed vvth,i, centered around the mean

14

drift speed vdrift,i. Different species thus use different values of ∆vi but the
number of cells in velocity direction is the same for all species. Every gridded
quantity is represented by the single value located at the center of the grid
cell. As mentioned earlier and shown in Figure 1, area weighting is used to
interpolate between the Eulerian view and the Lagrangian marker particles.

Gridded quantities, such as momenta of the distribution function use a
grid that is the same Nx cells of width ∆x and are represented by the value
in the center of the grid cell. This way they can be calculated through
summation over the velocity directions without further interpolation. The
electric field uses the same grid layout. This collocates the electric field
values with the net charge density, which is convenient for the spectral solver.
Furthermore it makes the interpolation going back to the particles identical
to the interpolation in the reconstruction step, which avoids confusion.

As already mentioned, the code uses a spectral solver to calculate Ex (x)
based on ρ (x). It relies on the fact that the differential equation for the
electric field given by Eq. (2) reduces to an algebraic equation in k space:

Ẽ (kx) = −4π i kx
k2

ρ̃ (kx) . (5)

In the implementation it takes one Fourier transform to go from the charge
density ρ to ρ̃. The electric field Ẽ as a function of k can then be easily
obtained following Eq. (5). The resulting quantity is transformed back by
a second Fourier transform to calculate E. The implementation in the code
contains two little twists. One is the removal of the DC component by
setting Ẽ (kx = 0) to zero. This removes the division by zero for kx = 0 and
is physically well motivated as no large scale fields are expected, especially
for a plasma without net charge in a periodic domain. The second is a
modification of the differencing operator in k-space:

Ẽ (kx) = −4π i κ (kx)

K2 (kx)
ρ̃ (kx) , (6a)

κ (kx) = kx · sinc(kx ·∆x) , (6b)

K2 (kx) = k2x · sinc2(0.5 · kx ·∆x) . (6c)

This modification is sometimes called “sinc softening” and makes the
differencing operator act more like a local operator. This fits in well with
the finite differences that are used in the rest of the code. A nice overview
of the trade-offs between Eq. (5) and (6) can be found in [25, Appendix E].

15

As indicated in Fig. 2 the code doesn’t directly create the marker par-
ticles based on the description in the configuration file, but calculates the
initial distribution function on the phase space grid. Following this step, La-
grangian phase space markers are created to represent this distribution. The
intermediate step of discretizing the distribution function allows to separate
the description of the initial state from the creation of the marker particles
in a clean way, which makes the extension to other initial states easy.

As indicated in Fig. 3 the phase space is discretized in steps of ∆v in the
velocity direction. As mentioned earlier, the Vlasov equation leads to the
creation of finer structures in velocity space over time. When these struc-
tures reach the limited resolution of the numerical simulation the validity
of the simulation result becomes questionable. This widly known recurrence
problem (see e.g. [44], [45] or [46]) is not solved in any innovative way in this
code. However the recurrence time TR until the problem appears is given by

TR =
π

k∆v
, (7)

where k is the wave number of spatial variations and ∆v the resolution in the
velocity direction. The smallest wave number is set by the spatial resolution
∆x multiplied by the number of spatial grid points Nx. The velocity spacing
is automatically calculated by the code from the thermal speed vth and the
number of grid points Nv,x. Inserting this into Eq. (7) gives the recurrence
time

TR =
1

10

∆x

vth,x
NxNv,x , (8)

i.e. the time at which the initial distribution function reoccurs. The code
calculates and prints this value and gives a strong warning if a simulation
with a total simulated time T = Nt ∆t > TR is attempted. As the VHS
model is mostly used if a lot of resolution in velocity space is desired, Nv,x

will tend to be large and the recurrence effect can be expected to happen very
late, past the desired end time of the simulation. If longer times need to be
simulated and one is not interested in features on small scales in the velocity
direction, the addition of a carefully chosen level of collisionality following
the approach by [47] could help.

For all the test cases presented in section 4 the recurrence time is between
6 times (for the long run on probing Landau damping in subsection 4.2) to
1399 times (in the test case determining the dispersion relation of Langmuir
waves in subsection 4.1) longer than the total duration of the simulation.
Recurrence effects are therefore not expected to affect any of the test results.

16

3.2. Performance and Parallelization
The performance of the code is dominated by the time spent on depositing

marker particles onto the phase space grid and updating the particles based
on the local electric field. Given that the number of particles per cell doesn’t
change much – it is always between 2 and 20 – the effort to compute the
next time step is directly related to the resolution of the phase space grid.
To compare with other semi-Lagrangian codes it is however convenient to
specify the performance through the number of particles that are handled
per second and CPU core. On an Intel Xeon E5-2650 CPU running at 2.6
GHz the code is capable of about 107 particle updates per second using a
single CPU core. This is slightly slower than expected for a particle-in-cell
code, but not drastically so.

The majority of the time – slightly more than 2/3 – is spent on the
reconstruction of the phase space distribution. This is comparable to a
particle-in-cell code, where the deposition of the charge density is a ma-
jor cost. Calculating the updated velocity and position of the particles is the
second biggest cost at about 1/5 of the CPU time. Inclusion of additional
velocity components increases this fraction, especially as the action of static
background magnetic fields requires the implementation of a full Boris push
to update the particles. The cost of the spectral solver that calculates the
electric field is negligible even for larger simulations despite its O (n log (n))
scaling. Even for simulations with low grid resolution in the vx direction and
few marker particles per cell it requires well below five percent of the CPU
time. The remaining 10 to 15 percent of the CPU time are used by the cal-
culation of moments of the distribution function which requires integration
over the reconstructed distribution function as well as output and internal
book keeping.

Figure 4 shows the performance of the code when running the same sim-
ulation with a variable number of parallel tasks. The simulation discretizes
phase space with 213 cells in both the x and the vx direction. Electrons and
protons in the simulation are represented by nine marker particles per cell
which leads to a grand total of 1.2 · 109 particles in the simulation that are
updated for 1500 time steps. Given that the field solver incurs negligible
computational cost the code should exhibit a linear performance increase
when adding additional CPU cores. The code shows good scaling efficiency
to at least 256 CPUs.

In many cases the goal is not shortest time to solution but to simulate the
largest domain that is feasible. This is especially true for plasma simulation

17

107

108

109

1010

 1 4 16 64 256 1024

M
ar

ke
r p

ar
tic

le
s

/ s
ec

on
d

Parallel Tasks

Strong Scaling
Ideal

Figure 4: The strong scaling test simulates a phase space grid with 8192 cells in x direction
and 8192 in vx direction using electrons and protons represented by nine particles per cell
each. The simulation is performed using a variable number of MPI threads and the average
performance over 1500 time steps is given, excluding output.

codes that have to resolve the micro-physical length scale set by the Debye
length and struggle to reach the larger outer length scales. In this case weak
scaling, where the amount of work per parallel thread is held constant, is
much more interesting. Figure 5 shows the performance of the code in the
case where additional CPUs are added to allow additional parallel tasks to
simulate a larger and larger simulation domain. Scaling efficiency is again
very good in this case. The code is able to make efficient use of typical
clusters available to researchers at their department if the problem size is
reasonable.

18

107

108

109

1010

 1 4 16 64 256 1024

M
ar

ke
r p

ar
tic

le
s

/ s
ec

on
d

Parallel Tasks

Weak Scaling
Ideal

Figure 5: The weak scaling test also simulates a phase space with 8192 cells in vx
direction and nine particles per cell electrons and protons each. The simulation size in x
direction however is changed with the number of MPI threads so that each parallel task
is responsible for 16 cells in x direction. Performance is again measured by taking the
average over a duration of 1500 time steps without performing output.

3.3. Format of the configuration files

The configuration files use JavaScript Object Notation (JSON). This for-
mat is easy to read and write for users of the code, without requiring (much)
experience with programming. Nevertheless it is easy to parse or generate
automatically and a wide variety of libraries that can do so are available for
many different programming languages. This allows for easy use of the con-
figuration file by other programs. Both graphical front ends that generate
configuration files and programs that operate on the simulation output, such
as automated analysis scripts, can handle the file format easily.

The configuration file is split into three parts titled “physical”, “numeri-

19

cal” and “output”. Examples for each part are given in listings 1 to 3. Note
that the order of parameters and sections in the JSON file doesn’t change
how the file is parsed. Proper nesting of blocks on the other hand is crucial
as the file won’t form valid JSON and cannot be parsed otherwise.

Listing 1: Section of a configuration file describing the physical setup

1 {
2 "physical": {
3 "species": {
4 "electrons": {
5 "q": -4.8032e-10,

6 "m": 9.1094e-28,

7 "omegap": 1.0000e9,

8 "vth": 1.4990e9,

9 "vdriftx": 0.0,

10 "knum": 1.0,

11 "alpha": 0.05

12 }
13 },
14 "Bx": 0.0,

15 "By": 0.0,

16 "Bz": 0.0

17 },
The first section deals with a description of the physical plasma condi-

tions. All parameters in this section should make sense irrespective of the
simulation method that is used. The parameter values are given in CGS
units. In the accompanying code, the object that describes the physical
setup only contains an object describing the different species in the plasma.
In versions of the code that resolve more than one velocity component the
background magnetic field is also specified in this section.

Each species object contains key-value pairs, where the key is a string
that gives a name to the species and the value is a JSON object containing
all parameters describing the species. The species name is also used to name
the output about this species and therefore has to be a valid name for a
HDF5 group. In practice one should limit the name to alphanumerical ASCII
characters supplemented by underscore, dash and plus. Other characters
(such as square brackets) might be allowed under the standard but can lead
to problems.

20

The parameter q gives the charge qα for each physical particle of this
species in statcoulomb. A marker particle of this species in the code might
have a much larger charge, but this is transparent to the user.

The parameter m works in the same way and gives the mass mα of a phys-
ical particle in grams. The ratio qα/mα is constant for all marker particles
of a species, independent of phase space weight.

The parameter omegap gives the plasma frequency ωp,α for species α in
rad s−1. This implicitly sets the density of this species through

nα =
(
ω2
p,αmα

)
/
(
4π q2α

)
. (9)

The overall plasma frequency ωp is often useful and is given by the root of
the sum of the squares of the individual plasma frequencies of all species:

ωp =

√∑
α

ω2
p,α . (10)

The fourth and last parameter that is necessary for every species is vth

that sets the thermal speed vth,α in centimeters per second. This is used
as standard deviation σ in the normal distribution that describes the initial
velocity distribution. It is common, but not necessary for the code, that
different species are in thermal equilibrium. In this case the thermal speeds
should scale as vth,α ∝ m

−1/2
α . This parameter also sets the limits of the phase

space grid for the species. The maximum and minimum velocities v±range (see
Fig. 3) are set to vdrift,α ± 5 · vth,α. The thermal speed of the lightest species
and the overall plasma frequency ωp set the Debye length λD = vth/ωp, which
is the natural length scale in the plasma. If the 1d3v version of the code is
used and a temperature anisotropy is desired, it is possible to set vthx, vthy
and vthz separately instead of using vth which will set the thermal speed in
all direction to the same value.

The mean drift speed of each species that was just mentioned is an op-
tional parameter that defaults to zero, i.e. a non drifting population. Using
the key vdriftx (or vdrifty or vdriftz in the 1d3v version of the code) it
can, however, be set to a value in centimeters per second and will then set
the average speed of that species. This allows for the initialization of beams,
counter propagating neutral plasmas, or net currents.

The two remaining parameters that are shown in the example are also
optional. If the parameter alpha is given and non-zero, a sinusoidal pertur-

21

bation is added to the initial density distribution:

nα (x) =
ω2
p,αmα

4π q2α
·
(

1 + alpha · sin
(

2π knumx

L

))
. (11)

The parameter knum determines how many wavelengths of the perturbation
fit into the simulation box of length L.

The second section contains parameters relevant to the numerical dis-
cretization of the problem, such as the number of grid cells. All parameters
in this section are dimensionless.

Listing 2: Section of a configuration file describing the numerical parameters chosen for
the discretization

18 "numerical": {
19 "rescale_dx" : 1.01,

20 "rescale_dt" : 1.01,

21 "Nx" : 1024,

22 "Nv" : 2048,

23 "Nt" : 1500,

24 "ppc" : 8

25 },

The code is able to make a good guess what a reasonable cell size ∆x
should be based on the physical parameters, but it can be modified through
the optional parameter rescale dx. Values greater than one lead to smaller
grid cells and better resolution: ∆x = 0.4λD/rescale dx.

A similar parameter rescale dt exists to adjust the length of the time
step ∆t. It is mostly based on the plasma frequency and is given by ∆t =
0.25π /ωp / rescale dt. In the magnetized case the time step is chosen small
enough to resolve the particles’ gyrations in the prescribed magnetic field
with at least 2 π steps per gyration.

With the size of a grid cell given by ∆x it is still necessary to specify the
number of such cells Nx. This is done by the parameter Nx in the configura-
tion file. The total length of the simulated domain is given by L = Nx ·∆x.

Similarly the number of grid cells in the velocity direction is specified by
Nv. Note that the number of grid cells is the same for every species but the
grid spacing is given by ∆vx,α = 10 vth,α /Nv and can be different for each
species. If desired it is possible to set the number of grid cells in each velocity

22

direction separately by using Nvx, Nvy and Nvz. By default the code uses the
value supplied in Nv for each resolved velocity dimension.

The length of each time step ∆t is mostly fixed by physical parameters.
The duration of the simulation T is therefore mostly determined by the
number of time steps Nt that is given by the parameter Nt.

The last remaining numerical parameter is ppc. It controls the number
of marker particles for each species that is initialized per ∆x · ∆vx cell in
phase space. This number can be much smaller than in a particle-in-cell
code, but keep in mind that the total number of particles Np is given by
Nx ·

∏
iNvi · ppc which includes the product of the number of cells in all

resolved velocity directions. This extra factor is missing in a particle-in-cell
code and can be large, especially in the case of the 1d3v code.

The last section of the configuration file controls output settings. The gap
between computing speed and storage speed has continuously broadened in
computers over the last decades. At this point the code would be completely
limited by the write speed of the I/O subsystem without using a significant
fraction of the available processing power if it tried to store every available
diagnostic in every single time step. Limiting the output to the desired
quantities at reasonable cadence is much more efficient.

Listing 3: Section of a configuration file describing the desired output quantities

26 "output": {
27 "dir": "/ scratch/vhs/",

28 "output_every": 0,

29 "energyout_every": 10,

30 "fields_every": 1,

31 "fields_per_species_every":100,

32 "phasespace_every": 500

33 }
34 }

The parameter dir controls to which directory the output is written. As
the code is using parallel HDF5 the directory needs to be on a file system that
is reachable by all nodes in a parallel run and for which MPI-IO is possible.

The parameter output every controls the cadence of all output types
unless a different cadence is given for the specific output. The parameter is
given as the number of time steps between consecutive outputs. If the value
is zero, the output is disabled.

23

The code does offer output of integrated thermodynamical quantities (see
3.4.1) as ASCII data. If the parameter energyout every is given it over-
writes the cadence given by output every.

The code also offers output of spatially resolved data, such as the charge
density ρ, the current density jx, or the electric field Ex as HDF5 datasets.
The cadence of such output is controlled by the parameter fields every.

In addition to the fields that concern all species, such as the net charge
density ρ or the electric field Ex, the code can also output quantities that
are related to a single species such as the charge density for that species
ρα or the current carried by it jx,α. These quantities do not directly af-
fect the time evolution, but can be very useful to distinguish physical pro-
cesses. The frequency of this kind of output is controlled by the parameter
fields per species every.

The most verbose kind of output that is possible is the output of snap-
shots of the reconstructed distribution function of the two (or even four)
dimensional phase space grid. This output is very useful to diagnose and
discuss phenomena such as phase space holes. The downside is of course
the much larger output size. Therefore this kind of output should not be
requested too often. The output is done for every species separately and can
be controlled by the parameter phasespace every.

3.4. Output format

As already mentioned in the discussion of parameters in the configuration
file the code supports two different kinds of output. The first is the output
of thermodynamical quantities that are integrated over the whole domain.
Due to the small size and to allow access to this information while the code
is running this output is written in ASCII format as one line per output time
step. The format of the line and the meaning of the different columns is
described in 3.4.1.

The other kind of output involves data that is resolved in the spatial
and possibly velocity direction. Due to the larger output size and for com-
patibility with the ACRONYM code (see [48]) this is written in the form
of datasets inside a HDF5 file. The file acts as a container that contains a
group for every time step that produces output. Inside the group all output
for this time step is located. More details on the different kinds of output
contained in the HDF5 files follow in 3.4.2 and 3.4.3.

24

3.4.1. Thermodynamical quantities

The ASCII output of thermodynamical quantities is stored in a file called
energyout.dat in the output directory. It starts with a header that describes
the format of the file:

#step t Ee Ekin Etota l Ekin 1 . . . f 1 . . . S 1 . . .

The first column contains the integer time step step in which the output
was performed. The second column contains the same information in form
of the time t that has passed since the beginning of the simulation. Physical
time is normalized to the plasma frequency and is given by t = step ·∆t ·ωp.
As such it is much better suited to plot or discuss physical processes but it
is not as handy for discussions about the code.

The third column contains the energy that is contained in the electric
field in erg which is calculated from

Ee =
1

8π

∫
E2

x dV =
1

8π

Nx∑
i=0

E2
x dx3 . (12)

The fourth column contains the total kinetic energy of all particles in the
simulation. It is calculated in the non-relativistic approximation as particles
moving close to the speed of light would produce sufficient currents and
magnetic fields that the electrostatic approximation is not applicable any
longer. The output is given as energy in erg.

The fifth column contains the total energy in the simulation box. It
is calculated as the sum of electric and kinetic energy. Given that a closed
system in a domain with periodic boundaries is simulated this quantity should
stay constant throughout the simulation run. Small deviations due to the
discretization of phase space are possible. Larger deviations indicate a lack
of resolution.

After the previous five columns that always exist in that order indepen-
dent of the number of different species in the simulation follow the kinetic
energies of the different species. The total kinetic energy in column four is
actually the sum of all these. Having this value broken down into one column
per species can be useful to study the energy transfer between species.

In the next columns the integral over f for each species is given. This
quantity is equivalent to the total number of particles of that species: Nα (t) =∫ L
0

∫ vrange
−vrange f (x, vx, t) dvx dx. This quantity should of course be conserved.

25

Only if the time evolution produces fine structures in phase space that can-
not be represented on the grid during the reconstruction of the phase space
density deviations are noticeable.

The last set of columns is the (coarse-grained) entropy per species, cal-
culated by

Sα =

∫ L

0

∫ vrange

−vrange
f (x, vx, t) log (f (x, vx, t)) dvx dx . (13)

In a completely collisionless plasma entropy should be conserved. Due to the
finite grid resolution there is some coarse graining which allows changes in
Sα. However if the changes are larger than a few percent over the course of
the simulation it is an indication that the resolution in phase space is not
sufficient.

3.4.2. Spatial output

Beyond the spatially integrated quantities discussed in section 3.4.1 the
code also outputs spatially resolved quantities. The larger volume of these
make collection on a single CPU as well as output in ASCII format rather
inefficient. Therefore parallel output to a single file is performed in HDF5
format using MPI-IO. The output of all time steps is stored in that file,
grouped by the time step it belongs to.

Among the things that are stored is the net charge density

ρ (x) =
∑
α

qα

∫ vrange

−vrange
fα (x, vv) dvx . (14)

It is given in units of statC cm−3. The resulting dataset is named rhoL[0].
Although not used for the time evolution the current density

jx (x) =
∑
α

qα

∫ vrange

−vrange
vv · fα (x, vv) dvx (15)

is also computed and added to the output. It is given in units of statC cm−2 s−1

and stored under the name rhoL[1]. The 1d3v code also represents the ve-
locity components in y and z direction and stores the corresponding current
components in rhoL[2] and rhoL[3].

The next quantity that is represented in the output is the electric field Ex

that is calculated using the spectral solver. It is given in units of statV cm−1.

26

For fields the numbering is slightly different than for densities and the field
is sorted under the name E[0].

The last output that is stored as field output is the remaining error of
the field solver. It is given as the residual charge ∆ρ = ρ− ∂

∂x
Ex/ (4π) that

is not accounted for in the electric field and has the same units as a charge
density. The resulting dataset is named diff rho divE0. This quantity is
mostly useful when experimenting with the field solver. Note that deviations
from zero might not only arise from the field solver but also from the finite
differences approximation for the divergence of the electric field.

If requested the output of spatially resolved quantities will also contain
quantities about individual species α. This includes the charge density ρα
contributed by this species as well as the current density jx,α carried by
it. The datasets are in the same units and have the same name as their
counterparts that are summed over all species. The path to the datasets
in the HDF5 file however contains the name of the species to allow correct
attribution.

One additional dataset is available in the output, which is broken down
by species, but which is not available as a net quantity. This is the second
moment of the distribution function that can be viewed as a measure for the
temperature or mean squared velocity. It is given by qα nα v

2
th,α and stored in

units of statC cm−1 s−2 under the name of rhoL[4]. Note that in the 1d3v
code the trace of the second order tensor is given which is equivalent to the
average temperature. Users who are interested in the study of temperature
anisotropies might want to split out the average squared velocities for each
of the three components or even reconstruct all six independent components
of the second order tensor and output them separately.

3.4.3. Phase space output

The most detailed output that is possible is that of quantities that are
reconstructed on the phase space grid. This is always computed and stored
separately for each species. In principle all other output can be calculated
from the full resolved data, but doing so would increase the output size and
post-processing time by a large factor. At lower cadence however this type
of output can provide useful insights.

The obvious quantity to consider on the phase space grid is the recon-
structed phase space density fα. This is available for each species under the
name f in units of cm−3. Additionally available is n that is given by the de-
nominator in Eq. (4). It gives the sum of interpolation weights of all marker

27

particles that were considered in the reconstruction. It can be considered as
the area weighted form of the number of marker particles that contributed.
Grid cells that show values much below the value configured through ppc

suffer from poor representation and the reconstruction might be poor there.
The third quantity that is available is the change of f compared to the

initial distribution function f0 that was generated based on the description
in the configuration file. It is calculated as δf = f − f0 and stored under the
name df. This quantity is provided mainly as a convenience feature as plots
where the main Maxwellian has been removed are much easier to interpret.

As different species might cover different velocity ranges that are not
immediately obvious from the numerical grid in phase space, the group con-
taining f, df and n also contains the upper and lower limits of velocity space
that is covered by these quantities. The two values per dimension are named
vmin i and vmax i and give the minimum velocity at the lower end of the
first cell and the maximum velocity at the upper end of the last cell for
velocity direction i in units of cm s−1.

4. Results from the Test Cases

The number of scenarios that can be simulated with a one-dimensional
electrostatic code in periodic boundaries is not very large. This is not a severe
problem as the accompanying code is mostly meant as a starting point into
a not very widely used simulation method. It does however make testing of
the code difficult. As the simplest test we consider – in subsection 4.1 – the
self-consistent evolution of Langmuir waves that evolve out of mall random
initial perturbations. As a second test subsection 4.2 considers the Landau
damping of a single Langmuir wave that is driven by an initial perturbation
in charge density. To test effects of drifting species the current-driven ion-
acoustic instability is shown in section 4.3. To demonstrate and test the
1d3v capabilities of the code section 4.4 shows the dispersion relation of
electron Bernstein modes which require the gyration of electrons in a uniform
magnetic field oriented perpendicular to the resolved spatial direction. The
setup file for all test cases are supplied alongside with the code.

4.1. Dispersion relation of Langmuir waves

A test that is very simple from a physical point of view, but that tests
large parts of the code and their interplay, is a simple neutral and homo-
geneous plasma with two species in thermal equilibrium. In the continuum

28

case of Vlasov theory this will not produce any electromagnetic fields. A real
physical system as well as a numerical system with discrete charges however
will produce some fluctuations in the electromagnetic fields (see [49]). These
fluctuations are sharply concentrated on the linear eigenmodes of the sys-
tem. Only two eigenmodes are accessible to the system under study. One
are Langmuir waves that can be seen as the warm plasma extension of plasma
oscillations. The other possibility are ion acoustic waves. These however hap-
pen at lower frequencies and consequently require longer simulations. This
first test therefore concentrates on Langmuir waves to save computational
effort.

While the test is very simple on the physics side it needs a lot of the
code to be correct and to interact correctly. Wrong normalization in the
reconstruction of the phase space density or in the field solver lead to a wrong
plasma frequency which is easy to spot in the simulation output. Wrong
interpolation leads to self forces on the marker particles which manifest as
parallel stripes in the dispersion plot. Wrong normalizations of space or time
steps lead to a wrong velocity scale which can be seen as a deviation of the
wave’s velocity in intermediate k ranges. It takes some experience in code
building to guess the location of a bug from the characteristic deviations in
the dispersion relation, but if the code passes the test it is a good reassurance
that there are no major issues with the code.

One additional very good feature of this test case is that no elaborate
diagnostics are necessary. Taking the spatially resolved output of the elec-
trostatic field at different time steps and performing Fourier transformations
over space and time readily gives the distribution of the energy density in
these fluctuations as a function of kx and ω.

The expected dispersion relation of Langmuir waves is given by (see e.g.
[50]):

ω = ωp

√
1 + 3 k2 λ2D . (16)

Figure 6 shows an example that was plotted from the output of a simu-
lation using the disp.json configuration file that is supplied along with the
code as well as the expected dispersion curve. The plot does not extend out
to the maximal kx that is present in the simulation as the Langmuir mode is
increasingly damped. In the range of wavelengths where the Langmuir mode
is present a sharp increase in energy density can be seen along the dispersion
curve expected from theory. At very small kx the wave frequency matches the
plasma frequency from the configuration file as expected. The gap at kx = 0

29

Figure 6: The distribution of energy density in the fluctuation of the electric field in the
Fourier domain compares well with the theoretical dispersion relation of Langmuir waves.
The gap in the spectrum at kx = 0 is an artifact of the spectral solver. At low frequencies
ion acoustic waves are also visible.

is an artifact of the spectral solver, as explained in section 3.1. At larger kx
the wave frequency increases as expected. This indicates that the effects of
the finite temperature of the plasma or alternatively the thermal distribu-
tion of particle speeds is correctly represented by the code. At frequencies
much below the plasma frequency – barely resolved in this simulation – ion
acoustic waves can be seen.

This test case is sufficiently fast to run and check that it is worthwhile
to do so after every change to the code or whenever compiling in a new
environment.

4.2. Landau damping

The second test initializes a sinusoidal electron density fluctuation which
produces a strong Langmuir wave that then undergoes Landau damping
(named after [51] where the process was first described). The ions in this test
are assumed to act as a static and homogeneous background that compen-
sates the average charge density of the electrons. Since the spectral solver

30

enforces overall neutrality by construction, the ions don’t have to be repre-
sented through marker particles which cuts the computational effort roughly
in half. The initialization as well as some of the analysis follows the simula-
tions in [46].

Langmuir waves are heavily damped if their wavelength is smaller than
the Debye length or close to it. Therefore a box of length L = 5π λD was
chosen and the longest wavelength mode is excited which has k = 0.4λ−1D .
Sufficient resolution of phase space is necessary to avoid dissipation through
numerical effects that could mimic the dissipation through Landau damping.
For this reason Nx = 512 grid cells are used to represent the length of the
simulation domain. This implicitly determines ∆x. In the configuration file
rescale dx is set accordingly.

Following Eq. (16) the wave frequency ω is 1.22ωp. To resolve the os-
cillation with a sufficient number of steps the time step is chosen to be
∆t = 0.1ω−1p . This is well below the stability limit of the code and con-
figured through the use of rescale dt in the configuration file.

The cutoff scale in velocity is vrange = 10 vth,e, somewhat larger than in
the Eulerian code used by [46]. Consequently the number of grid cells in
velocity direction is also lightly larger at Nvx = 6600. The actual value of
vth,e does not matter as the simulation is rescaled to the corresponding Debye
length, as long as the assumption of non-relativistic motion is not violated.

The initial electron phase space distribution is given by:

f0 (x, vx) = (1 + α · cos (k x)) · 1√
2π

exp

(
− v2x

2 v2th,e

)
. (17)

The parameter α gives the strength of the initial fluctuation and is set to five
percent in this test. This is sufficiently small to get linear Landau damping
initially, but large enough to get oscillation of the amplitude of the electric
field at later times.

Initially the wave with k = 0.4λ−1D and ω = 1.22ωp propagates with a
phase velocity of ω/k = 3.04 vth,e. This is in the tail of the thermal distribu-
tion but well below the cutoff vrange. Particles that travel at the same speed
as the wave undergo a resonant interaction with the wave and gain energy.
Details of this process can be found in [52, 53] or many textbooks. Overall
the interaction with the particles leads to a decay of the wave amplitude with

31

a damping rate γ that is given by

γ =
π ω ω2

p

2 k2
f ′
(ω
k

)
, (18)

where f ′ is the derivative of the distribution function with respect to velocity.
Inserting a Maxwellian as distribution function we find that the phase space
density decreases with velocity and the derivative is negative as expected.
Using the parameters of the simulation we expect γ = −0.072ω−1p .

0.1

1.0

10.0

 0 5 10 15 20 25 30 35 40

| E
k |

 (a
.u

.)

t (1/ωp)

Wave Amplitude of the Fundamental Mode

Simulation
Fit to maxima

0.1

1.0

10.0

 0 5 10 15 20 25 30 35 40

Figure 7: Short term evolution of the amplitude of the long wavelength perturbation in
the electric field as well as a fit describing linear Landau damping.

The evolution at time up to 40ω−1p can be seen in figure 7 and the expected
linear Landau damping can be recovered in the time between 1.5ω−1p and
25ω−1p . During this time the amplitude peaks of the initially perturbed
mode of the electric field can be described well by Ek ∝ exp (γ ωp t). The fit
to the simulated data finds a damping rate γ of −0.070ω−1p which is close

32

to the value that is expected from theory. This is – just like the correct
reproduction of the dispersion curve of the Langmuir waves itself – a strong
indication that the code simulates the electron dynamics correctly.

Much more interesting is the study of the late time behavior of the system
past the limit of linear Landau damping. In this case the wave has modified
the distribution functions substantially close to the resonant speed. Shallow
hole like structures form in phase space and particles can get trapped there.
After one complete trapped orbit some of the original density perturbation
is restored and with it the resulting electric field.

The time dependent modifications in [53] in principle describe this effect
and one could integrate them over time to get the amplitude of the electric
field. The much more straight forward way is to simulate the self-consistent
evolution of electron density and electric field. This simulation requires a
very low level of noise in the simulation, very few numerical collisions that
lead to dissipation and a very good representation of fine structures in phase
space. Using the parameters given above, the VHS code can achieve this,
whereas particle-in-cell codes have a hard time, given their inherent shot
noise.

Figure 8 shows the amplitude of the perturbed mode of the electric field.
To produce this plot the code stores the electric field every five time steps.
In post-processing the electric field is Fourier transformed and the longest
wavelength mode is extracted. The amplitude of this mode can then be
plotted over time.

As expected from theory and seen in the reference simulations, the electric
field does not continue to decay away but shows peaks in amplitude caused
by trapping oscillations. These peaks blur out and lose amplitude, but retain
finite values even at very late times. This shows that fine structures in phase
space are retained over long times and can form larger coherent structures.
This is only possible because the code offers good resolution in phase space
as well as a low level of numerical diffusion.

4.3. Current-Driven Ion-Acoustic Instability

This third test problem uses two initially homogeneous populations (pro-
tons and electrons) with a relative drift between each other. The setup is
chosen such that the center of mass is at rest, but a relative drift and thus
a net current in the system exist. This net current acts as a source of free
energy for the Current-Driven Ion-Acoustic instability that converts kinetic
energy of the streaming motion into electric energy of ion-acoustic waves.

33

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 0 200 400 600 800 1000 1200 1400 1600

| E
k |

 (a
.u

.)

t (1/ωp)

Wave Amplitude of the Fundamental Mode

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 0 200 400 600 800 1000 1200 1400 1600

Figure 8: The long term evolution of the amplitude of the long wavelength perturbation
in the electric field shows amplitude oscillations and a non vanishing late time amplitude.

For a wave mode at real frequency ω the growth rate γ can be found in
[54] and is given by

γ

ω
= −

√
π

8

[(
me

mi

)1/2(
1− u

cs

)
+

(
Te
Ti

)3/2

exp

(
− Te

2Ti

)]
, (19)

where cs =
√
kBTe/mi is the sound speed and u is the speed of the relative

drift. The growth rate obviously strongly depends on the mass ratio mi/me

of ions and electrons as well as their temperature ratio Te/Ti. Same as in the
first test problem, the natural value for the mass ratio is used, but unlike
there the species are not in thermal equilibrium. Equation (19) is only valid
in the regime Te/Ti � 1, where Landau damping is sufficiently weak. A
temperature ratio of 16 was chosen, as it is sufficiently large to make this
approximation valid and is convenient to set up numerically.

34

It can be seen that γ is only positive, indicating wave growth, when
the drift speed u is sufficiently large. Alternatively this is also visible from
figure 9 that shows the evolution of the energy in the electrostatic field for
different relative drift speeds.

10-9

10-8

10-7

10-6

10-5

10-4

10-3

 0 50 100 150 200 250 300 350

E
e

(a
.u

.)

t (ωp
-1)

0.50
1.50
1.75
2.00
2.25
2.50

Figure 9: Growth of the energy in the electrostatic field. The curves are labeled by the
relative drift speed u as multiples of the electron thermal velocity vth,e. Solid lines give the
result from the simulation, dashed lines show exponential growth with the theoretically
predicted growth rate, adjusted in initial amplitude to match the simulation results during
the initial growth phase (defined here as the energy range 5 · 10−9 − 5 · 10−8 a.u.).

The figure shows that for a small initial drift – below the threshold –
there is an exchange in energy between the particles and the electric field,
but the latter doesn’t show a long term growth. When the drift speed is
increased, the growth rate increases. The dashed lines also included in the
plot indicate exponential growth with the rate given by equation (19). The
only adjustment that was made to match the theoretical prediction to the
simulation results is setting the initial amplitude such that the theoretical
curve matches the simulation result in the first decade of energy above the
noise floor.

The figure also shows that once the energy in the ion acoustic waves has
grown by more than a factor of 20, non-linear effects set in. Interestingly this

35

does not reduce the growth rate as it is the case in many other instabilities,
but actually increases the growth rate. This has also been observed in other
studies of this instability, such as [55]. The simulation there, however, used a
tiny mass ratio of four which eliminates the possibility of a direct comparison.

v
 /

 v
th

,e

x / λD

vdrift

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

 0 20 40 60 80 100 120 140 160 180 200

v
 /

 v
th

,e

x / λD

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

 15 20 25
100

101

102

103

104

105

106

f e
 (

a
.u

.)

Figure 10: This plot shows the phase space density of electrons during the non-linear stage
of the current-driven ion-acoustic instability. Initially the electrons drift at three times
their thermal speed relative to the ions. At t = 392ω−1

p the initial homogeneous electron
distribution function develops the structures shown here.

Figure 10 a) shows that the phase space of electrons develops strong devi-
ations from the initial drifting Maxwellian. These are especially pronounced
at lower velocities (as seen from the rest frame of the center of mass) where
they interact more efficiently with the ions. Part b) of the figure shows a
zoom in of a part of phase space to illustrate the sharp change in phase space
density on small scales in both space and velocity. Within less than one De-
bye length or less than one thermal speed the phase space density changes
by a factor of 105. This is well represented here using the VHS method, but
is a hard problem for a particle-in-cell code.

4.4. Electron Bernstein Modes

To test the 1d3v version of the code a test problem is needed that requires
all three velocity components to be resolved. For simulations that only cover
one dimension in space this often happens when a background magnetic field
is present and the gyration of particles around it have to be considered.
To demonstrate the correct gyration as well as the interaction through the
electrostatic field we consider the case of electron Bernstein modes in a mod-

36

erately warm (vth,i = 1/10 vA) plasma. This test case has been used in [56]
to test a number of different plasma models.

Figure 11: The distribution of energy density in the fluctuation of the electric field in the
Fourier domain compares well with the theoretical dispersion relation of electron Bernstein
waves. The gap in the spectrum at kx = 0 is an artifact of the spectral solver. At low
frequencies ion acoustic waves are also visible.

Figure 11 shows the result of a simulation using the bernstein 3d.json

file that is supplied with the simulation code. The distribution of the energy
density in the Fourier domain matches the expected behavior of electron
Bernstein waves well. The simulation was performed with 128 cells in each
of the three velocity dimensions. Consequently it requires about 700GB of
RAM. This large amount of main memory required in 1d3v simulations was
the initial reason to select parallelization using MPI as that allows simulations
using more memory than available on each individual machine the researcher
has access to. It is however also a useful performance feature for simulations
with fewer resolved dimensions.

37

5. Conclusion

This paper presents the first freely available code in the Computer Physics
Communications Program Library for Vlasov-Hybrid-Simulations. The code
performs well and is parallelized using MPI and scales well to several hundred
parallel tasks. Output is handled using parallel HDF5 and can be configured
in several levels of detail. The configuration is read at startup from JSON
files that can serve as a binding element in the pipeline from simulation
design to post-processing and plotting. Despite all these advanced features
the code is 2000 lines of code in 15 files. It is well structured and aims to be
readable.

As such it offers a good introduction to the VHS method that is less well-
known than other semi-Lagrangian methods such as particle-in-cell. Despite
the lower adoption in the community the method offers several advantages.
It allows to efficiently represent small changes in phase space density. The
simulations have a very low numerical noise level and very low diffusion in
phase space. This makes VHS the method of choice to study late time effects
or processes requiring a large dynamic range above the numerical noise floor.
A possible additional advantage of the method that is not realized in the
code for reasons of simplicity is the ability to represent boundaries in phase
space that are hard to implement in particle-in-cell codes.

Appendix A. Acknowledgments

The authors want to thank Mehdi Jenab for useful discussions. A de-
scription of the design and implementation of FFTW3 library can be found
in [57]. The HDF5 library was developed by The HDF Group and by the
National Center for Supercomputing Applications at the University of Illinois
at Urbana-Champaign. Design and implementation of the MPI standard by
OpenMPI is described in [58]. This work is based upon research supported
by the National Research Foundation and Department of Science and Tech-
nology. Any opinion, findings and conclusions or recommendations expressed
in this material are those of the authors and therefore the NRF and DST do
not accept any liability in regard thereto.

38

Appendix B. References

References

[1] D. Nunn, A novel technique for the numerical simulation of hot collision-
free plasma; Vlasov Hybrid Simulation, Journal of Computational
Physics 108 (1) (1993) 180–196. doi:10.1006/jcph.1993.1173.

[2] J. M. Dawson, Particle simulation of plasmas, Reviews of Modern
Physics 55 (1983) 403–447. doi:10.1103/RevModPhys.55.403.

[3] C. Cheng, G. Knorr, The integration of the Vlasov equation in configu-
ration space, Journal of Computational Physics 22 (3) (1976) 330–351.
doi:https://doi.org/10.1016/0021-9991(76)90053-X.

[4] S. von Alfthan, D. Pokhotelov, Y. Kempf, S. Hoilijoki, I. Honkonen,
A. Sandroos, M. Palmroth, Vlasiator: First global hybrid-Vlasov sim-
ulations of earth’s foreshock and magnetosheath, Journal of Atmo-
spheric and Solar-Terrestrial Physics 120 (2014) 24–35. doi:https:

//doi.org/10.1016/j.jastp.2014.08.012.

[5] D. Lynden-Bell, Statistical mechanics of violent relaxation in stellar sys-
tems, Monthly Notices of the Royal Astronomical Society 136 (1967)
101. doi:10.1093/mnras/136.1.101.

[6] J. Denavit, Numerical simulation of plasmas with periodic smoothing
in phase space, Journal of Computational Physics 9 (1) (1972) 75–98.
doi:https://doi.org/10.1016/0021-9991(72)90037-X.

[7] K. Symon, D. Marshall, K. Li, Bit-pushing and distribution-pushing
techniques for the solution of the Vlasov equation, in: J. Boris,
R. Shanny (Eds.), Proceedings of the Fourth Conference on the Numeri-
cal Simulation of Plasmas, Washington DC, Naval Research Laboratory,
Washington DC, 1970, pp. 68–125.

[8] G. Joyce, G. Knorr, H. K. Meier, Numerical integration methods of the
Vlasov equation, Journal of Computational Physics 8 (1) (1971) 53–63.
doi:https://doi.org/10.1016/0021-9991(71)90034-9.

39

http://dx.doi.org/10.1006/jcph.1993.1173
http://dx.doi.org/10.1103/RevModPhys.55.403
http://dx.doi.org/https://doi.org/10.1016/0021-9991(76)90053-X
http://dx.doi.org/https://doi.org/10.1016/j.jastp.2014.08.012
http://dx.doi.org/https://doi.org/10.1016/j.jastp.2014.08.012
http://dx.doi.org/10.1093/mnras/136.1.101
http://dx.doi.org/https://doi.org/10.1016/0021-9991(72)90037-X
http://dx.doi.org/https://doi.org/10.1016/0021-9991(71)90034-9

[9] M. M. Shoucri, R. R. Gagné, Splitting schemes for the numerical
solution of a two-dimensional Vlasov equation, Journal of Computa-
tional Physics 27 (3) (1978) 315–322. doi:https://doi.org/10.1016/
0021-9991(78)90013-X.

[10] T. Nakamura, T. Yabe, Cubic interpolated propagation scheme for solv-
ing the hyper-dimensional Vlasov-Poisson equation in phase space, Com-
puter Physics Communications 120 (2) (1999) 122–154. doi:https:

//doi.org/10.1016/S0010-4655(99)00247-7.

[11] G. Knorr, Zur Lösung der nicht-linearen Vlasov-Gleichung, Zeitschrift
Naturforschung Teil A 18 (1963) 1304–1315. doi:10.1515/

zna-1963-1209.

[12] J. Denavit, W. L. Kruer, Comparison of numerical solutions of the
Vlasov equation with particle simulations of collisionless plasmas, The
Physics of Fluids 14 (8) (1971) 1782–1791. doi:10.1063/1.1693676.

[13] A. J. Klimas, A method for overcoming the velocity space filamenta-
tion problem in collisionless plasma model solutions, Journal of Com-
putational Physics 68 (1987) 202–226. doi:10.1016/0021-9991(87)

90052-0.

[14] A. Klimas, W. Farrell, A splitting algorithm for Vlasov simulation with
filamentation filtration, Journal of Computational Physics 110 (1) (1994)
150–163. doi:https://doi.org/10.1006/jcph.1994.1011.

[15] B. Eliasson, Outflow boundary conditions for the fourier transformed
two-dimensional vlasov equation, Journal of Computational Physics
181 (1) (2002) 98–125. doi:https://doi.org/10.1006/jcph.2002.

7121.

[16] J. Boris, D. Book, Flux-corrected transport. III. minimal-error FCT
algorithms, Journal of Computational Physics 20 (4) (1976) 397–431.
doi:https://doi.org/10.1016/0021-9991(76)90091-7.

[17] E. Fijalkow, A numerical solution to the Vlasov equation, Computer
Physics Communications 116 (2) (1999) 319–328. doi:https://doi.

org/10.1016/S0010-4655(98)00146-5.

40

http://dx.doi.org/https://doi.org/10.1016/0021-9991(78)90013-X
http://dx.doi.org/https://doi.org/10.1016/0021-9991(78)90013-X
http://dx.doi.org/https://doi.org/10.1016/S0010-4655(99)00247-7
http://dx.doi.org/https://doi.org/10.1016/S0010-4655(99)00247-7
http://dx.doi.org/10.1515/zna-1963-1209
http://dx.doi.org/10.1515/zna-1963-1209
http://dx.doi.org/10.1063/1.1693676
http://dx.doi.org/10.1016/0021-9991(87)90052-0
http://dx.doi.org/10.1016/0021-9991(87)90052-0
http://dx.doi.org/https://doi.org/10.1006/jcph.1994.1011
http://dx.doi.org/https://doi.org/10.1006/jcph.2002.7121
http://dx.doi.org/https://doi.org/10.1006/jcph.2002.7121
http://dx.doi.org/https://doi.org/10.1016/0021-9991(76)90091-7
http://dx.doi.org/https://doi.org/10.1016/S0010-4655(98)00146-5
http://dx.doi.org/https://doi.org/10.1016/S0010-4655(98)00146-5

[18] F. Filbet, E. Sonnendrücker, Comparison of Eulerian Vlasov solvers,
Computer Physics Communications 150 (3) (2003) 247–266. doi:https:
//doi.org/10.1016/S0010-4655(02)00694-X.

[19] F. Jenko, W. Dorland, M. Kotschenreuther, B. N. Rogers, Electron tem-
perature gradient driven turbulence, Physics of Plasmas 7 (5) (2000)
1904–1910. doi:10.1063/1.874014.

[20] E. Sonnendrücker, J. Roche, P. Bertrand, A. Ghizzo, The semi-
lagrangian method for the numerical resolution of the vlasov equation,
Journal of Computational Physics 149 (2) (1999) 201–220. doi:https:
//doi.org/10.1006/jcph.1998.6148.

[21] J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm,
Nature 324 (1986) 446–449. doi:10.1038/324446a0.

[22] J. Dubinski, A parallel tree code, New Astronomy 1 (2) (1996) 133–147.
doi:10.1016/S1384-1076(96)00009-7.

[23] P. Gibbon, F. N. Beg, E. L. Clark, R. G. Evans, M. Zepf, Tree-code simu-
lations of proton acceleration from laser-irradiated wire targets, Physics
of Plasmas 11 (8) (2004) 4032–4040. doi:10.1063/1.1767096.

[24] M. Winkel, R. Speck, H. Hübner, L. Arnold, R. Krause, P. Gibbon, A
massively parallel, multi-disciplinary barneshut tree code for extreme-
scale n-body simulations, Computer Physics Communications 183 (4)
(2012) 880–889. doi:10.1016/j.cpc.2011.12.013.

[25] C. K. Birdsall, A. B. Langdon, Plasma physics via computer simulation,
1st Edition, New York: Taylor and Francis, 2005.

[26] J. Dawson, One-dimensional plasma model, The Physics of Fluids 5 (4)
(1962) 445–459. doi:10.1063/1.1706638.

[27] R. W. Hockney, Computer experiment of anomalous diffusion, The
Physics of Fluids 9 (9) (1966) 1826–1835. doi:10.1063/1.1761939.

[28] C. K. Birdsall, D. Fuss, Clouds-in-clouds, clouds-in-cells physics for
many-body plasma simulation, Journal of Computational Physics
3 (4) (1969) 494–511. doi:https://doi.org/10.1016/0021-9991(69)
90058-8.

41

http://dx.doi.org/https://doi.org/10.1016/S0010-4655(02)00694-X
http://dx.doi.org/https://doi.org/10.1016/S0010-4655(02)00694-X
http://dx.doi.org/10.1063/1.874014
http://dx.doi.org/https://doi.org/10.1006/jcph.1998.6148
http://dx.doi.org/https://doi.org/10.1006/jcph.1998.6148
http://dx.doi.org/10.1038/324446a0
http://dx.doi.org/10.1016/S1384-1076(96)00009-7
http://dx.doi.org/10.1063/1.1767096
http://dx.doi.org/10.1016/j.cpc.2011.12.013
http://dx.doi.org/10.1063/1.1706638
http://dx.doi.org/10.1063/1.1761939
http://dx.doi.org/https://doi.org/10.1016/0021-9991(69)90058-8
http://dx.doi.org/https://doi.org/10.1016/0021-9991(69)90058-8

[29] A. Friedman, D. P. Grote, I. Haber, Three-dimensional particle simu-
lation of heavy-ion fusion beams, Physics of Fluids B: Plasma Physics
4 (7) (1992) 2203–2210. doi:10.1063/1.860024.

[30] R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren,
W. B. Mori, S. Deng, S. Lee, T. Katsouleas, J. C. Adam, OSIRIS:
A three-dimensional, fully relativistic particle in cell code for model-
ing plasma based accelerators, in: P. M. A. Sloot, A. G. Hoekstra,
C. J. K. Tan, J. J. Dongarra (Eds.), Computational Science - ICCS 2002,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 342–351.

[31] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G.
Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell,
C. P. Ridgers, Contemporary particle-in-cell approach to laser-plasma
modelling, Plasma Physics and Controlled Fusion 57 (11) (2015) 113001.
URL http://stacks.iop.org/0741-3335/57/i=11/a=113001

[32] J. P. Boris, Relativistic plasma simulation—optimization of a hybrid
code, in: J. Boris, R. Shanny (Eds.), Proceedings of the Fourth Confer-
ence on the Numerical Simulation of Plasmas, Washington DC, Naval
Research Laboratory, Washington DC, 1970, pp. 3–67.

[33] D. Nunn, The numerical simulation of vlf nonlinear wave-particle in-
teractions in collision-free plasmas using the Vlasov hybrid simula-
tion technique, Computer Physics Communications 60 (1) (1990) 1–25.
doi:https://doi.org/10.1016/0010-4655(90)90074-B.

[34] F. Kazeminezhad, S. Kuhn, A. Tavakoli, Vlasov model using kinetic
phase point trajectories, Phys. Rev. E 67 (2003) 026704. doi:10.1103/
PhysRevE.67.026704.

[35] K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, D. L. D. Zeeuw,
A solution-adaptive upwind scheme for ideal magnetohydrodynamics,
Journal of Computational Physics 154 (2) (1999) 284–309. doi:https:
//doi.org/10.1006/jcph.1999.6299.

[36] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb,
P. MacNeice, R. Rosner, J. W. Truran, H. Tufo, Flash: An adaptive
mesh hydrodynamics code for modeling astrophysical thermonuclear

42

http://dx.doi.org/10.1063/1.860024
http://stacks.iop.org/0741-3335/57/i=11/a=113001
http://stacks.iop.org/0741-3335/57/i=11/a=113001
http://stacks.iop.org/0741-3335/57/i=11/a=113001
http://dx.doi.org/https://doi.org/10.1016/0010-4655(90)90074-B
http://dx.doi.org/10.1103/PhysRevE.67.026704
http://dx.doi.org/10.1103/PhysRevE.67.026704
http://dx.doi.org/https://doi.org/10.1006/jcph.1999.6299
http://dx.doi.org/https://doi.org/10.1006/jcph.1999.6299

flashes, The Astrophysical Journal Supplement Series 131 (1) (2000)
273.

[37] A. Brandenburg, W. Dobler, Hydromagnetic turbulence in computer
simulations, Computer Physics Communications 147 (2002) 471–475.
doi:10.1016/S0010-4655(02)00334-X.

[38] A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu,
C. Zanni, A. Ferrari, Pluto: A numerical code for computational as-
trophysics, The Astrophysical Journal Supplement Series 170 (1) (2007)
228.

[39] Hanasz, M., Kowalik, K., Wóltański, D., Paw laszek, R., The PIERNIK
MHD code a multi-fluid, non-ideal extension of the relaxing-tvd scheme
(I), EAS Publications Series 42 (2010) 275–280. doi:10.1051/eas/

1042029.
URL https://doi.org/10.1051/eas/1042029

[40] A. Glocer, G. Tóth, Y. Ma, T. Gombosi, J.-C. Zhang, L. M. Kistler, Mul-
tifluid block-adaptive-tree solar wind Roe-type upwind scheme: Magne-
tospheric composition and dynamics during geomagnetic storms - Ini-
tial results, Journal of Geophysical Research: Space Physics 114 (A12),
a12203. doi:10.1029/2009JA014418.
URL http://dx.doi.org/10.1029/2009JA014418

[41] J. E. Leake, V. S. Lukin, M. G. Linton, E. T. Meier, Multi-fluid sim-
ulations of chromospheric magnetic reconnection in a weakly ionized
reacting plasma, The Astrophysical Journal 760 (2) (2012) 109.
URL http://stacks.iop.org/0004-637X/760/i=2/a=109

[42] J. Müller, S. Simon, U. Motschmann, J. Schüle, K.-H. Glassmeier, G. J.
Pringle, A.I.K.E.F.: Adaptive hybrid model for space plasma simu-
lations, Computer Physics Communications 182 (4) (2011) 946–966.
doi:https://doi.org/10.1016/j.cpc.2010.12.033.

[43] E. Kallio, P. Janhunen, Ion escape from mars in a quasi-neutral hybrid
model, Journal of Geophysical Research: Space Physics 107 (A3) (2002)
SIA 1–1–SIA 1–21. doi:10.1029/2001JA000090.
URL http://dx.doi.org/10.1029/2001JA000090

43

http://dx.doi.org/10.1016/S0010-4655(02)00334-X
https://doi.org/10.1051/eas/1042029
https://doi.org/10.1051/eas/1042029
https://doi.org/10.1051/eas/1042029
http://dx.doi.org/10.1051/eas/1042029
http://dx.doi.org/10.1051/eas/1042029
https://doi.org/10.1051/eas/1042029
http://dx.doi.org/10.1029/2009JA014418
http://dx.doi.org/10.1029/2009JA014418
http://dx.doi.org/10.1029/2009JA014418
http://dx.doi.org/10.1029/2009JA014418
http://dx.doi.org/10.1029/2009JA014418
http://dx.doi.org/10.1029/2009JA014418
http://stacks.iop.org/0004-637X/760/i=2/a=109
http://stacks.iop.org/0004-637X/760/i=2/a=109
http://stacks.iop.org/0004-637X/760/i=2/a=109
http://stacks.iop.org/0004-637X/760/i=2/a=109
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2010.12.033
http://dx.doi.org/10.1029/2001JA000090
http://dx.doi.org/10.1029/2001JA000090
http://dx.doi.org/10.1029/2001JA000090
http://dx.doi.org/10.1029/2001JA000090

[44] J. Canosa, J. Gazdag, J. E. Fromm, B. H. Armstrong, Electrostatic
oscillations in plasmas with cutoff distributions, The Physics of Fluids
15 (12) (1972) 2299–2305. doi:10.1063/1.1693873.

[45] J. Canosa, J. Gazdag, J. Fromm, The recurrence of the initial state
in the numerical solution of the Vlasov equation, Journal of Computa-
tional Physics 15 (1) (1974) 34–45. doi:https://doi.org/10.1016/

0021-9991(74)90067-9.

[46] G. Manfredi, Long-time behavior of nonlinear Landau damping, Phys-
ical Review Letters 79 (1997) 2815–2818. doi:10.1103/PhysRevLett.

79.2815.

[47] O. Pezzi, E. Camporeale, F. Valentini, Collisional effects on the numer-
ical recurrence in Vlasov-Poisson simulations, Physics of Plasmas 23 (2)
(2016) 022103. doi:10.1063/1.4940963.

[48] P. Kilian, T. Burkart, F. Spanier, The influence of the mass ratio on
particle acceleration by the filamentation instability, in: W. E. Nagel,
D. B. Kröner, M. M. Resch (Eds.), High Performance Computing in
Science and Engineering ’11, Springer, Berlin Heidelberg, 2012, pp. 5–
13. doi:10.1007/978-3-642-23869-7.

[49] A. G. Sitenko, Electromagnetic Fluctuations in Plasma, Academic Press,
New York, 1967.

[50] H. E. J. Koskinen, Physics of space storms from the solar surface the
Earth, Springer ; Published in association with Praxis Pub., Berlin;
London; Chichester, UK, 2011. doi:10.1007/978-3-642-00319-6.

[51] L. Landau, On the vibrations of the electronic plasma, Zhurnal Eksper-
imentalnoi i Teoreticheskoi Fiziki 16 (7) (1946) 574–586.

[52] J. M. Dawson, On Landau damping, Physics of Fluids 4 (7) (1961) 869–
874. doi:10.1063/1.1706419.

[53] T. O´Neil, Collisionless damping of nonlinear plasma oscillations,
Physics of Fluids 8 (12) (1965) 2255–2262. doi:10.1063/1.1761193.

[54] R. Fitzpatrick, Plasma Physics: An Introduction, CRC Press, 2014.

44

http://dx.doi.org/10.1063/1.1693873
http://dx.doi.org/https://doi.org/10.1016/0021-9991(74)90067-9
http://dx.doi.org/https://doi.org/10.1016/0021-9991(74)90067-9
http://dx.doi.org/10.1103/PhysRevLett.79.2815
http://dx.doi.org/10.1103/PhysRevLett.79.2815
http://dx.doi.org/10.1063/1.4940963
http://dx.doi.org/10.1007/978-3-642-23869-7
http://dx.doi.org/10.1007/978-3-642-00319-6
http://dx.doi.org/10.1063/1.1706419
http://dx.doi.org/10.1063/1.1761193

[55] M. Lesur, P. H. Diamond, Y. Kosuga, Nonlinear current-driven ion-
acoustic instability driven by phase-space structures, Plasma Physics
and Controlled Fusion 56 (7) (2014) 075005. doi:10.1088/0741-3335/
56/7/075005.

[56] P. Kilian, P. A. Muñoz, C. Schreiner, F. Spanier, Plasma waves as a
benchmark problem, Journal of Plasma Physics 83 (1). doi:10.1017/

S0022377817000149.

[57] M. Frigo, S. G. Johnson, The design and implementation of FFTW3,
Proceedings of the IEEE 93 (2) (2005) 216–231, special issue on “Pro-
gram Generation, Optimization, and Platform Adaptation”.

[58] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Cas-
tain, D. J. Daniel, R. L. Graham, T. S. Woodall, Open MPI: Goals,
concept, and design of a next generation MPI implementation, in: Pro-
ceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, 2004, pp. 97–104.

45

http://dx.doi.org/10.1088/0741-3335/56/7/075005
http://dx.doi.org/10.1088/0741-3335/56/7/075005
http://dx.doi.org/10.1017/S0022377817000149
http://dx.doi.org/10.1017/S0022377817000149

	1 Introduction
	2 Description of the Method
	3 Description of the Implementation
	3.1 Implementation decisions
	3.2 Performance and Parallelization
	3.3 Format of the configuration files
	3.4 Output format
	3.4.1 Thermodynamical quantities
	3.4.2 Spatial output
	3.4.3 Phase space output

	4 Results from the Test Cases
	4.1 Dispersion relation of Langmuir waves
	4.2 Landau damping
	4.3 Current-Driven Ion-Acoustic Instability
	4.4 Electron Bernstein Modes

	5 Conclusion
	Appendix A Acknowledgments
	Appendix B References

