

This is an electronic reprint of the original article. This reprint may differ from the original
in pagination and typographic detail.

CellSim3D: GPU accelerated software for simulations of cellular growth and division in
three dimensions
Madhikar, Pranav; Åström, Jan; Westerholm, Jan; Karttunen, Mikko

Published in:
Computer Physics Communications

DOI:
10.1016/j.cpc.2018.05.024

Published: 01/01/2018

Document Version
Accepted author manuscript

Document License
CC BY-NC-ND

Link to publication

Please cite the original version:
Madhikar, P., Åström, J., Westerholm, J., & Karttunen, M. (2018). CellSim3D: GPU accelerated software for
simulations of cellular growth and division in three dimensions. Computer Physics Communications, 232,
206–213. https://doi.org/10.1016/j.cpc.2018.05.024

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 25. Apr. 2024

https://doi.org/10.1016/j.cpc.2018.05.024
https://research.abo.fi/en/publications/5c624236-493f-48c4-9227-4f40a8fac7b2
https://doi.org/10.1016/j.cpc.2018.05.024

CellSim3D: GPU Accelerated Software for Simulations

of Cellular Growth and Division in Three Dimensions

Pranav Madhikara, Jan Åströmb, Jan Westerholmc, Mikko Karttunend

aDepartment of Mathematics and Computer Science & Institute for Complex Molecular
Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands

bCSC Scientific Computing Ltd, Kägelstranden 14, 02150 Esbo, Finland
cFaculty of Science and Engineering, Åbo Akademi University, Vattenborgsvägen 3,

FI-20500, Åbo, Finland
dDepartment of Chemistry and Department of Applied Mathematics, Western University,

1151 Richmond Street, London, Ontario N6A 5B7, Canada

Abstract

We present a new open source software package CellSim3D for computer
simulations of mechanical aspects (that is, biochemical details are not ac-
counted for) of cell division in three dimensions. It is also possible to use the
software in the mode with cell division and growth turned off which allows
for simulations of soft colloidal matter. The code is based on a previously
introduced two dimensional mechanical model for cell division which is ex-
tended to full 3D. CellSim3D is written in C/C++ and CUDA and allows
for simulations of 100,000 cells using standard desktop computers.

Keywords: Molecular dynamics, GPU, CUDA, cell division, soft colloids

PROGRAM SUMMARY
Program Title: CellSim3D version 1.0
Licensing provisions: GPLv2
Programming language: C/C++, CUDA, Python
Nature of problem: Mechanical 3-dimensional model for cell division and soft col-
loidal matter.
Solution method: Representation of cells as elastic three dimensional spheres with
elastic forces, friction, repulsion, attraction and osmotic pressure. Integration of
the equations of motion using the velocity-Verlet method from dissipative particle
dynamics. Cells with volumes higher than a threshold can divide. Cell division
can also be turned off thus allowing for simulations of soft colloidal matter.

Preprint submitted to Computer Physics Communications May 24, 2018

Additional comments: Software web site: https://github.com/SoftSimu/CellSim3D

1. Introduction

The behavior of cells, their influence on their own environments, and the
feedback of the environment onto the cells themselves have been of extreme
interest and importance in biology and biophysics. In addition, there is
strong evidence that suggests that the mechanical properties such as texture
and stiffness can affect cell function and development1–11. Cellular migra-
tion, a vital part of many biological processes12,13 such as embryonic mor-
phogenesis14–16, is yet another example of a mechanically affected aspect of
cell behavior. Another beautiful example of the importance of mechanical
forces in cell division is provided by Burton and Taylor who measured trac-
tion forces and showed how they localize during cell division in an elegant
experiment17.

Many experimental techniques have been used to study the cellular re-
sponse to mechanical stimuli18–20. One needs to understand how the mech-
anism of mechanical stimulus is transformed into biochemical responses and
vice versa18 which requires the measurement of the distribution of forces
at the molecular level. This is not possible to do with current experimental
techniques. Furthermore, simulations allow testing many different conditions
at a much lower cost. Finally, it is difficult to separate mechanical stimuli
from biochemical stimuli in the lab. Computational methods eliminate the
biochemical noise that exists in these types of systems. There has been a
considerable effort to develop computational models21–25 that can focus on
the mechanical behavior of cells without adressing any of the complex bio-
chemical processes that occur during cell division and growth. This is also
the case with the current model: it focuses purely on mechanical behavior.
We would also like to note that there are mathematical and computational
models that focus on the biochemical aspects (and ignore mechanical as-
pects). Such models include phase field-based approaches such as the one
by Howard et al.26 and coupled partial differential equations, e.g., the recent
one by Shtylla27.

In general, mechanical models can be at the continuum level, where in-
teraction functions are used to approximate bulk properties, or discrete cell
based (or agent based) two and three-dimensional models. Continuum mod-
els use local interaction functions to simulate tissue, rather than collections

2

of cells. In these kinds of models, cell behavior is abstracted into functional
forms containing expressions for density, growth rate, death rate, and inter-
cellular interaction strength28,29. Continuum models have been used to suc-
cessfully study tissue growth and topological rearrangements28–31. Unfortu-
nately, due to their macroscopic nature, information regarding inter-cellular
interactions is lost.

Numerous agent based methods, based on particle and lattice models,
have also been proposed to address the mechanical aspects of cell divi-
sion at a more detailed level. Examples include Delaunay Object Dynamics
(DOD)32–35, Vertex models36–40, and lattice based models such as the cellular
Potts Model41–45, which itself can be extended to phase-field models24,46.

It is surprising that despite the fundamental importance of cell division,
and the influence of mechanics on it, there are very few software packages
available to study it. This is drastically different from fields such as mate-
rials and biomaterials research. To the best of our knowledge, there are
no freely or commercially available packages comparable to the one pre-
sented in this paper. Current free software packages are mostly based on
the cellular Potts model, such as CompuCell3D47 and CompuCell48. There
is also the two dimensional Cellular Potts Model Library called Tissue Sim-
ulation Toolkit based on the work of Graner and Glazier42 (available at
https://sourceforge.net/projects/tst/), and cellGPU by Sussman49. Other
methods are also available, for example LBICell that uses elastic polygons
and the immersed boundary method50, and the agent-based package CellSys
by Hoehme and Drasdo51 that is available as a free binary executable for
non-commercial use. Commercial software includes the so-called Cell Divi-
sion Program based on the work of Pyshnov52. Interested readers are referred
to several recent reviews of computational models53–55.

In this work, we present a software package named CellSim3D for simu-
lating the mechanical aspects of cell division computationally. Our fully three
dimensional approach is based on the 2D models originally described in22,56.
The mechanical properties of cells can be related to the model parameters
as discussed in Section 2. In our previous work using the 2D cell division
model22, the details of the parameter mapping between the model and real
experimental systems were shown and verified. In particular, we showed that
the model can accurately and spontaneously reproduce cell packing topolo-
gies similar to that in the Drosophila 57 wing disc, thus providing a proof
of correctness of the general approach. Importantly, the user can easily
change these parameters if a different mapping is required. In addition to

3

the simulation code, the software package includes a number of analysis tools
as described in Section 3.1.5.

CellSim3D is able to simulate the organic growth of tissue from a single
cell (starting from more than one cell is supported as well) into tissue with
up to approximately 106 cells in 3D. Since the focus be on the mechanical
aspects of cell behavior, the CellSim3D force-field, detailed below, assumes
that all biochemical parameters are kept the same for all cells. Other terms
that account for biochemical differences can be added later.

In brief, the CellSim3D code enables the simulation of the following,
purely mechanical aspects of cell behavior and cell division:

1. The manner in which, and the strength with which, cells interact with
each other and their environment mechanically. The physical origin of
this is their membranes with inter-membrane interactions.

2. The mechanical effects of a cell’s growth and division on its neighbors.

3. The mechanical response of a cell to external stimuli (the external stim-
ulus itself need not be mechanical).

4. Cell migration: the mechanical basis within the cell, and the mechanism
used to move on a substrate or in an external matrix.

5. The interplay between all of the above, including between cells of dif-
ferent type with different mechanical parameters.

2. Model and Methods

The model presented here extends the model introduced in Ref.22 from
2D to 3D. Each cell is modeled as a connected network of nodes, see Fig-
ure 1(A). This model was proposed to simulate a variety of cell behaviors.
Intracellular forces are modeled with simple damped Hookean springs, each
node being connected to three nearest neighbors, and an internal pressure.
Inside the tissue, each node experiences forces that arise from intercellular
interactions: adhesion and repulsion between cells, friction between cells,
and friction between cells and the intercellular medium. The shapes of the
simulated cells evolve according to the interplay between internal pressure,
contractile forces along cell boundaries, and inter-cellular interactions. This
allows for studying the dynamics of cell membranes, and their interactions,
with higher spatial and temporal resolution.

With the above, the force field used in the simulations is given by

4

(A) C180 fullerene structure used in CellSim3D.

(B) CellSim3D force-field.

(C) Cell growth and division

Figure 1: (A) The geometry of the cell, which is taken from the C180 fullerene. (B)
Schematic showing the parts of the force-field used in this model. Bonded forces are defined
between nearest neighbor nodes within the cell (fullerene), the black dot is the node being
considered and the gray are its neighbors. Non-bonded interactions are between nodes
belonging to different cells, the black dot represents a node in the cell being considered
and the gray dot a node belonging to another nearby cell. Cell growth is modeled by an
internal pressure normal to the surface of the cell FP . (C) The various stages of division.
The figures show snapshots from a simulation of a single cell. Cell division is done with a
division plane oriented randomly and such that the cell is divided symmetrically, to model
mitotic division58.

5

F = mr̈ = FB + Fθ + FP + FR + FA + FF , (1)

where FB is the damped Hookean bonding force between neighboring nodes
and is related to the elasticity of cellular membranes. Fθ is the angle force
which preserves curvature, FP is the force due to the cell’s internal pres-
sure coming from the osmotic pressure within cells. FR is the repulsive force
between different cells, FA is the attractive force between different cells,
together they approximate the inter-membrane interaction between mem-
branes. FF is the friction term, which itself is decomposed into viscous drag
due to the medium (e.g. water) and inter-membrane friction.

For simplicity, harmonic potentials are used to approximate both the
bonded interactions between nodes of the same cell and non-bonded inter-
actions between nodes of different cells. This leads to simple definitions of
the various forces in Equation 1. If necessary, these may be changed to other
terms in a straightforward manner. Each node is bonded to three neighboring
nodes with a bonding force given by

FB
i =

3∑
j=1

kBb̂ij (Rij −Ro)− γintvij,

where kB is the bonding spring constant, Ro is the equilibrium bond length,
and γint is a term that damps the oscillation of the bonds. The angle force
is given by

Fθ = −∇
(

1

2
kθ(θ − θo)2

)
, (2)

which is summed over the contributions due to all of the angles that the node
is a part of. kθ is the angle spring constant and θo is the equilibrium angle
(taken from a C180 fullerene structure) formed by the bond vectors between
bonded neighbors.

The interactions between different cells are governed by short-range non-
bonded interactions. The repulsive part is given by

FR =

{
kR
(
R−RR

o

)
r̂j if R < RR

o ,

0 if R ≥ RR
o

(3)

and

FA =

{
−kA

(
R−RA

o

)
r̂j if R < RA

o ,

0 if R ≥ RA
o

(4)

6

defines the attractive component of intermembrane interactions. RR
o and

RA
o are cutoff lengths. Together, FA and FR approximate inter-membrane

interactions. KR, KA are the repulsive and attractive spring constants re-
spectively, and RR, RA are the attractive and repulsive spring equilibrium
lengths. Normally, RR < RA and KR � KA. Cell-cell repulsion forces pre-
vent a cell from occupying the space occupied by another cell, while adhesion
forces maintain the integrity of tissues. In real cells, adhesion forces originate
from adhesive bonds formed between Cell Adhesion Molecules (CAMs) on
the surface of neighboring cells59–62. There is a wide variety of such adhesion
molecules including Integrins, Selectins, Cadherins, and other proteins cat-
egorized in the IgSuperfamily61,62. In the simulated cells, each node on the
boundary is an adhesive site, meant to approximate average CAM behavior.
We would also like to add that it would be possible to make adhesion dy-
namic. For that, the functional form for adhesion needs to be determined.
This is likely to be included in a future update.

Finally, the growth force is defined as

FP = PSn̂, (5)

n̂ is the normal to the surface of the cell at the node in question. The surface
is defined as the plane in which the three bonded neighbors lie. P is the
internal pressure of the cell and S is a unit element of the surface area, PS is
the magnitude of the force causing growth in the cell volume, while ∆(PS)
is the growth rate.

Living cells are known to regulate their shape, growth and movement by
modulating their internal pressure63; movement is regulated in combination
with modifying cell cortex properties64,65. Internal hydrostatic pressure is
balanced by inward forces generated by contractile forces in the actomyosin
cortex on the periphery of cells63. Stewart et al.63 showed that this pressure
may be a result of changes in osmolyte concentrations in the cytoplasm and
the contractility of the cell cortex. Animal cells are known to have a rounded
shape in mitosis due to this pressure57,66. It is theorized that roundness of
mitotic cells is a necessary geometric requirement for division67–69. In the
model presented, each model cell is subjected to the same internal pressure
P (Figure 1).

The internal pressure force FP = PSn̂ is balanced by spring forces FB

and angle forces Fθ. Combined, the spring-like forces represent contractile
forces in the cell’s cortex. The simulated cell is homogeneous in the sense

7

that all nodes and corresponding spring constants are identical, kθ. This
makes cells roughly spherical at equilibrium, which agrees with experimental
characterizations of cells during mitosis63,66–71.

The friction forces FF consist of two components:

FF = FF,m + FF,e.

Cells in the current model move past each other while the tissue develops. As
they move, they experience friction forces due to the medium and resistance
of the cytoplasm. It is defined as

FF,m = −γmv.

Cells also experience an effective friction due to the interactions with
other cells. Specifically, when cells move past each other, the ith node of one
cell slides along jth node of another with the relative velocity vij = vi − vj.
If vτij is the component of the relative velocity tangential to the surface of
the cell containing i, then the force on i is approximated as a damping force
acting on the node i given as

FF,e
ij = −γextvτij (6)

for Rij < RA
o . The magnitude of the friction coefficient γext can be related

to the extent of cellular rearrangement during tissue growth. This term was
borrowed from the DOD model32–35.

2.1. Demonstration: Simulation of tissue growth

Simulated tissue starts as a single cell, or a collection of cells, which grow
due to an increase in cellular pressure. Energy enters the system this way.
See Figure 2 for simulation snapshots showing the formation of 3D tissue and
an epithelium. A gradual increase in the internal pressure ∆(PS), leads to
an increase in cell volume V = Vo + ∆V . Once a cell exceeds the threshold
value, V div, it is divided into two new cells by a division plane and new nodes
are introduced on both sides of the plane such that they form two deformed
new cells. Thus, mass is input into the system. As an initial approximation,
cytokinesis is assumed to be instantaneous and always such that symmetric
daughters are formed to simulate mitosis. Figure 3 shows how new cells are
created.

8

Simulation time
Figure 2: Snapshots from a simulation of tissue growth. The top panel shows the growth
of three dimensional tissue and the bottom panel is the growth of an epithelium. The
epithelium is created by adding confining walls above and below the system and making
the cells divide in a plane perpendicular to the confining walls.

Figure 3: Sketch of the cell division algorithm. Left: The cell division algorithm shown
in 2D for simplicity. First a cell large enough for division is chosen, and its nodes are
copied (black and red). Then a randomly oriented division line is chosen (cyan) such that
it divides the cell in half symmetrically. The corresponding nodes of the two new cells are
deformed such that the nodes that would be in contact are laid along the division line.
This leaves two new cells. Right: The same procedure is carried out in 3D, except using
a division plane instead of a line. New cells are shown in dark red and black, the division
plane is in cyan.

9

3. CellSim3D Software

The CellSim3D full source code is available under the GNU General Pub-
lic License version 2 (GPLv2)72 at https://github.com/SoftSimu/CellSim3D.
The software is written in standard C/C++ and is accelerated with CUDA73

to run on a single NVIDIA GPU. The algorithms are easily portable to
OpenCL and/or MPI. The current limitation of a single GPU is not a prob-
lem since modern GPUs have enough memory to simulate up to 100,000 cells
easily. Purely from a memory use standpoint, most modern mid-range GPUs
can store up to 105 cells (such as the GTX 970 or the GTX 980) and high
end GPUs (such as the GTX 1080Ti, GTX TITAN, or TESLA devices) can
easily handle 106. As more and more global memory becomes available on
hardware, even larger systems can be simulated in the future. 100,000 cells
can be stored in the memory of a computer configured with the a GTX980
GPU (4GB of RAM); simulating a system of up to approximately 12,000
cells required approximately 2.5 hours.

CellSim3D has been tested on the following GPUs: GTX 760, GTX 780,
GTX 980, GTX 1080Ti, GTX Titan Xp, GTX 960M, on systems configured
with Intel CORE i7 and i5 CPUs (CPU architecture is of no consequence).
The software has been successfully compiled with CUDA versions 5.5 to 9.1
— with the corresponding supported gcc versions (see the CUDA Toolkit
Documentation73).

Communication and synchronization are known to be bottlenecks when
accelerating any kind of computations with GPUs due to the higher latency
of communication between host RAM (Random Access Memory) and GPU
RAM. Therefore, as much of the computations as possible are done entirely
on the GPU. The CellSim3D force field (Eq. 1) contains only short-range
potentials. Thus, the entire potential and force calculations can be done on
the GPU only, greatly minimizing the need for communication. Neighbor
node list generation and most of the cell division algorithm are also carried
out entirely on the GPU. Neighbor lists are generated with a simple algorithm
that subdivides the simulation box into sub-boxes in parallel. Which cells
are in which sub-boxes are also calculated in parallel. This information is
then used to calculate a per-node neighbor list on the fly. The latter is done
in parallel on the GPU.

Thanks to the above optimizations, most of the computations are done
in CUDA only, with minor host code in C/C++ that controls execution and
handles data input and output. Therefore, normal workstations with modest

10

mid-range CPUs may be used with CellSim3D.

3.1. Implementation

3.1.1. Core Simulator and system requirements

Since most of the heavy computations are carried out on the GPU, the
requirements on the rest of the hardware configuration is not stringent. These
modest hardware requirements allow the study of interesting systems with
relative ease on a single node with a single GPU. Support for multiple nodes
or multiple GPUs is not implemented currently. Multiple GPU support is
planned for future releases.

The memory use is constant over the simulation and can be configured
with the input JSON file, see Fig. 4. This is to avoid repetitive alloca-
tion/deallocation of memory on the host and on the GPU. Memory is al-
located for a maximum number of cells for the simulator. This number is
typically much bigger than needed in the actual simulation. One can allo-
cate enough memory for 100,000 cells on a single modern GPU such as the
GTX 980, even low-end GPUs such as the GTX 960M can hold 50,000 cells.
100,000 cells take about 4GB of memory. As an example, systems of 10,000
cells can be safely simulated on GPUs with less than 1GB of memory and
typically take less than 45–60 minutes of wall clock time.

The simulator code supports any version of CUDA newer than 5.0. That
is, it can take advantage of optimizations in newer versions of CUDA (up to
CUDA 9.1 is supported) while still being more-or-less compatible with most
NVIDIA GPUs today. CellSim3D can be easily compiled with the makefile

provided. Only Linux is supported. Any corresponding gcc compiler that
is required by the CUDA version may be used. For example, CUDA 9.1
requires gcc 5.3.1 on Ubuntu 16.04 running on x86 64 systems. Refer to the
CUDA Toolkit Documentation for details73.

CellSim3D only depends on the jsoncpp library, which is pre-packaged
with CellSim3D for ease of use. No other libraries are needed by the sim-
ulator. Some Python libraries are required for the analysis tools, which are
outlined in Section 3.1.5.

Minimum System Requirements:

• NVIDIA GPU of compute capability of 3.5 or higher

• 1 GB of GPU memory (4GB recommended)

• CUDA 5.5 or higher (later versions recommended)

11

• Python 3.5, with required libraries

• Blender 2.7 or higher (only needed for visualization)

3.1.2. Software Structure and Use

3.1.3. Source files

There are two main types of files that are included in the package. The
first, and most vital, are the source files that contain all the code. The second
are data files that contain information such as cell geometry and bonding.

Below are short summaries of some of the source files.

• GPUBounce.cu is the main source file that outlines the flow the simu-
lation.

• Propagate.cu contains all the code pertaining to calculating and inte-
grating the forces in the system.

• Volume.cu calculates cell volumes in parallel on the GPU, and flags
them for division if needed.

• CellDivision.cu performs the actual cell division. A simple geomet-
rical argument is made when dividing the cells, see Figure 3.

Figure 4 shows a flowchart of the basic algorithm implemented in the
simulator. Once compiled, the simulator is configured with a input JSON file,
see Fig. 4. This file follows the standard JSON format, with some additions
for C-style comments. It contains all the force field parameters. A sample
input file named inp.json, which contains many informative comments, is
included with the software package.

The bounding box of the simulated cells is subdivided into a number
of smaller sub-boxes on the GPU, which are used to quickly calculate the
cells that are within the same sub-box. This is done efficiently and in par-
allel on the GPU. Then, during force calculation, the nodes from other cells
within range of each node are calculated in parallel for the inter-membrane
interactions.

3.1.4. Integration of the equations of motion

The force field outlined in Section 2 contains a friction term. After test-
ing different approaches, a modified velocity-Verlet integrator, the so-called

12

Program Start

Input JSON
Starting Num. of

cells
GPU ID

Parse JSON for
Parameters

Set initial conditions
(cell positions,
geometries, etc)

Allocate Host &
 GPU Memory

Move initial conditions
& parameters to GPU

Neighbour
Search

Force
Calculation

Force
Integration

Position Update Cell Division

Cell Pressure
Update

Simulation End

Trajectory Output

Simulation loop

Running on GPU

Figure 4: Simulation flowchart. All of the parameters used in the simulation are set in
a JSON (JavaScript Object Notation) file that is given as an argument to the simulator
(the program distribution includes a sample file). The GPU id (assigned by the system)
and the initial number of cells are also program arguments.

13

DPD-VV (Dissipative Particle Dynamics velocity-Verlet) of Besold et al.74

turned out to be stable and fast. DPD-VV has been described and tested in
detail in Refs.74,75. The algorithm is listed in Table 1.

(1) vi ← vi + 1
2m

(
FC
i ∆t+ FD

i ∆t+ FR
√

∆t
)

(2) ri ← ri + vi∆t
(3) Calculate FC

i {r}, FD
i {r,v}, FR

i {r}
(4a) voi ← vi

1
2m

(
FC
i ∆t+ FR

i

√
∆t
)

(4b) vi ← voi + 1
2m

FD
i ∆t

(5) Calculate FD
i {r,v}

Table 1: DPD-VV integration algorithm74. FC are the conservative parts of the force-
field, these include the bonded and non-bonded interactions, FD is the dissipative part —
the friction part, and FR is the random component of the force-field, which is zero in the
current CellSim3D force-field (Eq. 1). The positions and velocities are given by ri and vi,
respectively, m is the particle mass and ∆t the time step.

3.1.5. Input/Output and Analysis Tools

The only input required for the simulation is a simple JSON76 file with
extensions allowing for C-style comments. The input file is parsed with the
jsoncpp library77. This file sets the initial conditions for the system.

The simulator writes the output of the simulation to ASCII files, and
the trajectories of the nodes are written to a custom binary format that
is flexible enough to allow for a variable number of nodes in a single time
step. The binary file can be read and processed in python with a packaged
module named celldiv.TrajHandle. This is a simple interface between the
trajectory output from the simulator and NumPy78 arrays in python3. In this
way, all the power of the numerical libraries available through Python can be
applied easily on any of the data. All the tools, including a movie renderer,
are wrappers around this interface. Some other data, such as cell volumes
and counts, is output in ASCII format for ease of use. Future releases will
be using the HDF579 format for efficient, consistent Input/Output.

This software also comes with other tools, in the form of python3 scripts,
that can be used to easily analyze the data produced. python2 is not sup-
ported.These tools require the latest versions of the following python li-
braries: NumPy78, Scipy80, matplotlib81, tqdm82, and pandas83. A brief
summary file called requirements.txt is provided for easily building a suit-
able python environment.

14

3.1.6. Scaling

The scaling of this simulator is complicated to measure as the number
of nodes in the simulation increases non-linearly in time. However, we can
measure the time consumption as a function of growth rate ∆(PS). Figure 5
shows a measurement of the time it took to run a simulation of 150,000 time
steps.

3.2. Limitations

The simulator only supports a currently hard-coded cell geometry, shown
in Figure 1. This geometry is that of the C180 fullerene. It was chosen
for ease of use and programming. However, this geometry may be changed
to suit the needs of the system of interest. More geometries can trivially be
added, however we find the default structure used for the moment is adequate
for most needs. The equilibrium shape of C180 is spherical.

The focus of this simulator is to study the symmetrical division of cells.
In biological terms, this corresponds to the production of two daughter cells
identical to each other and the parent cell. Therefore, only this kind of
division is currently supported. This is not the only kind of division that
occurs in living tissue84. Asymmetric division can occur as well. Other
modes of division are planned for future releases.

4. Summary

In this work, we have presented a new fully three dimensional software
package named CellSim3D for computer simulations of cell division. The
code is released under the GNU General Public License version 2 (GPLv2)72

at https://github.com/SoftSimu/CellSim3D. It is written in standard C/C++
and accelerated with CUDA73 to run simulations on a single NVIDIA GPU.
Systems sizes of 100,000 cells are easily reachable with standard desktop
hardware. The cell division model itself is an extension of the 2D mechanical
model originally described in22,56.

We would like to comment the formation of structures in terms of cell
deformations. Cells in real in vivo systems display large, often asymmetric,
deformations. This is also the case with the current model and was demon-
strated already in connection with both the two-dimensional model with22

and without56 cell division. In particular, in Ref.22 the polygonal distribu-
tions and mitotic index from simulations using the two dimensional model

15

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
Growth Rate ∆(PS)

2000

4000

6000

8000

10000

12000

#
C

el
ls

(A)

2000 4000 6000 8000 10000 12000
Cells

1000

2000

3000

4000

5000

6000

7000

8000

R
un

T
im

e
(s

)

(B)

Figure 5: Scaling at different growth rates. Simulations were run for 150,000 time steps
in total, 100,000 with cell division enabled and 50,000 with cell division disabled (simu-
lates growth, then equilibration). (A) Final number of cells as a function of growth rate
(∆(PS)). (B) Simultion run time to reach the final number of cells shown in (A).

16

were compared with experimental data57 and found to be in excellent agree-
ment. The default structure for a cell in the current implementation is the
fullerene C180, but this is can be easily changed by the user. This default
structure was chosen since it is robust with respect to both physical and
structural properties. In addition, it is possible to implement asymmetric
division and this will be included in a future update.

It is also possible to turn off cell division. By doing that, it can be used
to simulate three dimensional soft colloidal matter in spirit similar to what
was done in two dimensions with the predecessor of this model56. Both open
boundary conditions as well as confinement by walls can be used. A future
update will include generalized fullerene structures85 allowing for simulations
of tubular and other structures which may be useful in simulations of colloidal
matter. Growth of colonies of tubular bacteria is another example of such
systems.

Acknowledgments

We would like to thank Björn Baumeier for many helpful discussions.
MK would like to thank Natural Sciences and Engineering Research Council
of Canada (NSERC) for financial resources. We also gratefully acknowledge
the support of the NVIDIA Corporation for the GTX Titan Xp GPU used
for developing and testing CellSim3D.

[1] C.J. Jen, S.J. Jhiang, H.I. Chen, Invited review: effects of flow on vas-
cular endothelial intracellular calcium signaling of rat aortas ex vivo., J.
Appl. Physiol. 89 (2000) 1657–1662.

[2] M. Sato, M.J. Levesque, R.M. Nerem, Micropipette aspiration of cul-
tured bovine aortic endothelial cells exposed to shear stress, Arterioscler.
Thromb. Vasc. Biol. 7 (1987) 276–286.

[3] M.J. Kuchan, J.A. Frangos, Shear stress regulates endothelin-1 release
via protein kinase c and cgmp in cultured endothelial cells., Am. J.
Physiol. 264 (1993) H150–H156.

[4] D.T. Scadden, The stem-cell niche as an entity of action, Nature 441
(2006) 1075–1079.

[5] D.A. Lee et al, Stem cell mechanobiology, J. Cell. Biochem. 112 (2010)
1–9.

17

[6] S. Battista et al, The effect of matrix composition of 3D constructs on
embryonic stem cell differentiation, Biomaterials 26 (2005) 6194–6207.

[7] M. Akhmanova et al, Physical, spatial, and molecular aspects of extra-
cellular matrix ofin vivoniches and artificial scaffolds relevant to stem
cells research, Stem Cells International (2015) 1–35.

[8] D.A. Fletcher, R.D. Mullins, Cell mechanics and the cytoskeleton, Na-
ture 463 (2010) 485–492.

[9] F. Gattazzo, A. Urciuolo, P. Bonaldo, Extracellular matrix: A dynamic
microenvironment for stem cell niche, Biochim. Biophys. Acta - General
Subjects 1840 (2014) 2506–2519.

[10] M. Votteler et al, Stem cell microenvironments - unveiling the secret of
how stem cell fate is defined, Macromol. Biosci. 10 (2010) 1302–1315.

[11] A. Wade, A. McKinney, J.J. Phillips, Matrix regulators in neural stem
cell functions, Biochim. Biophys. Acta - General Subjects 1840 (2014)
2520–2525.

[12] D.A. Lauffenburger, A.F. Horwitz, Cell migration: A physically inte-
grated molecular process, Cell 84 (1996) 359–369.

[13] D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation.,
Cell 144 (2011) 646–674.

[14] R. Keller, M. Danilchik, Regional expression, pattern and timing of
convergence and extension during gastrulation of xenopus laevis., De-
velopment 103 (1988) 193–209.

[15] M. Chuai et al, Cell movement during chick primitive streak formation,
Dev. Biol. 296 (2006) 137–149.

[16] L.C. Butler et al, Cell shape changes indicate a role for extrinsic tensile
forces in drosophila germ-band extension, Nat. Cell Biol. 11 (2009) 859–
864.

[17] K. Burton, D.L. Taylor, Traction forces of cytokinesis measured with
optically modified elastic substrata, Nature, 385 (1997) 450—454.

18

[18] H. Huang, Cell mechanics and mechanotransduction: pathways, probes,
and physiology, AJP: Cell Physiology 287 (2004) C1–C11.

[19] P.A. Janmey, C.A. McCulloch, Cell mechanics: Integrating cell re-
sponses to mechanical stimuli, Annu. Rev. Biomed. Eng. 9 (2007) 1–34.

[20] M.M. Saunders, Mechanical testing for the biomechanics engineer: A
practical guide, Synthesis Lectures on Biomedical Engineering 9 (2015)
1–276.

[21] A. Verdier, C. Chaviere, L. Preziosi, Cell Mechanics: From Single Scale-
Based Models to Multiscale Modeling, Mathematical and Computationl
Biology Series, CRC Press, Boca Raton, FL, 2010.

[22] A. Mkrtchyan, J.A. Åström, M. Karttunen, A new model for cell division
and migration with spontaneous topology changes, Soft Matter 10 (2014)
4332–4339.

[23] D. Drasdo, S. Hoehme, M. Block, On the role of physics in the growth
and pattern formation of multi-cellular systems: What can we learn
from individual-cell based models?, J. Stat. Phys. 128 (2007) 287–345.

[24] M. Nonomura, Study on multicellular systems using a phase field model,
PLoS ONE 7 (2012) e33501.

[25] B. Aigouy et al, Quantitative methods to study epithelial morphogenesis
and polarity., Methods in cell biology 139 (2017) 121–152.

[26] M. Howard, A.D. Rutenberg, S. de Vet, Dynamic Compartmentalization
of Bacteria: Accurate Division in E. Coli, Phys. Rev. Lett., 87 (2001)
278102.

[27] B. Shtylla, Mathematical modeling of spatiotemporal protein localiza-
tion patterns in C. crescentus bacteria: A mechanism for asymmetric
FtsZ ring positioning, J. Theor. Biol., 433 (2017) 8–20.

[28] J. Ranft et al, Fluidization of tissues by cell division and apoptosis,
Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 20863–20868.

[29] T. Bittig et al, Dynamics of anisotropic tissue growth, New J. Phys. 10
(2008) 063001.

19

[30] M. Ben Amar, C. Chatelain, P. Ciarletta, Contour instabilities in early
tumor growth models, Phys. Rev. Lett. 106 (2011) 148101.

[31] S. Turner, Using cell potential energy to model the dynamics of adhesive
biological cells, Phys. Rev. E 71 (2005) 041903.

[32] G. Schaller, M. Meyer-Hermann, Kinetic and dynamic delaunay tetra-
hedralizations in three dimensions, Comput. Phys. Commun. 162 (2004)
9–23.

[33] G. Schaller, M. Meyer-Hermann, Multicellular tumor spheroid in an off-
lattice voronoi-delaunay cell model, Phys. Rev. E 71 (2005) 051910.

[34] M. Meyer-Hermann, Delaunay-object-dynamics: Cell mechanics with a
3D kinetic and dynamic weighted delaunay-triangulation, Curr. Top.
Dev. Biol. (2008) 373–399.

[35] T. Beyer, M. Meyer-Hermann, Multiscale modeling of cell mechanics
and tissue organization, IEEE Eng. Med. Biol. Mag. 28 (2009) 38–45.

[36] H. Honda, M. Tanemura, T. Nagai, A three-dimensional vertex dynam-
ics cell model of space-filling polyhedra simulating cell behavior in a cell
aggregate, J. Theor. Biol. 226 (2004) 439–453.

[37] R. Farhadifar et al, The influence of cell mechanics, cell-cell interactions,
and proliferation on epithelial packing, Curr. Biol. 17 (2007) 2095–2104.

[38] L. Hufnagel et al, On the mechanism of wing size determination in fly
development, Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 3835–3840.

[39] A. Fletcher et al, Vertex models of epithelial morphogenesis, Biophys.
J. 106 (2014) 2291–2304.

[40] D.M. Sussman et al, Soft yet sharp interfaces in a vertex model of con-
fluent tissue, Phys. Rev. Lett. 120 (2018) 058001.

[41] J. Glazier, F. Graner, Simulation of the differential adhesion driven re-
arrangement of biological cells, Phys. Rev. E 47 (1993) 2128–2154.

[42] F. Graner, J. Glazier, Simulation of biological cell sorting using a two-
dimensional extended potts model, Phys. Rev. Lett. 69 (1992) 2013–
2016.

20

[43] A. Szabó, R.M.H. Merks, Cellular potts modeling of tumor growth, tu-
mor invasion, and tumor evolution, Front. Oncol. 3 (2013) 87.

[44] A. Shirinifard et al, 3D multi-cell simulation of tumor growth and an-
giogenesis, PLoS One 4 (2009) e7190.

[45] R.M.H. Merks, J.A. Glazier, A cell-centered approach to developmental
biology, Physica A 352 (2005) 113–130.

[46] B. Palmieri et al, Multiple scale model for cell migration in monolayers:
Elastic mismatch between cells enhances motility, Sci. Rep. 5 (2015)
11745.

[47] M.H. Swat et al, Multi-scale modeling of tissues using compucell3d, in:
Methods in cell biology, Vol. 110, Elsevier, Cambridge, MA, 2012, pp.
325–366.

[48] J.A. Izaguirre et al, Compucell, a multi-model framework for simulation
of morphogenesis, Bioinformatics 20 (2004) 1129–1137.

[49] D.M. Sussman, cellGPU: Massively parallel simulations of dynamic ver-
tex models, Comput. Phys. Commun. 219 (2017) 400–406.

[50] S. Tanaka, D. Sichau, D. Iber, LBIBCell: a cell-based simulation en-
vironment for morphogenetic problems, Bioinformatics 31 (2015) 2340–
2347.

[51] S. Hoehme, D. Drasdo, A cell-based simulation software for multi-
cellular systems, Bioinformatics 26 (2010) 2641–2642.

[52] M.B. Pyshnov, Topological solution for cell proliferation in intestinal
crypt. i. elastic growth without cell loss, J. Theor. Biol. 87 (1980) 189–
200.

[53] G.W. Jones, S.J. Chapman, Modeling growth in biological materials,
SIAM Rev. 54 (2012) 52–118.

[54] P.V. Liedekerke et al, Simulating tissue mechanics with agent-based
models: concepts, perspectives and some novel results, Computational
Particle Mechanics 2 (2015) 401–444.

21

[55] F. Ziebert, I.S. Aranson, Computational approaches to substrate-based
cell motility, npj Computational Materials 2 (2016) 16019.

[56] J.A. Åström, M. Karttunen, Cell aggregation: Packing soft grains, Phys.
Rev. E 73 (2006) 062301.

[57] M.C. Gibson et al, The emergence of geometric order in proliferating
metazoan epithelia, Nature 442 (2006) 1038–1041.

[58] Y. Imoto et al, The cell cycle, including the mitotic cycle and organelle
division cycles, as revealed by cytological observations, Microscopy 60
(2011) S117–S136.

[59] F. van Roy, G. Berx, The cell-cell adhesion molecule e-cadherin., Cell.
Mol. Life Sci. 65 (2008) 3756–3788.

[60] M.P. Stemmler, Cadherins in development and cancer., Mol. Biosyst. 4
(2008) 835–850.

[61] C.D. Buckley et al, Cell adhesion: More than just glue (review), Mol.
Membr. Biol. 15 (1998) 167–176.

[62] G.M. Edelman, K.L. Crossin, Cell adhesion molecules: Implications for
a molecular histology, Annu. Rev. Biochem. 60 (1991) 155–190.

[63] M.P. Stewart et al, Hydrostatic pressure and the actomyosin cortex drive
mitotic cell rounding, Nature 469 (2011) 226–230.

[64] C. Roubinet, P.T. Tran, M. Piel, Common mechanisms regulating cell
cortex properties during cell division and cell migration., Cytoskeleton
69 (2012) 957–972.

[65] T.S.P. Strangeways, Observations on the changes seen in living cells
during growth and division, Proc. Roy. Soc. London 94 (1922) 137–141.

[66] L.P. Cramer, T.J. Mitchison, Investigation of the mechanism of retrac-
tion of the cell margin and rearward flow of nodules during mitotic cell
rounding., Mol. Biol. Cell 8 (1997) 109–119.

[67] P. Kunda et al, Moesin controls cortical rigidity, cell rounding, and
spindle morphogenesis during mitosis., Curr. Biol. 18 (2008) 91–101.

22

[68] S. Carreno et al, Moesin and its activating kinase slik are required for
cortical stability and microtubule organization in mitotic cells., J. Cell
Biol. 180 (2008) 739–746.

[69] P. Kunda, B. Baum, The actin cytoskeleton in spindle assembly and
positioning., Trends Cell Biol. 19 (2009) 174–179.

[70] T. Lecuit, P.F. Lenne, Cell surface mechanics and the control of cell
shape, tissue patterns and morphogenesis, Nat. Rev. Mol. Cell Biol. 8
(2007) 633–644.

[71] T. Lecuit, L. Le Goff, Orchestrating size and shape during morphogen-
esis, Nature 450 (2007) 189–192.

[72] Gnu general public license, version 2.
URL https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

[73] NVIDIA, CUDA Toolkit Documentation.
URL http://docs.nvidia.com/cuda/index.html

[74] G. Besold et al, Towards better integrators for dissipative particle dy-
namics simulations, Phys. Rev. E 62 (2000) R7611–R7614.

[75] P. Nikunen, M. Karttunen, I. Vattulainen, How would you integrate
the equations of motion in dissipative particle dynamics simulations?,
Comput. Phys. Commun. 153 (2003) 407–423.

[76] Introducing json (javascript object notation).
URL https://www.json.org/

[77] jsoncpp - a c++ library for interacting with json.
URL https://github.com/open-source-parsers/jsoncpp

[78] S. van der Walt, S.C. Colbert, G. Varoquaux, The numpy array: A struc-
ture for efficient numerical computation, Comput. Sci. Eng. 13 (2011)
22—30.

[79] T.H.D.F. Group, Hierarchical Data Format, version 5,
http://www.hdfgroup.org/HDF5/ (1997-2018).

[80] E. Jones et al, SciPy: Open source scientific tools for python (2001).

23

[81] J.D. Hunter, Matplotlib: A 2d graphics environment, Computing In
Science & Engineering 9 (2007) 90–95.

[82] C. da Costa-Luis et al, tqdm/tqdm: tqdm v4.19.5 stable,
http://dx.doi.org/10.5281/zenodo.1251290 (Dec. 2017).

[83] W. McKinney, Data structures for statistical computing in python, in:
S. van der Walt, J. Millman (Eds.), Proceedings of the 9th Python in
Science Conference, 2010, pp. 51–56.

[84] J.A. Knoblich, Asymmetric cell division: recent developments and their
implications for tumour biology, Nat. Rev. Mol. Cell Biol. 11 (2010)
849–860.

[85] Y. Wang, S. Diaz-Tendero, M.A.F. Mart, Generalized structural motif
model for studying the thermodynamic stability of fullerenes: from C60
to graphene passing through giant fullerenes, Phys. Chem. Chem. Phys.,
19 (2017) 19646–19655.

24

