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Abstract

Here is presented an original program based on molecular Schrödinger equations. It is
dedicated to target specific states of infrared vibrational spectrum in a very precise way
with a minimal usage of memory. An eigensolver combined with a new probing technique
accumulates information along the iterations so that desired eigenpairs rapidly tend towards
the variational limit. Basis set is augmented from the maximal components of residual
vectors that usually require the construction of a big matrix block that here is bypassed
with a new factorisation of the Hamiltonian. The latest borrows the mathematical concept
of duality and the second quantization formalism of quantum theory.
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1 INTRODUCTION

Solution method: The Ak decomposition [3] completed by a meaningful error evaluation namely

the residue ||HX ´EX|| minimised along iterations for specific targets given in input. The approx-

imation space is generated in the same time as the residual vectors computed on the fly thanks to

an adapted choice of excitations shaped on the Hamiltonian operator.

1. Introduction

Nowadays, many devices are able to supply high quality spectrum measurements. How-
ever the interpretation of the samples remains a difficult task because the numerical accuracy
that is possible to obtain is very limited for medium to large molecules (ą 6 atoms). In a
typical resolution of vibrational Schrödinger equations in the Born-Oppenheimer frame, one
can question the correctness of the model from two principal angles. First, the quality of
the results will be affected by the one of the Potential Energy Surface (PES). This last point
aside, there remains the validity of the numerical solutions when the PES is provided. That
is the focus of the proposed method. A prior analysis of the potential energy supplies the
harmonic states that are not able to correctly describe complex combinations of translational
and rotational motions of the nucleus. Although still accurately limited, the VSCF method
[5, 6] alone allows a better representation. With the idea that these first estimations can
be combined to give a more authentic description, the cheapest technique remains the per-
turbation theory [7, 8, 9] that is known to struggle with strong resonances conventionally
encountered in molecular spectroscopy [10, 11].

Vibration configuration interaction (VCI) method [1, 2, 12] permits a better precision
with a much higher computational expense coming from the size of the variational space
that is tenfold with the number of atoms of the molecule. To avoid this bottleneck, con-
traction techniques have been proposed with MCTDH [13, 14], followed by the Alternating
Least Square (ALS) procedure [15] formulated for wave function representation with the
Vibrational Coupled Cluster (VCC) theory [18, 75]. In the category of variational methods
using perturbation criteria, the Ak decomposition [3] originally designed for electronic struc-
ture calculation and introduced in the VCI context with the Vibrational Multi Reference
Configuration Interaction (VMRCI) [19], has been able to identify relevant sub-blocks of the
Hamiltonian matrix thereby reducing the size of the system. Analogous construction has
been employed with PyVCI VPT2[43, 27]1 and Adaptive-VCI (A-VCI) [20, 21] to respec-
tively access the fundamentals and smallest eigenvalues with a very good precision. These
last approaches showed promising results in term of size reduction, but still require to a
posteriori determine a big matrix block designed to improve the accuracy of the solutions.
In the present work, the non zeros of this sub-block are never collected and the number of
operation to perform proper Matrix Vector Products (MVPs) is highly reduced thanks to
a new factorisation of the Hamiltonian. Beside, the expense of RAM is even more dimin-
ished because there is the possibility to constraint numerical accuracy on a few specified
targets. In next sections are presented the context and the state of the art. The concept of

1VPT2=Vibrational Perturbation Theory of order 2
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2 CONTEXT

duality intervenes all along the paper each time an association is made between a group of
objects especially in section 4 explaining the theoretical aspects of the algorithm. Thereafter
a description of the successive processed operations are followed by benchmarks. In this
section, the method can provide comparable quality (i.e less than 1 cm´1 deviation) of a full
A-VCI calculation, but with a memory consumption scaled down by more than a factor 15.
Next, the list of input parameters of the program serves as a user manual. At the end, the
conclusion also mentions a list of possible future developments.

2. Context

For a molecule composed of NA atoms, one considers NM dimensionless normal co-
ordinates [22] q “ pq1, q2, q3, . . . qNMq, with NM “ 3 ˚ NA ´ 6. The corresponding har-
monic frequencies are designated by pν1, ν2, ν3, . . . νNMq. The model is based on the Watson
Hamiltonian [23] with zero rotational angular momentum (J=0). Its vibrational part con-
tains the PES that is a multidimensional function known only for few points calculated by
a first electronic resolution most commonly accompanied by a chained evaluation of the
derivatives[24, 25]. A natural choice of interpolation points would be through the Gauss
quadrature rules enhancing polynomial approximation. We can also note the relevance of
the ones selected by the Adaptive Density-Guided Approach [73, 69] smoothing the PES
where the variations of the energy is the most important. After this first step involving
ab-initio calculations, a fittings is generally performed with classical least square methods
[70, 71] recently improved with Kronecker factorisation [72]. The current version of the code
accepts the multivariate polynomial

UKpqq “
ÿ

||c||1ďDP

Kc

NMź

n“1

qcnn , (1)

identified with combinations of monomial degrees c P N
NM defined up to a maximal degree

DP and attributed to force constantsKc. From a general point of view, the construction fully
exploits the sum of product separability of the PES which makes it a minimal requirement.
The vibrational part of the Hamiltonian writes

Hvibpqq “ ´1

2

NMÿ

n“1

νn
B2

Bq2n
` UKpqq. (2)

The left over coupling terms consists on the Coriolis corrections

HCCpqq “ Cijklpqq ´ 1

8

3ÿ

α“1

µαα,

Cijklpqq “ ´1

2

ÿ

iăj

ÿ

kăl

Zijkl

ˆc
νj

νi
qi

B
Bqj

´
c
νi

νj
qj

B
Bqi

˙ˆc
νl

νk
qk

B
Bql

´
c
νk

νl
ql

B
Bqk

˙

Zijkl “
ÿ

pα,βqPpx,y,zq

µα,βζ
α
ijζ

β
kl,

(3)
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2 CONTEXT

where µα,β is the inverse of the moment of inertia simplified by its constant values obtained

at equilibrium geometry and coefficients pζαij, ζβklq are calculated according to the method of

Meal and Polo [26]. The Watson term ´1
8

ř3

α“1 µαα does not modify the transition energies,
then it can be independently evaluated and added to the ground state at the end of a
vibrational treatment. In regard to the wave function of the total Hamiltonian H, it is a
linear combination of basis set elements belonging to an Ansatz B

Ψpqq “
ÿ

bPB

xbΦbpqq, (4)

each one writing as a product of one dimensional harmonic oscillators

Φbpqq “ φb1pq1q . . . φbnpqnq . . . φbNM
pqNMq, (5)

solution of the equation

H0pqqΦbpqq “ EbΦbpqq,

Eb “
NMÿ

n“1

νnpbn ` 1{2q,

H0pqq “
NMÿ

n“1

νn

2

ˆ
´ B2

Bq2n
` q2n

˙
.

(6)

Implicitly, Φbpqq is assimilated to the multi-index b (cf figure 1), and recognized by an

b1 . . . bn . . . . . . bNM

φbnpqnq

Figure 1: Multi index array identified with a basis function.
Each index is an Hermite function degree corresponding to an harmonic quantum level.

integer coinciding with a pointer address when stored in memory. The algorithm could also
possibly work optimized basis set [5, 6], but the efficiency will be impoverished because DVCI
fully uses harmonic oscillator properties. Afterwards, classical variational formulation leads
to the eigenvalue problem

HX “ EX, (7)

with matrix coefficients of H built from the integrals2

Hs,b “ xΦs|H|Φby “
ż

RNM

Φspqq pHvib ` HCCq pqqΦbpqq

@ps,bq P B ˆ B.

(8)

2Cf Appendix.
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3 STATE OF THE ART

The curse of dimensionality. The number of basis functions exponentially increases with
the number of nucleus when adopting a brute force variational method. As example, for
a 12-d normal coordinate system, the dimension of the configuration space will be 1112 for
a maximal quantum level equal to 10 in each direction. To solve the associated eigenvalue
problem, one needs to manipulate items with the same size, and a multiplication by 8 gives
about 251 terabytes of memory for a double precision vector.

3. State of the Art

In the field of basis selection techniques, one widely uses combination of VCI and per-
turbation criteria with variation-perturbation theory [35, 36, 37, 38, 39, 40, 41, 42]. For an
member Φb of a growing subspace B, selected basis functions Φs should verify the pertur-
bation criterion ˇ̌

ˇ̌xΦs|H ´ H0|Φby2
Eb ´ Es

ˇ̌
ˇ̌ ą εVP, (9)

where εVP is a given threshold depending on the accuracy one wants to reach. pEs,Φsq
and pEb,Φbq are eigen-pairs of H0 relying upon the nature of the basis functions that are
used. It typically designs the harmonic part (6) or the sum of single-mode VSCF operators
[44, 45, 46, 47]. A practical manner to increase the configuration space is described in
MULTIMODE[4] package, using four classes of excitation namely simple (S), double (D),
triple (T) and quadruple (Q). The construction is flexible though it is difficult to guess the
optimal combination of excitations that would provide the variational limit.

To significantly reduce memory usage, matrix entries may not be stocked and computed
with pruning conditions [28, 29, 30]. It consists in finding proper weights function αn cal-
culated on harmonic frequency criteria, and a maximal quantum level d to define the VCI
space

VCIαpdq “ tb P N
NM,

NMÿ

n“1

αnpbnq ď du. (10)

For example αnpbnq “ tνn{νmin `0.5u˚bn [31]. When possible, symmetry properties may also
be employed to separate basis set into groups of functions belonging to different irreducible
representations. Prospering works on tensorial factorisation relying upon ALS minimisation
[15] permit a drastic reduction of RAM and time expenditure. In the present context, we
can notice the efficacy of the Hierarchical Reduced-Rank Block Power Method (HRRBPM)
[32, 33] and the tensor train factorisation[34]. As for the MCTDH [16, 17], the efficiency
directly depends on the number of summed products in the PES that should be small enough
to observe accurate results with a low computational cost.
Among the non variational methods, the VCC theory [54] constitutes a robust way to get
precision out of small spaces with a computational cost sharply increasing with the level of
excitations exponentially deployed. This effect has been recently mitigated by incorporating
the ALS techniques inside the algorithm [55, 75].
An other pertinent criteria for subspace selection is the residue. It is widely adopted in
Davidson like methods [48, 49, 50, 51] and has recently been implemented in A-VCI [20, 21]
sharing same structure than the Ak decomposition [3]. In the Ak theory, one considers

5



3 STATE OF THE ART

primary and secondary spaces respectively called B and BS. In the whole space B ‘ BS,
Hamiltonian matrix writes:

H “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

H
B

H
T

SB

HSB HS

˛
‹‹‹‹‹‹‹‹‹‹‚

, (11)

where the different sub-blocks combine B and BS in the following way

rHBs “ rxΦs|H|Φbysps,bqPBˆB ,

rHSBs “ rxΦs|H|Φbysps,bqPBSˆB ,

rHSs “ rxΦs|H|Φbysps,bqPBSˆBS
.

(12)

Regarding the A-VCI BS is included in HvibpBqzB, namely the complement of B in its image
by Hvib(2), VMRCI builds BS Ă STDQpBqzB and for PyVCI VPT2 BS is comprised in the
d-level excitation space written

VCIpdq “ tΦb { |b| “
NMÿ

i“1

bi ď du. (13)

One can remark the use of the inclusion instead of equality because additional truncation
on secondary space may be added to diminish the memory usage. For example one can cut
down the maximal Harmonic energy as for the A-VCI, or only consider STD excitations
in the case of VMRCI. The A-VCI is dedicated to compute the first eigenvalues of the
Hamiltonian whereas VMRCI and PyVCI VPT2 are focussed on the fundamentals and its
degenerates generally constituting the states of interest. For an eigenpair pE,Xq of HB

(11), and X̃ “ pX, 0BS
q the zero padded array of X in B ‘ BS, the residual vector and its

components write

HX̃ ´ EX̃ “ p0B, HSBXqT ,
pHSBXq

s
“

ÿ

bPB

Hs,bxb “ xΦs|H|Ψy , @s P BS.

(14)

They measure an error on the energy E and on the wave function Ψ (4) respectively related
to the second and one order corrections expressed in the Ak approximation as

∆E “
ÿ

sPBS

∆Es “
ÿ

sPBS

pHSBXq2
s

E ´ Hs,s

,

∆Ψ “
ÿ

sPBS

pHSBXq
s

E ` ∆E ´ Hs,s

Φs.

(15)

6



4 THEORY AND ALGORITHM

In an iterative process, A-VCI considers maximal components of the residual vector whereas
VMRCI and PyVCI VPT23 select the configurations from the partial energies |∆Es| (15)
lying above a given threshold impacting the quality of the final results. Whether we consider
the residual vector or the correction energy, the selected configurations are always assigned
to the secondary space, then the corresponding errors will be nullified at next iteration. The
expected effect is to minimize the deviations between eigenpairs computed in B and the ones
that we would have calculated in B ‘ BS. As a consequence, BS should be big enough or
carefully enlarged to guaranty the pertinence of the measured precision and so the quality
of the eigenpairs. In this framework of study, there is then trade off between the backing up
of the entries of HSB that would increase the memory requirement and their computation on
the fly which might be time consuming.

4. Theory and algorithm

In this part, we will see that the general algorithm is made from an enhanced mix of
the previously recalled methods and a new theoretical approach to the construction of the
Hamiltonian. Here are the main features:

• For the generation of BS, in addition to the usual ways of expansion previously re-
minded, the method is capable to calibrate an optimal choice of excitations according
to the analysis of the force field and Coriolis terms.

• The precision is focused on a given choice of targets, which allows an effective com-
pression of the information and a significant gain of memory.

• The presented factorisation relieves the occupation of memory by performing on-the-
fly operations for the MVP HSBX (14) that are not compensated by a systematic
augmentation of the latency.

4.1. The local factorisation

In the field of mathematics, the duality is a principal that associates two different sets
belonging to a same or a distinct structure. A famous example is given by the Riesz rep-
resentation theorem[52] that assimilates a vector space to a set of linear forms (e.g scalar
product). In the same order of ideas, we associate a product of creation and annihilation
operators with an occupation-number vector [53]. This correspondence is based on the as-
certainment that the space of occupation numbers can be generated by applying raising
and lowering excitations repeatedly on any element of the same space. Considering by â`

n

and â´
n the creation (or raising) and annihilation (or lowering) operators, acting on Hermite

functions in the following manner [56]

â`
n |φbny “

a
bn ` 1 |φbn`1y ,

â´
n |φbny “

a
bn |φbn´1y ,

(16)

3Hs,s “ xΦs|H|Φsy “ xΦs|H ´ H0|Φsy ` Es and only Es is retained formula (15) with PyVCI VPT2.

7



4.1 The local factorisation 4 THEORY AND ALGORITHM

the position and derivative write

qn “ 1?
2

pâ´
n ` â`

n q,

B
Bqn

“ 1?
2

pâ´
n ´ â`

n q .
(17)

General second quantized Hamiltonian expressions can be found in [54, 12, 17] while here is
used an explicit polynomial representation [57, 58] noted

Ĥ “
NMÿ

n“1

νn

ˆ
â`
n â

´
n ` 1

2

˙

`
ÿ

||c||1ďDP

Kc

NMź

n“1

pâ´
n ` â`

n qcn

` ´1

2

ÿ

iăj

ÿ

kăl

Zijkl

ˆc
νj

νi
pâ´

i ` â`
i qpâ´

j ´ â`
j q ´

c
νi

νj
pâ´

j ` â`
j qpâ´

i ´ â`
i q
˙

ˆ
ˆc

νl

νk
pâ´

k ` â`
k qpâ´

l ´ â`
l q ´

c
νk

νl
pâ´

l ` â`
l qpâ´

k ´ â`
k q
˙

(18)

The local factorisation intends to answer the question:
Is it possible to develop and factorise expression (18) as a sum of product of excitations?
Since the multiplication â`

n â
´
n is not commutative, there is no straightforward response.

We can, in fact, treat it from another angle by noticing from elementary properties of
Hermite functions 4 that the paired elements xΦs|Hvib|Φby ‰ 0 involve only the local force
constants5

LFKps ´ bq “

$
&
%

c P N
NM, Kc ‰ 0,

@n P t1, . . . ,NMu, Kc ‰ νn{2,
Dtn P N, |sn ´ bn| “ cn ´ 2tn

,
.
- . (19)

In the same way, for a group of four canonical vectors p1i, 1j , 1k, 1lq of lengths NM with
entry 1 respectively on position i, j, k, l, the local Coriolis interactions xΦs|HCC |Φby ‰ 0
contain the combinations

LCIps ´ bq “

$
’’&
’’%

cijkl “ 1i ` 1j ` 1k ` 1l,

pi, j, k, lq P t1, . . . ,NMu4,
i ă j, k ă l, @n P t1, . . . ,NMu,
Dtn P N, |sn ´ bn| “ cijkln ´ 2tn

,
//.
//-
. (20)

These sets are gathered in the local force field written

LFFps ´ bq “ LFKps ´ bq Y LCIps ´ bq, (21)

and defined no matter the sign of the differences psn ´ bnq, n P t1, . . .NMu.

4Cf Appendix.
5Kc ‰ νn{2 because it is included in the harmonic part (6) and will be accounted when s “ b.

8



4.1 The local factorisation 4 THEORY AND ALGORITHM

With definitions (19),(20), the program builds the set of occupation-numbers associated
to the non void local force fields6

LFF˚ “
 
e P N

NM, LFFpeq ‰ ∅
(

Y t0NMu, (22)

as depicted in the following loop

forall tpc, cijklq, Kc ‰ 0, i ă j, k ă lu, pi, j, k, lq P t1, . . . ,NMu4 do

if @n P t1, . . .NMu, Dtn P N, cn ´ 2tn ě 0 then

Add e “ pc1 ´ 2t1, . . . , cNM
´ 2t

NM
q to LFF˚, and Kc to LFF(e)

end

if @n P t1, . . .NMu, Dtn P N, cijkln ´ 2tn ě 0 then

Add e “ pcijkl1 ´ 2t1, . . . , c
ijkl
NM

´ 2t
NM

q to LFF˚, and pi, j, k, lq to LFF(e)

end

end

Algorithm 4.1: Building of the set LFF˚. All the force constants and monomial degrees
included in a local force field LFFpeq are factorised against the excitation e P LFF˚.

From expressions (17), a creation is always accompanied by annihilation. Then, the dual
of Ĥ (18) consisting in its intrinsic sum of product of excitations written as if they were
commutative, is constructed from the positive and negative multi-increments

˘LFF˚ “
 

p˘e1, . . . ,˘eNMq P Z
NM, pe1, . . . , eNMq P LFF˚

(
, (23)

and expresses as7

H
˚ “

ÿ

eP˘LFF˚

NMź

n“1

â˘en
n . (24)

The spaces B,BS are growing up together along the repetitions of the main loop. The set A
designs the added basis functions in B from one iteration to the other. BS is completed by
browsing the image H˚pAq. In the meantime the MVP HSBX is partially calculated for the
couples pb,b ` eq P pAˆ H˚pAqzBq as 8

pĆHSBXqb`e “
ÿ

bPA

»
– ÿ

cPtLFKpequ

Kc

NMź

n“1

xφbn`en|qcnn |φbny

`
ÿ

pi,j,k,lqPtLCIpequ

xΦb`e|Cijkl|Φby

fi
fl xb.

(25)

6The zero excitation is systematically included.
7˘en is abusively employed to indicate the presence of a ` or ´ sign in front of en.
8Cijkl is defined equation (3).

9



4.2 Complementary storage 4 THEORY AND ALGORITHM

The other part of the sum pb P BzAq and other components are then completed as explained
in the next section. When setting the parameter DoGraph˛24 to zero, one also has the
possibility to directly compute the whole vector HSBX by fetching H˚pBq instead of H˚pAq
in (25). Under these circumstances, a supplement of execution time balanced by a smaller
usage of RAM will be observed essentially because many tests are required to locate the
addresses of the members of BS. In addition to the classical truncations, the excitations of
H˚ can be selected with ThrKX˛10, defining a threshold on the sum of the force constants
contained in each local force field. The purpose is to avoid the runaway of BS size and
incorporate only the most contributive basis functions to the residue.

4.2. Complementary storage

Solving an eigenvalue problem usually requires a significant amount of MVPs, then the
non null coefficients of HB (12) might rather be collected than evaluated on the fly. So far,
for any related method, the complexity to determine a non null matrix entry is at least of
order O pNM ˚ NPESq , where NPES designates the total number of force constant in the
PES. When using the local force field for the evaluation of xΦs|H|Φby, it is enough to fetch

ps ´ bq` “ p|s1 ´ b1|, . . . , |sNM ´ bNM|q into LFF˚(22), (26)

calculate the terms in brackets equation (25) for e “ s´b and add the harmonic energy Eb

when b “ s. The localization of the position of ps´bq` in LFF˚ is performed with a binary
search [59] costing OpNM ˚ logp|LFF˚|qq operations. Consequently, the total complexity is

O pNM ˚ r|LFFps ´ bq| ` logp|LFF˚|qsq , (27)

and one can easily check that |LFFps ´ bq| ` logp|LFF˚|q ăă NPES. Indeed for e ‰ 0NM
9,

the cardinal of LFFpeq(21) is always very much lower than NPES. The worst case being
NPES/2*NM happening only for a PES with no crossings. It therefore appears that the
local factorisation consumes less operations than traditional methods for the determination
of matrix coefficients, and for a small amount of MVPs, will be capable to integrate into a
calculation on the fly without jeopardizing the execution time. Nevertheless, it will be all the
more accelerated as the address of the paired elements is known in advance. This technique
is actually employed for the residual block when the parameter DoGraph is strictly positif,
by keeping only the pointers on the non zeros of HSB, thus directly accessible to complete the
MVP (25) for the missing parts:

pHSBXqs “ pĆHSBXqs `
ÿ

bPpBzAq

xΦs|H|Φbyxb, @s P H
˚pBqzB. (28)

4.3. Initial space construction

Let’s consider the ordered eigenvalues of block HB built at iteration i

Ei

0 ď . . . ď Ei

ℓ ď Ei

ℓ`1 ď . . . . (29)

9The case e “ 0NM intervenes only for the construction of the diagonal elements of HB.

10



5 THE ITERATIVE PROCESS

One can demonstrate with the Poincaré separation theorem[60] that each Ei

ℓ is a decreasing
sequence of i. Consequently, the minimization of the differences

Ei

ℓ ´ Ei`1
ℓ (30)

could be effective only if no spectral hole is introduced in the interval holding targets at step
zero where the eigenvalues are simple harmonic energies (6). Also, in order to integrate the
perturbation effects, the initial space writes

B “ tb { Eb ď Emax ˚ κu, (31)

where 10Emax “ MaxFreq`E0, MaxFreq˛18 is the maximal tracked frequency and κ ˛19 an
empirical elongation factor accounting the global deviation between converged eigenvalues
and associated harmonic energies. Its default value is set to 1.2, but it is automatically
increased in agreement with the anharmonicity growing up as we get away from the smallest
eigenvalue. To avoid timing issues caused by the great number of combination band11 to
be tested, the initial space is calculated by recursively applying simple raising excitations
starting from the zero configuration until size consistency.

5. The iterative process

The maximal size of the arrays used for B,BS, HB andHSB is determined with the allocated
memory controlled by the parameter Memory ˛20. The direct sum B ‘ BS evolves in the
product space :

NMź

n“1

r0, dns, (32)

where degrees dn are defined by Freq0Max˛9 and MaxQLevel˛8 as follows

dn “ minpt
Freq0Max

νn
u,MaxQLevelq. (33)

Note that Freq0Max is also the maximal allowed value of harmonic combination bands that
is equivalent to the following pruning condition

NMÿ

n“1

ˆ
νn

νmin

˙
˚ bn ď Freq0Max

νmin

. (34)

Naturally, the resulting reference space is never fully browsed over all the possible configu-
rations, but it constitutes a barrier for the growth of BS that is recursively enlarged from
H˚ (24). At any iteration, the set tTargu refers to eigenvectors of HB having one component
larger than ThrCoor ˛15 and assigned to targets given by the parameter TargetState ˛14.
After a prior construction of the objects tLFFpeq, e P LFF˚u(21), the sequence of successive
main steps decomposes as

10E0 “
1

2

NMÿ

n“1

νn.

11

NMÿ

n

bnνn.

11



6 BENCHMARKS

ă1ą Build the initial subspace (31).

ă2ą Compute the eigenpairs pEℓ,Xℓq of HB with the Implicitly Restarted Lanczos Method
of ARPACK [61, 62]. The upper limit of calculated eigenvalues is chosen with MaxEv
˛25.

ă3ą Evaluate the residual vectors on the fly HSBXℓ, ℓ P tTargu and secondary basis set BS

as explained in section 4. The expansion of BS can additionally be reduced with an
elimination of the less contributing excitations of H˚ via the parameter ThrKX˛10.
Biggest components (in absolute value) of residual vectors are then employed to select
basis functions to be added for next iteration through the inputs NAdd ˛11, EtaComp
˛12 and MaxAdd ˛13.

ă4ą Go back to step ă2ą as long as the maximal relative residue stays above a given
threshold namely

max
ℓPtTargu

}HSBXℓ}
Eℓ

ą EpsRez ˛6. (35)

This criterion can be fulfilled only if enough memory has been allocated at the begin-
ning. Otherwise, the algorithm will stop until maximal number of basis functions has
been reached. It also trivially appears that increasing the targets does also augment
the required memory to make them converge at once.

6. Benchmarks

All the calculus are done on a 64 bits, 2.70GHz quad core processor (model Intel i5-
3340M) with 8 Gigabytes of RAM. No parallel process is used in here. DVCI program runs
on a single CPU so that the actual computational time is the same as the CPU wall time. The
memory unit is the Megaoctet (MO)equivalently known as the Megabyte (MB). On reminder,
the relative residues(35), and correction energies ∆E (15) are calculated in the secondary
space BS “ H˚pBqzB truncated with the pruning condition (33, 34) and generated with the
most contributive excitations of H˚ (24) selected with ThrKX. For the default parameter
values, a calculation carried out to the end with EpsRez “ 0.008 will deviate around 1cm´1

from the reference. Another indicator of convergence is given by the height of the eigenvalues
which is decreasing according to the Poincaré separation theorem. Shrinking the reference
space by lowering down the value of (Freq0Max, MaxQlevel), will certainly diminish the
required computational resources, yet it will be difficult to predict which values will provide
the variational limit. It is also possible to raise the threshold for the matrix elements, but
for the benchmarks presented here, one tends to avoid cutting down matrices and reference
spaces to get more chances to actually converge. To visualize the pruning condition (34)
with a linear combination of quantum numbers, the weights pνn{νminq are rounded to the
closest integers.

6.1. CH3CN: Acetonitrile

Methods are compared on molecule CH3CN with the same PES as the one used in Ref. [29,
63, 33, 20] that was initially introduced by Bégué and al. [64], computed at CCSDT/cc-pVTZ
level for harmonic frequencies and B3LYP/cc-pVTZ for higher order terms. This PES counts

12



6.1 CH3CN: Acetonitrile 6 BENCHMARKS

311 terms (12 quadratic, 108 cubic and 191 quartic). The benchmark results are taken from
Avila et Carrington [29] where symmetry has been employed to separate the full VCI space
into two smaller subspaces. This PES has a small number of non null derivatives regarding
the size of the molecule. The variational space defined in [29] is the pruned basis set

$
’’’&
’’’%

b P N
12,

12ÿ

n“1

αnbn ď 27,

α1 “ 3, α2 “ 4, α3 “ 3, α4 “ 3, α5 “ α6 “ 3,
α7 “ α8 “ 4, α9 “ α10 “ 3, α11 “ α12 “ 1.

,
///.
///-

(36)

It contains 743 103 harmonic functions and the fundamental harmonic frequencies are

ν1 “ 3 065, ν2 “ 2 297, ν3 “ 1 413, ν4 “ 920,

ν5 “ ν6 “ 3 149, ν7 “ ν8 “ 1 487,

ν9 “ ν10 “ 1 061, ν11 “ ν12 “ 361 pcm´1q.

The default values (Freq0Max,MaxQLevel)=(30000 cm´1,15) induce the following rounded
pruning condition

$
&
%

b P N
12, b ď p9, 13, 15, 15, 9, 9, 15, 15, 15, 15, 15, 15q

8b1 ` 6b2 ` 4b3 ` 3b4 ` 9b5 ` 9b6 ` 4b7 ` 4b8 ` 3b9
`3b10 ` b11 ` b12 ď 83

,
.
- .

This space is rather huge (712 713 289 elements) and the calculus could be exact in a much
smaller one, but it shows that there is almost no limitation on its choice.

Results.

Table 1: Acetonitrile anharmonic fundamental frequencies, followed by the relative residues, the correction
energies (15), the absolute errors relative to the reference calculation and the experimental values.

Assignment Freq Relative ∆E Absolute error Exp
(Component) (position) Residue Ref-Here values
ν0(0.97) 9837.43(0) 0.0015 -0.0171 ?
ν11(0.97) 361.11(1) 0.0034 -0.1238 -0.1198 362 [65]
ν12(0.97) 361.17(2) 0.0039 -0.1750 -0.1779
ν4(0.95) 900.76(6) 0.0032 -0.1087 -0.1001 920 [65]
ν9(0.97) 1034.25(7) 0.0033 -0.1228 -0.1202 1041 [65]
ν10(0.97) 1034.35(8) 0.0041 -0.2133 -0.2229

ν3(0.74), ν9 ` ν11(0.44), 1389.17(15) 0.0038 -0.1885 -0.1980 1385 [65]
ν10 ` ν12(0.44)

ν3(0.62), ν9 ` ν11(0.52), 1397.94(17) 0.0042 -0.2368 -0.2485 1402 [66]
ν10 ` ν12(0.52)

13



6.2 C2H4 : Ethylene 6 BENCHMARKS

ν7(0.97) 1483.33(20) 0.0031 -0.1176 -0.1034 1450 [66]
ν8(0.97) 1483.46(21) 0.0040 -0.2341 -0.2331
ν2(0.90) 2250.94(70) 0.0037 -0.1923 -0.2157 2267 [65]

ν1(0.60), 2ν7(0.51), 2947.42(187) 0.0043 -0.3469 -0.3665
2ν8(0.51)

ν1(0.67), 2ν7(0.45), 2981.01(193) 0.0037 -0.2522 -0.2316 2954 [65]
2ν8(0.45)

ν5(0.93) 3049.12(218) 0.0039 -0.2796 ? 3009 [65]
ν6(0.93) 3049.16(219) 0.0040 -0.3150 ?

Performances summary.

Table 2: Performances summary on Acetonitrile fundamental targets. The CPU wall time is in second with
the total number of iterations showed in parenthesis. EtaComp=3(cf˛12), NAdd=50 (cf ˛11), ThrKX“
10´15.

Final Final Final Final CPU Wall time(s) Memory
size of B size of BS nnzpHBq nnzpHSBq (Iterations) usage (MO)
6169 590840 247662 3213078 352(4) 115.6

The complexity of this problem stems from the fact that the fundamental anharmonic
frequencies are dispatched far away from the extremity of the spectrum. In the recent
work of Ondunlami et al[21], the A-VCI didn’t catch up all of them when computing the
first 238 eigenvalues. Their best declared results parallelized on a 24-core Intel Xeon E5-
2680 processors running at 2.8 GHz shows a maximal absolute error (relatively to the same
reference) equal to 0.305 cm´1 on the first 121 eigenvalues with a time equal 5637 seconds
and a final basis set of 86 238 elements. In the HRRBPM of Thomas et Carrington[33] all
the anharmonic frequencies before 2209 cm´1 were computed with a error lower than 0.38
cm´1, 3.2 hours cpu time and 115.6 MB on a single Intel Core i7-4770 processor running at
3.4 GHz. In here all the fundamentals are computed with 115.6 megabytes memory for a
maximal error lower than 0.37 cm´1 and a time of 5 minutes 52 seconds on a single CPU
running at 2.70GHz.

6.2. C2H4 : Ethylene

The potential energy surface is originally the sixth order curvilinear symmetry-adapted
coordinates of Delahaye & al [67] transformed into the sextic normal coordinate force field
with PyPES [68]. In there work, point symmetry group D2h of C2H4 , has been exploited
to divide VCI matrix into 8 symmetry blocks of respective dimension 106 889, 101 265, 100
366, 105 518, 105 643, 101 145, 101 255, 105 697. No symmetry assumption is applied in
here.

14



6.2 C2H4 : Ethylene 6 BENCHMARKS

This study is supported by a comparison with the software PyVCI VPT2 previously
introduced. Although the two methods have some notable distinctions, we try to match
different parameters. The thresholds on the matrix elements and force constants are set to
10´15 in both cases.

Harmonic Frequencies and derivative orders of the PES.

ν1 : 825.0, ν2 : 950.2, ν3 : 966.4,
ν4 : 1050.8, ν5 : 1246.8, ν6 : 1369.4,
ν7 : 1478.5, ν8 : 1672.6, ν9 : 3140.9,
ν10 : 3156.8, ν11 : 3222.9, ν12 : 3248.7.

Derivative order 2 3 4 5 6

Number of terms 45 147 290 642 1732

The second derivatives contain the harmonic and non null crossed terms. The thresh-
olds for basis state selection have been chosen so that the adjustment on the fundamen-
tals is of the order 1cm´1 respectively observable for VCI VPT2 ETHRESH “ 10´8 (cf
PyVCI VPT2 manual) and EpsRez “ 0.0068. The reference space for PyVCI is VCIp8q
(13), which appears to be quite small (125 270 basis functions), but complete enough to get
good accuracy on the fundamentals. A further study shows that this is not exact for all the
frequencies close to the mid infrared limit, in particular for 2ν1 ` ν6 that is strongly cou-
pled with ν10. For DVCI the paired parameters (Freq0Max,MaxQLevel)=(24000 cm´1,10)
translate into the following pruned space

$
&
%

b P N
12, b ď p10, 10, 10, 10, 10, 10, 10, 10, 7, 7, 7, 7q

b1 ` b2 ` b3 ` b4 ` 2b5 ` 2b6 ` 2b7 ` 2b8 ` 4b9
`4b10 ` 4b11 ` 4b12 ď 29

,
.
- ,

totalizing 15 896 872 elements.
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6.2 C2H4 : Ethylene 6 BENCHMARKS

Results.

Table 3: Ethylene anharmonic fundamental frequencies and the isolated target 2ν1 ` ν6 calculated with
DVCI and PyVCI VPT2 completed by the full VCI results in VCI(8). Then appears the second order
correction energies (15). For PyVCI VPT2, the computed frequencies in VCI(8) are the same when included
in VCI(10).

Assign Freq Freq Freq ∆E ∆E ∆E
(Comp) DVCI12 PyVCI Full VCI (DVCI) PyVCI PyVCI

(Position) VPT2 VCI(8)13 VPT2 VPT2
Ă VCIp8q Ă VCIp8q Ă VCIp10q

ν0(0.98) 11017.09(0) 11017.26 11016.96 -0.14 -0.3 -0.32
ν1(0.98) 823.76(1) 824.17 823.66 -0.35 -0.48 -0.6
ν2(0.98) 935.48(2) 935.95 935.31 -0.42 -0.59 -0.70
ν3(0.98) 950.90(3) 951.38 950.74 -0.42 -0.58 -0.70
ν4(0.98) 1026.09(4) 1026.52 1025.92 -0.41 -0.55 -0.65
ν5(0.98) 1225.10(5) 1225.33 1224.87 -0.44 -0.43 -0.5
ν6(0.97) 1342.94(6) 1343.15 1342.85 -0.29 -0.27 -0.32
ν7(0.98) 1442.09(7) 1442.37 1441.84 -0.45 -0.49 -0.56
ν8(0.90) 1625.55(8) 1626.10 1625.41 -0.41 -0.63 -0.75
ν9(0.86) 2986.09(60) 2986.71 2985.48 -0.69 -1.08 -1.22
ν10(0.80) 3019.35(62) 3020.26 3019.15 -0.58 -0.99 -1.25
ν11(0.91) 3080.03(65) 3080.41 3079.36 -0.66 -0.92 -1.05
ν12(0.93) 3102.00(70) 3102.32 3101.26 -0.58 -0.88 -1

2ν1 ` ν6 3007.39(53) 3008.59 3008.52 -0.85 -0.48 -1.64
(0.84)

Performance summary.

Table 4: DVCI performances summary on ethylene fundamentals and target 2ν1 ` ν6. The CPU wall time
is in second with the total number of iterations indicated in parenthesis. EtaComp=2, NAdd=(80,200) (for
each target), EpsRez=(0.0068,0.0073), ThrKX“ 1.

Targets Final Final Final Final CPU Wall time Memory
size of B size of BS nnzpHBq nnzpHSBq (Iterations) usage (MO)

Fund 15549 1914601 4902728 40719820 20 min 43 s (6) 378
2ν1 ` ν6 4368 555782 1195293 12283453 3 min (6) 83

Even if the number of normal coordinates is the same as in the previous system, the
memory requirement and the CPU time are significantly increased due to the higher number

12Watson term ´ 1

8

ř3

α“1
µαα “ ´1.69

13|VCIp8q| “ 125270 elements
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6.3 C2H4O : Ethylene oxide 6 BENCHMARKS

of terms in the PES. The state 2ν1 ` ν6 has been isolated from the fundamentals with
DVCI by setting ThrCoor˛15 to 0.65 whereas it is automatically included in PyVCI. Three
series of calculations have been launched for PyVCI. The first one is the full VCI calculation
taking about 3 days and 3GO of RAM. The second one with the VPT2 selection in VCI(8)
lasted more than 9 hours compensated by a low buffer storage thanks to a clever system
of backup of VCI matrix elements in binary files on the hard drive. The maximal memory
expend recorded from the command line was 226 MO of RAM and 395 MO of ROM. The
third calculation was included in VCIp10q (containing 646646 elements) instead of VCI(8).
It has spread over a period of about one day and a half with an utilization of 953 MO of
ROM and 653 MO of RAM. Thus we notice that enlarging the reference space absorbs more
computational resources and mechanically increases the correction energies especially for the
degenerated target 2ν1 ` ν6 who is shifted by more than 1cm´1. From this observation, we
deduce that VCI(8) is not large enough to be considered as a reference for the variational
limit when the computation is not strictly reduced to the fundamentals.
In the case of DVCI, the quantum levels are very little restricted, which makes it possible

to customize the secondary space and thus more correctly assimilate the correction energy
to a real error. Besides, the frequencies have a better accuracy and the latency is reduced by
more than a factor 20 while spending less memory even though the reference space is around
126 times larger than VCI(8) and 25 times VCI(10).

6.3. C2H4O : Ethylene oxide

Here is computed the fundamentals of a 15-d Hamiltonian system where the PES is the
one of Bégué and al [42] calculated at the CCSD(T)/cc-pVTZ level for harmonic frequencies
and B3LYP/6-31+G(d,p) for the other terms. Apart from the harmonic force constants, the
PES contains 180 cubic and 445 quartic terms. The reference results are taken from the
A-VCI[21] where final basis set contains 7 118 214 elements.

Harmonic frequency in cm´1.

ν1 : 3117.9, ν2 : 1549.1, ν3 : 1300.1, ν4 : 1157.9, ν5 : 899.6,

ν6 : 3196.6, ν7 : 1176.0, ν8 : 1052.2, ν9 : 3109.5, ν10 : 1512.3,

ν11 : 1156.8, ν12 : 850.2, ν13 : 3211.3, ν14 : 1175.0, ν15 : 815.5,

Correspondence with the ones listed in [21]

ν1 ” ω13, ν2 ” ω11, ν3 ” ω9, ν4 ” ω6, ν5 ” ω3,

ν6 ” ω14, ν7 ” ω8, ν8 ” ω4, ν9 ” ω12, ν10 ” ω10,

ν11 ” ω5, ν12 ” ω2, ν13 ” ω15, ν14 ” ω7, ν15 ” ω1.

The maximal harmonic frequency Freq0Max=30000 cm´1 additionally truncated by MaxQlevel=15,
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leads to the rounded pruning condition

$
&
%

b P N
15, b ď p9, 15, 15, 15, 15, 9, 15, 15, 9, 15, 15, 15, 9, 15, 15q

4b1 ` 2b2 ` 2b3 ` b4 ` b5 ` 4b6 ` b7 ` b8
`4b9 ` 2b10 ` b11 ` b12 ` 4b13 ` b14 ` b15 ď 17

,
.
- .

Results.

Table 5: Ethylene oxide anharmonic fundamental frequencies for five groups of targets separated by an
horizontal bar. For comparison purpose, the zero point energy has the same value than in [21] (i.e
12461.473 cm´1).

Assignment Freq Relative Correction Error
(Component) (position) Residue energy(15) Ref-Here
ν0(0.98) 12461.47(0) 0.0034 -0.1285 -0.1445
ν15(0.97) 792.96(1) 0.0045 -0.2657 -0.1850
ν12(0.96) 822.19(2) 0.0041 -0.2341 -0.1347
ν5(0.97) 878.51(3) 0.0038 -0.2016 -0.0895
ν8(0.97) 1017.47(4) 0.0044 -0.2722 -0.1864
ν4(0.96) 1121.47(5) 0.0042 -0.2445 -0.1539
ν11(0.97) 1123.92(6) 0.0042 -0.2445 -0.1507
ν14(0.97) 1146.03(7) 0.0042 -0.2605 -0.1622
ν7(0.97) 1148.19(8) 0.0037 -0.1943 -0.0845
ν3(0.94) 1271.17(9) 0.0047 -0.3303 -0.2454
ν10(0.97) 1467.58(10) 0.0037 -0.2008 -0.0947
ν2(0.94) 1495.49(11) 0.0042 -0.2689 -0.1879

ν9(0.64), ν2 ` ν10(0.52) 2906.77(95) 0.0041 -0.2786 -0.4562
ν9(0.52), ν2 ` ν10(0.63) 2989.70(111) 0.0044 -0.3266 -0.4552
ν1(0.45), 2ν10(0.62), 2916.94(99) 0.0040 -0.2328 -0.2640
ν8 ` ν11 ` ν15(0.44)

.. .. .. .. ..
ν1(0.52), 2ν10(0.62) 2952.86(103) 0.0047 -0.4016 -0.4654

ν6(0.85) 3025.71(116) 0.0036 -0.2396 -0.3801
ν13(0.80) 3037.31(118) 0.0038 -0.2034 -0.3955

Performances summary.

Table 6: Performances summary on ethylene oxide. Each tracked state(s) are separated by an horizontal
bar. The CPU wall time is in second with the total number of iterations showed in parenthesis. NAdd=100
for all targets except for ν13 and ν6 where NAdd=300. EtaComp=3 and ThrKX“ 10´15 in any case.

Target(s) Final Final Final Final Wall time(s) Memory
size of B size of BS nnzpHBq nnzpHSBq (Iterations) usage (MO)

ν15, ν12
ν5, ν8,
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ν4, ν11, 83346 11182617 5396776 80959806 11823(7) 1197.3
ν14, ν7,

ν3, ν10
ν9 133128 11840777 13352241 126500214 21507(16) 1383.6
ν1 121180 11788217 11420147 117896340 21430 (16) 1347.2
ν6 84554 8374499 7341322 79908192 11299(13) 922.5
ν13 119740 11137472 11041759 113491483 22014(14) 1291.3

Total 541948 54323582 48647958 518756035 88073 6141.9

The total CPU wall time is then 1 day 27 minutes and 53 seconds, and the total memory
usage is 6.142 Gigabytes. The maximal absolute error on eigenvalues does not go over 0.47
cm´1 giving a maximal relative error lower than 4 ˚ 10´5. As a matter of comparison the
reference calculation were done with a total memory usage of 128 gigabytes and 3 days time
on a 24 cores computer meaning that the CPU wall time is much larger. Less accurate results
(4-5 cm´1 error on higher frequencies) are achieved with HRRBPM [32] with a memory usage
of 14.6 gigabytes and a CPU wall time of 8.7 days.

6.4. C3H3NO : Oxazole

The PES was constructed using the adaptive density-guided approach (ADGA) intro-
duced by Sparta et al [69, 73, 74]. The force constants, equilibrium geometry and normal
coordinates where extracted from Madsen et al [75]. In their work they describe the construc-
tion of oxazole PES at CCSD(T)/cc-pVTZ level for the one-mode part and MP2/cc-pVTZ
for the two-mode part. The three-mode part is extrapolated from the two-mode surface
using MP2/cc-pVTZ gradients. The number of terms is 146 for the one mode, 4786 for the
two modes and 4335 for the three modes couplings.

Harmonic frequencies.

ν1 : 603.8cm
´1, ν2 : 644.2cm

´1, ν3 : 748.9cm
´1,

ν4 : 832.2cm
´1, ν5 : 849.7cm

´1, ν6 : 901.8cm
´1,

ν7 : 913.8cm
´1, ν8 : 1071.8cm

´1, ν9 : 1109.2cm
´1,

ν10 : 1106.9cm
´1, ν11 : 1181.2cm

´1, ν12 : 1263.5cm
´1,

ν13 : 1348.3cm
´1, ν14 : 1533.4cm

´1, ν15 : 1570.4cm
´1,

ν16 : 3275.6cm
´1, ν17 : 3286.0cm

´1, ν18 : 3309.5cm
´1.

The maximal harmonic frequency Freq0Max=20000 cm´1 associated with MaxQLevel=10,
gives the rounded pruning condition

$
&
%

b P N
18, b ď p10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 6, 6, 6q

b1 ` b2 ` b3 ` b4 ` b5 ` b6 ` 2b7 ` 2b8 ` 2b9 ` 2b10 ` 2b11 ` 2b12
`2b13 ` 3b14 ` 3b15 ` 5b16 ` 5b17 ` 5b18 ď 33

,
.
- .
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Results.

Table 7: Oxazole anharmonic frequencies for fundamental targets separated by an horizontal bar.

Eigenvalue Frequency Relative ∆E (15) Assignment Experimental
number Residue (component) values [76]

014 12559.9032 0.0046 -0.2770 ν0p0.95q 12457.5
1 592.8494 0.0074 -0.9701 ν1p0.95q 607 pA2q
2 631.2242 0.0075 -0.9924 ν2p0.95q 647 pA2q
3 727.3345 0.0072 -0.8395 ν3p0.93q 750 pA2q
4 795.0331 0.0077 -0.9749 ν4p0.90q 830pA2q
5 827.7750 0.0070 -0.8230 ν5p0.90q 854 pA2q
6 884.4607 0.0074 -0.9951 ν6p0.92q 899 pA2q
7 894.7569 0.0071 -0.9031 ν7p0.91q 907 pA2q
8 1031.4634 0.0064 -0.7109 ν8p0.90q 1046 pA1q
9 1063.2165 0.0067 -0.7752 ν10p0.82q 1078 pA1q
10 1075.3896 0.0069 -0.8504 ν9p0.82q 1086 pA1q
11 1123.9852 0.0066 -0.7687 ν11p0.89q 1139 pA1q
13 1217.7686 0.0066 -0.7716 ν12p0.94q 1252 pA1q
16 1302.4880 0.0078 -1.1508 ν13p0.90q 1324 pA1q
24 1481.3806 0.0079 -1.2277 ν14p0.86q 1504 pA1q
27 1521.2312 0.0074 -1.0519 ν15p0.91q 1537 pA1q
585 3125.9955 0.0086 -2.3563 ν16p0.76q 3141 pA1q
608 3146.9603 0.0098 -2.6857 ν17p0.82q 3144 pA1q
618 3159.5778 0.0087 -2.1459 ν18p0.81q 3170 pA1q

Performances summary.

Table 8: Performances summary on Oxazole molecule. Each screened states are separated by an horizontal
bar. The CPU wall time is in second with the total number of iterations indicated in parenthesis. In both
cases, NAdd=200, EtaComp=3, Freq0Max=20000, ThrKX=1. EpsRez=(0.008,0.01) respectively for each
group.

Target(s) Final Final Final Final CPU Wall time(s) Memory
size of B size of BS nnzpHBq nnzpHSBq (Iterations) usage (MO)

ν0 ´ ν15 145820 27468841 87344774 299972877 74665(10) 5424.3
ν16 ´ ν18 143916 29724836 60788880 285617698 170658(19) 4933
Total 289736 57193677 148133654 585590575 245323 10357.3

The total cpu wall time is 2 days 20 hours 8 minutes 43 seconds. A significantly higher
latency for the second group of targets ν16´ν18 principally comes from the additional number

14Watson term ´ 1

8

ř
3

α“1
µαα “ ´0.2052
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of iterations. To a lesser extent, there is also the constraint to calculate the eigenvalues
starting from the extremities of the spectrum as in Lanczos algorithm. A Jacobi-Davidson
eigensolver [80, 81, 82] or polynomial filtering techniques [77, 78, 79, 51] could be more
adapted.

The energy barrier Freq0Max has voluntary been lowered down, due to important suc-
cessive shifting or oscillation of the position of the tracked eigenvalues. This phenomenon
usually occurs when the PES is no longer locally quadratic for some particular configurations.
It is well illustrated in the case of double well potentials [84, 85] and in figure 2 showing a
fictitious PES oscillating beyond a given spatial region. Another way to get around this ex-
ception would be to use localized basis functions such as distributed Gaussians [86] directly
enabling a restriction of the spacial area.

Internuclear distance

En
er

gy

Safe region
Unsafe region

Figure 2: Fictitious potential energy surface depending on one internuclear coordinate showing 2 regions.
The blue one is quasi quadratic when viewed from the internuclear distance and corresponding energy. In
the red area, additional interactions are brought by the second critical point provoking an uncontrollable
perturbative effect on the variational solutions.
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7 INPUT PARAMETERS

7. Input parameters

Presentation. The key words are case insensitive and should start at the beginning of each
line of the input file. No specific order of apparition is required. Comments are indicated
with the symbols ’/’ or ’@’. The potential energy file should also be present in the directory
where is executed DVCI (cf PESType˛3). A minimal input file looks like :

NMode 6 / Number of normal coordinates

PESType 1 / PES type of coefficients

OutName N2H2 / Extension name for output files.

PESName N2H2_PES.in / Name of the file of the PES.

Memory 80 / Maximal allocated memory in mega octets.

Detailed list of the key words.

˛1 NMode
Designs the number of mass weighted normal coordinates.
NMode “ 3 ˚NA ´ 6. Where NA stands for the number of atoms of the molecule.

˛2 DoRot
Indicate if Coriolis corrections should be added to the Hamiltonian.
In the PES file, the section to be filled should start and end with words
COORDINATES ENDCOOR and each different field must be separated by an excla-
mation mark.

‚ If “ 0
then H “ Hvibpqq(2). If no section COORDINATES is written in the PES file
then DoRot is automatically set to 0.

‚ If ą 0 and even
thenH “ Hvibpqq`HCCpqq (3). The equilibrium geometry in Bohr, atomic masses
in electron rest mass, and normal coordinate eigenvectors should be indicated in
the section COORDINATES like in the following example where the values has
been extracted from Madsen & al[75].

COORDINATES

! Equilibrium geometry (bohr)

+1.188227703663817e+00 +1.871902685046820e+00 +5.700041831365050e-16 /C

-1.366889823622856e+00 +1.691283181574289e+00 +5.673619333132633e-16 /C

-1.998417882238274e+00 -8.244795338089052e-01 -2.155218936400323e-16 /O

+2.684304163103964e-01 -2.022882150581233e+00 -6.432553562388595e-16 /C

+2.229151382700317e+00 -5.583543727400242e-01 -2.215072662048790e-16 /N

+2.352687276664275e+00 +3.539113911722189e+00 +8.792950593981537e-16 /H

+2.239397718366979e-01 -4.057044206724038e+00 -1.063440276037351e-15 /H

-2.901750851724292e+00 +3.020857567289711e+00 +7.990414399553623e-16 /H

! Masses(me)

21874.6618172 /C

21874.6618172 /C

29156.9456749 /O
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21874.6618172 /C

25526.0423547 /N

1837.15264562 /H

1837.15264562 /H

1837.15264562 /H

! Mode0: X Y Z

+3.231683769903235e-17 +6.115580033151089e-17 +4.025196381179206e-01

+2.743657157380967e-17 +4.590882496215692e-17 -5.186966592183442e-01

+1.991732529600559e-17 +5.710133055001405e-17 +5.169293296045854e-01

-7.257396408556236e-17 +7.324385585074392e-17 -1.938605777276555e-01

-9.053243042419710e-17 +2.384482767132475e-18 -1.671562436764069e-01

+3.416768858945461e-17 -1.546457080242301e-17 +2.188043144086224e-01

-1.950243964435382e-17 -1.457271158617074e-16 -2.002715238252209e-01

-5.645471816646615e-17 -3.099000577024135e-17 -3.849787518532105e-01

! Mode1

-4.471096934999722e-17 -2.133222140486714e-16 +3.245666277578175e-01

-7.195147510789707e-18 -1.776354539431898e-16 -3.130286914609319e-02

-1.161675776799252e-16 -2.465033916085211e-16 -2.713644979495499e-01

-7.304974442800625e-17 +1.130401139043093e-16 +4.555118862530116e-01

+1.980788418374012e-17 -1.509309233138445e-16 -5.878836462126088e-01

+3.871182981501824e-17 +3.894914167531566e-17 +2.788008333658181e-01

-1.775227773837671e-18 +1.687750614789954e-16 +4.342956786268967e-01

-9.998627049911543e-18 -1.727718015508009e-16 -2.443444074954252e-02

! Mode2

-1.362124303938439e-16 +1.648858093263572e-17 +7.985191937307874e-02

+9.223533160690561e-17 -1.520416449194739e-16 +4.427598081406853e-01

-3.106447728140722e-16 -2.024361724665231e-16 -7.334352062590022e-02

+3.248565849336364e-17 +2.181702164863730e-17 -1.148459584461199e-01

+3.231452029113849e-17 +1.995473253650141e-16 -3.854511885546462e-02

-1.704399688795554e-16 +6.014500621640033e-17 -3.252722203195085e-01

+1.114007103292430e-16 +8.683057684777304e-18 +1.582562080820018e-01

+3.567043855971248e-16 +2.236379927154288e-16 -8.041677585822095e-01

! Mode3

-8.530348729807672e-17 +5.064459244391696e-16 +2.099386275547177e-01

-2.860512641462178e-17 +2.849372440086422e-16 -1.949978814638483e-02

+9.671777362477948e-16 +3.228924378351529e-16 -1.437578533863218e-01

-3.535112014919970e-16 -6.871677835537049e-16 +4.816962590153900e-01

-6.328554966609436e-16 +1.463685147682383e-16 -1.649351614432971e-01

+3.642789510512844e-16 +2.417462616289285e-18 -4.324245782423197e-01

-5.058760423068888e-17 -3.092952891160942e-16 -6.990373338704934e-01

-6.384663222086937e-16 -5.923791764375996e-16 -3.242248209522854e-04

. . .

. . .

. . .

ENDCOOR
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In accordance with the Wilson method[22], the normal coordinates are built from
a set of 3NA ´ 6 eigenvectors pQiαq iPt1,...,NAu, αPt1,2,3u of the Hessian matrix

ˆ
1?

mi
?
mj

B2UK

BxiαBxjβ

˙

pi,jqPt1,...,NAu2, pα,βqPt1,2,3u2

(37)

derived from mass weighted displacements (mi mass of nucleus i)

∆yiα “ ?
mi pxiα ´ Xeqiαq , i P t1, . . . , NAu, α P t1, 2, 3u,

at the equilibrium geometry Xeq P R
3NA. The corresponding eigenvalues are the

harmonic frequencies.

‚ If ą 0 and odd
then H “ Hvibpqq `HCCpqq and the non mass weighted normal coordinate eigen-
vectors

pQiα{?
miq iPt1,...,NAu, αPt1,2,3u

should be written instead of the classical ones.

˛3 PESType
Format of data’s for the multivariate PES.

‚ If PESType “ 0 then the force constants Kc are expressed for dimensionless nor-
mal coordinates pqn “ Qn{?

νnq and supplied in cm´1. Regarding the format of
the PES it starts and ends with the key words
FORCEFIELD ENDFF. For NM normal coordinates, NM integers should be
shown before the actual value of the force constant:

FORCEFIELD

2 0 0 0 0 0 , 664.213550943134237

4 0 0 0 0 0 , 4.335282791860437

6 0 0 0 0 0 , -0.471897107116644

0 2 0 0 0 0 , 675.140549094012272

0 4 0 0 0 0 , 7.072599090662686

2 0 1 0 1 0 , -12.115726349955748

2 0 1 0 2 0 , 1.215724777835937

2 0 1 0 3 0 , 0.161839021650279

2 0 1 0 1 2 , 0.800398391535361

2 0 1 0 0 2 , 0.662431742378760

2 0 0 1 0 0 , 11.492641524810505

2 0 0 2 0 0 , 0.117652856544075

2 0 0 3 0 0 , -0.819356186630299

. . . . . . , .

. . . . . . .

. . . . . . .

ENDFF
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Here it means that the first term is the one in front of q21 namely ν1{2,
and for the last showed line 2 0 0 3 0 0, we are dealing with the force constant
K2,0,0,3,0,0 “ ´0.819356186630299 cm´1 in agreement with the monomial q21q

3
4.

‚ If PESType ě 1 then the derivatives are provided in atomic units, and for a
Taylor expansion around the equilibrium position we have the correspondence

Kc1...cNM
“ 1

c1!c2! . . . cNM!
śNM

n“1

?
νn

cn

Bc1,...,cNMUK

BQc1
1 . . . BQcNM

NM

˚ HartreeToCM, (38)

where HartreeToCM is a converting factor from Hartree to cm´1 and νn “
b

B2UK

BQ2
n
.

The format of PES file is the same as the one supplied by the PyPES[83] library
namely:

FORCEFIELD

[0,0,0,0,3,4 , 1.86861408859e-11],

[0,0,0,0,4 , -3.47804520495e-09],

[0,0,0,0,4,4 , 3.2867316136e-10],

[0,0,0,0,5,5 , 3.53998391655e-10],

[0,0,1,1 , 6.40569999931e-09],

[0,0,1,1,1,1 , -3.21892597605e-11],

[0,0,1,1,1,5 , -4.73206802979e-12],

[0,0,1,1,2 , 1.16300104731e-11],

[0,0,1,1,2,2 , -5.81559507099e-12],

[0,0,1,1,2,3 , 9.06462603669e-12],

[0,0,1,1,2,4 , -2.30405700341e-12],

[0,0,1,1,3 , -1.89925822496e-10],

[0,0,1,1,3,3 , -1.6879336773e-11],

[0,0,1,1,3,4 , 1.08730049094e-11],

. . . . . . , .

. . . . . . .

. . . . . . .

ENDFF

The repetitions are to be associated with a derivative order when coordinates are
numbered starting from zero. For example the first line means

B4

BQ4
1

B
BQ4

B
BQ5

UK “ 1.86861408859 ˚ 10´11 a.u.

˛4 PESName
Name of the file that contains the force constants or derivatives.

˛5 ThrPES
Threshold for PES force constants or derivatives. Default value is the double precision
error machine » 2 ˚ 10´16.

25



7 INPUT PARAMETERS

˛6 EpsRez
For eigenvectors of HB (12) Xℓ, ℓ P tTargu, it is the maximal accepted relative residue

max
ℓPtTargu

}HSBXℓ}
Eℓ

before the algorithm stop. They are built from the MVPs (28). The default value is
6 ˚ 10´3.

˛7 ThrMat
Minimal allowed absolute value of coefficients of HB. Default is the double precision
error machine » 2 ˚ 10´16. The matrix coefficients are computed with the full operator
H “ Hvib ` HCC . If DoRot=0, only Hvib will be considered.

˛8 MaxQLevel
This is the common maximal quantum level for the whole space B ‘ BS. It increases
together with distances between nucleus in motion and then should carefully be chosen
conforming to the spacial region where the potential energy is still correctly represented
and has no more than one critical point. Each upper level dn on normal coordinate n
will be adjusted with Freq0Max˛9 as followed:

dn “ min

ˆ
t
Freq0Max

νn
u,MaxQLevel

˙

˛9 Freq0Max
Maximal allowed harmonic frequency15 in B ‘ BS. Default value is 30000.

˛10 ThrKX
In operator H˚(24) only the increments e P LFF˚ verifying 16

ÿ

cPtLFKpequ

|Kc| `
ÿ

pi,j,k,lqPtLCIpequ

|Zijkl| ą ThrKX,

will be acceptable to generate the secondary space BS and residual vectors. It should
be strictly positive. Default value is 1.

˛11 NAdd
It is the minimal number of basis functions per non converged target states to be added
for next iteration. They are chosen from maximal components (in absolute value) of
the residual vectors (28)

tpHSBXℓqs, ℓ P NotConv, s P BSu , (39)

15“
NMÿ

n“1

bn ˚ νn

16Zijkl is defined equation (3)
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where NotConv designs the set of non converged eigenpairs

NotConv “ tℓ P tTargu, ||HSBXℓ||
|Eℓ|

ą EpsRezu. (40)

To accelerate convergence, NAdd is multiplied by i`1, where i designates the iteration
number.

˛12 EtaComp
The new added basis functions are selected from all the components of the residual
vectors (28) greater than

1

EtaComp ˚ NNotConv
ÿ

ℓPNotConv

}HSBXℓ}8

where NotConv (40) and NNotConv respectively stand for the set of non converged
tracked eigenpairs of HB and its cardinal. EtaComp should be greater than one, this
turns to be a guaranty that at list one component per non converged residual vector
will be picked up.

˛13 MaxAdd
Limit for number of basis functions to add at each iteration. Default value is 1000.

˛14 TargetState
It indicates the maximal component of the eigenvectors ofHB that should be assigned to
the targets matching with a multi-index array (cf figure 1). Except for 0NM symbolized
by 0(1), only its non zeros should be indicated with the characters dpnq separated by
a comma, where d stands for the degree of the Hermite function and n the normal
coordinate. Alternatively TargetState can be followed by the label ’Fund’ if the targets
are the fundamentals and the ground state i.e 1pnq, n “ t1, . . . ,NMu and 0p1q. If 0p1q
is not part of the targets then the zero point energy should be provided in cm´1 via
the parameter GroundState ˛17.

˛15 ThrCoor
Any eigenvector coordinate of HB bigger (in absolute value) than this threshold and
assigned to one of the targets, will be integrated into the iterative process and have
its residual vector (28) calculated. In output, will be showed only the assignments of
components larger than ThrCoor.

˛16 AddTarget
Sometimes, different eigenvectors point to the same maximal components. Then the
actual number of targets is bigger than the one specified by the user. So it allocates
additional arrays to correct this increasing. The default value is 2.

˛17 GroundState
Zero point energy required when it is not calculated (i.e not part of the targets). It
can also be adopted as reference to printout the anharmonic frequencies.
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˛18 MinFreq, MaxFreq
Frequencies in cm´1 specified to make converge all the eigenvalues within the interval

rMinFreq ` GroundState,MaxFreq ` GroundStates

when no target is indicated. If MinFreq is greater than zero, the value of GroundState
should be supplied, else it will be computed. If MaxFreq is not given in input, then it
will be set to the maximal harmonic frequency of tracked states for the initial subspace
construction and to Freq0Max˛9 afterwards. Default values are [-100,4000].

˛19 Kappa
Empirical elongation factor accounting the maximal gap between an harmonic and a
converged energy number ℓ when ordered like in (29). Its default value is 1.2 but
it is automatically augmented to 1.3 when maximal target frequency is greater than
3000 cm´1.

˛20 Memory
Total allocated memory in megabytes for the slots occupied by the eigensolver, the
matrices pHB, HSBq, the multi indexes pB, BSq, the PES, the local force fields and
corresponding positive increments tLFFpeq, e P LFF˚u(21). This value will be used
to set up the upper limit of basis functions SizeActMax that is appraised taking into
account the array shrinkage factors KNREZ˛22, KNNZ˛21 and KNZREZ˛23.

˛21 KNNZ
Sparsity factor for HB. The maximal number of non zero coefficients in HB will be

NNZActMax “ KNNZ ˚ SizeActMax ˚ NXDualHTrunc.

Where NXDualHTrunc is the upper limit of excitations in H˚ after truncation with
ThrKX˛10. Default value is 0.03. Should be in ]0,1].

˛22 KNREZ
Multiplicative factor of the maximal size of the residual space

SizeRezMax “ KNREZ ˚ SizeActMax ˚ pNXDualHTruncPos ´ 1q.

Where NXDualHTruncPos-1 is the number of raising excitations in operator H˚ af-
ter truncation with ThrKX˛10 (the first excitation being zero). Default value is 0.2.
Should be in ]0,1].

˛23 KNZREZ
Shrinking factor for the maximal number of pointers on the non zeros of HSB

NNZRezMax “ KNZREZ ˚ SizeActMax ˚ NXDualHTrunc.

Where NXDualHTrunc is the upper limit of excitations in operator H˚ after truncation
with ThrKX˛10. KNZREZ will be settled to zero when DoGraph=0.

˛24 DoGraph
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‚If“ 0 The MVPs HSBXℓ, ℓ P tTargu are fully calculated by browsing H˚pBq instead of
H˚pAq in (25).

‚Ifą 0 The row indexes and column pointers of the coupled elements of HSB are stored in
CSC17 format to complete ČHSBXℓ, ℓ P tTargu in (25) for the missing entries (28).
This option necessary increases memory requirement. The expense is about 40%
greater in memory and 40% smaller in CPU time compared with DoGraph=0.

Default value is 1.

˛25 MaxEV
Maximum eigenvalues to be computed when counted from the smallest one. This
number is adjusted to the size of the initial subspace minus one when it is actually
larger than the latter. The eigensolver uses the Mode 1 and option WHICH=’LM’ of
ARPACK subroutine DSAUPD. The greatest magnitude eigenvalues are computed on
the shifted matrix

H
1

B
“ HB ´ Shift ˚ IB, Shift “

NMÿ

n“1

„
1

2
` MaxQLevelpnq ˚ νn


,

where IB designates the identity matrix. Default value is 30.

˛26 DeltaNev
Reduce the number of wanted eigenvalues as

MaxEV “ MinpMaxEV,MaxScreen ` DeltaNevq,

where MaxScreen is the higher position of the targets that tends to decrease with iter-
ations. The purpose is to lighten the computational effort on the eigensolver. Default
value is 1000.

˛27 MAXNCV
This is the maximal number of Lanczos basis vectors generated at each iteration in
DSAUPD subroutine. Default value is 2*MaxEv˛25.

˛28 Tol
Stopping criterion for the relative accuracy of the Ritz values in DSAUPD subroutine.
Default value is 10´8.

˛29 RefName
Name of the input text file holding a floating point number at the beginning of each
line to compare with the final results. The printed error is the difference between one of
this value and the closest calculated frequency. Then it should manually be corrected
when this correspondence is not true.

17Compressed Sparse Column
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˛30 Verbose
When non equal to zero, it allows to print additional informations such as intermediate
CPU times, position of targets in initial space, the center of mass, the moment of inertia
and the characteristics of the dual operator.

˛31 OutName
Extension for output file names created when PrintOut‰ 0 (cf˛32).

˛32 PrintOut

‚ If “ 1: All the final basis set and the components of the eigenvectors will be saved
in the files OutName-FinalBasis.bin and OutName-Vectors.bin. These informa-
tions could be employed to compute infrared intensities in the final basis set with
the module Transitions that evaluates the quantities

xΨ0|O|Ψℓy , ℓ P tTargu, (41)

where O is a given operator that should have the same format than the PES
used for DVCI. pΨ0,Ψℓq are the wave functions of the ground and target state
ℓ respectively. Under the transition moment(41) is also printed the difference of
corresponding eigenvalues

Fℓ “ Eℓ ´ E0,

permitting to retrieve the infrared intensity when the dipole moment vector µpqq
is supplied as a function of the normal coordinates through the formula [87]

Iℓ “ NA

6C2ǫ0~2
Fℓ| xΨ0|µpqq|Ψℓy |2pm0 ´ mℓq.

C is the speed of light, ǫ0 the vacuum permittivity, ~ the reduced Planck constant,
and pm0 ´ mℓq the difference of Mole fractions that is usually set up to one at
zero temperature. The parameters of the input file are the same as DVCI and
PESName˛4 should be replaced by the name of the file containing operator O.

‚ If “ 2: The last iteration can be replayed by using exactly the same input file as
DVCI with the executable called FinalVCI.

‚ If ą 2: The size of the reference space defined with the pruning condition(34) and
maximal quantum levels (33) can be evaluated with the program Transitions.

‚ If “ 0: No additional output file is created.

Default value is 0.

˛33 EvalDeltaE
If ‰ 0 the correction energies ∆E (15) will be evaluated and printed at the end. Default
value is 0.

30



8 CONCLUSION

8. Conclusion

In this work has been presented a new algorithm to track specific states of molecular
spectrum approaching the variational limit with a minimal usage of memory. Harmonic
oscillator properties together with second quantization formulation were adopted to build
a novel assemblage of structures available for dynamic subspace enrichment. The resulting
code has shown challenging performances and could obviously be applied for bigger systems
that the ones studied in here. Remains the possibility to adapt the method for different
implementations of internal coordinates already available in a software like TROVE [88].
The overall construction might also be extended to other kind of basis functions if analytical
calculation rules can be factorised for a given form of potential energy that should minimally
be written as a sum of product.
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Appendix : Hermite function analytical formulas

In one dimension, Hermite functions verify

ż

R

ψbpqqqd1 Bd2

Bqd2ψb`epqqdq ‰ 0 if D t P N, |e| “ d1 ` d2 ´ 2t, (42)

as well as for the switched product Bd1

Bqd1
qd2 .

It is easily demonstrable with recurrence relations [89, 90]

ψ1
bpqq “

c
b

2
ψb´1pqq ´

c
b ` 1

2
ψb`1pqq ,

q ψbpqq “
c
b

2
ψb´1pqq `

c
b ` 1

2
ψb`1pqq,

(43)

and can directly be related to the definition of operators (17). For the coefficients

xrqdsyb,s “ xψbpqq|qd|ψspqqy , pb, sq P t0, . . . ,Dimu2, d ě 1,

the following property applies

xrqsdyb,s “ xrqdsyb,s , @pb, sq P t0, . . . ,Dim ´ d ` 1u2.
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where

rqs “

»
————————————–

0
b

1
2

0 ¨ ¨ ¨ ¨ ¨ ¨ 0b
1
2

0
b

2
2

. . .
. . .

...

0
b

2
2

0
b

3
2

. . .
...

...
. . .

b
3
2

0
. . . 0

...
. . .

. . .
. . . 0

b
Dim
2

0 ¨ ¨ ¨ ¨ ¨ ¨ 0
b

Dim
2

0

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

is the well known Jacobi matrix constructed with Hermite function recurrence relations (43).
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