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Abstract

Within the HMC algorithm, we discuss how, by using the shadow Hamiltonian and
the Poisson brackets, one can achieve a simple factorization in the dependence of the
Hamiltonian violations upon either the algorithmic parameters or the parameters
specifying the integrator. We consider the simplest case of a second order (nested)
Omelyan integrator and one level of Hasenbusch splitting of the determinant for
the simulations of a QCD-like theory (with gauge group SU(2)). Given the specific
choice of the integrator, the Poisson brackets reduce to the variances of the molecular
dynamics forces. We show how the factorization can be used to optimize in a very
economical and simple way both the algorithmic and the integrator parameters with
good accuracy.
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1 Introduction

Gauge theories formulated on Euclidean lattices can be treated as statistical systems
and are amenable to numerical simulations. When matter fields (scalars or fermions)
are also present, the gauge-field configurations are typically generated using molec-
ular dynamics algorithms, which come with different variations of the Hybrid Monte
Carlo (HMC) algorithm [1]. Such algorithms are characterized by a large number
of parameters, whose optimal choices depend on the model and the regime (e.g.,
concerning masses and volumes) considered.

The case of QCD has been extensively studied because of its obvious phe-
nomenological relevance. Roughly speaking HMC algorithms can be classified ac-
cording to the factorization of the quark determinant adopted (typically either mass-
preconditioning [2], or domain-decomposition [3], or rational factorization [4]) and
the symplectic integrator(s) used, the simplest being the leapfrog integrator, and one
of the most popular being the second order minimum norm integrator or Omelyan-
integrator [5,6]. The two choices are actually connected. The factorization of the
determinant translates into a splitting of the fermionic forces in the molecular dy-
namics, and depending on the hierarchy of such forces various nested integrators
can be used where each force is integrated along a trajectory with a different time-
step [3,7]. It is well known that for symplectic integrators a shadow Hamiltonian
exists, which is conserved along the trajectory. This observation can be exploited to
construct efficient integrators, as done in [8,9]. In short, the idea is to minimize the
fluctuations in the difference between the Hamiltonian of the HMC and the shadow
Hamiltonian along the trajectory. Since the latter is constant, the procedure clearly
minimizes, in particular, the difference between the initial and the final Hamiltonian,
hence increasing the acceptance.

The relation between the shadow Hamiltonian and the Hamiltonian of the sys-
tem involves complicated functions (Poisson brackets) of the HMC-momenta and of
the field variables, however for a particular choice of the integrator, these expres-
sions simplify and one is left with basically the variance of the fermionic forces. We
specialize exactly to that choice, that we detail in the following, since in this way the
forces computed (and stored in some form) from previous simulations can be used
to find the optimal choice of parameters for the factorization of the determinant and
for the step-sizes in the hierarchical integration scheme.

This is particularly relevant for the case of QCD-like theories which may provide
viable strongly-interacting extensions of the Standard Model and therefore have to
be studied within a non-perturbative approach. The field is now moving towards
accurate quantitative predictions, and that requires efficient algorithms. Many such
models for example feature matter fields in representations of the gauge group (not
necessarily SU(3)) which are not the fundamental one. In this case the hierarchy
between the gauge and fermionic forces may be very different from the case of QCD
and that implies that the algorithmic optimization has to be repeated.

As mentioned, the approach we discuss here is rather economical, and although



restricted to a particular integrator, it can be easily applied to different QCD-like
models and to different factorizations of the determinant. We test the method
here by considering an SU(2) gauge theory with one doublet of fermions in the
fundamental representation and by adopting the (single) Hasenbusch factorization
of the determinant [2]. Within this framework we show that we can predict the
dependence (e.g.) of the acceptance on the different parameters at the 10% level. A
preliminary account of this study has appeared in [10].

The paper is organized as follows: in the next Section we recall some basic
properties of the HMC algorithm, of integrators and of the shadow Hamiltonians, in
Section 3 we discuss Creutz’s formula for the acceptance and define our optimization
procedure, Section 4 contains tests and results, and in Section 5 we present our
conclusions and outlook.

2 (Not so) Basic facts about symplectic integrators and HMC

We briefly introduce the concepts about integrators and the Hybrid Monte Carlo
algorithm that are necessary in order to present our optimization strategy. The
reader familiar with dynamical simulations of lattice QCD can probably skip this
Section.

2.1 The analytical mechanics case

The example of the numerical integration of the equations of motion for a classical
Hamiltonian system is quite instructive also in view of the application to gauge
theories. For the latter however one needs to formulate Hamiltonian mechanics on
Lie groups, as explained for example in [12]. The classical system is described by
an Hamiltonian H which, by adopting standard notation, we write as H(q,p) =
:p? + S(q) and further define T'(p) as $p?. The term S(g), which only depends
on the coordinates ¢ (to be later identified with the gauge field) may sometimes
be referred to as the potential. A symplectic (i.e. phase-space volume preserving)
integrator is constructed by discretizing the time evolution operator

dy\ dp 0 dq 0 B -
o () - (- (4 4N enle)
with H given by
. OH 0 OH 0 0 0 A oA
T Ny ST ANy S 2.2
dq 8p+ dp dq q8p+ Pdq 5 (2.2)

It is easy to see, given that T only depends on p and S on ¢, that the action
of the time evolution operator on a function of coordinates and momenta simply
implements Hamilton equations.

Upon discretizing time in steps of size 07 in view of computational applications,
one is forced to introduce numerical integrators. For HMC those additionally need



to be symmetric in time in order to satisfy detailed balance. A common choice® is
the second order minimum norm (or Omelyan) integrator [5], for which the evolution
over a trajectory of length 7 can be written as

A . N . N\ T/0T
Uom(07,0)™°" = (6“5756%Te‘”(l_?o‘)se%fpeo“”s) / ; (2.3)

where « is a free parameter, typically chosen between 0 and 1/2 for forward integra-
tors. By applying the Baker-Campbell-Hausdorff formula, the operator above can

be written as exp <Tﬁ ), with
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As discussed in [11] to each symplectic integrator corresponds an exactly conserved
shadow Hamiltonian H, which, to a given order in §7, can be obtained by replacing

the commutators [/1, B} in the expansion of H with the Poisson brackets
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In the case of the Omelyan integrator considered here that yields
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It is worth having a closer look at such Poisson brackets. One easily obtains

(SSTY = =P (26)
{T7 {Sa T}} = _pZSqq ’
where we have introduced the driving force F' = -5, that also appears in Hamil-

ton’s equation dp/dt = F. The other Poisson bracket involves instead the second
derivative of the potential, and may be computationally expensive, especially in
the case of QCD-like theories (see [12] for a discussion and a numerical approach).
Clearly the choice a = 1/6 simplifies the expression of the shadow Hamiltonian up
to O (7%). In particular, the difference §H = H — H, in that case, only depends on
the driving forces already computed in order to integrate the equations of motion.

2.2 Mass-preconditioned HMC and multi time-scale integrators

We now consider the case of lattice gauge theories with fermionic matter (QCD-
like theories) and we briefly introduce the mass-preconditioned algorithm |[2| that
we used in this study. Let us consider the massive Dirac operator in the Wilson
regularization

DW =D+ mo , and Q = ’75DW = QT . (28)

! That is actually the only choice we consider here.
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The version of Hasenbusch’s or mass preconditiong adopted here amounts to intro-
ducing an infrared parameter y (a mass parameter) and then decomposing the Dirac
operator as

Dy = (Dw + 1) x (Dw + )~ Dw = Da() x Di(p) , (2.9)

and similarly for (). The parameter p can be chosen such that the two operators
have, on average, the same condition number /k, where x is the average condition
number of the initial matrix @ (see [13] for the case of two degenerate flavors).
Given that the number of conjugate gradient iterations needed in order to invert
an Hermitean operator on a given source (as it is needed in the computation of the
driving forces) is proportional to the condition number, the mass preconditioning
may provide a substantial speed-up of simulations. A different, perhaps more effi-
cient strategy, consists in tuning p such that the operator (Dy, + p) is rather cheap
to invert but gives the largest contribution to the driving force of the momenta,
whereas the other factor remains more expensive and contributes little to the force.
For the case of lattice QCD the existence of such a choice has been first discussed,
on the basis of numerical data, in [7]. As proposed there, it is then rather natural to
introduce a multilevel integration scheme, where the different forces are integrated
using different time-steps d7 inversely proportional to the magnitude of the force.
We are going to discuss in some detail the origin and the properties of the different
force contributions in the remaining part of this section. That will naturally lead
to our optimization procedure, which is based on the variance of the forces, rather
than on their magnitude.

A couple of remarks are in order on the splitting we have chosen in eq. 2.9.
By looking at the cases 4 = 0 and p — oo one observes that Dj(u) and Dsy(pu)
exchange role in these limits and therefore the hierarchy between the corresponding
forces must flip around some critical value of the p parameter.? Secondly, notice
that the operators D;(u) and Dy(u) are not invariant under the exchange p <> —p,
also when the case of two generate flavors is considered.

We write the Hamiltonian in the HMC evolution for the case of two degenerate
fermions as

H = %Z T [mu(@)?] + Sa(U) + 6] (Q 7' DEDQ ") 61 + 6L [(55D2)°] 6,

S 7) + Sa(U) + $1(U 6], 61) + 5:(U, 6} ) (2.10)

with the momenta 7 defined as m,(z) = 7§ (x)T§, with T§ the hermitean generators
of the Lie algebra su(2) in the fundamental representation of the gauge group.?

2 Notice that the molecular dynamics evolution in the HMC algorithm is independent from the
normalization of the fermionic action (as it should be). Such a normalization is absorbed in the
generation of the pseudo-fermion fields in the heatbath at the beginning of each trajectory [1].

3 We use the normalization Tr (TJ?T;Z) = %(5{11,.



Sc(U) is the Wilson plaquette action and the pseudo-fermion fields ¢, 5 are intro-
duced in order to re-express, upon integration, the fermionic determinant. They are
generated through an heatbath step at the beginning of each trajectory and kept
fixed during the evolution.

The update by a time-step 07 of the fields 7 and U (i.e., the action of the
operators €™ and €T respectively), can be defined as

m(x) — m,(r) = m(z) +57‘ZFZ~“(x) , 1=G,1,2

Uur) — U(x)= 0@y (2) (2.11)

where the forces Ff'(x) = F{"(z)T} are determined by loosely speaking deriving the
action with respect to the gauge fields, more formally:

e—0

ﬂ““(x)z—hm{éww—Sﬁ}7 (Ueu(@) = “ U @), (212)

with real variables £(z, u1). For more details see for example [14].

In a multilevel (or nested) integration scheme instead of a common time-step
o7 one introduces a different time-scale d7; for each force contribution and a corre-
sponding operator ™% . For example, the two-level second order Omelyan integra-
tor, assuming that there are only two contributions to the force and that those are
integrated using 07y = 67 and dm, = d7/m, is obtained by the following replacements

A A 37 ST & ST T _9\8, ST o815\
S—8, ezl — (ea2m32€4mT€2m(1 2a)S264mT€a2mS2> : (2.13)

in eq. 2.3. The shadow Hamiltonian to O(d7*) then reads

~ 602 — 6+ 1 1
H=H + T <{Sl, {Sl, T}} + W {527 {SQ, T}}) (57’2 (214)
1 — 6«

24

({T, (S, T} + 4—;2 (T,{S5, T} + {51, {&,T}}) 5% .

One can construct higher level second order Omelyan integrators in a similar way.
The generic expression for H that we could obtain, can be cast in the form

H—H + Tzzi: [604 —3604+ 1 ({ﬁgz{j;an732}> (2.15)
1= 6o (1T A8 T+ {8 {28 T}
6 szl(anP

+ 0(574) ,

with 7 = 7/ny = 07y, where 7 is the trajectory length. The step-sizes for the inner
levels are given by 67; = 7/(ITh_, 7)-

We used a three-level integration scheme with the force F} on the coarsest scale
0t = 7/n, Fy on 075 = d7/m and the gauge force F; on the innermost level with
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time-step 975 /k. The corresponding shadow Hamiltonian, setting o = 1/6 in each
level, is given by

2 afe(, \\2 a0\ )2
A=n+Z % [TRJ(F{‘“(m))? + TRVQ(f;Q(:”» + TRﬁéffZ kff)) +0(67")
(2.16)
where the Tr; are the squared norms of the generators in the relevant representation
for the conjugate momenta w. We stick to the fundamental representation in this
study. In order to make contact with the Hamiltonian mechanics case we rewrite
the above equation in the form

- 672 Fl” | Fal
H=H+2 <|]-"1|2 + ’472‘2 + 1‘677”?2’1452 + 007, (2.17)

72

which indeed generalizes egs. 2.5 and 2.6 (considering o = 1/6).

At this point we need to relate AH (the change in the Hamiltonian over a
trajectory) to A(0H), with 6H = H — H. We are actually mostly interested in
the relation between the corresponding variances, as Var(AH) controls the HMC
acceptance. We recall these relations in the next Section.

3 Cost definition and parameters optimization

There are clearly many possible definitions of the cost of an HMC simulation, on
general grounds though they should all at least be inversely proportional to the
acceptance and directly proportional to the computational cost.

The acceptance probability P,.. is related to the variance of AH through the
Creutz formula [15, 16]

_ﬂAAH):mk< WMAHWQ, (3.1)

which is derived from the reversibility relation (e=2#) = 1 (where (.. .) indicates the
average over the gauge configurations) via a cumulant expansion, and it is therefore
valid for P,.. close to 1.

From the fact that the shadow Hamiltonian is conserved along a trajectory, it
immediately follows that Var(AH) = Var[A(0H)]. By further assuming that for long
enough trajectories the initial and final values of 6 H are independently extracted
from the same distribution oc e, one finally obtains

Var(AH) = Var[A(SH)] = 2Var(5H) , (3.2)

as discussed in [17].
The cost function can now be defined as

LMVM
P&CC

Cost(n, m, k, pu) = (n,m, k, p) , (3.3)



where #MVM is the average number of matrix-vector multiplications involving the
operators () and Dy over a trajectory. We are neglecting here the cost of computing
the gauge contribution to the driving force, but we checked in a few cases that this
is at the few percent level. It is easy to separate the dependencies on the integrator
parameters and on the algorithmic ones (just p in our case) in both P, (or better
Var(AH), as in eq. 3.1) and #MVM. Namely, using eq. 2.17

Var(AH) = 2Var(6H) = (27‘527)2 Var(\]:l|2)(M)+var((Jl]T;22‘)2>(u ) Yfg%;’ﬁ (3.4)
#MVM = (2n+ 1)#MVM; (1) + 2n(2m + 1)#MVMa (1) , (3.5)

where the index 7 in MVM;(u) is associated to the operator index (D; or D), or
more precisely to the index of the force contribution. The computation of those
requires inverting! either Q (for F;) or Dy (for F3), see eq. 2.10. We tried to
emphasize in the formulae above that p controls the variance of the fermionic forces
and the number of matrix-vector multiplications. We will model those dependencies
in an empirical way and basically fit them. The dependencies on n,m and k are
instead completely explicit.

In the definition of the cost we neglected, as customary, autocorrelations. Those
are difficult to estimate and observable dependent. In addition they are not strongly
affected by algorithmic parameters at fixed trajectory length and large acceptance,
once the form of the HMC preconditioning is chosen |18, 19].

The proposed optimization strategy should now be clear and to a good extent,
if we were simply aiming at maximizing the acceptance, it amounts to minimiz-
ing a combination of the variances of the forces as a function of the algorithmic
parameters. We are therefore using the shadow Hamiltonian not only to optimize
the integrators, as previously done [9,12], but also in order to tune the parameters
defining the factorization of the quark determinant. As a final remark, one could
adopt the same strategy employing better, higher order, integrators, in which case
one should in principle measure the variance of a number of Poisson brackets and
miminize the cost using the variance of  H to estimate the acceptance rate, through
a formula equivalent to eq. 3.4.

4 Tests and Results

We first test some properties of the integrator used, mostly concerning the size and
scaling in 07 of the Hamiltonian violations and of the higher order terms in the
expansion of the shadow Hamiltonian. We also compare predictions from different
versions of the Creutz formula with actual measurements of the acceptance. Finally,

4 We use the Quasi-Minimal-Residue algorithm for the inversions in the molecular dynamics.
We set the tolerance to 10~ in terms of the ratio between the squared norm of the residue vector
and the squared norm of the inversion-source vector.



after having tested the setup and the accuracy of the approximations introduced, we
discuss the actual implementation of our optimization procedure and present results
in the form of predictions and checks.

As already mentioned, we work with two degenerate flavors of (un-improved)
Wilson fermions and the plaquette (SU(2)) gauge action. That is then completely
specified by the bare mass parameter mg and the inverse gauge coupling 3 = 4/g2.
We use the setup and the code described in [20] with only a few modifications in
order to extract the relevant quantities.

4.1 Testing properties of the integrator

A first simple test of the integrator concerns the scaling of |AH| as a function of 47
at constant trajectory length. Given that we are using a second order integrator,
such Hamiltonian violations should be O(72). In order to study that, we fix the the
initial configurations of gauge links and conjugate momenta and run a trajectory of
length one using different values of 7. In that way we obtain different discretized
solutions of the same continuum Hamiltonian problem. Similarly one can look at
\Af[ |. If we were able to compute the shadow Hamiltonian exactly, that would
clearly vanish, however, since we can only compute H to a given order in 67 (by
computing Poisson brackets), the shadow Hamiltonian violations should scale as
the first neglected term. In our case, using eq. 2.17, that means as 67¢. That
is precisely what one concludes from the data plotted in Fig. 1, which have been
obtained by evolving a 8* configuration at 3 = 2.2 and mg = —0.72 over one
trajectory using different time-steps. It is also instructive to look at the scaling
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Figure 1: Scaling of |AH| and |AH| = |AH + A(6H)| with 67 at fixed g = 0.2, m = 10
and k = 10.

of AH with the trajectory length 7. The conservation of the shadow Hamiltonian



implies AH = —A(JH), and again, by rewriting 6 H using eq. 2.17 one gets

57_2 F 2 F 2

AH = —Z2A (\]—"1]2 + ‘4?721’2 + 1’(377;}2'1@2) : (4.1)
up to O(d7%). For one given, thermalized, initial configuration, the quantities on
the two sides of the above equation are compared as a function of 7 for two different
values of §7 in the two upper panels of Fig. 2, while in the lower panel the quantity
AH/§7? is plotted. As suggested by eq. 4.1 such ratio is independent from the step-
size (up to O(67%)), since the same underlying continuous Hamilton equations with
the same initial conditions are being discretized in the two cases.

0.008 : - : : 0.002
0.006 0.0015 |
0.004 | 0.001 |
0.002 £ 0.0005 |

0 09

T _ £ T _ 5 |
3 0.002 3 0.0005
—0.004 F —0.001 L
—0.006 F —0.0015 f
—0.008 £ —0.002 £
—0.01 £ Direct measurement 1 —0.0025 L Direct measurement +
Force method * Force method *
—0.012 L L L —0.003 L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

T T

AH/o7?

Figure 2: Comparison of the Hamiltonian violations computed directly and using the r.h.s.
of eq. 4.1 as a function of the trajectory length and for different time-steps (upper-left:
o0t = 1/10, m = 10, k = 10, upper-right: 67 = 1/20, m = 10, k = 10). The lower panel
shows the data in the upper ones, for the “Force method” (i.e., r.h.s. of eq. 4.1) rescaled
by 672). In all cases V = 16*, 3 = 2.2, mg = —0.72 and p = 0.2.
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4.2 Testing estimates of the acceptance

The previous tests serve the purpose of checking our computation of dH up to
O(67%). Here we want to assess how robust the estimates of the acceptance using
O0H are. It is by modeling such expressions that we will be able to predict the
efficiency of a simulation for a given choice of the parameters u, n, m and k.

We can compare four different estimates of the acceptance:

i is obtained by trivially counting the number of accepted configurations ("Mea-
surement’ in Fig. 3),

i1 requires measuring Var(AH ), which is then plugged into eq. 3.1 CAH method’
in Fig. 3),

instead of AH one measures the quantity on the r.h.s. of eq. 4.1 and its vari-
ance, which is then inserted in eq. 3.1 replacing Var(AH) (’Forces method 2’
in Fig. 3),

198

iv similarly to the estimate in iii, one replaces Var(AH), in eq. 3.1 with the r.h.s.
of eq. 3.4. Notice that in this case the variance is computed not only over the
trajectories (as in ¢ and i), but also over the inner trajectory steps. This
estimate ("Forces method 1’ in Fig. 3), is therefore expected to be the most
reliable.

! % ‘ Forces method 1 —+ |
0.99 F % % Forces method 2 —&— 7 1r
0.98 F %7 ;|} AH method % % # ’}
0.97 b mé {‘% Measurement —x— @
€ -
0.96 F “g 0.995 | = 1
o 095 % o
0.94 £ % i ]
0.93 % H 1 0.99 Forces method 1 ——+— R
0.92 T ] Forces method 2 +—a—
0.91 1 AH method
) Measurement +—s—
(]l) L L L L L L L ()()8') L L L L L
0 2 4 6 8 10 12 14 16 0 0.2 0.4 0.6 0.8 1

yu It

Figure 3: Comparison of the four different estimates of the acceptance described in the text
as a function of the parameter p. Results refer to a 4 lattice at 8 = 2.2 and mg = —0.72.
We fixed n = 4, m = k = 10 and we ran O(10%) trajectories of length 1 at each value of p.
On the left the full range of u explored, on the right a zoom of the area 0 < p < 1.

From Fig. 3 one concludes that, for large values of P,.., all estimates agree quite well
with the measured acceptance within its errors. Also, they vary in a very smooth
way, which suggests that the estimates are quite stable, and O(10?) trajectories (as
used for the figure) are enough to obtain reliable values. In the following we will use
the estimate v from the list above.
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4.3 Results and modelling of the data

The key observation in the proposed approach is that the variances in eq. 3.4 are
functions of p only, at fixed physical parameters (quark masses, gauge coupling and
volume). We plot such variances as a function of the Hasenbusch mass-parameter
p for a 32% lattice at B = 2.2 and mgy = —0.72 in Fig. 4. These results have been
obtained for n = 15, m = 8 and k = 10 fixed, but in principle we could have com-
bined results for different choices of such algorithmic parameters, as they should not
affect the variances. One can see that the variance of the gauge force is independent

Mo ]
i
- — A= 7]
1087 Ei:r}; ' 1 - L - i
II‘_K,\ - -
Tk
107k 7 T 4
ST R
{II B
D A T e
bW 10% S E
= v ]
© J 1
> 1057 ] 4
; — — Var|F; ]
104] ----- Var|F, 2 i
/ E
i Var|Fg |2
1000} 3
- 1 o 2 | | 3 - 4 o 5
U
Figure 4: Variances of the forces as a function of the mass preconditioning parameter from
a set of simulations at 8 = 2.2, mg = —0.72 and V = 32%. Curves only serve to guide the
eye.

from p, as expected, whereas for F; and F, a region of weak dependence, for large
values of ;4 and a region of strong dependence for small ones can be clearly identified.
The interesting region for us is the one at small y, since there the hierarchy of the
forces is consistent with the nested scheme adopted for the integrator (see remarks
in Sect. 2.2).

Although a precise theoretical prediction on the functional form describing the
dependence of such variances on p is lacking, for small values of i (say p < 1) one can
use simple polynomial fits and impose a few reasonable constraints as the vanishing
of Var(|F|*) for i = 0 and, following [21], a rapid growth of Var(|F|?) for values
of u compensating for the quark mass (i.e., u ~ —(my — m.), with m, the critical
value of the bare quark mass). Similar considerations can be used for the fit ansdtze

12



of the #MVM; (1) functions. We therefore adopt the following parameterizations:

Var(|Fi*) (1) = ap+ b’ +cp® (4.2)
5 a+bu+op?

Var( ) = I (43)

Var(|Fo|") (1) = a, (4.4)

#MVM;(u) = a+bu, (4.5)
a+bu+op?

PV = I (40

where of course the fit parameters a, b and ¢ are independent for each of the quanti-
ties above. Notice that we include both even and odd terms in y since the splitting
we use is not invariant under pu <> —p (see Sect. 2.2). The fits provide good de-
scriptions of the data with reasonable x?/d.o.f values. We stress however that any
other parameterization reproducing the data would be equally good for the present
purposes. In principle one could even decide to mimimize the algorithmic cost on
a finite (fine) set of p values, which would completely bypass the problem of mod-
elling the results through smooth functional forms. At fixed quark mass, we will
compare the two approaches and show that the choice does not significantly affect
the final estimates, which gives us confidence on the chosen parameterizations. The
advantage of modelling the data is that one can simultaneously fit the dependencies
on i and on the quark mass, which helps stabilizing the results when different sets
of u values have been considered for different quark masses. That is precisely our
case. While for my = —0.72 we performed a rather fine scan in pu, for mog = —0.735
and mg = —0.75 we ran simulations on a reduced set of p values only (the lattice
volume is fixed to 32 at 8 = 2.2, where m. = —0.7676(2)). In order to account
for the quark mass dependence we promote some of the coefficients in the fit-forms
above to functions of the bare subtracted quark mass and finally use:

ap + bu? + cp?

Var(|f1|2)(ﬂam0> = (mO —m )2 ) (47)
b 2

Var(|F[?) (s mo) = (;jm’“: ffjf)2 | (4.8)

Var(“FGIZ)(MamO) = a, (49)

AMVM, (1, mo) = “+b<<$§__:;c>)2+ Ea (4.10)
b 2

HAMVM, (11, mo) = (Sim‘;i;’;)z. (4.11)

The resulting fits are shown in Fig. 5.

4.4 Cost predictions and verifications

Having now smooth functions of p describing the variances in eq. 3.4 and the
#MVM; in eq. 3.5, we plug the first in eq. 3.1 and then in the denominator of the
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Figure 5: Left column: global fits to the forces’ variances as a function of u for three
different quark masses. Right column: global fits to the average number of matrix-vector
multiplications per step in the computation of the fermionic forces vs p and for mg = —0.72,
—0.735 and —0.75. The inverse gauge coupling £ is fixed to 2.2 and V = 32%.

r.h.s. of eq. 3.3 and the second in the numerator of the same expression, to obtain
the Cost in closed form as a function of n ,m , k and p. At this point we minimize
such function using Mathematica, under the additional constraint P,.. = 0.75, since
for example the Creutz formula we used is valid in principle for large acceptances
only. We further fix £ = 10 in order to reduce the parameter space for the mini-
mization. The choice may be conservative, but since k controls the frequency of the
computation of the gauge force, which is very cheap, we do not expect large gains
in optimizing this parameter.

What we obtain are level curves as the ones shown in Fig. 6. One can see that
the minima are rather broad, especially as a function of u.
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Figure 6: Slices of the Cost function at fixed m = 3 and k& = 10 as a function of y and n
(left) and at fixed n = 5 and k = 10 as a function of y and m (right). Solid lines represent
constant acceptance curves. The cost is expressed relatively to the minimum. £ = 2.2,
mo = —0.72 and V = 324,

Since we have the full Cost function (not just the minimum), we can com-
pare predictions to actual simulations. We do that at fixed n, m and k (those
corresponding to the minimum for the cost) because we are mostly interested in
checking, a-posteriori, the assumptions made in fitting the dependencies on p as de-
scribed in the previous Section. In Fig. 7 we compare predictions obtained either by
using the variances and average numbers of matrix-vector multiplications measured
at specific values of 1 (so without any fitting) or by using the parameterized forms,
to actual simulations. We see that in all cases the agreement is rather good, over a
region where the cost changes by a factor of about three.

Finally, in Fig. 8 we compare our prediction for the dependence of the cost on
the quark mass, to direct simulations. In this case we always fix the algorithmic
parameters to the obtained minimum as we change mg, again with the constraint
P.ce 2 0.75. Notice that the leftmost point corresponds to a value of mg — m,
smaller than the ones previously considered in this paper and therefore the com-
parison provides a check of the functional dependencies on the quark mass that we
have introduced in the previous Section. The agreement is quite satisfactory, and
always within two combined sigmas, over a large range of cost values and that gives
us confidence on the accuracy of the proposed method. More important than the
discrepancy between simulations and predictions in units of combined standard de-
viations is actually their relative difference, which is 10% at most, so the predictions
are indeed quite precise. As a final remark we point out that the dependence of the
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Figure 7: Comparison of the Cost between direct simulations and our final predictions. For
the second we either used measurements at fixed values of p (“rescaled data” in the plot)
or we used fit results (“Fit prediction”). n, m and k are fixed to 5, 3 and 10 respectively

(again, 8 = 2.2, my = —0.72 and V = 324). Each simulation consists of about 1000
molecular dynamics units (MDU).

cost on the bare subtracted quark mass turns out to be consistent with a 1/(mq—m.)
behavior.
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Figure 8: Cost from direct simulations and as predicted within our approach as a function
of the bare subtracted quark mass. The algorithmic parameters at each point are chosen
such that the cost is minimized (as usual 8 = 2.2 and V = 32%). For each simulation we
ran between 500 and 1000 MDU.
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5 Conclusions

We presented a simple and general method to optimize the parameters of the inte-
grators and those entering the determinant splitting in HMC simulations of lattice
gauge theories. The main observation is that shadow Hamiltonians and Poisson
brackets provide a clear way to separate the dependence of (e.g.) the violations of
the energy (Hamiltonian) conservation on algorithmic and integrator parameters.
The dependence on the latter is explicit, whereas that on the first is implicit in the
arguments of the Poisson brackets. The idea has already been used in the past to
optimize integrators, but we have extended it here in order to simultaneously op-
timize the algorithm (i.e., tuning the Hasenbusch mass p, in the case considered),
by showing that the dependence of the Poisson brackets on the algorithmic param-
eters is rather smooth and can be easily parameterized. We looked at a simple case
(Omelyan second order integrator, with o = 1/6, one level of Hasenbusch splitting),
but more complicated ones can be straightforwardly considered, at the cost of com-
puting Poisson brackets and model their dependence on the parameters defining the
specific factorization of the quark determinant.

The considered case is however relevant as a significant amount of data is avail-
able within that setup in the framework of non-perturbative studies of strongly
interacting extensions of the Standard Model. Those are becoming precise studies
and simulations are getting computationally expensive, therefore it is crucial to be
able to re-utilize existing results in order to optimize the efficiency of the algorithms.
Since such an optimization may in principle be different for each model, a reliable
and inexpensive way to do it, as the one proposed here, is highly desirable.

We indeed found a very satisfactory agreement (at the ten-percent level) be-
tween the cost predictions from our method and actual results from simulations.

Acknowledgements. We thank Ari Hietanen and Martin Hansen for help and
discussions in the initial phase of the project. We wish to thank Tony Kennedy
for useful discussions. This work was supported by the Danish National Research
Foundation DNRF:90 grant and by a Lundbeck Foundation Fellowship grant num-
ber 2011-9799. Local computational facilities used in this work were provided by
the DelC national High Performance Computing (HPC) centre at University of
Southern Denmark (SDU), funded by SDU and the Danish e-infrastructure Coop-
eration (DelC). A.B. acknowledges support through the Spanish MINECO project
FPA2015-68541-P, the Centro de Excelencia Severo Ochoa Programme SEV-2016-
0597 and the Ramoén y Cajal Programme RYC-2012-10819.

References

[1] S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Phys. Lett. B 195
(1987) 216.

[2] M. Hasenbusch, Phys. Lett. B 519 (2001) 177, [hep-lat/0107019].

17



[3] M. Liischer, Comput. Phys. Commun. 165 (2005) 199, [hep-lat/0409106].

[4] M. A. Clark and A. D. Kennedy, Phys. Rev. Lett. 98 (2007) 051601, |[hep-
lat /0608015].

[5] I. P. Omelyan, I. M. Mryglod, and R. Folk, Comput. Phys. Commun. 151
(2003) 272.

[6] T. Takaishi and P. de Forcrand, Phys. Rev. E 73 (2006) 036706, |[hep-
lat /0505020].

[7] C. Urbach, K. Jansen, A. Shindler and U. Wenger, Comput. Phys. Commun.
174 (2006) 87, [hep-lat/0506011].

[8] M. A. Clark, A. D. Kennedy and P. J. Silva, PoS LATTICE 2008 (2008) 041
|arXiv:0810.1315 [hep-lat]].

[9] M. A. Clark, B. Joo, A. D. Kennedy and P. J. Silva, Phys. Rev. D 84 (2011)
071502, [arXiv:1108.1828 [hep-lat]].

[10] A. Bussone, M. Della Morte, V. Drach, M. Hansen, A. Hietanen, J. Rantaharju
and C. Pica, PoS LATTICE 2016 (2016) 260 [arXiv:1610.02860 |[hep-lat]|.

[11] M. A. Clark and A. D. Kennedy, Phys. Rev. D 76 (2007) 074508
l[arXiv:0705.2014 [hep-lat]|.

[12] A. D. Kennedy, P. J. Silva and M. A. Clark, Phys. Rev. D 87 (2013) no.3,
034511 |arXiv:1210.6600 [hep-lat]].

[13] M. Della Morte et al. [ALPHA Collaboration|, Comput. Phys. Commun. 156
(2003) 62, [hep-lat/0307008].

[14] M. Luscher, arXiv:1002.4232 |[hep-lat].
[15] M. Creutz, Phys. Rev. D 38 (1988) 1228.

[16] S. Gupta, A. Irback, F. Karsch and B. Petersson, Phys. Lett. B 242 (1990)
437.

[17] M. A. Clark, B. Joo, A. D. Kennedy and P. J. Silva, PoS LATTICE 2010
(2010) 323, [arXiv:1011.0230 [hep-lat]|.

[18] H. B. Meyer, H. Simma, R. Sommer, M. Della Morte, O. Witzel and U. Wolff,
Comput. Phys. Commun. 176 (2007) 91, [hep-lat/0606004].

[19] M. Della Morte et al. [ALPHA Collaboration|, JHEP 0807 (2008) 037,
larXiv:0804.3383 |hep-lat]|.

18



[20] L. Del Debbio, A. Patella and C. Pica, Phys. Rev. D 81 (2010) 094503,
larXiv:0805.2058 [hep-lat]|.

[21] L. Del Debbio, L. Giusti, M. Luscher, R. Petronzio and N. Tantalo, JHEP 0602
(2006) 011, [hep-lat/0512021].

19



	1 Introduction
	2 (Not so) Basic facts about symplectic integrators and HMC
	2.1 The analytical mechanics case
	2.2 Mass-preconditioned HMC and multi time-scale integrators

	3 Cost definition and parameters optimization
	4 Tests and Results
	4.1 Testing properties of the integrator
	4.2 Testing estimates of the acceptance
	4.3 Results and modelling of the data
	4.4 Cost predictions and verifications

	5 Conclusions

