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Abstract

The Monte Carlo event generator EKHARA was upgraded during last years.
The upgrades presented here contain: a) the inclusion of new final states
e+e− → e+e−η, e+e− → e+e−η′, e+e− → e+e−χci and e+e− → e+e−χci(→
J/ψ(→ µ+µ−)γ); b) new γ∗ − γ∗ − P transition form factors and c) the
radiative corrections to the reactions e+e− → e+e−P . For the upgrades a)
and b), we present here only the pieces missing in other publications, mostly
algorithms used in the phase space generation. The radiative corrections are
presented here for the first time. A new algorithm of the phase space gen-
eration for the reaction e+e− → e+e−Pγ being its main part. A comparison
with GGRESRC generator is presented. Big differences between the radia-
tive corrections calculated by the EKHARA and the GGRESRC generators
are observed.
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Summary of revisions: The upgrades contain the inclusion of the new fi-
nal states e+e− → e+e−η, e+e− → e+e−η′, e+e− → e+e−χci and
e+e− → e+e−χci(→ J/ψ(→ µ+µ−)γ), new γ∗ − γ∗ − P transition form
factors and the radiative corrections to the reactions e+e− → e+e−P .
Nature of problem:
The program is constructed to help in measurements of transition form factors at
meson factories. To do this one needs a good description of the already existing
data and calculation of the radiative corrections.
Solution method: The models of various form factors were developed in [3,4,5,6]
and are implemented in the program. For the radiative corrections a new
algorithm of generation of the phase space for the reactions e+e− → e+e−Pγ was
developed and is presented here.
Additional comments including Restrictions and Unusual features:
The program needs a quadruple precision version of a FORTRAN compiler.
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1. Introduction

The hadron physics and especially hadron-photon interactions entered
precision era [1] some years ago. The push towards precision was mostly
caused by the disagreement of the measured [2] and calculated within the
Standard Model [3, 4, 5, 6] muon anomalous magnetic moment (g − 2)µ.
This might be a hint of a signal from physics beyond the Standard Model.
With the new measurement of the muon anomalous magnetic moment under
way [7], the current 4 σ disagreement might become the first laboratory ob-
servation of the physics beyond the Standard Model. An effort to reach the
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precision expected in the new muon anomalous magnetic moment measure-
ment in its calculation has to be made, and in fact it has already started as a
“g-2 Theory Initiative” [8]. It is a common venture of theorists from lattice
and phenomenology communities and experimental communities involved in
measurements of hadronic cross sections and transition form factors. The
knowledge of the pseudoscalar transition form factors with a good accuracy,
in the range of the kinematic invariants, which is as wide as possible, is a
prerequisite for improving the accuracy of the light-by-light contributions.
The error on this part is now at the same level as the a error on the hadronic
vacuum polarisation contributions to the (g − 2)µ and thus its reduction is
as important as the error reduction on the hadronic vacuum polarisation
contribution.

The increasing requirements for precision in the measurements of the
transition form factors (amplitudes) γ∗ − γ∗ − hadrons, rise a question of
the precision of the Monte Carlo generators used in the experimental anal-
yses. In the latest measurements [9, 10, 11] of the most important for the
evaluation of the light-by-light contributions to the muon anomalous mag-
netic moment, pseudoscalar transition form factors, Monte Carlo generators
based on structure function approach were used [12, 13]. The accuracy of the
structure function approach is very much dependent on the event selection
used [14] and if possible should be cross checked with exact results. A step
towards this goal was done in this paper, where the most relevant radiative
corrections at NLO were implemented into the event generator EKHARA.

The paper is organised in the following way: in Section 2 the algorithms
used in the previous upgrades of the EKHARA code, which were not covered
in the previously published papers, are described. In Section 3 the imple-
mentation of the NLO radiative corrections and the tests of the code are
presented in details. In Section 4 the size of the radiative corrections for
event selections close to the experimental ones is discussed and comparisons
with the GGRESRC generator [13] are shown. In Section 5 an overview of
the EKHARA software structure and users guide are given. Conclusions are
drawn in Section 6.

2. Upgrades from version 2.0 to 2.3

The mode e+e− → e+e−π+π− was not changed.
The γ∗ − γ∗ −P transition form factors were upgraded twice (release 2.1

and 2.3). In the first upgrade the models presented in [15] were implemented.

3



In the second upgrade the form factors coming from the models developed
in [16] were added. The two models developed in [16] should be used as a
default, as they describe the largest class of experimental data. The other
models can be used in tests of the model dependence of various entities
(experimental efficiencies etc.). The simulation of the phase space for the
reaction e+e− → e+e−P is identical, up to the bug fixed in the azimuthal
angles generation, to the one used in version 2.0 [17] (see also [18], from
where the algorithm used in [17] was adopted). Due to the bug, only one
half of the allowed azimuthal angular range was covered in version 2.0. This
bug was affecting only simulations with cuts imposed on azimuthal angles as
the relative angles between the momenta and the polar angles were correct.

In the release 2.2 the model of the γ∗ − γ∗ − χci and γ∗ − J/ψ∗ − χci
form factors developed in [19, 20] was implemented to allow a simulation of
the reactions e+e− → e+e−χci and e+e− → e+e−χci(→ J/ψ(→ µ+µ−)γ).
The generation of the phase space in the reaction e+e− → e+e−χci is again
identical to the one in [17].

For the reaction e+e− → e+e−χci(→ J/ψ(→ µ+µ−)γ) (i = 0, 1, 2) we
write

dσ(e+(p1)e
−(p2) → e+(q1)e

−(q2)µ
+(q4)µ

−(q3)γ(k)) =

|Mi|2dLips5(p1 + p2; q1, q2, q3, q4, k) . (1)

The matrix element Mi is described in [20]. Here we report the details
of the phase space parameterisation, which allowed for absorption of the
peaking behaviour of the phase space. We write the five-particle phase space
in the following form

dLips5(p1 + p2; q1, q2, q3, q4, k) =

dLips3(p1 + p2; q1, q2, Qχ)
dQ2

χ

2π
dLips2(Qχ;Qψ, k)

dQ2
ψ

2π
dLips2(Qψ; q3, q4) , (2)

where Qχ = q3 + q4 + k and Qψ = q3 + q4. We generate at first the invariant
mass Q2

χ of the virtual χci meson within limits 4m2
µ < Q2

χ < (
√
s − 2me)

2,
unless the user specifies otherwise (see Section 5), with s = (p1 + p2)

2 and
mµ(me) being muon (electron) mass respectively. To absorb the peak coming
from the χci propagator the following change of variables was performed

4



Q2
χ =Mχci

Γχci
tan

(

y

Mχci
Γχci

)

+M2
χci

, y = ymin +∆y · r ,

∆y = ymax − ymin, 0 < r < 1 ,

ymin(max) =Mχci
Γχci

arctan

(

Q2
χ min(max) −M2

χci

Mχci
Γχci

)

, (3)

where Mχci
(Γχci

) is the mass (width) of the χci meson.
The same is done for the generation of the Q2

ψ, which is generated as the
second variable, with the change of the χci mass (width) to the J/ψ mass
(width): Mχci

→ MJ/ψ, Γχci
→ ΓJ/ψ. The limits read 4m2

µ < Q2
ψ < Q2

χ,
unless a user has required more stringent cuts (see Section 5). The angles of
the muons are generated flat in the rest frame of theQψ and than transformed
to the Qχ rest frame. The photon angles are generated flat in the Qχ rest
frame and later transformed to the initial e+e− center of mass frame together
with the muon and anti-muon four-momenta. The dLips3(p1 + p2; q1, q2, Qχ)
is generated in the same way as for the reaction e+e− → e+e−χci following
the description in [17], where the χci mass was replaced by the invariant mass
Q2
χ.
In the channel, where contributions coming from all three χi intermediate

states are included, we use three channel Monte Carlo method to absorb the
three peaks coming from χi propagators. In each channel we use the change
of variables described above to absorb the peaks. The probability of using
a given channel is chosen according to tuned ’a priori’ weights. This simple
method works efficiently because the interferences between the amplitudes
are negligible [20]. That results from the fact that the χi resonances are
narrow and well separated.

3. The radiative correction to the reaction e
+
e
− → e

+
e
−
P

3.1. Virtual radiative corrections

The vertex virtual correction (Fig. 1(c) and a similar diagram with cor-
rections to the electron line) are known already for some time [21] and we
use in the code the expressions from that paper. The formulae were checked
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later by many groups (see for example [22]). The form of the corrections is

(LO) : v̄(p1)γ
µv(q1) → (NLO) : v̄(p1)

(

[1 + F1(t1)]γ
µ − F2(t1)

4me

[q/ , γµ]

)

v(q1) ,

(4)
with q = q1 − p1 and t1 = (q1 − p1)

2. The functions F1 and F2 are given in
Eqs. (2.19-2.10) of [21]. The corrections coming from F2 are negligible for
all event selections shown in these paper.

We have included into the code only radiative corrections to the t-channel
diagram (Fig. 1(a)) as the s-channel diagram (Fig. 1(b)) is important only
for the configurations where both final leptons are observed. Moreover, the
kinematic region, where both the t- and s-channel contributions are of the
similar size, is far from being reached by any experiment due to the small
value of the cross section in this kinematical region. The contributions from
five point functions (Fig. 1(d)) were found to be negligible [23] and are
not considered here. Yet it is worthwhile to reconsider these corrections for
configurations with two final leptons observed at large angles as they are
model dependent. We plan to include the remaining radiative corrections,
in a separate publication [24], where also their model dependence will be
studied.

Following [21] we use a fictitious photon mass to regulate the infrared
singularities. It is also used in the real emission part, where in the phase
space parameterisation a massive photon was assumed (see Section 3.2 for
details).

The vacuum polarisation corrections are included in a fully factorised and
resummed form

MLO+virt(e
+e− → e+e−P ) →MLO+virt ·

1

1−∆α(t1)
· 1

1−∆α(t2)
,

Me+f(e
+e− → e+e−Pγ) →Me+f (e

+e− → e+e−Pγ) · 1

1−∆α(t′1)
· 1

1−∆α(t2)
,

(5)

with t2 = (p2 − q2)
2, t′1 = (p1 − q1 − k)2. Analogously one adds the radiative

corrections to the diagrams with a photon emitted from the electron lines.
The ∆α(t) is taken from [25] (see also [26, 27]).
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e+(p1)

e−(p2)

e+(q1)

e−(q2)

P (Q)

(a)

e+(p1)

e−(p2)

e+(q1)

e−(q2)

P (Q)

(b)

e+(p1)

e−(p2)

e+(q1)

e−(q2)

P (Q)

(c)

e+(p1)

e−(p2)

e+(q1)

e−(q2)

P (Q)

(d)

γ(k)e+(p1)

e−(p2)

e+(q1)

e−(q2)

P (Q)

(e)

γ(k)

e+(p1)

e−(p2)

e+(q1)

e−(q2)

P (Q)

(f)

Figure 1: Representative sample of diagrams contributing to the amplitude e+e− →
e+e−P (γ).

3.2. Real radiative corrections

The matrix element describing the reaction

e+(p1)e
−(p2) → e+(q1)e

−(q2)P (Q)γ(k) (6)

was calculated using Feynman diagrams shown in Fig. 1 (e) and (f) and
similar diagrams, where photon is emitted from the electron line. As stated
already, the five point functions (Fig. 1 (d)) were found negligible [23]. They
cancel the infrared singularities from the interference between the diagrams
with the photon emitted from the positron lines and with the photon emit-
ted from the electron lines. Thus that interference has to be neglected for
consistency.

It is convenient to parameterise the phase space of the reaction Eq.(6) in
the following way [28]

∫

dLips4(p1 + p2; q1, q2, Q, k) =

7



1

(2π)8
1

4
√

λ(s,m2
e, m

2
e)

(
√
s−me)2
∫

(mP+me+mγ )2

dM2
3

t+
3
∫

t−
3

dt3

2π
∫

0

dφ2

1

4
√

λ(M2
3 , t3, m

2
e)

(M3−mP )2
∫

(me+mγ)2

dM2
2

t+
2
∫

t−
2

dt2

2π
∫

0

dφP
1

4
√

λ(M2
2 , t2, m

2
γ)

t+
1
∫

t−
1

dt1

2π
∫

0

dφ1 ,

(7)

with

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc , t1 = (p1 − k)2 ,

M2
3 = (Q+ k + q1)

2 = (p1 + p2 − q2)
2 , t3 = (p2 − q2)

2 ,

M2
2 = (k + q1)

2 = (p1 + p2 − q2 −Q)2 , t2 = (p2 − q2 +Q)2 ,

(8)

mP , me and mγ being pseudoscalar, electron and a fictitious photon mass,
respectively, and

t±3 = m2
e +M2

3 − 1

2s

{

s(s+M2
3 −m2

e)∓
√

λ(s,m2
e, m

2
e)λ(s,M

2
3 , m

2
e)

}

,

t±2 = m2
e +M2

2 − 1

2M2
3

{

(M2
3 +m2

e − t3)(M
2
3 +M2

2 −m2
P )

∓
√

λ(M2
3 , m

2
e, t3)λ(M

2
3 ,M

2
2 , m

2
P )

}

,

t±1 = m2
e +m2

γ −
1

2M2
2

{

(M2
2 +m2

e − t2)(M
2
2 +m2

γ −m2
e)

∓
√

λ(M2
2 , m

2
e, t2)λ(M

2
2 , m

2
γ, m

2
e)

}

.

(9)

In this way all the peaks appearing in the matrix element can be easily
absorbed for the contributions from Fig. 1 (e) and (f). To do that we use
the following changes of variables

ti = −e−zi , i = 2, 3; M2
2 = m2

e + ey; t1 = m2
e − e−z1 . (10)
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In the above formulae, ea should be read as 1 GeV2 · ea. For simplicity,
the unit 1 GeV2 was dropped in all formulae.

The first two changes of variables absorb peaks coming from the vir-
tual photons propagators, the third (fourth) one the peak coming from the
positron propagator in the diagram with photon emitted from final (initial)
positron line. The last two changes of variables have to be present simultane-
ously as the leading contribution comes from the interference of the diagram
(e) and the diagram (f).

The user introduced cuts on t3 are used to alter the generation limits.
Other user cuts are just rejecting events generated outside the allowed phase
space. The cuts on tmin3 < t3 < tmax3 change the maximal allowed value of
M3 ( M

max
3 ) if both tmin3 and tmax3 are bigger (lower) than tc3 = 2m2

e −
√
sme.

It reads

M2
3,max =

2m4
e + tmin3 s+

√

∆(tmin3 )

2m2
e

, for tmin3 > tc3, t
max
3 > tc3

M2
3,max =

2m4
e + tmax3 s+

√

∆(tmax3 )

2m2
e

, for tmin3 < tc3, t
max
3 < tc3 (11)

with ∆(t) = ts(t− 4m2
e)(s− 4m2

e).
As the matrix element contains also the contributions coming from the

photons emitted from the electron line we use two-channel Monte Carlo,
where in the second channel the parameterisation of the phase space is iden-
tical to the one described above with the change p2 ↔ p1 and q2 ↔ q1.
Within that two-channel scheme the phase space parameterisation is written
as

∫

dLips4(p1 + p2; q1, q2, Q, k) =

1
∫

0

dr0

[

θ

(

1

2
− r0

)

C1 + θ

(

r0 −
1

2

)

C2

]

(12)

with θ being a Heaviside step function and Ci, i = 1, 2 the parameterisations
of the phase space in channels 1 and 2. The parameterisation in the channel
1 reads

C1 =
1

(2π)5
∆M2

3

2
√

λ(s,m2
e, m

2
e)

1
∫

0

dr1

1
∫

0

dr2
∆z3

4
√

λ(M2
3 , t3, m

2
e)
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·
1
∫

0

dr3

1
∫

0

dr4
∆y∆z2

4
√

λ(M2
2 , t2, m

2
γ)

1
∫

0

dr5
∆z1

f1 + f2

1
∫

0

dr6

1
∫

0

dr7

1
∫

0

dr8 ,

(13)

where

M2
3 =M2

3,min +∆M2
3 · r1, ∆M2

3 =M2
3,max −M2

3,min ,

z3 = zmin3 +∆z3 · r2, z2 = zmin2 +∆z2 · r4, z1 = zmin1 +∆z1 · r5 ,

zmini = − log(−tmini ), ∆zi = − log

(

tmaxi

tmini

)

, i = 2, 3

zmin1 = − log(−t̃min1 ), ∆z1 = − log

(

t̃max1

t̃min1

)

,

t̃
max(min)
1 = m2

γ

−
(M2

2 +m2
e − t2)(M

2
2 +m2

γ −m2
e) + (−)λ1/2(M2

2 , m
2
e, t2)λ

1/2(M2
2 , m

2
e, m

2
γ)

2M2
2

,

y = ymin +∆y · r3, ymin = log(mγ(2me +mγ)) ,

∆y = log

(

(M3 −mP )
2 −m2

e

mγ(2me +mγ)

)

, t1 = t̃1 +m2
e ,

f1 =
−1

t3(M2
2 −m2

e)t2(t1 −m2
e)
, φ2 = 2π · r6, φP = 2π · r7, φ1 = 2π · r8 .

(14)

The function f2 is obtained with f1 with the change p2 ↔ p1 and q2 ↔ q1. The
parameterisation of the phase space in the second channel (C2) is obtained
from C1 with the same substitutions.

From the generated variables described above one can calculate the four-
momenta of all final particles. Again, we give here only formulae for the
channel 1 as the channel 2 is obtained in the same way with the substitutions
p2 ↔ p1 and q2 ↔ q1. Moreover, as it is possible to write some of the
expressions given below in two or more analytically equivalent forms, we give
here only the ones used in the code. They were chosen to obtain formulae
which are numerically stable.

The azimuthal angle of the final electron (φ2) is generated in the initial
e+e− center of mass frame with positron momentum along the z-axis: p1 =

10



(
√
s/2, 0, 0, p), p =

√

s/4−m2
e. This frame is called the LAB frame from

now on. The energy (E2), the length of the momentum (lq2) and the cosine
of the polar angle (θ2) of the final electron can be calculated, in the same
frame, from the generated invariants

E2 =
s−M2

3 +m2
e

2
√
s

, lq2 =
λ1/2(M2

3 , s,m
2
e)

2
√
s

, cos(θ2) =
M2

3 − s− 2t3 + 3m2
e

4 · p · lq2
.

(15)

The azimuthal angle of the pseudoscalar (φP ) is generated in the rest frame
of the four-vector p1+p2−q2, where the z-axis is pointing the initial positron

momentum p1 = (Ẽ1, 0, 0, p̃1). Here Ẽ1 =
M2

3
+m2

e−t3
2M3

. In this frame p2 − q2 =

(Ẽ2, 0, 0,−p̃1), with Ẽ2 =
M2

3
−m2

e+t3
2M3

. In the code, for numerical stability

reasons, the expression p̃1 =
√

Ẽ2
2 − t3 is used to calculate p̃1. In this frame,

the pseudoscalar energy (EP ), the length of the pseudoscalar momentum
(lqP ) and the cosine of the pseudoscalar polar angle (θP ) are given by

EP =
M2

3 −M2
2 +m2

P

2M3

, lqP =
√

E2
P −m2

P ,

cos(θP ) =
t3 − t2 +m2

P − (M2
3−m2

e+t3)(M
2
3−M2

2+m
2
P )

2M2
3

2 · p̃1 · lqP
. (16)

After being calculated, the pseudoscalar four vector is transformed into the
LAB frame.

The azimuthal angle of the final positron (φ1) is generated in the rest
frame of the four-vector p1 + p2 − q2 − Q, where the z-axis is pointing the

initial positron momentum p1 = (E∗
1 , 0, 0, p

∗
1). Here E∗

1 =
M2

2
+m2

e−t2
2M2

. In

this frame p2 − q2 − Q = (E∗
2 , 0, 0,−p∗1) with E∗

2 = ey+t3
2M3

. In the code the

expression p∗1 =
√

E∗,2
2 − t2 is used to calculate p∗1. The p1+ p2 − q2 −Q rest

frame is also the q1+k rest frame, thus the final positron and the final photon
momenta differ only by a sign. In this frame, the final positron energy (E1),
the length of its momentum (lq1), the cosine of its polar angle (θ1) and the
photon energy (Eγ) are given by

E1 =
M2

2 −m2
γ +m2

e

2M2
, lq1 =

√

(ey +m2
γ − 2mγM2)(ey +m2

γ + 2mγM2)

2M2
,
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Eγ =
ey +m2

γ

2M2
, cos(θ1) =

m2
e +m2

γ −
(ey+m2

γ)(M
2
2+m

2
e−t2)

2M2
2

2 · p∗1 · lq1
. (17)

From the rest frame of the p1+p2−q2−Q four-momentum to the LAB frame
the four vectors are transformed in two steps. First to the p1 + p2 − q2 rest
frame and than to the LAB frame. In this way the same subroutine can be
used for both transformations. It consists of a boost and three elementary
rotations. It was checked numerically that, after transforming all four vectors
to the LAB frame, q1 + q2 +Q + k = p1 + p2 within 28-digits accuracy.

3.3. Tests of the code

The code is using in its bulk part the quadruple numerical precision,
with exceptions described in Section 5. All the tests described below were
performed with a precision of one half of a per mile or better. We cover
here only the tests of the newly developed part. The tests of the previously
developed parts of the code are covered in [29, 17, 15, 20].

The matrix element of the LO contribution to the cross section of the
reaction e+e− → e+e−P was tested in [17], thus one does not have to test
the part of the virtual radiative corrections ∼ F1 as they are proportional to
the same matrix element. The part of the virtual radiative corrections pro-
portional to F2 was calculated, using trace method to sum over polarisations,
independently by two of the authors. As this contribution is negligible, no
further tests were performed.

For the matrix element describing the reaction e+e− → e+e−Pγ two in-
dependent codes were constructed. One using helicity amplitude method,
where sum over helicities was done numerically, and one using trace method
to sum over polarisations. For the calculations using trace method the sym-
bolic manipulation system FORM [30] was used and a FORTRAN code was
produces based on its output. Even if the code uses quadruple precision, the
code constructed using the trace method is not numerically stable around
kinematical points with few invariants appearing in the denominators of the
expression being close to zero simultaneously. As there are almost no numer-
ical cancellations in the formulae, which use the helicity amplitude method,
these formulae are free from such problems. An agreement up to 28 dig-
its was found between the results obtained with the two described methods
for all the phase space points with the exception of the situations described
above. The formula, which uses the helicity amplitude method is used in the
distributed version of the code.
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The phase space parameterisation, together with the change of vari-
ables described in Section 3.2, was tested comparing the phase space vol-
ume calculated within that parameterisation and the volume calculated with
an independent code, which uses a flat cascade-like parameterisation [28].
A very good agreement was found for all tested energies, in the range
1 GeV <

√
s < 11 GeV , and for physical masses of the pseudoscalar particles

(π0, η, η′).
The differential cross sections, when one sums the contributions with and

without a real photon emission should not depend on the fictitious photon
mass (mγ) introduced as a regulator. We use a parameter λ (mγ = λme) to
set its size in the code. The recommended value for λ is 0.01. For λ ∼ 0.1
some of the differential cross sections start to depend on this parameter with
deviations bigger than the one set as a goal for technical accuracy in this
code (0.05%). For λ = 0.001 and λ = 0.0001 the differential cross sections
were identical to the one obtained with λ = 0.01 within the errors of about
0.05%. Due to this small cut-off, the infrared divergent part in the virtual
corrections, which is negative, is bigger than 1 resulting in the negative cross
section. As a result, one cannot generate unweighted event sample and only
weighted events can be used.

4. The size of the radiative corrections and comparisons with

GGRESRC Monte Carlo generator

There exists a Monte Carlo event generator [13], GGRESRC, were the
radiative corrections to the reaction e+e− → e+e−P were included using a
structure function method. This generator was used in the BaBar analysis
to measure the γ−γ∗−P transition form factors [9, 10]. The accuracy of the
structure function method depends a lot on the event selection (see for exam-
ple [14]). It is thus important to check it against exact calculations, when-
ever possible. For simulation of the reaction e+e− → e+e−P , at LO level the
EKHARA and GGRESRC Monte Carlo generators are very similar. When
the same form factor is used in both codes we have observed an agreement
at a level of 0.04%. This was already observed in [13] for e+e− → e+e−π0.
We have checked that also for η and η′ integrated cross sections, angular and
energy distributions of all final particles are identical for both generators in
a single tag mode. To obtain this agreement a VMD transition form factor
used in GGRESRC was implemented in the EKHARA Monte Carlo genera-
tor. In all the comparisons between the generators shown in this paper that

13



Q2 [GeV2]

σ
e
k
h
a
r
a
L
O
−
σ
g
g
r
e
s
r
c
L
O

σ
e
k
h
a
r
a
L
O

4035302520151050

0.0008

0.0006

0.0004

0.0002

0

−0.0002

−0.0004

−0.0006

Figure 2: Comparison of the EKHARA and GGRESRC generators at LO;
Q2 = −(p1 − q1)

2,
√
s = 10.58GeV.

form factor is used. An example of these comparisons is shown in Fig. 2.
We have restricted the invariant −0.18 GeV2 < (p2 − q2)

2 < 0 GeV2 and
calculated the cross section in bins of Q2 = −(p1 − q1)

2 as shown in Fig. 2.
The bins coincide with the bins used by BaBar collaboration [9].

At NLO it is not a straightforward task to compare the two event gen-
erators as in the formulae used in GGRESRC generator the ’final’ photon is
integrated out. The final photon would come from the the diagram Fig. 1 (f).
Yet the interference between the amplitudes coming from Fig. 1 (e) and Fig.
1 (f) gives substantial contributions to the matrix element squared and the
identification ’final’ or ’initial’ photon is not possible. One could of course
define the final or initial photon on the bases of being closer to the initial
or final lepton, but then one would need to integrate the photons which are
closer to the final lepton, to be close to the formulae used in GGRESRC gen-
erator. There is one more difference between the generators: in GGRESRC
the corrections to the line of the untagged lepton are not included. We thus
start with the check how big they are in the EKHARA generator to disen-
tangle these two different effects. We do it for the event selection close to
the one used by BaBar. We use here kinematical variables (angles, energies)
in the center of mass frame of the initial leptons. We require that the final
positron and pion polar angles are in the range 20◦ < θπ,e < 160◦. We also
put cuts on polar angle of π0e+ system cos(θeπ) > 0.99 and on a variable
r = (

√
s−Eeπ − peπ)/

√
s < 0.075.
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Figure 3: The size of the radiative corrections predicted with EKHARA Monte Carlo
generator.

NLOb: corrections on the tagged positron only
NLOa,b: r < 0.075, cos(θeπ) > 0.99, 20◦ < θπ0 , θe+ < 160◦
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Figure 4: The complete corrections compared to the corrections only to the tagged lepton
line.
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corrections on the tagged positron only
NLO: r < 0.075, cos(θeπ) > 0.99, 20◦ < θπ0 , θe+ < 160◦
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Figure 5: The size of radiative corrections compared for binning in variable Q2 = −(p1−
q1 − k)2 and Q2 = −(p1 − q1)

2.

The results are shown in Fig. 3. The complete radiative corrections for
that event selection are negative and amount from 12 % to 16% depending on
the range of the Q2 invariant. The corrections coming from photon vacuum
polarisation amount, for this event selection, to 6-7.5% depending on the
tagged invariant and are positive. The size of the corrections depends only
slightly on the form factor, as shown in Fig. 3. The cross sections predicted
with these two different form factors differ up to 35%. Yet, the radiative
corrections as a fraction of LO cross section differ at most by 1%. The form
factors used in this comparison were: the VDM form factor from GGRESRC
generator and the form factor based on 3 octet model from [16].

If we switch off the corrections to the untagged electron line we find out
that indeed, as stated in [13], the dominant contribution comes from the
tagged line. The difference, amounting to 1.5-2.5 %, is shown in Fig. 4.

One has to mention here that the Q2 = −(p1−q2)2 is not the invariant for
which the form factor is calculated. The correct invariant reads (p1−q1−k)2.
The imposed cuts assure that the second invariant is close to zero. The size
of the radiative corrections, if one uses the correct invariant, is also different.
Yet, the difference is small, as shown in Fig. 5.

As the TREBSBST [12] generator is not publicly available in its version
with radiative corrections, we compare here only our results with GGRESRC
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Figure 6: Comparison between EKHARA and GGRESRC Monte Carlo generators.

ekhara NLOb

ekhara NLO
ggresrc NLO

ekhara LO

NLOb cuts only for 0◦ < θγ < 5◦ or 175◦ < θγ < 180◦
r = 2Eγ/

√
s < 0.1

Q2 [GeV2]

σ
[n

b
]

4035302520151050

0.0001

1e− 05

1e− 06

1e− 07

Figure 7: Comparison between EKHARA and GGRESRC Monte Carlo generators.
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cuts only for 0◦ < θγ < 5◦ or 175◦ < θγ < 180◦
cuts for all θγ
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Figure 8: Comparison between EKHARA and GGRESRC Monte Carlo generators.

generator. To see the differences in the NLO predictions between the
EKHARA and GGRESRC event generators, we show in Fig. 6 the re-
sults with no direct angular cuts and the untagged invariant in the range
−0.18 GeV2 < (p2 − q2)

2 < 0, as a function of the tagged invariant. We
do not impose any cut on the emitted photon energy in EKHARA and use
Rmax=0.999 in GGRESRC. This should correspond to the situation were
one does not include any direct cut on the photon variables. Big differences
are observed. We were not able to trace back the source of the difference.

Smaller differences are observed (Fig. 7), when one imposes a cut-off on
the photon energy. Yet, as in GGRESRC the photons are partly integrated,
the compared cross sections are not defined identically and one cannot expect
a complete agreement. To come closer to the GGRESRC we have applied
cuts on the photon energy only if the photon polar angles are within 5 degrees
from the initial leptons direction. The results are also shown in Fig. 7. As
expected the results come closer, yet they are not in agreement. The relative
difference is shown in Fig. 8.

5. The software structure and the users guide

5.1. An overview of the code structure

The overview of the code structure is given here and for completeness we
repeat in part the description given in [17]. A more detailed users guide is a
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part of the distributed package.
Let us start with an overview of the directory structure of the distribution.

EKHARA is distributed as a source code. The code of the Monte Carlo
generator is located in the directory ekhara-routines. The main source file
of EKHARA is ekhara.for. There are other source files in the directory
ekhara-routines, which are automatically included:

• the e+e− → e+e−P modes are implemented in routines 1pi.inc.for

and its supplementary histograming routines are given in
routines-histograms 1pi.inc.for;

• the e+e− → e+e−π+π− mode is coded in routines 2pi.inc.for,
its supplementary histograming routines are in
routines-histograms 2pi.inc.for and helicity-amplitude rou-
tines are given in routines-helicity-aux.inc.for;

• the e+e− → e+e−χci and e
+e− → e+e−χci(→ J/ψ(→ µ+µ−)γ) modes

are implemented in routines chi.inc.for and its supplementary his-
tograming routines are given in routines-histograms chi.inc.for;

• the NLO corrections to e+e− → e+e−P modes are imple-
mented in routines 1pi 1ph.inc.for. It uses partly routines from
routines 1pi.inc.for. Its supplementary histograming routines are
given in routines-histograms 1pi.inc.for;

• the routines for the matrix and vector manipulations are located in
routines-math.inc.for;

• in routines-user.inc.for several routines, which can be changed by
a user in order to customise the operation of EKHARA, are collected;
they handle the data-card reading, the reporting of events, the form
factor evaluation, the filling of the histograms, the application of addi-
tional phase space cuts, etc.;

• all common blocks are included from the file common.ekhara.inc.for.
This file contains the detailed comments on the explicit purpose of the
most important common variables.

• the routines from the package alphaQEDc17 [25] to calcu-
late the vacuum polarisation corrections are contained in files:
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common.h,constants.f,constants qcd.f,dalhadshigh17.f,

dalhadslow17.f, dalhadt17.f,dggvapx.f,hadr5n17.f,leptons.f,

vacpol alphaQEDc17.inc.for

The operation of the EKHARA generator requires the following steps:

1. the initialisation,

2. the event generation,

3. the finalisation.

The main directory of the distributed version contains a readme.txt

file with a short description how to compile, run and test the program in
the regimes described above. It is suggested to use the Makefile, which is
placed in the main directory. An example of the full set of input files and
the plotting environment is supplied in the Env sub-directory. If one uses the
distributed Makefile, the content of the Env sub-directory will be put into
the EXE sub-directory together with an executable ekhara.exe.

5.2. the I/O scheme and files

All the input files of EKHARA are supposed to be located in the same
directory as the main executable, ekhara.exe. There are the following types
of the input files: random seeds, the parameter input, data-cards and his-
togram settings. An example of the full set of input files can be found in the
Env directory.

All the output files of EKHARA are written into ./output sub-directory.
There are the following types of the output files: logs of execution, histograms
and events.

The input files

The main input file is called input.dat. It contains all global settings,
which are explained in this file as well.

The channel-dependent parameters are collected in “data-cards”
card 1pi.dat, card 2pi.dat and card chi.dat. These data-cards allow
to set the total energy, types of included amplitudes and kinematic cuts.
A detailed description can be found in comments within these files. In
card 1pi.dat one can also use the piggFFsw switch in order to select the
form of the two photon pseudoscalar transition form factor. The recom-
mended values are 9 or 10 as these are the form factors which were fitted to
the widest data set [16], both in the space-like and time-like regions.

20



The channel-dependent histograming settings are given in
the files histo-settings 1pi.dat, histo-settings 2pi.dat,
histo-settings chi.dat and histo-settings 1pi 1ph.dat.

The output and the logging

The main execution log file is output/runflow.log. It contains main
information about the operation mode and status of EKHARA, this infor-
mation is also partly written into the standard output (i.e., the console).
At the end of a successful execution, the total cross section is reported to
output/runflow.log and also to the standard output.

A non-standard behaviour of the MC generator is reported into
output/warnings.log, while the critical problems in the event generator
operation are reported into the file output/errors.log.

In the case of a correct operation, output/errors.log and
output/warnings.log should remain empty. We strongly recommend to
keep track on this issue and report to the authors any warnings or errors. In
the NLO mode one can ignore warnings about negative weights in the part
without a photon. Yet in this case only weighted events can be used.

The output: histograms and plotting scripts

When histograming is allowed through settings in the input.dat, the
plain text files with the histogram data are saved at the end of the generator
execution.

• In the e+e− → e+e−π+π− mode the file histograms 2pi.out con-
tains the data for dσ/dQ2 histogram. One may use the plotting script
doplots.sh from directory histo-plotting 2pi in order to plot this
histogram (an installed Gnuplot is required).

• In the e+e− → e+e−P modes there is a wide set of histograms stored
in the files histo<Number>.<variable>.dat, where <Number> stands
for the histogram number and <variable> is the histograming variable
acronym.

One can use the plotting script do-everything.sh in the directory
histo-plotting 1pi in order to plot all the histograms and collect
them into a single postscript file. An installed LATEX system is required
for the latter.
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One can use the plotting script doplots.sh in the directory
t1-t2-bars 1pi in order to plot the 3D-bar graph, which shows the
event distribution in two variables: t1 and t2.

In the NLO mode the files histo th electron.dat,
histo th positron.dat and histo th pseudoscalar.dat con-
tain the data for ∆σ in the polar angles ∆θe− , ∆θe+ and ∆θπ0,η,η′

histograms respectively. ∆σ is the integrated cross section in a given
bin.

One can use the plotting script do-everything.sh in the directory
histo-plotting 1pi 1ph to plot all the histograms and collect them
into a single postscript file.

• In the e+e− → e+e−χci and e+e− → e+e−χci(→ J/ψ(→ µ+µ−)γ)
modes the file histograms chi.out contains the data for dσ/dQ2 his-
togram.

One can use the plotting script doplots.sh in the directory
histo-plotting chi in order to plot histogram and to obtain a single
postscript file.

As the histograms are stored as plain text files the user can use also her/his
favourite plotting programs to visualise the histograms.

The output: events

The generated four-momenta of the particles are stored in the following
variables accessible through common blocks:

p1 initial positron,
p2 initial electron,
q1 final positron,
q2 final electron,
qpion final pseudoscalar (e+e− → e+e−P (γ) modes),
k hp final photon (e+e− → e+e−Pγ modes),
qu final χci (e

+e− → e+e−χci modes),
q3 final µ− in e+e− → e+e−χci(→ J/ψ(→ µ+µ−)γ)

modes),
q4 final µ+ in e+e− → e+e−χci(→ J/ψ(→ µ+µ−)γ)

modes),
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k1 final photon in e+e− → e+e−χci(→ J/ψ(→ µ+µ−)γ)
modes),

pi1, pi2 final pseudoscalars (e+e− → e+e−π+π− mode).
contribute weights NLO.

The weights in the NLO mode allow to calculate a cross section, given

in nanobarns, for any event selection using a formula ∆σk =
∑

i wi

Nk
, with

k = 0, 1, where k = 0 stands for events without a photon and k = 1 stands
for events with one photon. In the output the k hp is a zero four vector for
events without a photon. wi is the weight, N0 is the number of events with
no photons and N1 is the number of events with one photon. The sum span
over all events for a given event selection.

In the standalone regime we suggest to use the routine reportevent 1pi

defined in the file routines-user.inc.for, which is called automatically for
every accepted unweighted event (e+e− → e+e−P modes only). In the NLO
mode the routine reportevent 1pi 1ph, defined in this same file, reports
every event used to calculate the cross section from the weighted events. In
the chi c modes the routine reportevent chi, which can be found in the file
routines-user.inc.for, reports momenta for every accepted unweighted
event. In the distributed version this routine writes the events to the file
output/events.out when WriteEvents flag is on.

5.3. Selected procedures

The top-level interface to the Monte Carlo generator is provided by the
routine

EKHARA(i) i = -1: initialise,
i = 0: generate event(s),
i = 1: finalise.

Only this routine should be called from an external program, when one
uses EKHARA in the event-by-event regime. An example is provided in
ekhara-call-example.for.

In order to describe briefly the “internal” structure of EKHARA, we list
several important routines.

EKHARA INIT read the reading the input files and datacards,
EKHARA INIT set the initialisation of the MC loop and mappings,
EKHARA RUN the MC loop execution,
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EKHARA FIN the MC finalisation and the saving the results.

5.4. Compilation instructions

Being distributed as a source code the program does not require installa-
tion, but a compilation and a linking are needed. EKHARA does not need
any specific external libraries, but requires

• a FORTRAN 77 compiler which supports the quadruple precision,

• a C compiler.

The current version of the program was tested on the following platforms :
Linux (Ubuntu 14.04, Ubuntu 16.04).

The program distribution contains the Makefile, with targets:
default64 - to built a standalone version of the MC generator, all64 -
to compile everything including default, ranlux-testing program and seed-
production and test64 - to compile everything and execute the test run
scripts.

A simple way to compile the program is to issue make default64, being in
the directory where the Makefile is located. This will produce ekhara.exe
(the main program executable) and copy it into the sub-directory EXE, to-
gether with the content of the Env sub-directory. The latter contains the
set of sample input files and histogram plotting scripts. We provide a full
set of necessary input files in the distribution package. It is advised to exe-
cute ekhara.exe in the directory EXE, where it is placed by default. Every
time one executes make default64, the input files in the directory EXE are
replaced with the sample ones from the directory Env.

EKHARA needs a random seed for operation. Different random seeds can
be obtained by using the Makefile target seed prod-ifort. It produces an
executable program seed prod.exe, which generates a set of random seeds.

5.5. A test run description

It is recommended to test the random number generator on a given
machine, before using EKHARA. It is also important to check whether
EKHARA can function properly on a given operational system and that
there are no critical bugs due to the compiler. We provide a test run package
for these purposes.

It is suggested to use the Makefile target test64. This will automatically
prepare and execute the following two test steps.
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The first step of the test run is the random number generator control.
The source file testlxf.for contains the ranlux test routines. The random
numbers are the only part of the code used in double precision.

The second step is the verification if the user-compiled EKHARA can
reproduce the set of results, created by a well-tested copy of EKHARA in
various modes. The test run environment contains directory test with pre-
calculated data for the comparison, the random seed and input files for each
mode. The script test.sh executes the user-compiled ekhara.exe in all the
control modes and compares the output with previously stored results.

Please read carefully the output of the test run execution in your console
and be sure there are no warnings and/or error messages.

5.6. A customisation of the source code by a user

We leave for a user an option to customise the generator to her/his needs
by editing the source code file ekhara-routines/routines-user.inc.for.
Notice that we always use explicit declaration of identifiers and the implicit
none statement is written down in each routine.

In the file ekhara-routines/routines-user.inc.for one can change

• the data-card reading (routines read card 1pi, read card 2pi and
read card chi),

• the form-factor formula (routine piggFF),

• the events reporting (routines reportevent 1pi,
reportevent 1pi 1ph and reportevent chi),

• the histograming (routines histo event 1pi, histo event 2pi,
histo event 1pi 0ph and histo event 1pi 1ph),

• additional kinematic cuts (routines ExtraCuts 1pi and
ExtraCuts 2pi).

6. Conclusions

In this paper we have presented the upgrades of the EKHARA Monte
Carlo generator. The main result being the radiative corrections to the reac-
tions e+e− → e+e−P , with a new algorithm of the phase space generation for
the reaction e+e− → e+e−Pγ. Comparisons with GGRESRC generator are
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also shown. Big differences are observed between the radiative corrections
calculated by the EKHARA generator, which uses NLO exact formulae and
the GGRESRC generator based on the structure function approach.
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