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Abstract

We implement the Lanczos algorithm on natural orbital basis to solve the zero-temperature

Green’s function of Anderson impurity models, following the work of Y. Lu, M. Höppner, O.

Gunnarsson, and M. W. Haverkort, Phys. Rev. B 90 (2014) 085102. We present the technical de-

tails, generalize the algorithm to the cases of particle-hole asymmetry, with local magnetic field,

and of two impurities. The results are benchmarked with conventional Lanczos, quantum Monte

Carlo, and numerical renormalization group methods, demonstrating its potential as a powerful

impurity solver for the dynamical mean-field theory.
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1. Introduction

The Anderson impurity model (AIM) [1] is one of the basic models in condensed matter

physics. It describes the physics of a local electron orbital with on-site Coulomb repulsion em-

bedded in a conduction electron band and is widely used to describe the dilute magnetic impu-

rities in metals [2], Kondo effect [3], as well as impurity quantum phase transitions [4]. In the

past two decades, stimulated by the development and application of the dynamical mean-field

theory (DMFT) [5, 6], the study of AIM receives revived attention because in DMFT, a lattice

Hamiltonian for the correlated electrons is mapped into an AIM with self-consistently deter-

mined electron bath. The core calculation of DMFT is the iterative solution of the self-energy
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of an AIM with arbitrary hybridization function. The AIMs generalized from single impurity or

one bath to multiple impurities and/or multiple baths are also the target of active researches, both

for describing physical impurity systems [7, 8] and for solving the cluster extensions of DMFT

equations [9].

Given the importance of AIM and the lack of rigorous solution for general situations, it is

naturally desirable to have an accurate, fast, and flexible method for solving the AIM, which is a

challenging quantum many-body problem. There have been a variety of numerical approaches to

solve AIM, each with its advantages and disadvantages. The exact diagonalization (ED) [10] and

Lanczos [11] methods produce the exact self-energy of AIM with a finite number of discrete bath

sites. Due to the exponential increase of Hilbert space dimension with system size, these meth-

ods are limited to small number of bath and impurity orbitals. Ideas such as the distributional

ED [12] have been explored to overcome this problem. Quantum Monte Carlo methods, includ-

ing the Hirsch-Fye [13] and various continuous time (CT-QMC) algorithms [14], are essentially

exact and flexible but face difficulties at very low temperatures and at calculating Green’s func-

tions (GFs) on real frequencies. The numerical renormalization group (NRG) method [15] has

extremely high accuracy at low energies but lacks resolution at high energies and is limited to

small number of bath bands [16, 17] or impurities [18]. The recently developed hierarchical

equation of motion method [19] is highly efficient and versatile, but the required computing re-

sources increase fast with decreasing temperature and with increasing number of the Lorentzians

used to decompose the hybridization function. Analytical methods are also investigated, such as

perturbation theories [20–22], non-crossing approximation [23] and its extensions [24], equation

of motion of GFs [25], all with partial success.

Recently, a series of studies disclosed an interesting feature of the ground state of AIM.

That is, the ground state of AIM can be efficiently described by a limited number of Slater

determinants formed on the optimal one-electron basis, the natural orbital (NO) basis [26, 27].

This feature was employed to design highly efficient numerical algorithms for calculating the

ground state and zero-temperature GFs of AIM. The configuration-interaction (CI) solver of

AIM based on adaptive basis was explored in Ref. [28]. The natural orbital renormalization

group algorithm [29, 30] was developed to iteratively refine the NOs in a way similar to the

restricted active space approach in quantum chemistry [28]. O(N3
b
) scaling of the computing cost

with the number of bath sites Nb is obtained [30] and the study of a 2×2 cluster with Nb = 60 was

2



reported. In another work, the Lanczos algorithm based on sparse storage of NOs is designed and

integrated into the DMFT self-consistent calculations [31]. The results obtained using Nb = 301

are compared with the results from NRG, demonstrating the superior advantage of this method

compared to traditional ED or Lanczos methods. Recently, the variational determination of the

optimal electron orbital was demonstrated on the one- and five-orbital AIMs [33].

In this paper, we study the NO-based Lanczos method proposed in Ref. [31]. The purpose is

first to provide algorithm details that are important for the implementation of the code but lacking

in the original work. Second, we extend this method to the cases of particle-hole asymmetry,

under local magnetic field, and of two impurities. In all the cases, we demonstrate the accuracy

and applicability of this method. The rest part of this paper is organized as follows. In Section 2

we introduce the model that we study. In Section 3 and 4, the natural orbital basis is defined

for the impurity model. The algorithm details about NO-based Lanczos and its difference from

the conventional Lanczos method are given in Section 5. The GF is calculated in section 6.

Section 7 presents the results from NO-Lanczos and compares them with NRG and CT-QMC

results, including the results for two-impurity AIM. A summary is given in Section 8.

2. Anderson impurity model

We consider a general Nd-impurity AIM with the following Hamiltonian

H = Hcond + Himp + Hhyb. (1)

The first part Hcond describes the non-interacting bath,

Hcond =

Nb
∑

k=1

∑

σ

ǫkc
†

kσ
ckσ. (2)

The second term

Himp = −µ

Nd
∑

i=1

∑

σ

niσ + U

Nd
∑

i=1

ni↑ni↓ +
∑

i< j

Ui jnin j (3)

describes Nd local impurities with on-site Coulomb repulsion U and inter-impurity interaction

Ui j. ni =
∑

σ niσ is the electron number operator of impurity site i. The impurities are coupled to

bath electrons via the hybridization term

Hhyb =

Nd
∑

i=1

∑

k,σ

vik

(

d
†

iσ
ckσ + d

†

iσ
ckσ

)

. (4)
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The hybridization function matrix is defined as

Γi j(ω) ≡
∑

k

vikvk j

ω − ǫk

. (5)

In this paper, we first consider the diagonal hybridization function matrix

Γi j(iωn) = δi j

π∆ωc

iωn + iωcsgn(ωn)
, (6)

which corresponds to the Lorentzian spectral function on the real frequency axis, −1/πImΓii(ω+

iη) = ∆ω2
c/(ω

2 + ω2
c). The hybridization matrix with both diagonal and off-diagonal elements

will be studied in Fig.14. Throughout this paper, we use ωc = 1.0 as the unit of energy. ∆ is the

hybridization strength.

The Hamiltonian parameters vik’s and ǫk’s used in this paper are obtained by the least square

fitting of Eq. (6) using Eq. (5) on the Matsubara axis, as done in most ED impurity solvers [34].

A factor 1/ωs
n could be added to the cost function to enhance the fitting accuracy in the low

frequency regime. Considering that the relatively large number of bath sites used in this work

already gives small fitting error, here we use the simplest fitting scheme without 1/ωs
n factor. In

this paper, we will first consider the single impurity case Nd = 1 and then extend our study to

Nd = 2. The effect of fitting is shown in Fig. 1 for Nd = 1 and Nb = 5, 15, and 27. The fitting is

already very accurate for Nb = 15 and excellent for Nb = 27.

3. Nature orbital basis

A many-electron state |Ψ〉 can be expanded into the linear combination of Slater determinants

defined by various occupancies of single particle orbitals {|φi〉 = c
†

i
|0〉}. Here |0〉 is the vacuum

state and c
†

i
creates an electron on the orbital |φi〉. The average electron number ni = 〈Ψ|c

†

i
ci|Ψ〉

measures the probability of φi being occupied in |Ψ〉. Those orbitals with ni ∼ 1 have a large

probability of being occupied in each Slater determinant, while those with ni ∼ 0 being probably

empty. Therefore, the appearance and disappearance of such orbitals are fixed in the Slater

determinants of |Ψ〉. Various occupancies of the partially occupied orbitals 0 < ni < 1 generate

the active space, which contains the Slater determinants required for an accurate expansion of

|Ψ〉.

Among all the single particle orbitals, NO has the most extreme distribution of occupancies

ni and hence allows for the smallest active space. By using the NO basis one needs the least
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Figure 1: (Color online). Fitting of Lorentzian hybridization function Eq. (6) with Nd = 1 (red square) using different

number of bath sites Nb = 5, 15, and 27 (lines). The real part of Γ(iωn) is zero. Here, ωc = 1, π∆ = 0.02, and β = 1000

is used in the Matsubara frequencies.

number of Slater determinants to representΨ to a given precision [29, 35]. NO ψi is defined as the

eigenstate of the one-particle density matrix γσ, i.e., γσψiσ = niσψiσ. Here, γi jσ = 〈Ψ|c
†

iσ
c jσ|Ψ〉

and {c
†

iσ
} and {ciσ} are the creation and annihilation operators of electrons on a set of orthonormal

spin-orbitals {φiσ}. In this paper, we only use the single-particle density matrix that is diagonal

in the spin index σ.

Previous works [28–30] show that the ground state of AIM can be efficiently represented

on the basis of NO basis because the number of active orbitals is on the order of the number

of interacting sites Nd, much smaller than the total number of orbitals Nd + Nb. The required

number of Slater determinants is much smaller than the full dimension of the Fock space 4Nd+Nb .

This makes it possible to significantly reduce the computational cost for Lanczos calculation of

the ground state. In Fig. 2, we expand the ground state of AIM into a linear combination of

Slater determinants and show the distribution of the probability (coefficient squared). It is done

for the exact ground state of AIM with Nd = 1 and Nb = 7 for increasing U values at particle-

hole symmetric point µ = U/2 (from (a) to (d)). Each panel contains results of three different

single-particle bases: NO basis, original basis on which the Hamiltonian Eq. (1) is defined, and
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Figure 2: (Color online). The probability α2
i

of the Slater determinant |φi〉 in the ground state of AIM, sorted in descend-

ing order. The AIM contains one impurity site and 7 bath sites. ORI and HF represent the original and the Hartree-Fock

basis, respectively. (a) U = 0.2π∆; (b) U = 10π∆; (c) U = 20π∆; (d) U = 100π∆. Other parameters are π∆ = 0.02,

µ = U/2.

Hartree-Fock (HF) basis from diagonalizing γσ of the HF ground state. For all three bases,

only a small fraction of the total 48 = 65536 Slater determinants contribute significantly to the

ground state (i.e., with probability larger than 10−8). For all U values, the NO basis always

gives the steepest decaying curve and the ground state contains less than 400 significant Slater

determinants on the NO basis. For small U values, the curve for the HF basis decays faster than

that of the original basis, close to that of the NO basis. For large U values, the curve for the HF

basis decays slowest.

4. Orbital transformation

we diagonalize the single-particle density matrix γσ,

U−1
σ γσUσ = Λσ. (7)

Here, Uσ is an unitary matrix and (Λσ)i j = niδi j. The creation operators on the NO basis c̃
†

iσ

is expressed in terms of the original operators as c̃
†

iσ
=
∑

j

(

U−1
)

i j
c
†

jσ
. This transformation will
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mix the impurity and the bath orbitals and lead to complicated interaction term, significantly

increasing the storage cost of calculation. Following Ref. [31], we use a simplified scheme:

requiring that the transformation does not mix the impurity and the bath sites. We only need to

diagonalize the block-diagonal parts of γσ. Written on the basis
{

d1σ, ..., dNdσ, c1σ, ..., c
†

Nbσ

}

, they

read

(

γd
σ

)

i j
= 〈Ψ|d

†

iσ
d jσ|Ψ〉,

(

γc
σ

)

i j = 〈Ψ|c
†

iσ
c jσ|Ψ〉. (8)

A block-diagonal unitary matrix U is used to diagonalize γd
σ and γc

σ,

Uσ =





















Ud
σ 0

0 U c
σ





















, (9)

(

Ud
σ

)−1
γd
σU

d
σ = Λ

d,

(

U c
σ

)−1
γc
σU

c
σ = Λ

c. (10)

Here, Λd and Λ
c are diagonal matrices with occupation numbers as the diagonal elements. In

the new basis, the creation operators read

d̃
†

iσ
=
∑

j

(

Ud
σ

)∗

ji
d
†

jσ

c̃
†

iσ
=
∑

j

(

U c
σ

)∗
ji c
†

jσ
. (11)

The advantage of using the block-diagonal ansatz for Uσ is that in the new operator represen-

tation, the Hamiltonian maintains the definition of impurity and bath. As to be shown below,

although the new basis is not exact NO basis, it still significantly reduces the number of Slater

determinants required by the ground state. For a given |Ψ〉, finding the above transformation

is trivial for systems on the order of Nd ∼ 100 and Nb ∼ 102. The ground state itself, however,

needs to be refined iteratively by combining the methods such as ED, CI, or Lanczos [28, 29, 31].

Starting from an approximate ground state, we calculate the density matrices γd
σ and γc

σ,

diagonalize them, and produce the new operators in Eq. (11). The new Hamiltonian after the

unitary transformation can be written in terms of d̃iσ and c̃iσ and their Hermitian conjugate.

Following Ref. [31], we introduce a pictorial representation of the new Hamiltonian and the
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Figure 3: (Color online). Pictorial representation of the single-particle orbital basis and the form of Hamiltonian on it.

Squares (circles) represent impurity (bath) sites. The electron occupation of each orbital is shown by the degree of filling

of the symbol, niσ = 0 for an empty orbital and niσ = 1 for an occupied orbital. The red lines, black, and blue lines are

for intra-bath, intra-impurity (in case Nd > 1), and impurity-bath hoppings. The dashed lines show the hoppings between

the cluster and the valence/condunction chains. Here, only hoppings to the first condunction/valence sites are shown.

single-particle basis. Fig. 3 shows examples of such figures for a single impurity AIM (Fig. 3(a))

and for a two-impurity AIM (Fig. 3(b)).

Fig. 3 (and similar figures in Fig. 9,12, and 13 below) is produced from the following pro-

cedure. (1) We find the natural orbital from the converged ground state; (2) among the obtained

bath orbitals, we identify the valence (filled), conduction (empty), and the partially filled bath

orbitals; (3) write down the Hamiltonian in the new orbital basis; (4) tridiagonalize the hopping

Hamiltonian of the valance bath and of the conduction bath, separately; and (5) plot a square for

the impurity orbital and a circle for the bath orbital, fill them according to their occupations, and

plot a line between every two sites, with the line width proportional to the hopping strength.

Both previous [31] and this study find that the transformed Hamiltonian has the structure

shown in Fig. 3. First, the bath orbitals fall into three categories, a conduction band that is al-
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most empty, a valence band that is almost fully occupied, and a partially occupied band. The

number of partially occupied bath sites equals to that of the impurity sites. The small number

of partially filled orbitals is consistent with the fact that the ground state has limited number

of Slater determinants on the NO basis, i.e., a relatively small active space. Second, the direct

hopping between the valence and the conduction sites are small, as shown in the insets of Fig. 9,

12, and 13. When applying the Hamiltonian on a Slater determinant with fully occupied va-

lence and empty conduction orbitals, such hopping terms will generate new Slater determinants

with small coefficients only. Third, after tridiagonalization, the conduction and the valence part

of the Hamiltonian can be represented by two separate semi-infinite chains. Since the tridiago-

nalization only mixes the NOs with same eigenvalues of the single-particle density matrix, the

obtained chain sites still represent NOs. Fourth, if we bound the partially occupied bath sites and

the impurity sites into a cluster, they determine the dimension of the active space, or the number

of Slater determinants required for a faithful representation of the ground state. The hopping

strengths between the active orbitals (i.e., cluster orbitals) and the inactive orbitals (i.e., valence

and conduction orbitals) are determined by the original hopping matrix and the orbital transfor-

mation and they have variations in general. From the same argument made for the second point,

we expect that the hoppings between the cluster orbitals and the two chains are localized to first

few sites of the conduction and valence chains. This is indeed the case in the actual calculation.

These features of the transformed Hamiltonian guarantee the sparseness of the Hamiltonian

matrix and are crucial for the applicability of the NO-based Lanczos algorithm. In the schematic

picture shown in Fig. 3, we only plot the hopping from the cluster sites to the first sites of the two

chains. Constant line width is used and particle-hole symmetric situation is shown. In the actual

calculation shown in the insets of Fig. 9,12, and 13 below, longer range hoppings also exist. The

line width varies with sites and the particle-hole asymmetric situation is also considered.

5. NO-based Lanczos Impurity solver

5.1. Lanczos method

In this subsection, we give a brief overview of the Lanczos approach to the ground state.

Details can be found in Ref. [11]. For a given initial state |ψ0〉, the M-th order Krylov space is

defined as

KM(|ψ0〉) =
{

|ψ0〉, H|ψ0〉, · · · ,H
M−1|ψ0〉

}

, (12)
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where KM(|ψ0〉) is the M-dimensional subspace of a d-dimensional full Hilbert space. Usually

M ≪ d. A set of orthonormal basis in KM(|ψ0〉) can be constructed recursively as

|ψi+1〉 = H|ψi〉 − ai|ψi〉 − b2
i |ψi−1〉, (i = 0, 1, · · · , M − 1) (13)

with the initial values b0 ≡ 0 and |ψ−1〉 ≡ 0. The coefficients are given by

ai = 〈ψi|H|ψi〉/〈ψi|ψi〉,

b2
i = 〈ψi|ψi〉/〈ψi−1|ψi−1〉. (14)

After normalization, one obtains the orthonormal Lanczos basis {|ψ0〉, |ψ1〉, · · · , |ψM−1〉} of the

subspace KM(|ψ0〉). On this basis, the Hamiltonian becomes a tridiagonal matrix

T =









































































a0 b1 0

b1 a1

. . .

. . .
. . .

. . .

. . . aM−2 bM−1

0 bM−1 aM−1









































































(15)

and can be diagonalized by a M × M unitary matrix Q as

DT = Q−1TQ. (16)

The diagonal elements of DT give the approximate eigenvalues {Em} and the corresponding

approximate eigenvectors satisfying H|Ψm〉 ≈ Em|m〉 are given by

|Ψm〉 =

M−1
∑

i=0

Qim|ψi〉, (m = 1, 2, · · · , M). (17)

The convergence of the extremal eigenvalues with increasing Krylov space dimension M is very

fast. High precision results can be obtained with M of the order 102. The initial state |ψ0〉 can be

chosen arbitrary but must have a finite overlap with the ground state.

One could work on a small Krylov space and iterate the process to improve the accuracy of

the ground state [11]. That is, for the k + 1-th Lanczos, one can take the ground state of the k-th

Lanczos calculation as the initial vector, |ψ0〉k+1 = |Ψ1〉k (k = 1, 2, · · · ). For the first iteration

k = 1, |ψ0〉1 is chosen randomly. The iteration stops when the ground energy reaches a given

precision,
∥

∥

∥

(

Ĥ − E1k

)

|Ψ1〉k
∥

∥

∥ < ǫL. (18)
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In our NO-based Lanczos calculation, we use this iterative Lanczos method with a convergence

criterion ǫL = 1.0 × 10−6.

5.2. NO-based Lanczos method

The conventional Lanczos method uses a complete set of Slater determinants as the working

basis. Each Lanczos vector |ψi〉 is stored in the memory as a d-dimensional vector and the Hilbert

space dimension d increases exponentially with system size, leading to exponential growth of

computational cost. As shown in Fig. 2, the ground state of AIM contains only a tiny fraction of

all the Slater determinants if we choose the NO orbital. Those Slater determinants with negligibly

small coefficients can be safely ignored. This feature is employed in the NO-based Lanczos

method to reduce the memory cost of Lanczos calculation, making it possible to treat AIM with

Nb ∼ 102 [31].

We use two iteration loops in our NO-based Lanczos method. The outer loop is the orbital

iteration, in which the single-particle density matrix of an approximate ground state is diago-

nalized to generate the new NO basis. Inside the orbital iteration, there is the sparse Lanczos

iteration, in which a new approximate ground state is calculated in a small subspace of Slater de-

terminants on the fixed NO basis. These determinants are picked out by applying the expanding

operator to an initial subspace. Below, we describe the two iterations one by one.

5.2.1. Orbital iteration

The orbital iteration is composed of the following steps.

1) For the first iteration i = 1, we generate the diagonal blocks γ
d(0)
σ and γ

s(0)
σ of the density

matrix γ
(0)
σ from an approximate ground state of AIM Eq. (1). One could use the Hartree-Fock

approximation or other approximations such as the lattice density functional theory [36] to

produce the approximate ground state. In this paper, we use the Hartree-Fock approximation,

i.e., γ
(0)
σ = γHF

σ .

2) For iteration i > 1, diagonalize both the impurity and the bath density matrices γ
d(i−1)
σ and

γ
c(i−1)
σ to produce U

(i−1)
σ according to Eqs.(9) and (10). After the new operators are obtained

from Eq. (11), H(i) is expressed in terms of the new operators, which has the structure depicted

in Fig. 3.



start: orbital iteration i = 1

density matrix γ
(i−1)
σ , Eq. (8)

NOs, Hamiltonian H(i), Eqs. (9)-(11)

terminating criterion, Eq. (19)

sparse Lanczos iteration

ground state |Ψ1〉
(i), E

(i)

1

converge:

ǫ(i) < ǫ f

i→ i + 1

end

Yes

No

Figure 4: (Color online). Flow chart of the orbital iteration.

3) The ground state |Ψ1〉
(i) of H(i) is then solved by the sparse Lanczos iteration. We set the

terminating criterion for the sparse Lanczos iteration as follows,

ǫ(i) = 10−4, or j = max (i, 4), (i ∈ stage one);

ǫ(i) = ǫ(i−1)/4, (i ∈ stage two). (19)

That is, we split the orbital iterations into two stages: stage one (the constant-ǫ(i) stage for

small i) and stage two (the decreasing-ǫ(i) stage for large i). To get the maximum efficiency,

we use different strategies in these two stages to terminate the Lanczos iteration. The orbital

iteration terminates when ǫ(i) < ǫ f = 3 × 10−7.

4) If ǫ(i) > ǫ f , calculate the new density matrix γ
(i)
σ from |Ψ1〉

(i) using Eq. (8). Go back to step

2).
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5.2.2. Sparse Lanczos iteration

After the i-th orbital transformation, the approximate NO basis and H(i) are obtained. For

the fixed NO basis and H(i), we call the sparse Lanczos process to calculate the ground state and

energy of H(i) to a given precision ǫ(i). We use the following iterative scheme to avoid using the

complete working basis. We start from a small subspace containing a few most important Slater

determinants. We then expand the subspace by adding to it some new Slater determinants which

are generated by applying the expanding operator on the subspace. Lanczos calculation is done

in the expanded subspace to produce the ground state of H(i). From this ground state, we find out

those Slater determinants that are unimportant and remove them from the subspace, compressing

the subspace. We finally obtain a new subspace which is in general larger than the original one

but is more relevant to the true ground state. We start the next round of expanding, Lanczos,

and compressing process. This iteration is carried on until the ground state reaches a prescribed

precision ǫ(i).

For the expanding process, one needs to enlarge the subspace for Lanczos in such a way that,

first, only important Slater determinants are added and, second, the dimension of the subspace in-

creases in a controlled way so that the subsequent Lanczos calculation can be carried out without

too much resources. If the NO-based Lanczos method works in practice, as the orbital iteration

carries on, the maximum dimension of the subspace after compressing should saturate to a con-

stant value, which is close to the actual number of Slater determinants required to describe the

ground state to a given precision. For AIM, we find that the saturated subspace dimension is on

the order of 103 for ǫ f = 10−7 which is sufficient for most purposes. In Ref. [31], ǫ f = 10−14 is

used for systems with Nb = 301 and the saturated subspace dimension is 109.

Suppose we have an initial subspace S 0 which contains a given set of Slater determinants,

S 0 = {|w1〉, |w2〉, · · · , |wn0〉}. In the i-th orbital iteration, the expanded subspace S 1 reads

S 1 = S 0 ∪ Ĉ(i)S 0. (20)

In general, one could apply Ĉ(i) to S 0 n times to generate a large enough subspace S n. The

simplest Ĉ(i) is the linear combination of density operators, such as Ĉ(i) =
∑

σ

(

c
†

1σ
c2σ + h.c.

)

+
(

d
†

1σ
c2σ + h.c.

)

. Here diσ and c jσ are respectively the annihilation operators of the impurity and

the bath NOs in the i-th orbital iteration. C(i) should include all the hopping terms of the Hamil-

tonian. In this paper, we first include in C(i) all the intra-cluster and intra-valence/conduction

band hoppings. To prevent the space from increasing too fast, for each cluster site, among its
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Figure 5: (Color online). The subspace S 0 and S 1
mid

for single Anderson model containing 7 bath, neglecting the spin

indices. S 0 = {|φ1〉
0, |φ2〉

0}, S 1
mid
= {|φ1〉

0, |φ2〉
0, |φ3〉

1
mid
, |φ4〉

1
mid
}.

hoppings to all the valence/conduction sites, we only keep the largest one. We also neglect the

valence-conduction hopping terms in C(i). Note that once the subspace is generated, we use the

full H(i) without approximation in the Lanczos calculation to get the ground state. The pictorial

representation of Ĉ(i) is the same as H(i) and is given in Fig. 3, both for the single- and for the

two-impurity AIMs.

In the following, we describe the algorithm of sparse Lanczos. For simplicity, we only discuss

the single-impurity AIM and neglect the spin indices. Here the i is used to denote the orbital

iteration number, and j to denote the Lanczos iteration number.

1) Inside the i-th orbital iteration where both NO orbital and H(i) are fixed, choose an initial

subspace S 0. For the first several orbital iterations (small i), we use the ground state at

µ = U = 0 to construct the NOs. Since we diagonalize the impurity and the bath density

matrices separately, in the particle-hole symmetric case, we obtain two NOs and form the

subspace S 0 as shown in Fig. 5 (with spin indices neglected),

S 0 = {|φ1〉
0, |φ2〉

0}. (21)

In the particle-hole asymmetric case, S 0 contains all the 42 = 16 different configurations of
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end

Yes

No

Figure 6: (Color online). Flow chart of the sparse Lanczos iteration.

the two cluster sites. Once the NOs become stable (larger i), we use

S 0 = {|φ1〉
0, |φ2〉

0} ∪ S (i−1), (22)

where S (i−1) is the subspace of Slater determinants appearing in the ground state of H(i−1)

with updated NOs. Eq.(22) guarantees that the important Slater determinants |φ1〉
0 and |φ2〉

0

are always included in S 0.

2) Construct the expanding operator Ĉ(i) from the dominant non-interacting part of H(i), as de-

scribed in the above text and pictorially shown in Fig. 3 (a).
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3) For j = 1, 2, ..., expand the subspace S j−1 to obtain S
j

mid
,

S
j

mid
= S j−1 ∪ Ĉ(i)S j−1, ( j = 1, 2, · · · ). (23)

For an example, S 1
mid

contains four Slater determinants which are shown pictorially in Fig. 5.

4) In the subspace S
j

mid
= {|φ1〉

j, |φ2〉
j, · · · , |φnmid

〉 j}, do iterative Lanczos calculation for H(i) to

produce the ground state |Ψ1〉
j

mid
and energy E

j

1
to a given precision as described by Eq. (18).

We use the Krylov space dimension M = 40. For the initial Lanczos vector |ψ0〉
j, we use the

following scheme,

|ψ0〉
j = |ψ〉rand, ( j = 1, i ∈ stage one);

|ψ0〉
j = |Ψ1〉

(i−1), ( j = 1, i ∈ stage two);

|ψ0〉
j = |Ψ1〉

j−1, ( j > 2). (24)

Here |ψ〉rand is a random vector in subspace S 0. The two stages of the orbital iteration are

defined below Eq.(19 ). The ground state and energy are obtained as

|Ψ1〉
j

mid
=

nmid
∑

k=1

αk |φk〉
j,

E
j

1
=

j

mid
〈Ψ1|H

(i)|Ψ1〉
j

mid
. (25)

The iteration is terminated if

∣

∣

∣

∣

j

mid
〈Ψ1

∣

∣

∣[H(i)]2
∣

∣

∣Ψ1〉
j

mid
−
[

j

mid
〈Ψ1

∣

∣

∣H(i)
∣

∣

∣Ψ1〉
j

mid

]2
∣

∣

∣

∣

< ǫ(i)
∣

∣

∣E
j

1

∣

∣

∣

2
. (26)

This criterion measures how close E
j

1
is to the true ground state energy of H(i) in the full

Hilbert space, being different from the subspace precision ǫL in Eq.(18).

The ground state and the final subspace are given as

|Ψ1〉
(i) = |Ψ1〉

j

mid
,

E
(i)

1
= E

j

1
,

S (i) = S
j

mid
. (27)

Otherwise, do step 5).
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5) To maintain a relatively small subspace, some determinants with small coefficients αk in the

ground state Eq. (25) will be removed from the subspace S
j

mid
. The compressed subspace is

denoted as S j with dimension n j, and the ground state in this subspace |Ψ1〉
j,

S j =

{

|φk〉
j, (k = 1, 2, ..., n j)

∣

∣

∣

∣

|φk〉
j ∈ S

j

mid
, α2

k > ǫcut

}

,

|Ψ1〉
j =

1

c

n j
∑

k=1

αk |φk〉
j. (28)

Here c =

√

∑n j

k=1
α2

k
is the normalization constant. We use a cut-off value ǫcut = ǫ

(i). Go back

to Step 3) with the initial Lanczos vector |ψ0〉
j+1 = |Ψ1〉

j. This process is iterated until the

required precision is met.

5.2.3. Performance analysis

The amounts of Slater determinants n involved in the calculation are shown as functions of

the iteration number k in Fig. 7. The data for the single impurity AIM with Nb = 27 bath sites

are shown in Fig. 7(a) and those for the two-impurity AIM with Nb = 10 in Fig. 7(b). For both

models, the involved number of Slater determinants saturates in the large iteration regime where

ǫ(i) decreases to 10−7. For the single-impurity AIM, this maximum subspace dimension is less

than 800 and the ground state has less than 200 Slater determinants at the precision 10−7. These

numbers for the two-impurity AIM are 8000 and 1000, respectively.

In our calculation, in order to accelerate the convergence and to avoid too fast increase of

the subspace dimension, besides the standard algorithm stated above, we used some tricks to

optimize the calculation. We split the iteration process to two stages. In the first stage, we fix the

error ǫ(i) = 10−4 for each sparse Lanczos iteration. The sparse Lanczos iteration is terminated

either when this precision is reached or when the iteration number j = max(i, 4) is reached.

This is done because in the first several orbital iterations, the NOs are still inaccurate and it is

meaningless to do the Lanczos with extremely high precision. Instead, we increase the precision

of the Lanczos calculation gradually as the quality of NO is improved with the orbital iteration.

Choosing j = max(i, 4) is a convenient trick for this purpose. In this stage, we use a random

vector in the subspace S 0 = {|φ1〉
0, |φ2〉

0} as the initial Lanczos vector. Correspondingly, in

Fig. 7(a) and (b), dips appear after at each orbital transformation (grey bar), such as k = 3 in

Fig. 7(a) and k = 5 and 9 in Fig. 7(b). This is because we use S 0 as the initial space for every
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Figure 7: (Color online). The number of Slater determinants n(k) in the ground state after the compressing (solid red

line) and in the subspace after expansion (dashed blue line). k is the accumulated Lanczos iteration number in all orbital

iterations. The grey bars mark the orbital transformations and dots on the curves mark the sparse Lanczos calculation.

(a) Single impurity AIM with 27 bath sites, µ = 10π∆, U = 2µ. The ǫ(i) values for i = 1 ∼ 7 are respectively 1.00×10−4 ,

1.00×10−4, 1.00×10−4, 2.50×10−5, 6.25×10−6, 1.56×10−6, and 3.91×10−7. (b) two-impurity AIM with 10 bath sites,

µ1 = 10π∆, U1 = 2µ, µ2 = 20π∆, U2 = 2µ2, and U12 = 15π∆. π∆ = 0.02. The ǫ(i) values for i = 1 ∼ 8 are respectively

1.00 × 10−4, 1.00 × 10−4, 1.00 × 10−4, 1.00 × 10−4 , 2.50 × 10−5, 6.25 × 10−6, 1.56 × 10−6 , and 3.91 × 10−7.

sparse Lanczos iteration. When we observe the real convergence of Lanczos calculation Eq. (26),

we go to the next stage.

In the second stage, when the orbital iteration enters a stable track, for each new orbital basis,

we use Eq. (22) to prepare the initial subspace S 0 for expansion. We also use the ground state

of last orbital iteration with updated orbitals as the initial Lanczos vector |ψ0〉. In this stage, the

dimension of the subspace increases with the Lanczos iteration and reaches a peak value at each

orbital transformation. This is because the ground state in the previous orbital basis contains

some Slater determinants that are unimportant in the new orbital basis and are removed in the

compression process. The peak value of the subspace dimension saturates as the transformation

matrix Uσ approaches unity after about 10 ∼ 20 total iterations.
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Figure 8: (Color online). (a) The maximum subspace dimension (red line) and the number of Slater determinants in the

ground state (blue) as functions of Nb. (b) The computation time for the ground state (green line) as a function of Nb. The

data is from the machine with one 2.80 GHz Intel(R) Xeon(R) CPU. The results slightly depend on the bath parameters of

AIM. The error bars are obtained from results of 10 calculations with different fittings of the same hybridization function.

For the single impurity case shown in Fig. 7(a), at the first stage (i = 1, 2, 3), the terminating

condition j = max(i, 4) for the Lanczos iteration has not been met before the precision 10−4

is reached after two Lanczos iterations, giving two dots inside neighbouring grey bars. From

i = 4 on, the orbital iteration enters the second stage and the criterion becomes ǫ(i) = ǫ(i−1)/4.

In Fig. 7(b) for the two-impurity case, we find that in the orbital iteration i = 1 and i = 2,

the precision 10−4 is not reached before j = max(i, 4) = 4 is satisfied, giving 4 dots inside

neighboring grey bars. For i = 3 and i = 4, the precision 10−4 is reached first. The number of

Lanczos iterations are 3 and 2, respectively. From i = 5 on, the orbital iteration enters the second

stage and the criterion becomes ǫ(i) = ǫ(i−1)/4.

In Fig. 8, we show the amount of involved Slater determinants and calculation time as func-

tions of Nb for the ground state of single-impurity AIM. In Fig. 8(a), the number of maximum

subspace dimension and the number of Slater determinants involved in the ground state are
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shown. Both decrease weakly as Nb increases and their ratio weakly increases from 3 to 10.

Only about 10% of the Slater determinants in our subspace finally appears in the ground states.

This shows great potential of the present algorithm to handle a large Nb. This is also demon-

strated in previous works [29, 31].

The weakly decreasing behavior in Fig.8(a) deserves some discussion. The ground state

of AIM is a linear combination of a large number of Slater determinants. On the NO basis,

only hundreds of them have significant weights in the ground state and their number is almost

independent of Nb, if we do not consider the shift of the bath energy levels with Nb. As Nb

increases, a better fit of the hybridization gives denser bath energy levels close to the Fermi

energy, which have smaller influences on the ground state energy and generate more insignificant

Slater determinants than those generated by the enlargement of Hilbert space. Under a fixed

precision, this leads to the weakly decrease of the number of Slater determinants in the ground

state and in the subspace.

In Fig. 8(b), the calculation time for the ground state of single impurity AIM is linear in

Nb. For the single impurity AIM with Nb = 29, it takes about one minutes on our machine. In

the present algorithm, the most time-consuming operations are (a) applying C(i) to a space of

Slater determinants, and (b) calculating H(i)ψ in the Lanczos iteration. The number of hopping

terms contained in C(i) is proportional to Nb due to the neglect of valence-conduction hoppings.

However, the hopping terms in H(i) are conserved and their number increases as N2
b

in the large

Nb limit, with a small coefficient. Therefore, we expect that the observed linear Nb dependence

of computing time will finally change into N2
b

for larger Nb.

It should be noted that although our algorithm is efficient for calculating the ground state

of single- and multiple-impurity Anderson models, and for the Green’s function of a single-

impurity Anderson model, the calculation of Green’s function for two-impurity Anderson model

is significantly slow. In this work, we use the standard Lanczos method to calculate Green’s

functions (see below) and confine our demonstration for the two-impurity Green’s functions to

Nb = 14. There are other methods to calculate Green’s functions [32]. It is the future work to

explore whether these methods can produce the Greens’ function more efficiently for the multiple

impurity cases.
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6. Green’s Function

6.1. Lanczos for zero temperature GF

In this section, we show how to calculate the zero-temperature single-particle retarded GF

Gr
σ(ω) after the ground state |Ψg〉 and the energy Eg of AIM are obtained using the above NO-

based Lanczos method. The retarded GF considered here is defined as Gr
σ(ω) =

∫ ∞

−∞
Gr
σ(t −

t′) exp
[

i(ω + iη)(t − t′)
]

d(t − t′) and

Gr
σ(t − t′) =

1

i~
θ(t − t′)〈{dσ(t), d†σ(t′) }〉. (29)

Here {A, B} is the anti-commutator of two operators A and B. The average 〈...〉 is the ground state

average of H. η is an infinitesimal positive number. For a non-degenerate ground state |Ψg〉 (with

energy Eg), Gr
σ(ω) can be written into

Gr
σ(ω) = G>(ω) +G<(ω),

G>(ω) = 〈Ψg|dσ
1

ω + iη + Eg − Ĥ
d†σ|Ψg〉,

G<(ω) = 〈Ψg|d
†
σ

1

ω + iη − Eg + Ĥ
dσ|Ψg〉. (30)

For degenerate ground states, the ground state average is replaced by the average over all ground

states. In our calculation we take η = 0.02.

Following the standard procedure [11], from Eq. (30), the contribution from the particle exci-

tations G>(ω) can be regarded as the (1, 1) element of the matrix 〈Ψg|dσd
†
σ|Ψg〉

[

(ω + iη + Eg)1 −H
]−1

,

for which the first basis state is chosen as d
†
σ|Ψg〉/〈Ψg|dσd

†
σ|Ψg〉

1/2. Starting a second Lanczos

calculation similar to Eqs. (13)-(15), but with the first Lanczos vector chosen as |ψ0〉 = d
†
σ|Ψg〉,

one gets the tridiagonal form of H on the normalized Lanczos vectors as

H =


























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











































a0 b1 0

b1 a1

. . .

. . .
. . .

. . .

. . . aK−2 bK−1

0 bK−1 aK−1









































































(31)

Here K is the dimension of the Krylov space. Eq. (31) is then diagonalized and the zero-

temperature GF is calculated using Lehmann representation as usual. One could also use the

continued fraction formula for the (1, 1) element of an inverse tridiagonal matrix [11, 31].
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6.2. NO-based Lanczos for GF

In this part, we adapt the general Lanczos method described above to the NO-based Lanczos

method for calculating GF. In the NO-based Lanczos method, after the convergence, both the

Hamiltonian of AIM H(i0) and the ground state |Ψ1〉
(i0) are expressed on the converged NO basis.

Here the superscript i0 denotes quantities obtained after the last orbital iteration. On this basis,

the impurity operators dσ and d
†
σ becomes d̃σ and d̃

†
σ, respectively.

Starting from |ψ0〉 = d̃
†
σ|Ψ1〉

(i0) or |ψ0〉 = d̃σ|Ψ1〉
(i0), the second round of Lanczos procedure

involves repeated acting of H(i0) on |ψ0〉. Although |Ψ1〉
(i0) contains a limited number of Slater

determinants, the number of determinants generated in this process still increases exponentially

with K, the Krylov space dimension. Therefore, we introduce a truncation of the space. Our

algorithm is described below for G>(ω) and similar procedure is applied to G<(ω).

1) Calculate the ground state |Ψg〉 using NO-based Lanczos. We denote the converged subspace,

Hamiltonian, and the ground state as S (i0), H(i0), and |Ψ1〉
(i0), respectively. Associated with

H(i0) is an expanding operator Ĉ(i0) same as in the ground-state calculation. Note that each of

the hopping terms in Ĉ(i0) can generate a new Slater determinant which will be added into the

expanded subspace as a separate basis state.

2) Using operator d̃
†
σ to expand the subspace, S d+ = d̃

†
σS (i0). The initial Lanczos vector is set up

in this space as |ψ0〉 = d̃
†
σ|Ψ1〉

(i0).

3) Construct the working space by S K+ =
∑K−1

j=0

[

Ĉ(i0)
] j

S d+. The amount of determinants in S K+

increases rapidly with K. To control the computational complexity, we stop extending S d+

when the number of determinants is greater than ncut. Here we use ncut = 30000.

4) In the subspace S K+, calculate G>(ω) using Lanczos method.

5) The contribution from hole excitations G<(ω) is calculated similarly in the subspace S K−.

Here the working subspace S K− =
∑K−1

j=0

[

Ĉ(i0)
] j

S d− and S d− = d̃σS (i0).

Before presenting the numerical results, it is interesting to compare the above NO-based

Lanczos method with the variational exact diagonalization (VED) method in Ref. [33]. Both

methods use the cluster-plus-bath scheme to represent the transformed/auxilliary Hamiltonian.

The cluster contains all the impurity orbitals plus one bath site for each impurity orbital. In the
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implementation of both methods, the unitary transformation for the impurity orbital is neglected.

There are also prominent differences. The VED is a variational scheme which mapps the original

Anderson model to an auxilliary one using the Peierls-Feynman-Bogoliubov variational principle

and solves the latter using exact diagonalization. NO-based Lanczos is not a variational method

and it cannot provide the upper-bound of the ground state energy. NO-Lanczos is a method

for ground state only while VED applies to all temperatures. In terms of the number of Slater

determinants involved in the calculation, VED uses exactly 42Nd Slater determinants to describe

the eigenstate of a Nd-orbital Anderson model. This number in NO-based Lanczos is determined

by the precision one needs to achieve and is usually larger than 42Nd since the residual coupling

to the rest of the bath are also taken into account.

7. Results

In this section, we solve the single- as well as the two-impurity AIMs with Lorentzian hy-

bridization function Eq. (6) using the NO-based Lanczos method. We compare the GFs with

the results from existing numerical methods. The spectral functions are compared with those

from exact Lanczos method for small Nb, and with the numerical renormalization group (NRG)

results for a continuous bath. The NRG results are obtained from the full-density matrix NRG

algorithm [37] with the self-energy trick [38], averaged over 8 interleaved discretizations [39],

using Λ = 1.6 and keeping Ms = 256 states.

The Matsubara GF is compared to the CT-QMC results for a continuous bath. The com-

parison are made for single- and two-impurity AIMs, including the situations of weak/strong

interactions, and with/without particle-hole symmetries. The CT-QMC results are obtained by

using the iQIST software package [40, 41], which implements the hybridization expansion CT-

QMC algorithm [14]. The calculations are done on inverse temperature β = 1000.0, and the

Legendre orthogonal polynomial representation is adopted to obtain high-precision GFs [42].

The excellent agreement shows that the NO-based Lanczos method provides an accurate and

efficient impurity solver that has the potential of wide application in the DMFT studies.
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Figure 9: (Color online). Zero-temperature retarded GFs ImGr
↑
(ω)(left) and the Matsubara GFs Gσ(iωn)(right) of single-

impurity AIM for various parameters. (a) and (b): U = 2µ, (c) and (d): U = 0.01µ, and (e) and (f): U = 3µ. µ = 10π∆,

π∆ = 0.02, and η = 0.02. In the left column, ImGr
↑
(ω)’s from NO-based Lanczos (solid squares) are compared with the

exact Lanczos results (red dashed lines) for Nb = 7. The insets show the converged NOs and the structure of H(i0), with

the line width proportional to the hopping strength. In the right column, ImG↑(iωn)’s from NO-based Lanczos (solid

cycles) for Nb = 19 are compared with the CT-QMC results (blue solid lines with error bars) for continuous bath. The

insets give the corresponding ReG↑(iωn).

7.1. Single-impurity AIM

7.1.1. Particle-hole symmetric case

For the particle-hole symmetric parameter µ = U/2, the results of spectral function and

Matsubara GF are shown in Fig. 9(a) and (b), respectively. The symmetry is fulfilled in these

results, i.e., ImGr
σ(ω) = ImGr

σ(−ω) and ReGσ(iωn) = 0. Especially the NO and the structure of

H(i0) also bear such symmetry, as shown in the inset of Fig. 9(a). In this case, both the Nb = 7

results in Fig. 9(a) and the Nb = 19 results in Fig. 9(b) agree well with the exact ones from full

Lanczos and CT-QMC, respectively. Note that in the small frequency limit, the small deviation

in ImG↑(iωn) (main figure of Fig. 9(b) and (f)) from the CT-QMC data is probably due to the

error in fitting the hybridization function with Nb = 19 bath sites in our NO-Lanczos calculation.

24



ω

− ImGr
↑ (ω)

0

5

10

15

20

25

30

35 (a)

NRG 

NO-Lanczos

U=0.0

U=0.2

U=0.5

U=1.0

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0

5

10

15

20

25

30

35 (b)

Figure 10: (Color online). The spectral function of single-impurity AIM for U = 0.0, 0.2, 0.5, and 1.0. NO-based Lanc-

zos results (solid lines) are compared with the NRG results (dashed lines). (a) Results for the Wilson chain Hamiltonian

with Nb = 19 bath sites obtained from the logarithmic discretization. (b) Results for the continuous bath AIM. NO-based

Lanczos calculation uses a discrete Hamiltonian with Nb = 19 fitted bath sites, and NRG uses the semi-infinite Wilson

chain Hamiltonian.

We also made comparison between NO-based Lanczos and NRG which is supposed to be one

of the most accurate method for AIM. In Fig. 10(a), we compare the spectral functions from NO-

based Lanczos and NRG for the same Wilson chain Hamiltonian of AIM with Nb = 19 bath sites

obtained from the logarithmic discretization. In NRG, a truncation of the high energy eigenstates

are carried out to avoid the exponential increase of the Hilbert space. The good agreement from

small to large U shows that NO-based Lanczos method accurately produces the spectral function

of the AIM with Nb = 19.

In Fig. 10(b), we compare the spectral function of the AIM with a continuous bath obtained

from the NO-based Lanczos and that from NRG. For the former, we use Nb = 19 bath sites
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Figure 11: (Color online). The impurity occupation nd as a function of chemical potential µ. The parameters are U = 0.4

and π∆ = 0.02.

and bath parameters are fitted from the Lorentzian hybridization function. The NRG results

are for a semi-infinite Wilson chain. Here, the apparent significant difference comes from the

discretization error of representing a continuous bath by Nb = 19 discrete bath sites. Qualitative

agreement in the features such as the Kondo resonance and the upper/lower Hubbard peaks is

observed. Note that the high energy incoherent Hubbard peaks are over broadened in NRG. This

shows that Nb = 19 is not sufficient for a quantitative calculation of the spectral density.

7.1.2. Particle-hole asymmetric case

For AIM at particle-hole asymmetric point µ , U/2, we made comparisons for weak interac-

tion U = 0.01µ and strong interaction U = 3.0µ, respectively in Fig. 9(c)-(d), and Fig. 9(e)-(f).

The agreement in the spectral function with the exact Lanczos for a small cluster Nb = 7, and in

the Matsubara GF for Nb = 19 with the CT-QMC results are very good. The only notable dis-

crepancy appears in the small frequency regime in G↑(iωn) where the error bar of CT-QMC data

is relatively large. Based on the comparison, we confirm that the NO-based Lanczos algorithm

is also applicable to the particle-hole asymmetry case only by changing the initial space in state

1) of the sparse Lanczos process. Specifically, we include all the configurations of cluster and

same configurations of valence and conduction baths as in the symmetric case.

Taking the single impurity model as an example. For the particle-hole symmetric case, the

initial space S 0 contains only two Slater determinants |φ1〉
0 and |φ2〉

0 of Fig. 5. They represent

the states with one electron on the impurity or on the other site of the cluster, with fully oc-
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Figure 12: (Color online). The spin up GF for single impurity model with local magnetic field. (a) U = 0.4, h = 0.1; (b)

U = 0.2, h = −0.006; and (c) U = 0.2, h = −0.0122. Here µ = U/2, and π∆ = 0.02. The inset shows the structure of the

converged Hamiltonian, with the line width proportional to the hopping strength.

cupied valence and empty conduction orbitals. For the asymmetric case, S 0 should contain all

42 = 16 different configurations of the two cluster sites, with fully occupied valence and empty

conduction orbitals.

To obtain a global view on the performance of NO-based Lanczos away from the particle-

hole symmetry, we plot the nd −µ curve for the AIM in Fig. 11 and compare it with that obtained

from NRG. For a fixed hybridization strength π∆ = 0.02, a quantitative agreement with NRG is

obtained in the whole range of µ. This shows that the NO-based Lanczos is applicable also the

particle-hole asymmetric case.
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Figure 13: (Color online). Zero-temperature retarded GFs ImGr
1↑

(ω) (left) and the Matsubara GFs G1σ(iωn) (right) of the

two-impurity AIM with diagonal hybridization for various parameters. (a) and (b): µ1 = 10π∆,U1 = 2µ1,U12 = 0; (c)

and (d): µ1 = 10π∆,U1 = 30π∆ < 2µ1,U12 = 0; and (e) and (f): µ1 = 10π∆,U1 = 2µ1,U12 = 30π∆. Other parameters

are µ2 = 20π∆,U2 = 2µ2, and π∆ = 0.02. The broadening parameter is η = 0.02. In the left column, ImGr
1↑

(ω)’s from

NO-based Lanczos (solid squares) are compared with the exact Lanczos results (red dashed lines) for Nb = 6. The insets

show the converged NOs and the structure of H(i0), with the line width proportional to the hopping strength. In the right

column, ImG1↑(iωn)’s from NO-based Lanczos (solid cycles) for Nb = 10 are compared with the CT-QMC results (blue

solid lines with error bars) for continuous bath. The insets give the corresponding ReG1↑(iωn).

7.1.3. Under magnetic field

We also study the influence of a local magnetic field on the local spectral function using the

NO-Lanczos method, described by the following Hamiltonian,

Ĥ = Ĥcond + Ĥimp + Ĥhyb + 2hŜ z, (32)

where Ŝ z = (nd↑ − nd↓)/2 is the impurity spin-z operator. As the spin up and down density matrix

is treated separately in the NO-Lanczos, the algorithm is naturally applicable for this case. The

GF is shown in Fig. 12 for three different parameters. Compared to NRG results for a continuous

bath, reasonable agreement is obtained for the NO-Lanczos results with Nb = 19. For the smaller

U cases in Fig. 12 (b) and (c), Kondo peak appears near the Fermi energy but shifted to ω = h.

We can see the overall agreement in the peak position and line shape. In the NO-Lanczos results,

the Kondo peak is not as sharp as those in NRG, presumably due to insufficient number of bath

sites near the Fermi energy.
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Figure 14: (Color online). Zero-temperature retarded GFs of the two-impurity AIM with both diagonal and off-diagonal

hybridizations, (a) diagonal GF −ImGr
11↑

(ω) and (b) off-diagonal GF −ImGr
12↑

(ω). Solid squares and dots with guiding

lines are from NO-based Lanczos for Nb = 14 and Nb = 10, respectively. The dashed lines are from the full Lanczos

calculation for Nb = 10 for comparison. Parameters are µ1 = 10π∆1, U1 = 2µ1, µ2 = 20π∆2, U2 = 2µ2, U12 = 0,

π∆1 = 0.02, and π∆2 = 0.01.

7.2. Two-impurity AIM

For the two-impurity AIM, we first use the diagonal matrix form of the hybridization function

of Eq. (6). The NO-based Lanczos algorithm for the two-impurity AIM is the same as that for the

single-impurity AIM. In the calculation, it is found that there are two partially occupied bath sites

instead of one as in the single-impurity case. We first checked our code with the case U12 = 0,

where the two-impurity AIM is reduced to two decoupled single-impurity AIMs. In this case, the

NO-Lanczos method correctly produces GFs identical to those of the single-impurity AIM, as

shown in Fig. 13(a) and (b) for the particle-hole symmetric case, and in Fig. 13(c) and (d) for the

asymmetric case. Applying the NO-based Lanczos method to the non-trivial U12 , 0 case and

comparing the results with conventional Lanczos for Nb = 6 (Fig. 13(e)), and with CT-QMC for

Nb = 10 (Fig. 13(f)), we again obtain excellent agreement. In the main figure of Fig. 13(b) and

(d), ImG1↑(iωn) has small deviations from the CT-QMC data in the small Matsubara frequency

regime. They are due to errors in fitting the hybridization function with Nb = 10 bath sites in our

NO-Lanczos calculation. In the insets of Fig. 13(b), (d), and (f), ReG1↑(iωn) agrees well with the
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CT-QMC data.

For the two-impurity AIM with both diagonal and hybridization, we uses Eq.(5) with

Γ11(iωn) = Γ22(iωn) =
π∆1ωc

iωn + iωcsgn(ωn)
,

Γ12(iωn) = Γ21(iωn) =
π∆2ωc

iωn + iωcsgn(ωn)
. (33)

Here ∆1 and ∆2 control the diagonal and the off-diagonal hybridization strength, respectively. For

∆2 , 0, a negative sign problem occurs in the CT-QMC simulation and hampers the production

of reliable results. In Fig. 14, we therefore compare the NO-based Lanczos results with the full

Lanczos result for Nb = 10. The parameters of AIM are fitted from Eq.(33) by assigning 3

bath sites to each of the two diagonal baths and 4 to the off-diagonal bath, respectively. Good

agreement is obtained for the diagonal GF. For the off-diagonal GF, the correct peak positions

are produced but the the height of certain peaks are less accurate. In Fig. 14, we also show the

NO-based Lanczos results for Nb = 14.

8. Conclusion

In this paper, we studied the NO-based Lanczos algorithm for calculating the ground state

and zero-temperature GFs of AIMs, following the algorithm proposed by Lu [31]. We provide

technical details and performance analysis of this algorithm that are important but lacking in the

original literature, and confirmed a key feature of this algorithm, i.e. the number of partially

occupied bath sites is equal to the number of impurity sites. We observe that the computational

complexity is proportional to the number of bath sites up to Nb = 27 using error ǫ f = 3 × 10−7,

although this dependence is expected to become N2
b

in the large Nb limit. It is noted that in

Ref. [30], the complexity is proportional to N3
b

for a different algorithm. We also extend the

algorithm to the cases of particle-hole asymmetry, under a local magnetic field, and of two im-

purities with both diagonal and off-diagonal hybridization. Our results are compared to the full

Lanczos, NRG, and CT-QMC results, all giving excellent agreement. Our results show that the

weak-entanglement feature of the ground state of AIMs can be employed successfully to reduce

the computational complexity and renders AIMs with Nb ∼ 102 to be solved accurately within

O(104) Slater determinants, therefore demonstrating that NO-based Lanczos is a promising im-

purity solver for wide applications in DMFT. At present, due to technical reasons in our coding

process, we could only process up to Nb = 30 bath. This is because integer is used to index the
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orbital in our program, and the maximum of integer in Fortran is 432. Further extension of our

code to study AIMs with Nb > 30 and Nd ∼ 5 is straightforward and in progress.
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[26] P. Löwdin, Phys. Rev. 97 (1955) 1474.

[27] C. F. Bender and E. R. Davidson, J. Phys. Chem. 70 (1966) 2675.

[28] C. Lin and A. A. Demkov, Phys. Rev. B 88 (2013) 035123; C. M. Zaera, N. M. Tubman, and K. B. Whaley,

arXiv.1711.04771.

[29] R. Q. He and Z. Y. Lu, Phys. Rev. B 89 (2014) 085108.

[30] R. Q. He, J. H. Dai, and Z. Y. Lu, Phys. Rev. B 91 (2015) 155140.
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