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Abstract

Application of multigrid solvers in shifted linear systems is studied. We focus on ac-
celerating the rational approximation needed for simulating single flavor operators. This is
particularly useful, in the case of twisted mass fermions for mass non-degenerate quarks
and can be employed to accelerate the Nf = 1 + 1 sector of Nf = 2 + 1 + 1 twisted
mass fermion simulations. The multigrid solver is accelerated by employing suitable ini-
tial guesses. We propose a novel strategy for proposing initial guesses for shifted linear
systems based on the Lagrangian interpolation of the previous solutions.

1 Introduction
Simulation of lattice Quantum Chromodynamics (QCD) is computationally very demanding
due to the requirement of solving a large number of linear system equations, which involve
very large sparse complex matrices. A specific kind of these linear equations of focus in this
paper, is given by multi-shifted systems

(Q2 +m2
i I)xi = b (1.1)

for a set of different shifts mi acting on the diagonal of the squared operator Q and where all
shifts depend on a common right hand side b. Speeding-up the time to solution is essential for
performing the simulation and we discuss how this is achieved within a multigrid approach.
Multigrid approaches can be efficient for the case that the operator Q develops very small
eigenvalues, thus yielding iteration counts of O(1000) when using approaches based on non-
preconditioned Krylov subspace methods.

Shifted linear systems, here referred to as multi-mass shifted systems, have to be solved if
the square root of a matrix is evaluated via rational, polynomial approximations (see e.g. [1,2])
or by using an integral definition via Stieltjes function [3,4]. In general the matrix roots have to
be calculated in case of Monte Carlo simulations involving a single quark [2]. Another applica-
tion of the matrix square root is given by the calculation of the Neuberger overlap operator [5].

The approaches routinely used to solve shifted linear equations like Eq. (1.1) are given by
Krylov space solvers [3, 4, 6–8]. In what follows we will refer to the multi-mass shift conju-
gated gradient (MMS-CG) solver as the “standard” solver [6, 7]. The advantage of multi-mass
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shifts solvers is that the numerical effort scales only with the cost for solving the smallest shift
and thus is almost independent of the total number of shifts. The idea behind these approaches
is to exploit the identical eigenspaces by using the same Krylov space generated for the most ill-
conditioned system to iterate all other shifts. However, if the operator Q2 develops very small
eigenvalues, flexible preconditioned iterative solvers can be by far more effective as compared
to the conjugate gradient solver.

The central idea of this paper is to introduce a hybrid method, using MMS-CG solver for
systems with a larger mass-shift, while for the systems with the smaller shifts employ a multi-
grid approach using extrapolated initial guesses. The novelty of this method is how these initial
guesses are constructed. We will discuss two approaches, one using Lagrange interpolation
based on the solution of other shifts and the second using the MMS-CG solver to construct
guesses which will be used for the systems involving the smallest mass-shifts.

For very ill-conditioned systems a very effective approach is given by multigrid methods
as a preconditioner for Krylov solvers [9–11]. Multigrid solvers optimized for lattice QCD
fermion operators show a very good scaling down to the physical light quark mass and can
speed-up the time to solution by more than two order of magnitude compared to standard
Krylov methods like the conjugate gradient (CG) solver. The idea is to use a coarse grid cor-
rection to tackle small eigenvalues and a smoother to tackle large eigenvalues in each iteration.
However, all multigrid approaches are optimized to solve a linear equation where only a single
operator is involved, as given by Qx = b. This will not hinder the solution of the squared sys-
tems but introduces different ways to tackle the multi-mass shifted system of Eq. (1.1) given by
two consecutive solves of the single systems or taken the difference of two solve of the single
system. Moreover, given the fact that state-of-the-art simulations are being performed using
increasingly larger lattice sizes, a closer look to the different ways by discussing the involved
stopping criteria seems advisable.

Multigrid approaches in lattice QCD are known for a variety of fermion discretizations,
such as for the Wilson fermion discretization [9–11], as a preconditioner for Neuberger overlap
fermions [12], for Domain Wall fermions [13] or for staggered fermions [14]. In this work we
consider twisted mass fermions [15] and extend the approach of Ref. [16] for the more general
case of using a doublet of twisted mass fermions with different masses. As in Ref. [16], we
adapt the adaptive aggregation-based domain decomposition multigrid (DD-αAMG) approach
and show how the symmetries of the non-degenerated twisted mass operator can be successfully
used to build a coarse grid correction.

The paper is organized as follows: In section 2 we discuss how the fermion operator, here
represented by Q, can be constructed on a four dimensional lattice, giving in detail the repre-
sentation of a doublet of twisted mass fermions with different masses. In section 3 we explain
the DD-αAMG approach and how it can be used to solve a linear equation that involves a
squared operator Q2x = b, especially when large lattice sizes are used and in the presence
of small quark masses. We then present how the DD-αAMG approach can be adapted to the
non-degenerated (ND) twisted mass operator. This involves a discussion of the properties of
the ND twisted mass operator and how this can be used to construct a coarse grid corrections.
At the end of the section we show numerical results. In section 4 we present the central idea
of this work, namely the solution of the multi-mass shifted systems via a hybrid approach. For
that we first introduce the approximation used for the square root matrix function, given by a
rational approximation and explain how to construct initial guesses via Lagrange interpolation
and from the MMS-CG solver. To illustrate the effectiveness of our approach we present results
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using Nf = 2 + 1 + 1 gauge-configurations at physical quark masses.

2 Wilson twisted mass fermions
Solving Eq. (1.1), requires the inverse of a very large sparse matrix, which depends on the
discretization scheme of the fermionic action. We consider here the two flavor non-degenerated
twisted mass operator given by [15]

DND(µ̄, ε̄) = (DW ⊗ I2) + iµ̄ (Γ5 ⊗ τ3)− ε̄(I ⊗ τ1) =

[
DW + iµ̄Γ5 −ε̄I
−ε̄I DW − iµ̄Γ5

]
=

[
DTM(µ̄) −ε̄I
−ε̄I DTM(−µ̄)

]
(2.1)

with the bare mass parameters µ̄ and ε̄ ∈ R. The twisted mass terms µ̄ and ε̄ act on the two-
dimensional flavor space and τ are the Pauli matrices.

τ1 =

(
1

1

)
and τ3 =

(
1
−1

)
. (2.2)

The twisted mass (TM) Wilson Dirac operator

DTM(µ) = DW + iµΓ5 (2.3)

acts on the single flavor space Vs = V × S × C with S the spin space and C the color space.
The spatial volume V = T · L3 is the four-dimension hyper-cubic lattice defined by

V = {x = (x0, x1, x2, x3), 1 ≤ x0 ≤ T, 1 ≤ x1, x2, x3 ≤ L} (2.4)

with T the number of points in the temporal direction and L the number of points in the spatial
directions x, y and z. The matrix Γ5 = IV ⊗ γ5 ⊗ IC is based on the spin space component γ5,
which can be represented by γ5 = γ0γ1γ2γ3 = diag{ 1, 1,−1,−1} in the so-called chiral
representation. Note that we set the lattice spacing a to unity throughout this paper. The TM
Wilson operator is itself based on the Wilson Dirac operator DW ≡ DW(U,m, csw) given by

(DWψ)(x) =
(

(m+ 4)I12 −
csw
32

3∑
µ,ν=0

(γµγν)⊗
(
Qµν(x)−Qνµ(x)

))
ψ(x)

− 1

2

3∑
µ=0

((I4 − γµ)⊗ Uµ(x))ψ(x+ µ̂)

− 1

2

3∑
µ=0

(
(I4 + γµ)⊗ U †µ(x− µ̂)

)
ψ(x− µ̂) , (2.5)

with m the mass parameter and csw the parameter of the clover term [17], for a definition of
Qνµ(x) see e.g. Ref. [16]. The gauge links Uµ(x) are SU(3) matrices, and the set {Uµ(x) :
x ∈ L, µ = 0, 1, 2, 3} is referred to as a gauge configuration. The γ-matrices act on the spin
degrees of freedom of the spinor field ψ(x) and fulfill the anti-commutation relation {γµ, γν} =
2 · I4 δµν .
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Often the Wilson Dirac operator is decomposed using an even-odd reduction. This is possi-
ble because the operator couples only next neighboring points. Even-odd reduction has several
advantages compare to the full operator: it reduces the dimension of the operator and increases
effectively the smallest eigenvalue by a factor two (see e.g. [16]). Even-odd reduction is com-
monly used in lattice QCD and in what follows we will use it throughout for the ND twisted
mass operator. This yields an overall speed up for the time to solution in the case of the CG
solver by a factor two. However, if a multigrid solver is used the linear equation system with
the full operator is solved because the complexity of the structure increases in case of the even-
odd reduced operator due to next-to-next neighbor interaction. For more details we refer to
Ref. [16].

In this paper, we consider the ND twisted mass operator for ε̄ > 0. Due to the flavor mixing,
introduced by the off-diagonal term proportional to ε̄, the renormalized quark masses for the
strange and charm doublet, ms and mc respectively, are connected to the bare twisted mass
parameters by

ms =
1

ZP
µs =

1

ZP
µ̄− 1

ZS
ε̄ and mc =

1

ZP
µc =

1

ZP
µ̄+

1

ZS
ε̄ (2.6)

where ZS is the scalar and ZP is the pseudoscalar renormalization constants. For ε̄ = 0 the
masses are degenerated, as currently employed in the simulations for the light quark sector
with a mass-degenerated quark doublet representing the up- and down-quark. The twisted mass
discretization is free of O(a) effects if the light quark sector is tuned to maximal twist [18,19].
This is achieved by tuning the Partially Conserved Axial Current (PCAC) mass,mPCAC, to zero,
i.e by demanding that mPCAC → 0.

The ND twisted mass operator is (Γ5 ⊗ τ1)-hermitian:

QND(µ̄, ε̄) = (Γ5 ⊗ τ1)DND(µ̄, ε̄) = D†ND(µ̄, ε̄) (Γ5 ⊗ τ1) = Q†ND(µ̄, ε̄). (2.7)

due to the Γ5-hermiticity of the Wilson Dirac operator

QW = Γ5DW = D†WΓ5 = Q†W. (2.8)

For the determinant of the ND twisted mass operator, it follows that

det [DND(µ̄, ε̄)] ∈ R (2.9)

using the (Γ5 ⊗ τ1)-hermiticity. This implies the positiveness of the determinant. The positive-
ness of the operator [18] is achieved for µ̄ > ε̄. In case of the heavy quark doublet, for physical
values of the strange and charm quark masses, this is achieved if the ratio of the renormaliza-
tion constants is given by ZP/ZS > 0.85. However, numerically it is found that this bound
is too strict, e.g. we found a gap for the smallest eigenvalue for the case of ZP/ZS = 0.8 as
shown in Fig. 1. We measured the distribution of the smallest and largest eigenvalues of the
squared even-odd reduced ND twisted mass operator on an ensemble of gauge configuration
with a lattice volume of V = 128 × 643 and a finite lattice spacing of a ∼ 0.08 fm, discussed
in detail in [20]. We will denote this ensemble as our physical test ensemble and it will be used
throughout this paper to numerically validate our approach. It is generated with fermion pa-
rameters, such that the light, strange and charm quark masses are tuned close to their physical
values, with µ = 0.00072 being the light quark mass parameter and with µ̄ = 0.12469 and
ε̄ = 0.13151 being the heavy quark bare mass parameters of the ND twisted mass operator.
Moreover in the tests we employ the ND twisted mass operator also for the light quark sector
using µ̄` = 0.00072 and ε̄` = 0.000348.
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Figure 1: Distribution of the smallest (left) and largest (right) eigenvalues of the squared even-odd
reduced ND twisted mass operator using an ensemble of gauge-configurations tuned to the physical
values of the light, strange and charm quark masses.

3 DD-αAMG approach for twisted mass Wilson fermions
There exist several multigrid approaches for the Wilson Dirac operator [9–11]. In this sec-
tion, we outline the adaptive aggregation-based domain decomposition multigrid (DD-αAMG)
method for the Wilson Dirac operator [11] and TM operator [16]. The method is based on a
flexible iterative Krylov solver, which is preconditioned at every iteration step by a multigrid
approach. The preconditioner acts on the error propagation through

ε ←
(
I −MDW

)k (
I − PD−1W,cP

†DW

) (
I −MDW

)j
ε, (3.1)

where the coarse grid correction PD−1W,cP
† is applied with k pre- and j post-iteration of the

smoother M . The multigrid preconditioner exploits domain decomposition strategies: the
smoother M is given by the Schwarz Alternating Procedure (SAP) [21] and the coarse grid
operator DW,c = P †DWP is based on an aggregation-based projection with the prolongation
operator P . The method is designed to deal efficiently with both, infrared (IR) and ultra-violet
(UV) modes of the operator DW. The smoother reduces the error components belonging to the
UV-modes [11], while the coarse grid correction is designed to deal with the IR-modes. This
is achieved by using an interpolation operator P , which approximately spans the eigenspace of
the small eigenvalues. Thanks to the property of local coherence [9], the subspace can be ap-
proximated by aggregating over a small set of Nv ' O(20) test vectors vi, which are computed
in the DD-αAMG method via an adaptive setup phase [11]. We remark that the prolonga-
tion operator is Γ5-compatible, i.e. Γ5P = PΓ5,c. This guarantees the Γ5-hermiticity of the
coarse grid operator Dc, i.e. D†c = Γ5,cDcΓ5,c with Γ5,c = IVc ⊗ σ3 ⊗ INv being the coarse
grid equivalent of Γ5. On the coarsest grid, even-odd reduction is used to accelerate the time
solution.

The DD-αAMG approach has been adapted to the TM Wilson operator DTM(±µ) by mod-
ifying the coarse grid procedure in order to avoid the slowing down of the time to solution for
small µ � 1 by the coarse grid correction step. This is circumvent by effectively reducing
the iterations for the coarse grid by using a larger µ for the coarse operator. i.e. DTM,c(±dµ) =
DW,c±idµΓ5,c with d ≥ 1 [16]. For d ∼ 5 the iterations count for inverting the coarsest operator
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Figure 2: Comparison between time to solution for computing the twisted mass fermion propagator at
different quark mass using the odd-even (oe) CG solver and the DD-αAMG approach. The results are for
a 128× 643 ensemble simulated at physical pion mass, mπ ∼ 135 MeV. The value of the light, strange
and charm quark masses are shown by the vertical lines with the labels mu,d, ms and mc, respectively.

is reduced by an order of magnitude while it affects only marginally the outer solver iterations
count. This yields a compatible speed-up for the time to solution when using the DD-αAMG
approach for TM Wilson fermions as was obtained for the case of Wilson fermions [11].

3.1 Solving the squared linear equation
Before we introduce the new, adapted, multigrid approach for the ND twisted mass operator, we
make some general remarks about solving a linear equation involving a squared Dirac operator.
Solving the linear Dirac equation involving a hermitian operator is needed within lattice QCD in
several places such as for the fermion force calculation during the Hybrid Monte Carlo (HMC)
simulation or the calculation of matrix functions, like the square root or the sign function of the
Dirac operator. Let us consider linear equations of the form

(Q2
W + µ2)x = b (3.2)

involving a squared operator Q2
W, which in our case, is the square of the TM Wilson operator.

We will denoted here the direct solution of eq. (3.2) as case A. A standard approach to solve
such equation is to use the conjugate gradient (CG) solver. However, when one approaches
the physical value of the light quark mass, the efficiency of the CG solver suffers due to the
increase of the number of small eigenvalues. In this parameter range, multigrid approaches are
by far more effective as shown in Fig. 2 for the case of the TM Wilson operator. However, the
multigrid approach outlined in the previous section, can only be applied to a linear equation
with a single TM Wilson operator. The reason is simply that an implementation for the squared
operator is far more complicated, involving next to next neighbor interactions, which increase
the complexity of the coarse operator. A way to solve Eq. (3.2) is to modify it by exploiting the
Γ5-hermiticity resulting into two sequential inversions, denoted here as case B,

(Q2
W + µ2)−1b = (QW ± iµ)−1(QW ∓ iµ)−1b . (3.3)
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Note that this can be done in a similar way for the ND operator using the (Γ5⊗ τ1)-hermiticity.
However, splitting up Eq. (3.2) is not unique and another possibility is given by a difference of
the two single inversions, denoted here as case C,

(Q2
W + µ2)−1b =

i

2µ

(
(QW + iµ)−1b− (QW − iµ)−1b

)
. (3.4)

In exact arithmetic all ways yield to the same solution. This is not so obvious anymore if
iterative solvers are used since they involve a stopping criterium. A standard procedure is to
stop the solver if the relative residual ‖r‖ / ‖b‖ is smaller than a chosen bound ρ. The residual
is given by r = Qx− b with Q the involved operator and b the involved rhs.

Analytically comparing the bounds of the residual of the iterated solution of Eq. (3.3) and
Eq. (3.4) one would be in favor of case B for µ < 1. Indeed following Appendix A for the
residuals we obtain

‖rB‖
‖b‖

≤

(
1 +

√
λ2max + µ2

λ2min + µ2

)
ρ and

‖rC‖
‖b‖

≤
ρ
√
λ2max + µ2

|µ|
, (3.5)

where each inversion is stopped when the relative residual fulfills r/b < ρ. However, compar-
ing the error

‖eB‖
‖b‖

≤ ρ

λ2min + µ2
and

‖eC‖
‖b‖

≤ ρ

|µ|
√
λ2min + µ2

. (3.6)

it follows the error eB of case B is numerical equivalent to the error eC of case C if λmin � µ.
In the case of TM Wilson fermions at maximal twist this relation is fulfilled since λmin ∼ 0.

This is the case in our example, shown in Fig. 3. CG solver and the two aforementioned multi-
grid approaches are analyzed using a stopping criteria of ‖r‖ / ‖b‖ < 10−9 for our physical
test ensemble. For this ensemble, λ2min + µ2 ' 0.000722, thus yielding a difference around six
orders of magnitude between residual and error, as shown in Fig. 3.

Despite the fact that as long as µ� λmin all approaches yield a similar error, the approach
C has advantages. The first advantage is that the software optimization is straightforward be-
cause both shifts can be solved together, as outlined in Ref. [22, 23]. The second advantage is
that for the shifted linear equations it gives a better way to start the iteration with an optimal
initial guess. Therefore, we consider this approach in what follows.

3.2 DD-αAMG for the non-degenerated twisted mass operator
The idea behind adapting the DD-αAMG approach to the ND twisted mass operator DND(µ̄, ε̄)
is based on preserving the (Γ5 ⊗ τ1)-symmetry on the coarse grid. We define the ND coarse
grid operator by

DND,c(µ̄, ε̄) = P †NDDND(µ̄, ε̄)PND. (3.7)

with PND being a suitable prolongation operator. If PND is (Γ5 ⊗ τ1)-compatible, i.e.

(Γ5 ⊗ τ1)PND = PND(Γ5,c ⊗ τ1), (3.8)

it follows that the (Γ5⊗ τ1)-hermiticity of DND in Eq. (2.7) is also preserved on the coarse grid
and the coarse grid operator fulfills

(Γ5,c⊗τ1)DND,c = P †ND(Γ5⊗τ1)DNDPND = P †NDD
†
ND(Γ5⊗τ1)PND = D†ND,c(Γ5,c⊗τ1) . (3.9)
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The property in Eq. (3.8) is satisfied by a prolongation operator PND, which is Γ5-compatible
and diagonal in flavor space. We choose identical components in flavor space defining PND =
P ⊗ I2. Thus, we obtain

DND,c(µ̄, ε̄) = (DW,c ⊗ I2) + iµ̄ (Γ5,c ⊗ τ3)− ε̄ (Ic ⊗ τ1) =

[
DTM,c(µ̄) −ε̄ Ic
−ε̄ Ic DTM,c(−µ̄),

]
(3.10)

which follows from the property P †P = Ic. We note that the flavor and spin components of
the coarse operator preserve a similar sparse structure and properties of the fine grid operator
DND(µ̄, ε̄) in Eq. (2.1).

It follows from Eq. (3.1), that the prolongation operator P has to project onto a subspace,
which captures the IR-modes. While PND is degenerate in flavor space, the low modes of
the ND twisted mass operator are defined in the full space. Thus our solution to Eq. (3.8)
i.e. PND = P ⊗ I2 could spoil the efficiency of the coarse grid correction since the same
prolongation operator P has to act on both flavor spaces. A possible solution is to use the
prolongation operator P employed for the TM Wilson operator [16]. This has the advantage
that if the multigrid solver is used during the HMC the same setup, built up for one flavor of the
TM Wilson operator, can be reused in any step of the HMC for both light degenerate and heavy
non-degenerate sector. Saving additional setup expenses makes the usage of the multigrid in
HMC more effective. We will motivate this choice in section 3.2.1, and discuss some numerical
results in section 3.2.2.

3.2.1 Motivations for the multigrid construction

The choice of the subspace PND = P ⊗ I2 for Eq. (3.10) is motivated as follows:
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Figure 4: Complete spectrum of a gauge configuration for a lattice of size 44. The twisted mass param-
eters are µ, µ̄, ε̄ = 0.01. In the top panel, we depict the spectrum of the degenerate DTM(µ) operator
folded with respect to the imaginary axis. In the bottom left panel we show part of the spectrum close
to the origin for DTM(µ) for different sign of ±µ. In the central lower panel we compare the degenerate
and non-degenerate TM operator. In the right lower panel, we show the spectrum for the coarse version
of both operators.
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• Let us consider first the case with ε̄ = 0, for which the subspace needs to be effective
for the TM Wilson operator DTM(±µ) where µ can take both sign. This was analyzed
numerically in Ref. [16,24] where it was found that the effectiveness of the subspace gen-
erated for the TM Wilson operator DTM(µ) is affected only slightly if another parameter
set is used with DTM(±ρ) where ρ ≥ µ.

This can be explained by the connection between right-handed eigenvectors vR of the
TM Wilson operator DTM(µ) and the left-handed eigenvectors vL = v†RΓ5 of DTM(−µ),
which reads as

DTM(µ)vR = λvR ⇐⇒ v†RΓ5DTM(−µ) = v†RΓ5λ
†. (3.11)

Thanks to the Γ5 compatibility of the aggregation, this is also true for the coarse op-
erator. Thus, the eigenspaces of DTM(±µ) are connected and a prolongation operator
P constructed for DTM(µ) captures the low modes of DTM(µ) when acting on the right
while acting from the left givens the low modes of DTM(−µ).

• Considering the case DND(0, ε̄) where µ̄ = 0 and ε̄ 6= 0, it follows that the eigenvalues
have a linear dependency in ε̄ and the eigenvectors are degenerate in flavor space. Indeed
the relation DND(0, ε̄)w± = (λ± ε̄)w± with w± = (v,±v) holds in flavor space with the
eigenvector v of DW satisfying DWv = λv. Thus, for µ̄ = 0 the eigenspace is invariant
under changing ε̄ and it motivates the choice via Eq. (3.8) for the coarse grid projector.

• It follows that the choice for the projector of Eq. (3.8) is well-motivated for the special
cases µ̄ 6= 0 ∧ ε̄ = 0 and µ̄ = 0 ∧ ε̄ 6= 0. However, what we have in reality is
µ̄ ∼ 0.1∧ ε̄ ∼ 0.1. In order to verify if the properties mentioned in the previous two items
are a good approximation, we study numerically the eigenvalue spectrum when changing
the parameters µ̄ and ε̄ on a small lattice of a size of 44. The eigenvalue spectrum with
positive imaginary part of the ND twisted mass operator is depicted in Fig. 4. Note
that due to the (Γ5 ⊗ τ1)-hermiticity the real-axis is a symmetry axis, thus eigenvalues
come in complex conjugated pairs or are real. For the one flavor operator DTM(µ) this
symmetry is broken for µ 6= 0. This is shown in the left lower panel, where we focus on
the spectrum of the low modes. By taking a closer look to the spectrum of the ND twisted
mass operator, the real-axis symmetry is restored. Moreover, the parameter ε̄ for the non-
degenerate operator DND(µ̄, ε̄) acts on the eigenvalues via a linear shift ±ε̄ similar to the
ideal case given byDND(0, ε̄). Thus, the projector given by Eq. (3.8) should project on the
small eigenvalues of DND(µ̄, ε̄). For our case study, this is indeed the case as depicted in
the right panel of Fig. 4. The spectrum of the coarse grid operator for the TM Wilson and
ND twisted mass operator display similar features showing that preserving the operator
structure in the coarse grid allows to preserve properties of the fine operator.

3.2.2 Numerical results

In this section we test the effectiveness of our choice PND = P ⊗ I2 using the physical test
ensemble. We compare the performance of the multigrid solver using method C, see Eq. (3.4),
to the one of the conjugate gradient solver in the case of the squared ND twisted mass operator
at physical heavy quark parameters and additional at physical light quark parameters. Solving
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Figure 5: Comparison between time to solution for computing the inverse of the squared ND twisted
mass operator at different shift m2 using the odd-even (oe) CG solver and the DD-αAMG approach.
We used the physical test ensemble employing physical strange and charm quark masses (left panel) and
physical up and down quark masses (right panel).

the equation

x = (Q2
ND(µ̄, ε̄) +m2)−1b =

i

2m
(QND(µ̄, ε̄) + im)−1b− (QND(µ̄, ε̄)− im)−1b) (3.12)

for several shifts in m2 we obtain the results shown in Fig. 5. The time to solution for the CG
solver can be fitted by [25]

tCG(m2) = a+
b

ln
(

1− 2/(
√
κ(m2) + 1)

) (3.13)

with the condition number κ = (λmax + m2)/(λmin + m2). In the case of the heavy quark
parameters it follows λmax = 4.7 and λmin = 0.000065 and at minimal χ2 the parameters are
given by a = 5.88(123) and b = −1.06(3). The fit approach used for the time to solution
of the multigrid solver is motivated by the convergence of the general minimal residual solver
(GMRES) [26]. We employ the functional form given by

tMG(m2) = A+
B

ln(1− (C +m2)/(4.7 +m2))
(3.14)

where we use, instead of the condition number, a modified function dependence given by (C +
m2)/(4.7 + m2). Minimizing χ2 for the heavy quark parameters yields A = 5.0(7), B =
−0.059(26) andC = 0.024(10). Note that this is only an effective fit approach, which describes
the data well but could fail for different cases. At the physical strange and charm quark masses –
i.e. m2 → 0 see left panel of Fig. 5 – we found an order of magnitude speed-up of the multigrid
approach compared to the CG solver. Moreover, the ND multigrid solver is even more effective
than the multigrid solver for the TM Wilson operator at physical strange quark mass. This
can be seen by comparing the relative speed-up for strange quark mass of mq ∼ 95 MeV,
shown in Fig. 2 for the TM Wilson operator. The relative speed-up for two application of the
ND-multigrid solver is comparable with the speed-up of a single application in case of the
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for solving the linear equation involving the ND twisted mass operator. Method A is given by the direct
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single solves (blue) and method C is given by the difference of the two single solves (red). The residual
are shown as dashed lines while the error is illustrated by the straight line attached to a shaded band
given by the largest and smallest deviations as defined in Appendix A.

TM Wilson operator. This is also confirmed at physical non-degenerated light quark masses, as
shown in the right panel of Fig. 5. Here we found a speed-up of around two orders of magnitude
similar to the case of the TM Wilson operator. This shows that the choice of the coarse grid
projector, building up using the TM Wilson operator, yields a very effective multigrid approach
for the ND twisted mass operator.

Due to the large parameter set of multigrid approaches, optimization for a specific lattice
can become a major task. In Ref. [16] we outlined our strategy and gave a set of parameters.
We use this set of optimized parameters with a few adjustments in case of heavy quark masses.
Namely, the shift d of the TM parameter in the coarse grid is set to unity and the number of
smoothing iterations is reduced from 4 to 2.

As discussed in section 3.1, Eq. (3.12) with the squared operator can be solved in different
ways. We analyze the connection of the error of the squared system with the residual of single
systems for different shifts m at physical heavy ND parameters µ̄ and ε̄. The results are shown
in Fig. 6. We fix the stopping criteria for each inversions to ‖r‖ / ‖b‖ < 10−10. As discussed
in section 3.1 and in Appendix A, they depend on the smallest eigenvalue of the operator
Q2

ND + m2, which is given by λND,min ∼ 0.0008. As shown in Fig. 6 this bounds the error
for the approach A and B by around 3 orders of magnitudes if m < λND,min. For case C this
is not true, however, numerically we find that the real error is similar to case A and B when
m2 > 10−14. This shows that method C can be used for our application since in the rational
approximation of the matrix square root all shifts are larger than m2 > 10−10.
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4 Multigrid in rational approximation
In this section, we introduce a novel strategy for providing initial guesses to shifted linear
systems as in Eq. (1.1) in order to optimize the usage of multigrid approaches in multi mass-
shifted systems. We first give a brief introduction to the rational approximation of the square
root of a hermitian matrix before we discuss how optimal initial guesses can be generated.

4.1 Rational approximation of the square root
Rational functions can be used to approximate analytical functions like the square root of a
matrix, which is an essential ingredient for lattice QCD. For example, in case of the Ratio-
nal Hybrid Monte Carlo (RHMC) [2], which is commonly used in the case of Wilson-type
fermions for non-degenerate quark masses, staggered fermions and for calculating the sign-
function needed for the Neuberger overlap operator. Here we are interested in solving

x =
√
Q−2b . (4.1)

In general a continuous function, like the square root, can be approximated by a rational func-
tion of generic order [m,n]

R(y) = A

∏m
i=1(y + ni)∏n
i=1(y + di)

. (4.2)

The maximal deviation in a fixed interval of this rational approximation is then bounded from
below, as stated in the de-Vallée-Poussin’s theorem [27]. A rational approximation is optimal
when the maximal deviation is equal to the bound. In case of the function 1/

√
y an optimal

rational approximation is given by Zolotarev’s solution [28]. The rational function of order
[n, n]

Rn,ε (y) = an,ε

n∏
j=1

y + cn,ε,(2j−1)
y + cn,ε,2j

(4.3)

optimally approximates 1/
√
y in the interval ε < y < 1 with a maximal deviation

δn,ε = max
ε<y<1

|1−√yRn,ε (y)| . (4.4)

The parameters in Eqs. (4.3,4.4) can be computed analytically [29] and they are given by

cn,ε,k = cs2
(
k · vn,ε,

√
1− ε

)
with vn,ε =

K
(√

1− ε
)

2n+ 1
(4.5)

an,ε =
2

1 +
√

1− d2n,ε

n∏
j=1

sn,ε,(2j−1)
sn,ε,2j

with sn,ε,k = sn2
(
k · vn,ε,

√
1− ε

)
(4.6)

δn,ε =
d2n,ε

1 +
√

1− d2n,ε
with dn,ε = (1− ε)

2n+1
2

n∏
j=1

s2n,ε,(2j−1) (4.7)

where sn(u, k) and cs(u, k) = cn(u, k)/sn(u, k) are Jacobi elliptic functions and K(k) is the
complete elliptic integral.

13



The solution to the Eq. (4.1) with fixed ε and order n can be rewritten as a system with a
sum over operators with multiple mass shifts given by

x ' Rn,ε(Q
2)b = an,ε

(
1 +

n∑
i=1

qi · (Q2 +m2
i )
−1

)
b (4.8)

where

m2
i = cn,ε,2i and qi = (cn,ε,(2i−1) − cn,ε,2i)

n∏
j=1,j 6=i

cn,ε,(2j−1) − cn,ε,2i
cn,ε,2j − cn,ε,2i

. (4.9)

4.2 Initial guesses for shifted linear systems
Iterative solvers are initiated via a starting vector. In most of the cases, this vector is chosen to
be zero, since it is the most safe starting point if the inverse is unknown. However, if parts of
the inverse is known the iteration count can be minimized by starting with an initial vector close
to the solution, e.g. this is done in the case of exact deflation where the smallest eigenvalues
are used to preconditioning the system. Here, we discuss two approaches, proposing an initial
guess based on previous solutions and via the MMS-CG solver.

4.2.1 Initial guesses via Lagrange interpolation

The idea for the case of multi-mass shifted systems is to use previously computed solutions,
e.g. x1, . . . , xn, to generate an initial guess for the next inversion of the solution xn+1. This
can be done by a polynomial interpolation of the previous solutions where the previous shifts
enter as node points. A polynomial of degree (n − 1), which interpolates n solutions is then
given by

p(m) =
n∑
i=1

li,n(m)xi with li,n(m) =
n∏
j=1
j 6=i

m−mj

mi −mj

, (4.10)

where li,n are the Lagrange polynomials. The initial guess for the (n + 1)th system follows
with x̃n+1 = p(mn+1).

Let us compute the n solutions using the stopping criteria ‖ri‖ / ‖b‖ < ρ, then an upper
bound for the initial guess for the (n+ 1)th iteration is given by

‖r̃n+1‖ = ‖b− (Q+mn+1I)x̃n+1‖ ≤ ρ γn ‖b‖+

∥∥∥∥∥
n∑
i=1

ci,n(mn+1 −mi)xi

∥∥∥∥∥ , (4.11)

where γn is the sum over the absolute values of the coefficients ci,n = li,n(mn+1). More details
are given in Appendix B.

The second term of Eq. (4.11) can be approximated assuming xi = (Q + mi)
−1b such that

it can be cast into
‖r̃n+1‖
‖b‖

. γnρ+
n∏
i=1

|mn+1 −mi|
λmin +mi

(4.12)

if mi > 0 and Q a positive-(in)definite matrix with λmin ≥ 0. The initial guess x̃n+1 is
bounded by two terms. The first term depends on the nodes mi while the second term depends
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additionally on the smallest eigenvalue of the matrix. It follows that ‖r̃n+1‖ / ‖b‖ > ρ since
γn > 1. However, γn is known at priori such that the interpolation strategy can be adapted if
γn becomes too larger. In our case the second term dominates the right hand side of Eq. (4.12)
due to the dependence on λmin. Moreover the second term is strictly smaller than one for the
case mn+1 < mi. This gives the optimal ordering to solve the multi-shifted problem via initial
guesses with

m1 > m2 > . . . > mn > mn+1 > . . . > mN > 0, (4.13)

whereby it follows

0 ≤
n∏
i=1

|mn+1 −mi|
λmin +mi

< 1. (4.14)

Finally, we remark that if the upper bound of Eq. (4.12) is smaller than 1, starting from x̃n+1

will be always more efficient than from a zero vector.

4.2.2 Initial guesses via MMS-CG

Another possibility to guess a starting vector for the last (N − n) shifts is given by using
the MMS-CG solver. The general idea of the MMS-CG solver is to exploit the fact that the
eigenspace of the shifted systems are identical. Thus the Krylov space generated for one of the
shifts can be simultaneously used to iterate the other shifts.

If one generates the Krylov space for the most ill-conditioned system, here the N th system,
all other iteration vectors will converge to smaller residuals than the residual of the target sys-
tem. However, if the system is too ill-conditioned, like it is in our case, the iteration count of
the MMS-CG solver increases drastically and a hybrid-approach is potentially more efficient.

Our proposal is to solve the first n systems via the MMS-CG solver by generating the
Krylov space for the nth system. This will generate the first n solutions x1, x2, . . . , xn. Fur-
thermore, the MMS-CG solver can also predict guesses for the next m systems by iterating
those together with the first n systems. Although the iteration vectors of these systems will not
reach the target precision, at the iteration count where the nth system is converged, the itera-
tion vectors will contain the full information of the generated Krylov space for the nth system.
Based on this fact, for the (n + 1)th system, the MMS-CG solver generates an initial vector,
which is in general closer to the target residual than using a Lagrange interpolation based on
the n solutions.

4.3 Initial guesses for the rational approximation of the square root
In the following we will analyze the behavior of the initial guesses for the rational approxima-
tion of the square root in Eq. (4.8) for the ND twisted mass operator using the physical test
ensemble at physical strange and charm quark masses. For that we choose a rational approx-
imation consisting of 10 terms using the interval (εND ; 1] with εND = 0.000065/4.7. Using
Lagrange interpolation we obtain an upper bound for the initial guesses through Eq. (4.11),
bounded by two terms, which depend on γn(m) and the previous solutions xi, respectively.
The coefficient γn(m) depends on the nodes of the interpolation given by the shifts m2

i . Using
an ordering m1 > m2 > . . . > mN for the shifts we found for both cases that γn(mn+1) is
not larger than 2. This bounds the first term of Eq. (4.11) by 2ρ where ρ is the precision of the
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Figure 7: The relative residuals of the Lagrange interpolation based on the n solutions versus the shifts
m2 used in the approximation of the square root of the ND twisted mass operator. The solid lines
illustrate the norm of the relative residual of the initial guess for decreasing m taking all available nodes
into account. The nodes used in the interpolation, i.e. the shifts m2, are denoted by vertical dotted lines.
We depict the dependence of each polynomial p(i) for m2 > m2

i by the dashed lines.

stopping criterion. Thus, the first term is suppressed compared to the second term of Eq. (4.11)
such that we can neglect it in the following.

The second term of Eq. (4.11) can be approximated via∥∥∥∥∥
n∑
i=1

ci,n(mn+1 −mi)xi

∥∥∥∥∥ '
n∏
i=1

|mn+1 −mi|
λmin +mi

(4.15)

with λmin ∼ 0.0008 for the squared ND twisted mass operator. Using an ordering m1 > m2 >
. . . > mN this yields an upper bound of 0.0003 for the last, the N th, initial guess, which is
close to the residual shown in Fig. 7. However, for the first shifts the real residual is around one
magnitudes lower than this bound. We find that the data can be described effectively via∥∥∥∥∥

n∑
i=1

ci,n(mn+1 −mi)xi

∥∥∥∥∥ .
n∏
i=1

|mn+1 −mi|
Aimi

, (4.16)

where Ai is for all i smaller then 1.9. Using B = [max(Ai)]
−1 < 1 it follows∥∥∥∥∥

n∑
i=1

ci,n(mn+1 −mi)xi

∥∥∥∥∥ ' Bn

n∏
i=1

(
1− mn+1

mi

)
(4.17)

with mn+1 < mi and B ∼= 0.6. Thus, the initial guesses using the Lagrange interpolation
become more efficient with increasing n, as shown in figure Fig. 7.

As pointed out in the previous section, the MMS-CG solver, used for solving the first n
systems, can be used to predict an initial guess by including the (N − n) systems in the MMS-
CG iteration. This effectively interpolates the initial vector xj in the Krylov space of the nth

16



10-8

10-6

10-4

10-2

10-510-310-1

m10m9m8m7m6m5m4m3m2m1

C
G

M
M

S
 r

e
l.
 r

e
si

d
u
a
l

Shift m2 in Q2
ND+m2

Figure 8: The relative residual of the iteration vectors of the MMS-CG versus the mass shifts when
varying the target Krylov space for the ND twisted mass case. The solver is stopped when the residual
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cases depicted by the solid line changing the color from black, for the largest target shift to orange for
the N − 1 shift. Note that we do not show the case where the target system is given by the last, N th
system, because here all other systems have converged. The vertical dotted lines illustrate the shifts m2

i .

system. We depict the residual for the predicted initial guesses by the MMS-CG solver in Fig. 8
if the nth system is converged. As shown, the relative residual of the (n+ 1)th system depends
only slightly on n and is given by ∼ 10−5. Thus for the first step after using the MMS-CG
solver the residual is smaller then the residual of the initial guess generated by the Lagrange
interpolator. However, this changes form > 1. While for small n the guess using the MMS-CG
solver for the (n + 2)th system is better, for n & 5 the guesses of the Lagrange interpolation
yield similar results and becomes better for m > 2.

Based on these results, the optimal approach for our example is a combination of all three
elements, namely the MMS-CG solver and the Multigrid solver with initial guesses using the
MMS-CG solver and the Lagrange interpolation. Thus, solving the first nth systems using
MMS-CG solver involves an additional iteration for the (n+1)th and (n+2)th systems, which
can be used as an initial guess. The (N − n) remaining systems are then solved via a multigrid
approach one by one where for the last (N −n− 2) systems the Lagrange interpolation is used
to start the iteration. In the following section, we will discuss the optimal n.

4.4 Results
Based on the observations in the previous section, we propose to use a hybrid approach to solve
a system of linear equations with N shifts. Namely, use the MMS-CG solver for the largest
n shifts and the multigrid approach for the remaining (N − n) systems solving each one via
the difference methods discussed in section 3.1. The (N − n) systems can be started by initial
guesses, proposed for the (n + 1)th and (n + 2)th systems using the MMS-CG solver and for
the rest using Lagrange interpolation and employing the previous solutions.
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Figure 9: The CPU hours necessary to solve the multi-mass shifted equation involving the ND twisted
mass operator at the strange and charm quark masses versus the number of shift n used in the MMS-CG
solver shown as black crosses. The left 10 − n shifts are solved via the multigrid approach with initial
guesses as red crosses and without initial guesses as blue squares. The total CPU hours needed to solve
the system is shown by the red solid line for the hybrid method using initial guesses and for the hybrid
method without initial guesses with the red solid line.

The optimal n depends on the ratio of the performance of the MMS-CG solver and the
multigrid approach, which includes environmental parameters, software implementation and
computer hardware. Here, we consider the Haswell-nodes partition of SuperMUC and use
an MPI parallelization employing 1024 task on 37 nodes. The software used is the tmLQCD
package [30, 31], which is linked to the DDalphaAMG library [32] and is publicly available.

The question we would like to answer is what is the optimal n of the hybrid approach
introduce in this work, i.e. how many n shifts should be solved with the MMS-CG solver in
order to solve the total system with N shifts in an efficient way employing for the last N − n
shifts a multigrid approach. This we discuss by employing the physical test ensemble using
the ND twisted mass operator at the strange and charm quark masses with 10 mass-shifts. We
employ case C, the difference method, for the linear equation with the squared operator when
the multigrid solver is used.

The cost for the solution of the multi-mass shift linear equation via the hybrid method is
given by

cHY (n) = tCG(m2
n) +

N∑
i=n+1

tMG(m2
i ) . (4.18)

where the time to solution of the MMS-CG solver is approximated with the time of CG solver
tCG(m) at the smallest shift mn. For the case without initial guesses, the cost cHY (n) can be
minimized using the fits Eqs. (3.13) and (3.14). This yields an optimal nopt ∼= 7 as shown in
Fig. 9. However, the total speed-up of the hybrid method without initial guesses only improves
slightly the time to solution compared to the application of the MMS-CG solver. This changes
by using initial guesses. Here, the cost for the multigrid part is significantly reduced as shown
in Fig. 9 using initial guesses compared to the case without. We find that the initial guesses
reduce the total time to solution by about factor of two while the optimal nopt ∼ 6 is shifted
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slightly.
The effect of this improvement can be also seen in the ensemble generation [20, 33], used

in the HMC. When the force terms of the rational approximation are split to integrate shifts on
different time scales, the time to solution of the heavy quark sector is reduced by a factor of
approximately two. Note that the setup comes without additional cost due to the usage of the
setup generated for the light quarks as discussed in section 3.2.

The hybrid method becomes even more effective for smaller quark masses. To illustrate
this, the n-dependence is examined using the ND twisted mass operator at physical light quarks
using the physical test ensemble. For µ̄` = 0.00072 and ε̄` = 0.000348 the dependence of the
hybrid method using a rational approximation with N = 15 terms is shown in Fig. 10. We
find that the hybrid method with initial guesses gives a total speed up at optimal nopt ∼= 7 by
approximately a factor of 15. As in the case of the strange and charm quark masses, the initial
guesses, result in a speedup of about a factor of two.

5 Conclusions
In this paper we examine multi-mass shifted system involving the ND twisted mass operator.
We discuss in detail how the time to solution can be minimized using a hybrid method based on
the MMS-CG solver in combination with a multigrid approach by using initial guesses. Using
the heavy flavor doublet, and tuning to the physical values of the strange and charm quark
masses, we find that employing a hybrid approach a speed up by a factor two can be achieved
using for the six largest shifts the MMS-CG solver and for the smallest shifts the multigrid
approach in combination with initial guesses. We show that for the light quark doublet this

19



hybrid approach yields even a larger improvement speeding up the time to solution by a factor
of about 15.

The approach presented also speeds up the force calculation of the current Nf = 2 + 1 + 1
simulations of the ETM collaboration. Furthermore, this approach can be applied for all lattice
fermion discretization for which a multigrid approach exists and a rational approximation is the
choice to generated an ensemble of gauge configuration, e.g. like it is the case for the staggered
discretization scheme.

One essential tool to speed up the hybrid method for the value of the strange quark mass is
the usage of initial guesses. In this paper we show that a combination based on prediction via
the MMS-CG solver and an approach based on Lagrange interpolation of the previous solutions
yields the best time to solution.

We also discuss in detail the DD-αAMG approach, showing how to preserve symmetries
of the fine grid operator on the coarse grid. Preserving the (Γ5 ⊗ τ1)-hermiticity of the ND
twisted mass operator by employing a coarse grid projection based on the TM Wilson operator
yields a stable multigrid method, yielding an overall speed-up of one magnitude compared to
the CG solver at physical values of the strange and charm quark masses. This shows that the
DD-αAMG approach is very effective as long as important symmetries are preserve on the
coarse grid.

Furthermore, different ways for solving a linear equation with a shifted squared Dirac oper-
ator using iterative solvers are presented. While the CG solver can be used to solve this system
directly the multigrid approach can be only applied to a system, which involves one Dirac op-
erator. This results into two possible ways of solving the system, one using two consecutively
solves and one using differences of single solutions. What has been shown in this work is that
the latter can be used in the case of the ND twisted mass operator at physical strange and charm
quark masses and yields some advantages if initial guesses are used.
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[26] Jörg Liesen and Petr Tichý, Convergence analysis of Krylov subspace methods, GAMM-
Mitt., 27, no. 2, 153–173, 2004.

[27] Naum I Achieser, Theory of approximation, Courier Corporation, 2013.

[28] EI Zolotarev, Application of elliptic functions to questions of functions deviating least and
most from zero, Zap. Imp. Akad. Nauk. St. Petersburg, 30, no. 5, 1–59, 1877.

[29] Martin Lüscher, Computational Strategies in Lattice QCD, in: Modern perspectives in
lattice QCD: Quantum field theory and high performance computing. Proceedings, Inter-
national School, 93rd Session, Les Houches, France, August 3-28, 2009, pp. 331–399,
2010.

[30] K. Jansen and C. Urbach, tmLQCD: A program suite to simulate Wilson twisted mass
lattice QCD, Comput. Phys. Commun., 180, 2717–2738, 2009.

[31] S. Bacchio and J. Finkenrath, “tmLQCD interfaced to DDalphaAMG”, Available at
https://github.com/finkerath/tmLQCD.

[32] M. Rottmann, A. Strebel, S. Heybrock, S. Bacchio, and B. Leder, “DDalphaAMG”, Avail-
able at https://github.com/DDalphaAMG/DDalphaAMG.

[33] Simone Bacchio, Constantia Alexandrou, and Jacob Finkenrath, Multigrid accelerated
simulations for Twisted Mass fermions, in: 35th International Symposium on Lattice Field
Theory (Lattice 2017) Granada, Spain, June 18-24, 2017, 2017.

22

https://github.com/finkerath/tmLQCD
https://github.com/DDalphaAMG/DDalphaAMG


[34] Martin Lüscher, Stochastic locality and master-field simulations of very large lattices, in:
35th International Symposium on Lattice Field Theory (Lattice 2017) Granada, Spain,
June 18-24, 2017, 2017.

[35] Simon J Smith, Lebesgue constants in polynomial interpolation, in: Annales Mathemati-
cae et Informaticae, vol. 33, pp. 1787–5021. Eszterházy Károly College, Institute of Math-
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A Error and residual of equivalent solutions
In this appendix we compare the numerical error and residual of solutions which are equivalent
in exact arithmetic but not numerically. For clarity sake, our notation is the following: a linear
system

Ax = b, (A.1)

with A being an invertible matrix, b a known right hand side (rhs) and x the numerical solution,
has residual and error, respectively,

r = b− Ax and e = A−1b− x. (A.2)

The residual is commonly used as stopping criterium for the solvers, since it does not require
the knowledge of the exact solutionA−1b. However the error vector e is the statistical deviation
which one introduces using the solution x. The error is connected to the residual by the relation

e = A−1r which states ‖e‖ =
∥∥A−1r∥∥ ≤ ∥∥A−1∥∥ ‖r‖ =

‖r‖√
λmin(A†A)

, (A.3)

where the latter equality holds in the Euclidean norm and λmin(A†A) is the smallest eigenvalue
of A†A. Iterative solvers are usually stopped when ‖r‖ < ρ ‖b‖ with ρ being a fixed tolerance.
This fix the relative norm of the residual to be below a given threshold.

Hereafter we study and show numerical results for equivalent solutions in several cases.
We use the TM Wilson operator on the physical test ensemble. In the numerical results we also
show the error with maximal and minimal deviation of the local components. In the following
examples we start from a random vector taken as the solution x. Then we apply the involved
operator A to obtain the right hand side b = Ax. Then the error is given by e = x′ − x with
x′ the iterated solution. The minimal and maximal local deviation are given min/max of the
norm of e restricted to the lattice site. The maximal and minimal deviation are potentially
interesting for future simulations where very large lattices will be used [34]. Indeed since ‖b‖
grows with V 1/2, the stopping criterium ‖r‖ ≤ ρ ‖b‖ does not guarantee the residual or error to
be uniformly small and at larger V larger local deviation of the vectors are allowed.

A.1 Squared twisted mass operator
We start by taking a closer look to the linear system (Q2 +µ2I)x = b which involves a squared
hermitian operator Q2. As already discussed in Section 3.1 we consider here the following
three methods:
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A: the linear system is directly solved by

xA + eA = (Q2 + µ2I)−1b . (A.4)

The solver stopping criterium is based on the relative residual of the solution, thus

‖rA‖ =
∥∥b− (Q2 + µ2I)xA

∥∥ ≤ ρ ‖b‖ (A.5)

and norm of the error satisfies

‖eA‖ =
∥∥(Q2 + µ2I)−1rA

∥∥ ≤ ‖rA‖
λ2min + µ2

≤ ρ ‖b‖
λ2min + µ2

. (A.6)

B: the system is solved in two consecutive steps, by computing

x± + e± = (Q± iµI)−1b and then xB + e′B = (Q∓ iµI)−1x± (A.7)

using either x+ or x−. The solution

xB + eB = (Q2 + µ2I)−1b has error eB = e′B + (Q∓ iµI)−1e±. (A.8)

The solver stopping criteria are in the two steps respectively

‖r±‖ = ‖b− (Q± iµI)x±‖ ≤ ρ ‖b‖ (A.9)

‖r′B‖ = ‖x± − (Q∓ iµI)xB‖ ≤ ρ ‖x±‖ ≤
ρ ‖b‖√
λ2min + µ2

. (A.10)

The residual of the solution is then

rB = b− (Q2 + µ2I)xB = b− (Q± iµI)(x± + r′B) = r± + (Q± iµI)r′B

=⇒ ‖rB‖ < ‖r±‖+ ‖Q± iµI‖ ‖r′B‖ ≤

(
1 +

√
λ2max + µ2

λ2min + µ2

)
ρ ‖b‖ . (A.11)

For obtaining the smallest upper limit of the error in Eq. (A.8), we consider

e± = (Q± iµI)−1r±,B =⇒ ‖e±‖ ≤
ρ ‖b‖√
λ2min + µ2

(A.12)

e′B = (Q∓ iµI)−1r′B =⇒ ‖e′B‖ ≤
ρ ‖x±‖√
λ2min + µ2

≤ ρ ‖b‖
λ2min + µ2

(A.13)

from which we obtain

‖eB‖ =
∥∥e′B + (Q∓ iµI)−1e±

∥∥ ≤ ‖e′B‖+
‖e±‖√
λ2min + µ2

≤ 2ρ ‖b‖
λ2min + µ2

. (A.14)

C: the solution is given by a difference of two solutions of a linear combination of x±+e± =
(Q± iµ)−1b,

xC = b− (Q2 +µ2)xC =
i

2µ
(x+−x−) = (Q2 +µ2I)−1b− i

2µ
(e+− e−) for µ 6= 0.

(A.15)
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The solver stopping criteria are in Eq. (A.9) and the errors e± in Eq. (A.12). The residual
of the solution is then

rC =
i

2µ
((Q+ iµI)r+ − (Q− iµI)r−)

=⇒ ‖rC‖ ≤
1

2 |µ|
(‖Q+ iµI‖ ‖r−‖+ ‖Q− iµI‖ ‖r+‖) ≤

ρ
√
λ2max + µ2 ‖b‖
|µ|

(A.16)

while the error of the solution is

eC =
i

2µ
(e+ − e−) =⇒ ‖eC‖ ≤

1

2 |µ|
(‖e+‖+ ‖e−‖) ≤

ρ ‖b‖
|µ|
√
λ2min + µ2

. (A.17)

Most of the numerical results are discuss in Section 3.1 and depicted in Fig. 3 for theNf = 2
TM Wilson operator and in Fig. 6 for the ND twisted mass operator. Here we want to make
some additional remarks which are the following ones:

• The error bounds of method A, B and C are compatible as long as the shift µ is larger
than λmin. If the shift becomes smaller the error bound of method C increases inverse
proportional. In our numerical example we found for all methods a comparable error, but
only for the case µ < 10−14 with λmin ∼ 0.0008 for the ND twisted mass case we found
a deviation using method C. Here, methods A or B yield better results.

• The difference between the real error and the error bounds can give some information on
the modes the solver tackles effectively. Namely if the real error coincidences with the
error bound, the error is dominated by the mode of the smallest eigenvalue. In contrast,
if the error is much smaller than the error bound, the error is dominated by much larger
modes and thus the solver would treat the small eigenmodes very effectively. In our
numerical test we found that in all cases the smallest eigenvalues are dominating the
error. This is also the case if a multigrid solver is used. An explanation is that the coarse
grid correction is calculated with a very large stopping criteria, which just tackle the low
modes until the fine grid precision is reached.

• The error norm has a slope parallel to the target relative residual when the residual vector
is dominated by a specific eigenvector. Indeed ‖e‖ = ‖(Q2 + µ2I)−1r‖ = α ‖r‖ only
if r is an eigenvector. In general the residual of standard Krylov solvers is dominated
by the eigenvector with smallest eigenvalue which in this case is µ2. This is indeed the
separation we observe in Fig. 3 between error and relative target residual. Interestingly
also multigrid methods produce solutions which have a residual dominated by the small-
est eigenvalue. It is surprising because multigrid methods threat the low mode subspace
separately and the convergence is expected to be similar for all the modes. For instance
an exactly deflated solver would have the residual dominated by the first non-deflated
eigenvalue. Moreover the multigrid residual is dominated by the smallest eigenvalue
since target relative residual ρ > 10−5 returning a solution with 100% error. This also
explain why for inversions at high target relative residual, as in the molecular dynamics
trajectory, we need with the DD-αAMG solver a more accurate solution than for the CG
solver to satisfying the reversibility check at the same precision, as reported in Ref. [33].
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Figure 11: The dependence of the error and the residual on the stopping criteria for the three different
approaches for solving the linear equation involving one single TM Wilson operator. Method D is given
by the direct solution using the multigrid solver (red), method E is given by the CGNR method (blue)
and method F is given by the CGNE method (green). The residual are shown as dotted lines while
the error is illustrated by the straight line attached to a shaded band given by the largest and smallest
deviations.

A.2 Single flavor twisted mass operator
In general retrieving the solution of the linear system in Eq. (A.1) can be done by different
methods, for instance by using a linear iterative solver like the conjugate gradient (CG) solver.
In case of CG, which requires A to be hermitian instead of Eq. (A.1) a modified linear equation
involving a hermitian operator has to be solved. Two methods are available, known as CGNR
and CGNE given by solving the equations

(A†A)x = A†b or (AA†)y = b→ x = A†y (A.18)

for obtaining x respectively. Although both solutions are equivalent in exact arithmetic, in
practice the numerical error and residual, as defined in Eq. (A.2), are in general different. In
order to approach smaller quark masses and increasing the dimension of the lattice require to
study different ways in order to control the resulting error.

Here we consider the following three methods for solving the linear equation (Q±iµI)x± =
b:

D: The linear system is solved directly by obtaining

x±,D + e±,D = (Q± iµI)−1b. (A.19)

The solver stopping criterium is based on the relative residual of the solution, thus

‖r±,D‖ = ‖b− (Q± iµI)x±,D‖ ≤ ρ ‖b‖ . (A.20)

Following Eq. (A.3), the norm of the error satisfies

‖e±,D‖ =
∥∥(Q± iµI)−1r±,D

∥∥ ≤ ‖r±,D‖√
λ2min + µ2

≤ ρ ‖b‖√
λ2min + µ2

(A.21)
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where λ2min is the smallest eigenvalue of Q2.

E: A normal equation is used by applying a transformation on the rhs (equivalent to CGNR)

x±,E + e±,E = (Q2 + µ2I)−1(Q∓ iµI)b. (A.22)

Since the rhs is (Q∓ iµI)b, the solver stopping criterium is∥∥r′±,E∥∥ =
∥∥(Q∓ iµI)b− (Q2 + µ2I)x±,E

∥∥ ≤ ρ ‖(Q∓ iµI)b‖ ≤ ρ ‖b‖
√
λ2max + µ2.

(A.23)
The norm of the residual is then

‖r±,E‖ =
∥∥(Q∓ iµI)−1r′±,E

∥∥ ≤ ρ ‖(Q∓ iµI)b‖√
λ2min + µ2

≤ ρ ‖b‖

√
λ2max + µ2

λ2min + µ2
(A.24)

and the norm of the error satisfies

‖e±,E‖ ≤
‖r±,E‖√
λ2min + µ2

≤
ρ ‖b‖

√
λ2max + µ2

λ2min + µ2
. (A.25)

F: A normal equation is used by applying a transformation on the solution (equivalent to
CGNE)

yF + eF = (Q2 + µ2I)−1b −→ x±,F + e±,F = (Q∓ iµI)yF (A.26)

where e±,F = (Q∓ iµI)eF . The solver stopping criterium

‖rF‖ =
∥∥b− (Q2 + µ2I)yF

∥∥ = ‖b− (Q± µI)x±,F‖ = ‖r±,F‖ ≤ ρ ‖b‖ (A.27)

is equivalent to computing the residual of the solution r±,F . The norm of the error then
satisfies

‖e±,F‖ ≤
‖r±,F‖√
λ2min + µ2

≤ ρ ‖b‖√
λ2min + µ2

. (A.28)

From this analysis, we conclude that method D and F generates solutions which have com-
patible residuals and errors. On the other hand, method E has upper limits increased by the
condition number κ =

√
(λ2max + µ2)/(λ2min + µ2) compared to D or F. The numerical re-

sults depicted in Fig. 11 for the Nf = 2 twisted mass operator at the physical light quark
mass (λ2min = 0 and µ = 0.00072) confirm these conclusions. From the numerical results we
also notice that the error of the method E is close to the upper limits obtained in Eq. (A.25).
This shows that the residual of CG solver is dominated by the lowest eigenmodes. Indeed if
r = vmin(A†A) holds, where vmin is the eigenvector of the smallest eigenvalue, then it follows

‖e‖ =
∥∥A−1r∥∥ =

∥∥A−1∥∥ ‖r‖ =
‖r‖√

λmin(A†A)
. (A.29)
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B Proof of concept for the initial guesses
As discussed in Section 4.2, we generate an initial guess for solving the (n + 1)th shifted
linear system based on Lagrangian interpolation of the previous n solutions. The Lagrangian
interpolation of a function f(x) is given by

Lk(x) =
k∑
i=1

f(xi)li,k(x) (B.1)

where k > 1 and li,k(x) satisfies li,k(xj) = δij for all i, j ∈ [1, k] with δij being the Kronecker
delta. A polynomial solution to the latter property is

li,k(x) =
k∏
j=1
j 6=i

x− xj
xi − xj

=⇒ li,k(xj) = δij for i, j ∈ [1, k] (B.2)

where the Lagrangian interpolation defined via li,k(x) is denoted as the Lagrange’s form. In this
case Lk(x) is the unique polynomial of degree (k−1) which exactly interpolates k fixed points
of the function f(x), i.e. L(xi) = f(xi) for all i ∈ [1, k]. Additionally we define l1,1(x) ≡ 1
which gives

k∑
i=1

li,k(x) = 1 for all k ∈ N+ . (B.3)

Furthermore it follows that the Lagrangian interpolation of a constant is exact, Lk(x) =∑k
i=1 b li,k(x) = b

∑k
i=1 li,k(x) ≡ b. The Lagrangian interpolation of (Q + mI)−1 with grid

points {(Q+miI)−1} is given by

Lk(m) =
k∑
i=1

li,k(m)(Q+miI)−1 with li,k(m) =
k∏
j=1
j 6=i

m−mj

mi −mj

. (B.4)

The interpolated solution reads as

x̃k(m) = Lk(m)b =
k∑
i=1

li,k(m)(Q+miI)−1b =
k∑
i=1

li,k(m)xi (B.5)

where xi are solutions of (Q + miI)xi = b computed with a residual ri = b − (Q + miI)xi
which fulfills the solver stopping criterium ‖ri‖ < ρ ‖b‖. For the residual of the interpolated
solution x̃k(m) follows

r̃k(m) = b− (Q+mI)x̃k(m) = b−
k∑
i=1

li,k(m)(Q+mI)xi (B.6)

=
k∑
i=1

li,k(m) ((mi −m)xi + b− (Q+miI)xi) =
k∑
i=1

li,k(m) ((mi −m)xi + ri)
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which is a Lagrangian interpolation of the residuals, i.e. r̃k(mi) = ri. Studying the norm of the
Lagrange’s form of the residuals we obtain∥∥∥∥∥

k∑
i=1

li,k(m)ri

∥∥∥∥∥ ≤
k∑
i=1

|li,k(m)| ‖ri‖ < ρ ‖b‖
k∑
i=1

|li,k(m)| = ρ γk(m) ‖b‖ (B.7)

where γk(m) =
∑k

i=1 |li,k(m)| is the Lebesgue function defined from the Lagrange’s polyno-
mials li,k(m). The Lebesgue function in the interval [mmin,mmax] assumes values

1 ≤ γk(m) ≤ Γk (B.8)

where mmin and mmax are the smallest and largest shifts of mi, respectively, while Γk =
maxm∈[mmin,mmax] γk(m) is referred to as Lebesgue constant. Depending on the shifts, the
Lebesgue constant could grow as an exponential, logarithmic or asymptotic function of k [35].
In case of diverging growths one can truncate the degree of the interpolation in order to keep
the error under control. The relation∥∥∥∥∥

k∑
i=1

li,k(m)ri

∥∥∥∥∥ ≤ ρΓk ‖b‖ (B.9)

fixes the maximal contribution of the residuals to the residual of the interpolated solution.
The additional term to the Lagrange’s form in Eq. (B.6) can be re-written as

k∑
i=1

li,k(m)(m−mi)xi '

(
k∏
j=1

(m−mj)

)
k∑
i=1

 k∏
j=1
j 6=i

1

mi −mj

 (Q+miI)−1b

=

(
k∏
j=1

m−mj

Q+mjI

)
b (B.10)

where xi ' (Q + miI)−1b is used and the partial fraction decomposition is re-summed in a
product of fractions. For the norm of follows∥∥∥∥∥

k∑
i=1

li,k(m)(m−mi)xi

∥∥∥∥∥ '
∥∥∥∥∥
(

k∏
i=1

m−mi

Q+miI

)
b

∥∥∥∥∥ ≤
k∏
i=1

|m−mi|
|λmin,i|

‖b‖ (B.11)

where λ2min,i is the smallest eigenvalue of (Q+mi)
†(Q+mi). If Q is a positive-definite matrix

then λmin,i = λmin +mi with λmin > 0 being the smallest eigenvalue of Q.
Considering now the full residual interpolation in Eq. (B.6) we find the following upper

limits

‖r̃k(m)‖ =

∥∥∥∥∥
k∑
i=1

li,k(m) ((m−mi)xi + ri)

∥∥∥∥∥ ≤
∥∥∥∥∥

k∑
i=1

li,k(m)(m−mi)xi

∥∥∥∥∥+ ρ γk(m) ‖b‖

.

(
k∏
i=1

|m−mi|
|λmin,i|

+ ρΓk

)
‖b‖ . (B.12)

The first upper bound requires a knowledge of the solutions xi and residuals ri, making it depen-
dent on the numerical approach. The second instead depends only on the analytical properties
of the shifted systems.
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