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Abstract

Symplectic schemes are powerful methods for numerically integrating Hamiltonian systems, and

their long-term accuracy and fidelity have been proved both theoretically and numerically. However

direct applications of standard symplectic schemes to relativistic charged particle dynamics result

in implicit and electromagnetic gauge-dependent algorithms. In the present study, we develop

explicit high-order gauge-independent noncanonical symplectic algorithms for relativistic charged

particle dynamics using a Hamiltonian splitting method in the 8D phase space. It also shown that

the developed algorithms can be derived as variational integrators by appropriately discretizing

the action of the dynamics. Numerical examples are presented to verify the excellent long-term

behavior of the algorithms.
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1. INTRODUCTION

Charged particle dynamics plays an important role in plasma physics, space physics and

accelerator physics. In a given electromagnetic field, the dynamics of a charged particle is

described by Newton’s equation with the Lorentz force. Since the governing equation is a 6D

nonlinear ordinary differential equation (ODE) in general, we have to depend on numerical

solutions to understand the complicated behavior of the dynamics. In practice, long-term

simulations are often needed. For instance in a typical tokamak, the particle confinement

time of ions is 107 ∼ 108 times longer than their cyclotron period. For these multi-scale dy-

namics, it is crucial to adopt numerical schemes with the long-term conservation properties.

Conventional integrators for ODEs, such as the 4th order Runge-Kutta (RK4) method, can

bound the truncation error of the discrete time advance for each time step. However these

truncation errors from different time-steps will accumulate during the simulation and the

global error grows without bound.

Fortunately, most physical systems are Hamiltonian, and symplectic (or geometric) inte-

grators for Hamiltonian systems have been systematically studied since 1980s [1–16]. The

idea of symplectic integrators is to construct time advance maps that preserve the symplec-

tic 2-form, just as the exact solutions of the original Hamiltonian system do. It has been

demonstrated that symplectic integrators can globally bound the errors on the invariants of

the dynamics [2, 4, 15], such as the conserved Hamiltonian and momenta, for all simulation

time-steps.

Recently in plasma physics and accelerator physics, various symplectic algorithms have

been developed and applied for the Vlasov-Maxwell system, Vlasov-Poisson system [17–29],

two-fluid dynamics [30], magnetohydrodynamics [31–34], and guiding center dynamics [35–

42]. For charged particle dynamics in a given electromagnetic field, the dependence of the

Hamiltonian H(p, q) on momentum p and position q is inseparable in general, and direct

applications of standard symplectic methods will result in implicit schemes. Recently, He et

al. [43, 44] discovered a Hamiltonian splitting method to build explicit high-order symplectic

algorithms for non-relativistic charged particle dynamics in static electromagnetic fields,

and its applicability has been extended to general electromagnetic fields and relativistic

dynamics in the canonical setting [45]. Generating function methods have also been utilized

to construct explicit 3rd order symplectic method for relativistic dynamics [46, 47]. As
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an example of another class of geometric integrators, the well known Boris algorithm [48]

was found to preserve phase volume [49], but not the symplectic structure [50]. Families

of volume preserving algorithms have been developed for relativistic and non-relativistic

charged particle dynamics [51–56].

In the present study, we develop a family of explicit high-order gauge-independent non-

canonical symplectic integrators for relativistic charged particle dynamics using the Hamil-

tonian splitting method discovered by He et al. [43, 44]. The algorithms possess desirable

properties for long-term simulation studies of relativistic charged particle dynamics. For

example, it preserves a noncanonical symplectic 2-form that enables the global bound on

errors for invariants of the dynamics. Because the algorithms are explicit, higher accuracy

can be achieved with relatively low computational cost. The gauge-independent property

implies that discrete orbits are not affected by the choice of electromagnetic gauge. Com-

pared with the algorithms in Ref. [45], the methods developed in the present study do

not require the knowledge of vector and scalar potentials. Only electromagnetic fields are

needed. We will also show that the noncanonical symplectic algorithms developed can be

derived as variational integrators with specifically constructed discrete Lagrangian.

The paper is organized as follows. In Sec. 2, we start from the Lagrange theory of the rel-

ativistic charged particle dynamics, and derive the corresponding noncanonical Hamiltonian

theory and Poisson bracket. In Sec. 3, explicit high-order gauge-independent noncanonical

symplectic integrators are constructed using the Hamiltonian splitting method. The same

schemes are also derived as variational integrators. Numerical examples are given in Sec. 4.

2. LAGRANGIAN AND NONCANONICAL HAMILTONIAN FORMALISM OF

RELATIVISTIC CHARGED PARTICLE DYNAMICS

The motion of a relativistic charged particle in a given electromagnetic fields is governed

by Newton’s equation with the Lorentz force,

dx

dt
=

p

γ
, (1)

dp

dt
= E+

p×B

γ
, (2)

where γ =
√

1 + |p|2 is the relativistic factor. For simplicity, the rest mass m0, speed of

light c and charge of the particle q are set to be 1. The Lagrangian theory for relativistic
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particle dynamics can be found in Ref. [57]. In the present study, we adopt the Lagrangian

theory in the 8D tangent bundle of space-time. The proper time τ is used as the parameter

for particle’s worldline in the 8D tangent bundle. The Lagrangian L and action integral S

are

L[x, t] =
1

2

(

−ṫ2 + |ẋ|2
)

+ ẋ ·A (x, t)− ṫφ (x, t) , (3)

S[x, t] =

ˆ

L[x, t]dτ , (4)

where A and φ are vector and scalar potentials. Particle’s space-time coordinates x and t

are functions of the proper time τ , and ẋ = dx/dτ and ṫ = dt/dτ . The governing equations

are the Euler-Lagrange equations,

δS

δx
= 0 , (5)

δS

δt
= 0 . (6)

If we let p = ẋ, it can be proved that Eqs. (5) and (6) are exactly the same as Eqs. (1) and

(2).

To obtain the noncanonical Hamiltonian theory, we need to derive the Lagrange 1-form

Γ [58] defined as

Γ =
∂L

∂ẋ
dx+

∂L

∂ṫ
dt . (7)

where d denotes for the exterior derivative. The Euler-Lagrange equation can be written as

i(ẋ,ṗ,ṫ,γ̇)dΓ + dH = 0 , (8)

where p = ẋ and (ẋ, ṗ, ṫ, γ̇) denotes for the following vector field in the 8D cotangent bundle,

ẋ
∂

∂x
+ ṗ

∂

∂p
+ ṫ

∂

∂t
+ γ̇

∂

∂γ
(9)

In Eq. (8), H is the Hamiltonian

H =
∂L

∂ẋ
· ẋ− L

=
1

2

(

−γ2 + |p|2
)

. (10)

Since H does not depend on τ, H is an invariant of the dynamics, which implies that the

particle is always on the mass-shell. Equation (8) can be also written in matrix form,
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żΩ = −
∂

∂z
H (z) , (11)

or

ż = Ω−1

(

∂

∂z
H (z)

)T

, (12)

where Ω is the matrix form of the noncanonical symplectic 2-form dΓ, and z = (x,p, t, γ) is

a point in the 8D cotangent bundle. It is clear that Eq. (12) is a noncanonical Hamilton’s

equation

ż = {z,H} , (13)

with a noncanonical Poisson bracket {., .}. Specifically, the noncanonical Poisson bracket is

defined by Ω−1 as

{F,G} =

(

∂

∂z
F

)

Ω−1

(

∂

∂z
G

)T

(14)

=

(

∂

∂z
F

)















0 I 0 0

−I B̂ (x, t) 0 −E (x, t)T

0 0 0 −I

0 E (x, t) I 0















(

∂

∂z
G

)T

, (15)

B̂ =











0 Bz −By

−Bz 0 Bx

By −Bx 0











. (16)

It can be verified that Eq. (13) is equivalent to the following dynamic equation



























ẋ = p ,

ṗ = γE+ p×B ,

ṫ = γ ,

γ̇ = E · p .

(17)

which reduces to Eqs. (1) and (2).
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3. CONSTRUCTION OF THE GEOMETRIC ALGORITHM

In previous works, the powerful Hamiltonian splitting technique has been applied to

render explicit high-order symplectic algorithms for single particle dynamics [43–45], Vlasov-

Maxwell systems [23, 28, 43, 59], and two-fluid dynamics [30]. Here, we apply a similar

technique to the noncanonical Hamilton’s equation (13) for relativistic particle dynamics.

The Hamiltonian H in Eq. (10) can be naturally split into four parts,

H = Ht +Hx +Hy +Hz , (18)

Ht = −γ2/2 , (19)

Hx = p2x/2 , (20)

Hy = p2y/2 , (21)

Hz = p2z/2 . (22)

For Ht, Hamilton’s equation is

ż = {z,Ht} , (23)

i.e.,


























ẋ = 0 ,

ṗ = γE ,

ṫ = γ ,

γ̇ = 0 .

(24)

Its exact solution map Θt (∆τ) is

Θt (∆τ) :



























x → x ,

p → p+∆τγ
´ 1

0
dt′E (x, t+ γ∆τt′) ,

t → t +∆τγ ,

γ → γ .

(25)

Exact solution maps for the subsystems Hx, Hy and Hz can be obtained similarly. For Hi,

i ∈ {x, y, z}, Hamilton’s equation is


























ẋ = piei ,

ṗ = piei ×B ,

ṫ = 0 ,

γ̇ = Eipi ,

(26)
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and the solution map is

Θi (∆τ) :



























x → x+∆τpiei ,

p → p+∆τ
´ 1

0
dt′piei ×B (x + piei∆τt

′, t) ,

t → t ,

γ → γ +∆τpi
´ 1

0
Ei (x+ piei∆τt

′, t) dt′ .

(27)

Using these exact solutions of subsystems, we can construct high-order explicit algorithms

by various compositions. Since exact solutions are symplectic, the algorithms constructed

by composition are automatically symplectic. For example, a 1st order symplectic scheme

is

Θ1 (∆τ) = Θx (∆τ) Θy (∆τ) Θz (∆τ) Θt (∆τ) , (28)

and a symmetric 2nd order symplectic scheme can be built using Strang splitting [15],

Θ2 (∆τ) = Θx (∆τ/2)Θy (∆τ/2)Θz (∆τ/2)Θt (∆τ)

Θz (∆t/2)Θy (∆t/2)Θx (∆t/2) . (29)

A 2(l + 1)-th order scheme can be constructed from a 2l-th order scheme using the method

of triple jump [7, 15],

Θ2(l+1)(∆τ) = Θ2l(αl∆τ)Θ2l(βl∆τ)Θ2l(αl∆τ) , (30)

αl = 1/(2− 21/(2l+1)) , (31)

βl = 1− 2αl . (32)

The main difficulty in implementing the present algorithm is calculating integrals in each

solution map. When these integrals can not be calculated explicitly, we can approximate

the external electromagnetic fields B and E by piece-wise polynomial fields B̄ and Ē that

satisfy Maxwell’s equation. For example in vacuum, they satisfy [23]

˙̄B = −∇× Ē , (33)

0 = ∇ · B̄ . (34)

The piece-wise polynomial approximation can be made to arbitrary high-orders.

We have found previously that the explicit high-order noncanonical symplectic particle-

in-cell (PIC) scheme can be also obtained by using the discrete variational method [29]. The
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same idea applies here, i.e., the present noncanonical relativistic particle integrators can be

derived as variational integrators [14, 15, 60]. For this purpose, we consider a 1st order

approximation of discrete action integral

Sd1 =
Nt−1
∑

l=0

Ld1

(

x4l , x
4
l+1; ∆τ

)

, (35)

where Ld1

(

x4l , x
4
l+1; ∆τ

)

is the discrete Lagrangian

Ld1

(

x4l , x
4
l+1; ∆τ

)

=
1

2

(

−

(

tl+1 − tl
∆τ

)2

+

∣

∣

∣

∣

xl+1 − xl

∆τ

∣

∣

∣

∣

2
)

+

xl+1 − xl
∆τ

ˆ 1

0

dτ ′Ax (xl + (xl+1 − xl) τ
′, yl, zl, tl) +

yl+1 − yl
∆τ

ˆ 1

0

dτ ′Ay (xl+1, yl + (yl+1 − yl) τ
′, zl, tl) +

zl+1 − zl
∆τ

ˆ 1

0

dτ ′Az (xl+1, yl+1, zl + (zl+1 − zl) τ
′, tl)−

tl+1 − tl
∆τ

ˆ 1

0

dτ ′At (xl+1, yl+1, zl+1, tl + (tl+1 − tl) τ
′) . (36)

Here, x4l represents (xl, yl, zl, tl) and At = φ is the scalar potential. Discrete equation of

motion can be derived by the discrete variational principle,

∂Sd1

∂xl

= 0 , (37)

∂Sd1

∂tl
= 0 , (38)

for 1 ≤ l ≤ Nt. Written out explicitly, Eq. (38) is

−
tl+1 − 2tl + tl−1

∆τ 2
+
xl+1 − xl

∆τ

ˆ 1

0

dτ ′Ax,t (xl + (xl+1 − xl) τ
′, yl, zl, tl) +

yl+1 − yl
∆τ

ˆ 1

0

dτ ′Ay,t (xl+1, yl + (yl+1 − yl) τ
′, zl, tl) +

zl+1 − zl
∆τ

ˆ 1

0

dτ ′Az,t (xl+1, yl+1, zl + (zl+1 − zl) τ
′, tl)−

tl+1 − tl
∆τ

ˆ 1

0

dτ ′ (1− τ ′)At,t (xl+1, yl+1, zl+1, tl + (tl+1 − tl) τ
′) +

1

∆τ

ˆ 1

0

dτ ′At (xl+1, yl+1, zl+1, tl + (tl+1 − tl) τ
′)−

tl − tl−1

∆τ

ˆ 1

0

dτ ′τ ′At,t (xl, yl, zl, tl−1 + (tl − tl−1) τ
′)−

1

∆τ

ˆ 1

0

dτ ′At (xl, yl, zl, tl−1 + (tl − tl−1) τ
′) . (39)
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Let E = −∇At − ∂A/∂t = (E1 (x
4) , E2 (x

4) , E3 (x
4)), pl =

xl+1−xl

∆τ
= [p1,l, p2,l, p3,l], and

γ =
tl+1−tl

∆τ
. Using the following identities,

d

dτ ′
f (x + pieiτ

′∆τ, t) = pi∆ττ
′f,i (x+ pieiτ

′∆τ, t) ,

d

dτ ′
(τ ′f (x, t + γτ ′∆τ)) = γτ ′∆τf,t (x, t+ γτ ′∆τ) + f (x, t+ γτ ′∆τ) ,

d

dτ ′
((1− τ ′) f (x, t + γτ ′∆τ)) = γ∆τ (1− τ ′) f,t (x, t+ γτ ′∆τ)− f (x, t+ γτ ′∆τ) ,

we can rewrite Eq. (39) as

γl − γl−1

∆τ
=

3
∑

i=1

pi,l

ˆ 1

0

dt′Ei

(

xl +
∑

j<i and 1≤j≤3

pj,lej∆τ + pi,l∆τt
′, tl

)

, (40)

which is an explicit scheme for advancing γl. A similar treatment applies to Eq. (37) as well,

leading to

pl − pl−1

∆τ
=

ˆ 1

0

dτ ′γlE (xl, tl + γlτ
′) + pl−1 · B̂p,l−1 + pl · B̂

∗
p,l , (41)

where

pl−1 · B̂p,l−1 =















py,l−1

´ 1

0
dt′Bz,l−1 (xl, yl−1 + t′py,l−1∆τ, zl−1, tl−1)−

pz,l−1

´ 1

0
dt′By,l−1 (xl, yl, zl−1 + t′pz,l−1∆τ, tl−1) ,

pz,l−1

´ 1

0
dt′Bx,l−1 (xl, yl, zl−1 + t′pz,l−1∆τ, tl−1) ,

0















, (42)

pl · B̂
∗
p,l =















0,

−px,l
´ 1

0
dt′Bz,l (xl + t′px,l∆τ, yl, zl, tl) ,

px,l
´ 1

0
dt′By,l (xl + t′px,l∆τ, yl, zl, tl)−

py,l
´ 1

0
dt′Bx,l (xl+1, yl + t′py,l∆τ, zl, tl)















. (43)

Equation (41) furnishes an explicit scheme for advancing xl. It can be seen that Eqs. (40)

and (41) are the same as Θ1 in Eq. (28).

For higher order splitting schemes, equivalent variational integrators also exist. For ex-

ample, the discrete action integral from which a scheme equivalent to Θ2 can be derived

is

Sd2 =
Nt−1
∑

l=0

∆tLd2

(

x42l, x
4
2l+1, x

4
2l+2; ∆τ

)

, (44)
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where

Ld2

(

x42l, x
4
2l+1, x

4
2l+2; ∆τ

)

= Ld1

(

x42l, x
4
2l+1; ∆τ/2

)

+ L′
d1

(

x42l+1, x
4
2l+2; ∆τ/2

)

,

L′
d1

(

x4l , x
4
l+1; ∆τ

)

=
1

2

(

−

(

tl+1 − tl
∆τ

)2

+

∣

∣

∣

∣

xl+1 − xl

∆τ

∣

∣

∣

∣

2
)

+

−
tl+1 − tl

∆τ

ˆ 1

0

dτ ′At (xl, yl, zl, tl + (tl+1 − tl) τ
′) +

zl+1 − zl
∆τ

ˆ 1

0

dτ ′Az (xl, yl, zl + (zl+1 − zl) τ
′, tl+1) +

yl+1 − yl
∆τ

ˆ 1

0

dτ ′Ay (xl, yl + (yl+1 − yl) τ
′, zl+1, tl+1) +

xl+1 − xl
∆τ

ˆ 1

0

dτ ′Ax (xl + (xl+1 − xl) τ
′, yl+1, zl+1, tl+1) .

The gauge-independent property can be directly shown from the form of the discrete

Lagrangian. If we change potentials A and φ by a gauge field ψ in the discrete action Sd1 as

A → A+∇ψ , (45)

φ → φ−
∂ψ

∂t
, (46)

Sd1 is changed only by a boundary term

Sd1 → Sd1 − ψ
(

x40
)

+ ψ
(

x4Nt

)

. (47)

Thus the evolution determined by Eqs. (37) and (38) is independent of the gauge field ψ.

4. NUMERICAL EXAMPLES

We have implemented the explicit 2nd order Gauge-Independent Geometric Integrator

(GIGI2) for relativistic particle dynamics. In this section, we test the performance of the

GIGI2 using several numerical examples, can compare it with the RK4 method.

4.1. The 2D Tokamak Geometry

The first example is the dynamics of a charged particle in a 2D tokamak geometry. The

magnetic potential and electrostatic potential are

A (x, y, z, t) = B0

(

r2

2R
eξ −

log(R/R0)R0

2
ez +

R0z

2R
eR

)

, (48)

φ (x, y, z, t) = 0 , (49)
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Names Symbols Units

Position x, r, R c/Ω

Time t, τ 1/Ω

Momentum p m0c

Velocity v c

Magnetic field B m0Ω/q

Electric field E cm0Ω/q

TABLE I: Normalization used in the numerical example of Sec. 4. Here, Ω = qB0/m0.

where

R =
√

x2 + y2 , (50)

r =

√

(R− R0)
2 + z2 , (51)

eξ = [−
y

R
,
x

R
, 0] , (52)

eR = [
x

R
,
y

R
, 0] , (53)

and B0 is the strength of the magnetic field at R = R0 and z = 0. The normalization of

physical quantities in numerical calculation is listed in Tab. I. After the normalization, the

magnetic field is

B =
r

2R
eθ +

R0Ω

cR
eξ , (54)

and the motion equation of the particle is exactly Eq. (17). We set R0Ω/c = 1, and initially

the particle is located at x0 = [1.05, 0, 0] and its velocity is v0 = [2.1× 10−3, 4.3× 10−4, 0].

The time step is set to be ∆τ = 0.25, and the total number of time steps is 1× 106. During

the simulation the location and energy are recorded, and results are plotted in Figs. 1 and

2. It is evident that the GIGI2 method preserves the orbit and energy well, whereas the

RK4 method does not.
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(a) GIGI2
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(b) RK4

FIG. 1: Particle orbit in the poloidal plane of a tokamak obtained by the GIGI2 and RK4

method.

0 100 200 300 400 500

τ/(2000∆τ)

0.0
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0.4

0.6

0.8

1.0

1 2
|p

2
|/

1 2
|p

2 0
|

GIGI2

RK4

FIG. 2: Evolution of 1
2
|p|2 of the charged particle in a tokamak calculated by the GIGI2

and RK4 method.

4.2. Accelerator Field

The second example is a charged particle in a model linear accelerator configuration with

A (x, y, z, t) =
B0

2a
sin (kzz)

(

x2 − y2
)

ez , (55)

φ (x, y, z, t) = φ0 sin (krz − ωt) . (56)
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Here, A is the periodic quadrupole focusing field in the transverse direction, φ provides the

accelerating radio frequency (RF) field in the longitudinal direction, and a is the radius of

the transverse direction. The normalization of physical variables used in the calculation is

the same as that listed in Tab. I. The normalized external electromagnetic fields are

B (x, y, z, t) =
c

aΩ
sin (kzcz/Ω) (yex − xey) , (57)

E (x, y, z, t) = −
Ωφ0q

m0c
kr cos (krcz/Ω − ωt/Ω) ez . (58)

First, the longitudinal accelerating field E is turned off, and particle’s dynamics in the

quadrupole focusing lattice is examined. Simulation parameters are chosen as

c

aΩ
= 30 ,

kzcz/Ω = 7.5,

xt=0 = [2.667× 10−3, 2.667× 10−3, 0] ,

dx

dt

∣

∣

∣

∣

t=0

= [−0.001, 0.001, 0.9] ,

∆τ = 0.1 .

The total number of time steps is 800. Particle’s orbit and error on the Hamiltonian are

plotted in Figs. 3 and 4. It is observed that particle’s orbit obtained by the GIGI2 is stable,

and particle dynamics in the transverse direction is the betatron oscillation, as expected [61–

64] . The error on the Hamiltonian is globally bounded by a small number for the GIGI2.

On the other hand, the RK4 method fails to generate the correct orbit, and its error on

the Hamiltonian grows without bound. We note that the conservation of the Hamiltonian

defined in Eq. (10) means preserving the mass-shell condition. The unbounded growth of

the error on the Hamiltonian for the RK4 method implies that the numerical solution drift

away from the mass-shell condition, which is physically incorrect.

Next, we turn on the accelerating field. The parameters are chosen as

ω/Ω = 0.1 , (59)

krc/Ω ≈ 0.1111 , (60)

Ωφ0uq

m0uc
kr = −0.04 , (61)

and the total number of time steps is 6400. Initially the phase speed of the electric wave

is the same as the speed of the particle in the ez direction, i.e., dz/dt. The evolution of
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FIG. 3: Particle orbit in a model accelerator simulated by the GIGI2 (a) and RK4 (b)

method.
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FIG. 4: Evolution of the Hamiltonian H of the particle in a model accelerator calculated

by the GIGI2 and RK4 method.

particle orbit and Lorentz factor γ obtained by the GIGI2 and RK4 methods are plotted in

Fig. 5. It shows that the particle is accelerated at the beginning, and then decelerated and

accelerated alternatively due to the phase mis-matching and matching. The RK4 method

is able to calculate correctly the energy of particle, however it fails to compute the correct

orbit in the transverse direction.
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FIG. 5: Evolution of the particle orbit (a) and Lorentz factor γ (b) calculated by the

GIGI2 and RK4 method.

5. CONCLUSION

In this paper, we have developed a set of explicit high-order gauge-independent noncanon-

ical symplectic integrators for relativistic charged particle dynamics. These algorithms pre-

serve exactly a 8D noncanonical symplectic structure, and displayed long-term accuracy and

fidelity. Compared with the standard implicit symplectic schemes for relativistic charged

particles, the present schemes are high-order and explicit. Due to their gauge-independent

property, these algorithms do not require the knowledge of vector and scalar potentials. This

is more convenient for problems where only electromagnetic fields are given.
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