
varRhoTurbVOF: a new set of volume of fluid solvers for turbulent

isothermal multiphase flows in OpenFOAMI

Wenyuan Fana,∗, Henryk Anglarta,b

aNuclear Engineering Division, Department of Physics, KTH Royal Institute of Technology, 106 91 Stockholm,
Sweden

bInstitute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw,
Poland

Abstract

The volume of fluid (VOF) method is a popular approach for multiphase flow modeling. The
open-source computational fluid dynamics (CFD) software, OpenFOAM, implements a variety
of VOF-based solvers and provides users a wide range of turbulence models. Since isothermal
multiphase flows under the VOF framework belong to the variable-density incompressible flow
category, the isothermal VOF-based solvers in OpenFOAM fail to use the correct turbulence
models. varRhoTurbVOF is designed to solve this issue and with the hope to replace all the cor-
responding existing solvers in the future. With the object-oriented paradigm, varRhoTurbVOF
guarantees the usability, reusability and maintainability of the codes. Aside from turbulence
modeling, all other features in the original solvers are preserved in varRhoTurbVOF.

Keywords: VOF, CFD, turbulence modeling, variable-density incompressible flow,
OpenFOAM

PROGRAM SUMMARY
Program Title: varRhoTurbVOF

Licensing provisions: GPLv3

Programming language: C++

Supplementary material: http://dx.doi.org/10.17632/7mp25kyb4p.4

Nature of problem:

Under the VOF framework, the flow of the isothermal mixture belongs to the variable-density incom-

pressible flow category. For such flows, VOF-based solvers of OpenFOAM fail to construct the correct

governing equations for turbulence modeling. varRhoTurbVOF contains a set of newly designed VOF-

based solvers which could use the desired governing equations for turbulence quantities.

Solution method:

varRhoTurbVOF creates a new class for variable-density incompressible turbulence models, which allows

reusing the existing turbulence model template classes. A set of VOF-based solvers are then created to

I c©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://

creativecommons.org/licenses/by-nc-nd/4.0/
∗Corresponding author.
Email address: wf@kth.se (Wenyuan Fan)

Preprint submitted to Computer Physics Communications September 2, 2019

ar
X

iv
:1

81
1.

12
58

0v
2

 [
ph

ys
ic

s.
co

m
p-

ph
]

 3
0

A
ug

 2
01

9

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

be able to construct variable-density incompressible turbulence models.

1. Introduction

Multiphase flows, e.g. air-water flows in oceans and gas-oil flows in oil transfer lines, are
often encountered in nature and in industrial applications. However, multiphase flow modeling
is challenging due to the existence of the moving interface between different phases. Among
various modeling approaches, the volume of fluid (VOF) method [1] is a popular and widely
adopted one due to the reasons that will be discussed in Section 2. As a matter of fact, many
open-source multiphase computational fluid dynamics (CFD) codes, e.g. OpenFOAM [2–4] and
Gerris [5], have implemented solvers based on the VOF method.

Even though the VOF method has significantly evolved and been extensively studied since its
inception, it still has drawbacks which are mostly caused by the existence of the transition zone
from one phase to another. This transition zone introduces difficulties in getting a sharp interface
and calculating the interface curvature accurately. Therefore, VOF-related investigations mainly
focus on sharpening the interface and calculating the curvature accurately [6–11]. In such studies,
the flow field is either negligible or known as a priori. The reason is that there are available
analytical solutions, e.g. Young-Laplace equation and the solution provided by [12], or well
defined benchmarks for such flow conditions. These simple test cases play an significant role in
identifying issues with existing algorithms, validating newly designed techniques and advancing
the VOF method.

The stable progress in the VOF method unfortunately lags far behind the demands from
practical applications, where the flow is often turbulent. Without dedicated turbulence models
for multiphase flows, the common practice of modeling turbulent multiphase flows is combining
the VOF method with single-phase turbulence models [13, 14] due to its simple formulation.
Therefore, the implementation of this treatment should be a relatively easy task. However,
the reality is the opposite, at least for the open-source community. For instance, no explicit
turbulence models are provided in Gerris, and OpenFOAM has been using a mathematically
inconsistent modeling methodology for turbulent multiphase flows under the VOF framework,
as will be discussed in Section 4. Regarding the incorrect implementation in OpenFOAM, the
most important reason is that there is no analytical solution for turbulent multiphase flows,
which is not surprising because there is no such solution even for single-phase turbulent flows.
Consequently, it is difficult to detect flaws of existing codes and verify newly designed codes.

Considering the huge demand for turbulent multiphase simulations and the popularity of both
OpenFOAM and the VOF method, this work aims at providing a better open-source OpenFOAM-
and VOF-based platform to the multiphase modeling community. The paper is structured as
follows: Section 2 and Section 3 briefly introduce the physics behind the VOF method, turbulence
modeling, and their combination in OpenFOAM; Section 4 points out the limitations of current
isothermal VOF-based solvers in OpenFOAM; Section 5 provides the philosophy, implementation
and verification of the newly designed solvers; Section 6 describes the usage of new solvers; Section
7 conducts a performance evaluation for the new and old solvers; Section 8 summarizes the work
and provides outlooks.

2

2. Overview of the VOF method

The VOF method [1] was first developed to model immiscible two-phase flows with a simple
concept for interface advection:

∂α

∂t
+ ~u · ∇α = 0, (1)

where α is the volumetric fraction of the primary phase in a control volume (cell). α = 1 means
that the cell is entirely occupied by the primary phase, and α = 0 implies that the cell is purely
filled by the secondary phase. Eq. (1) also indicates that mass conservation is always guaranteed
for the two-phase system, which makes it favorable for two-phase flow simulations. However, it is
an additional treatment that makes VOF so popular. By substituting the density and viscosity
in the single-phase governing equations with the mixture density:

ρm = αρ1 + (1− α)ρ2, (2)

and the mixture viscosity:
µm = αµ1 + (1− α)µ2, (3)

where subscripts 1 and 2 denote the primary and secondary phase respectively, the resultant
governing equations could be used to describe the two-phase system.

In order to illustrate an important characteristic of the VOF method, a fundamental definition
in fluid mechanics, i.e. incompressible flow, is firstly introduced. A flow is incompressible if it
satisfies:

∇ · ~u = 0, (4)

or the equivalent form:
∂ρ

∂t
+ ~u · ∇ρ = 0. (5)

Therefore, a flow with constant density is always incompressible since Eq. (5) is automatically
satisfied. This type of flow is referred to as strict incompressible flow. However, for a flow with
variable density, as long as Eq. (4) is fulfilled, the flow is still incompressible, and this type of flow
is referred to as variable-density incompressible flow. One reason for defining this group of flows
separately is that many governing equations could be simplified by using Eq. (4). Consequently,
the computing overhead could be reduced.

For an isothermal immiscible two-phase flow system, the properties of each phase are usually
assumed to be constant. Therefore the flow of an individual phase is incompressible. However, by
introducing the mixture-property concept, the mixture property is changing with α. Therefore,
such two-phase flows belong to the variable-density incompressible flow category. This is an
important concept which finally causes the issues with current VOF-based solvers in OpenFOAM.

3. Overview of turbulence modeling in OpenFOAM

The turbulence modeling capability is an undeniable outstanding feature of OpenFOAM. Both
the Reynolds-Averaged Navier-Stokes (RANS) approach and Large Eddy Simulation (LES) are
available for turbulence modeling. Plus, hybrid approaches, e.g. Detached Eddy Simulation

3

(DES), Delayed Detached Eddy Simulation (DDES) and Improved Delayed Detached Eddy Sim-
ulation (IDDES), could also be used for turbulence modeling. Despite the diversity of such
modeling approaches, the momentum equation could always be written as

∂ρ~u

∂t
+∇ · (ρ~u~u) = −∇p∗ +∇ ·

[
(µ+ µt)

(
∇~u+ (∇~u)T − 2

3
(∇ · ~u)I

)]
+ ~Fb, (6)

where I is the unit second-order tensor; ~Fb includes the gravitational force and other forces,
if any; ~u is the time-averaged velocity for RANS and space-filtered velocity for LES; µt is the
turbulent viscosity for RANS and subgrid-scale viscosity for LES; p∗ = p+ 1

3
tr(τt) is the modified

pressure with p being the real pressure and τt being the modeled turbulent stress.

3.1. Turbulence models

Eq. (6) is incomplete due to the occurrence of µt. In order to make it complete, various
turbulence models use different additional equation(s) to calculate µt. Among various equations
of different turbulent models, we consider the most representative k equation in RANS modeling:

∂ρk

∂t
+∇ · (ρ~uk) = ρP − ρε+∇ ·

[(
µ+

µt
σk

)
∇k
]
, (7)

where ρP is the production term, ρε is the dissipation term, and∇·
[(
µ+ µt

σk

)
∇k
]

is the diffusion

term with σk being the turbulent Schmidt number for k.
We refer to Eq. (7) as the full form of k equation in the sense that the divergence-free

condition is not used. Therefore, Eq. (7) is applicable to both compressible and incompressible
flows. However, as shown in Fig. 1, the compressible version of turbulence models is constructed
as turbulentFluidThermoModels which means that the thermal properties of the fluid(s) should
always be provided for the compressible version of turbulence models. One underlying reason
is that the energy equation is always constructed and solved in the solvers where compressible
turbulence models are used.

3.2. Turbulence models for incompressible flows

In OpenFOAM, the incompressible version for turbulence models are constructed by assuming
that ρ is constant. Thus, incompressible turbulence models in OpenFOAM are actually designed
for strict incompressible flows. For instance, the corresponding incompressible version of Eq. (7)
reads

∂k

∂t
+∇ · (~uk) = P − ε+∇ ·

[(
ν +

νt
σk

)
∇k
]
, (8)

where ν and νt are kinematic viscosities corresponding to µ and µt, respectively.
As shown in Fig. 2, the dependency graph for incompressible turbulence models is much

simpler in comparison with the compressible one. One important difference is that the thermal
properties of the fluid(s) are no longer needed to construct an incompressible turbulence model.

4

Figure 1: Directory dependency graph for compressible turbulence models in OpenFOAM v1706 [14]. Thermal
properties are always needed to construct a compressible turbulence model.

4. Issues with turbulence modeling in isothermal VOF-based solvers

The classification of incompressible turbulence models in OpenFOAM has a side effect on the
turbulence modeling of variable-density incompressible flows. For such flows if the density change
is caused by temperature, OpenFOAM has two solutions. One is using Boussinesq approximation
for the momentum equation and utilizing the strict incompressible turbulence models. The other
is giving up the divergence-free condition and using the full form of momentum equation and
turbulence models directly. However, for isothermal VOF-based solvers, an inconsistency arises.
Using the chain rule, Eq. (7) could be rewritten as(
∂k

∂t
+∇ · (~uk)

)
+
k

ρm

(
∂ρm
∂t

+ ~u · ∇ρm
)

= P−ε+∇·
[(
νm +

νt
σk

)
∇k
]
+
∇ρm
ρm
·
[(
νm +

νt
σk

)
∇k
]
.

(9)
In comparison with Eq. (8), there is an additional term on the l.h.s. of Eq. (9). According to
the incompressible flow condition described by Eq. (5), this term should vanish. Therefore, Eq.
(9) and Eq. (7) can both be rewritten into:

∂k

∂t
+∇ · (~uk) = P − ε+∇ ·

[(
νm +

νt
σk

)
∇k
]

+
∇ρm
ρm
·
[(
νm +

νt
σk

)
∇k
]
. (10)

In comparison with Eq. (8), an extra term, which contains ∇ρm, arises on the r.h.s. of Eq.
(10). As long as ρ1 6= ρ2 and ∇k 6= (0, 0, 0), this extra term is not zero for the transition zone.

5

Figure 2: Directory dependency graph for incompressible turbulence models in OpenFOAM v1706 [14]. No
thermal property is needed to construct incompressible turbulence models.

Therefore, the strict incompressible form of k equation deviates from the original k equation
when it is applied to VOF simulations.

It is clear that this deviation is caused by the diffusion term where ρm is inside the divergence
operator. Even though the above derivation is based on Eq. (7), the conclusion applies to
governing equations for any variable φ. As long as the diffusion term is in the form of ∇ ·[(
µ+ µt

σφ

)
∇φ
]
, an inconsistency arises in the strict incompressible version when ∇ρm 6= (0, 0, 0)

and ∇φ 6= (0, 0, 0). A list of available turbulence models in the official release of OpenFOAM
v1706, which are related to isothermal VOF simulations, is shown in Table 1. There are 6
models which are only available in strict incompressible form. Among all the other 24 models,
which could be used in both compressible and strict incompressible forms, only 2 could avoid the
deviation issue.

Mathematically, the strict incompressible turbulence models should not be applied to isother-
mal VOF simulations. However, these strict incompressible models are actually used in the cor-
responding solvers, e.g. interFoam, interIsoFoam and multiphaseInterFoam. This issue, on the
OpenFOAM side, is caused by the classification of turbulence models. However, the deeper-level
reason is that, as mentioned in Section 1, it is not easy to detect this issue due to the lack of
reference values for turbulent multiphase flows.

6

Table 1: Turbulence models in OpenFOAM v1706

Turbulence models Type
Available for

compressible flows
Available for strict

incompressible flows

Correct forms available
for variable-density
incompressible flows

SpalartAllmaras RANS X X ×
kEpsilon RANS X X ×

RNGkEpsilon RANS X X ×
realizableKE RANS X X ×

LaunderSharmaKE RANS X X ×
kOmega RANS X X ×

kOmegaSST RANS X X ×
kOmegaSSTSAS RANS X X ×
kOmegaSSTLM RANS X X ×

v2f RANS X X ×
LRR RANS X X ×
SSG RANS X X ×

qZeta RANS × X -
kkLOmega RANS × X -

LamBremhorstKE RANS × X -
LienLeschziner RANS × X -

ShihQuadraticKE RANS × X -
LienCubicKE RANS × X -
Smagorinsky LES X X X

WALE LES X X X
kEqn LES X X ×

dynamicKEqn LES X X ×
dynamicLagrangian LES X X ×
DeardorffDiffStress LES X X ×

SpalartAllmarasDES DES X X ×
SpalartAllmarasDDES DDES X X ×
SpalartAllmarasIDDES IDDES X X ×

kOmegaSSTDES DES X X ×
kOmegaSSTDDES DDES X X ×
kOmegaSSTIDDES IDDES X X ×

5. Code development

Considering the popularity of both OpenFOAM and the VOF method, we are devoted to
providing the community new open-source isothermal VOF-based solvers for turbulent multi-
phase flow investigations, of which the most basic and important feature is that these solvers
will be able to use variable-density incompressible turbulence models. In this section, we illus-
trate our coding considerations for both users and developers, evaluate various possible solutions,
implement the code and finally verify our implementation.

7

5.1. Usability

The new solvers are developed with the hope to replace corresponding existing solvers in
OpenFOAM. Therefore, they are designed for common users who are unnecessarily able to write
their solvers or even conscious of the issues stressed in Section 4. To the users, the usage of the
new solvers should be as similar to the existing solvers as possible. Ideally, input files used for
the new solvers should be exactly the same to those for the existing solvers.

5.2. Object-oriented programming

In order to make our solution developer-friendly, the object-oriented programming should be
used. From this point of view, the new solvers should reuse as many existing codes as possible
and make the minimum changes to where it is really needed. In order to reuse the code, a brief
introduction on how the existing code is written is firstly given below. Two possible approaches
of constructing variable-density incompressible turbulence models are then provided.

5.2.1. Coding strategy for turbulence models in OpenFOAM

As mentioned in Section 2, the reason for assuming that the flow is incompressible is to utilize
a simplified form of governing equations and to enhance the solver performance. For instance,
all the 6 models, as listed in Table 1, which are only available in strict incompressible forms,
are constructed based on the constant-density assumption. Take the LienCubicKE model for
instance, as shown in Listing 1, the k equation is constructed exactly according to Eq. (8),
where ρ is not involved. However, the disadvantage is also quite obvious that these simplified
models are no longer valid for compressible flows.

Listing 1: k equation for LienCubicKE model in Table 1.

tmp <fvScalarMatrix > kEqn

(

fvm::ddt(k_)

+ fvm::div(phi_ , k_)

- fvm:: laplacian(DkEff(), k_)

==

G // Production (Generation) term

- fvm::Sp(epsilon_/k_ , k_)

);

For each one of all the other 24 turbulence models listed in Table 1, there is only one template
class, which could be used to construct corresponding turbulence models. Take the kEpsilon
model for instance, as shown in Listing 2, the k equation is constructed based on Eq. (7). It
should be noted that alpha in Listing 2 is not the α in Eq. (1). When the multi-fluid approach,
where each fluid has its own governing equations, is used for multiphase modeling, alpha means
the volumetric fraction of a given fluid. This means that the kEpsilon model could even be used
in a multi-fluid form, not only the compressible and strict incompressible forms shown in Table 1.
All these forms are just different objects of the same template class. However, for flows with only
one set of governing equations, e.g. single-phase flows and multiphase flows in the framework of
VOF, alpha is simply unity.

8

Listing 2: k equation for kEpsilon model in Table 1.

tmp <fvScalarMatrix > kEqn

(

fvm::ddt(alpha , rho , k_)

+ fvm::div(alphaRhoPhi , k_)

- fvm:: laplacian(alpha*rho*DkEff(), k_)

==

alpha ()*rho()*G

- fvm::SuSp ((2.0/3.0)* alpha ()* rho ()*divU , k_) // Compressibility contribution

- fvm::Sp(alpha ()* rho ()* epsilon_ ()/k_(), k_)

+ kSource ()

+ fvOptions(alpha , rho , k_)

);

Listing 3 shows how strict incompressible forms are constructed from their corresponding tem-
plate classes. Both alpha and rho in Listing 2 are set to unity according to the above discussion.
However, divU in Listing 2, which stands for ∇ · ~u, is still calculated even though it is zero
according to the divergence-free condition. Solving equations similar to that in Listing 2 is defi-
nitely slower than slowing equations like that in Listing 1. However, this is the coding strategy
of OpenFOAM due to the following two reasons. On the one hand, the most time-consuming
part of the simulation is solving the Poisson’s equation for pressure, and it is quite cheap to solve
equations for turbulent quantities. On the other hand, this strategy significantly increases the
reusability and maintainability of the codes since we only need to take care of those template
classes, not separate turbulence models.

Listing 3: Create strict incompressible turbulence models from template classes.

makeBaseTurbulenceModel

(

geometricOneField , // alpha is unity

geometricOneField , //the density is also unity

incompressibleTurbulenceModel ,

IncompressibleTurbulenceModel ,

transportModel

);

5.2.2. Brute-force approach

The desired variable-density incompressible turbulence models could be constructed by a
brute-force approach, which refers to any approach that works on individual turbulence models.
This might be an easy and efficient way if we only need to modify few models. In fact, there
are several alternatives for the brute-force approach, as described in Appendix A. However, it
becomes infeasible when there are tens of models involved due to the following reasons. First,
for a given model, we need to change all the equations, and the number is usually larger than
one. Second, we have to give new names to all the newly created models, otherwise they will
overwrite the original models. However, this is not compatible with the OpenFOAM naming
convention and dramatically increases the number of models. As a result, the burden on code
managements overweights the fact that only a few solvers benefit from this change. In addition,
since it is unlikely that this approach will be adopted in the official release, the users have to

9

compile all these models into other libraries and manually load these libraries when they want
to use these models. Considering all these aspects, this brute-force approach is not adopted in
the present study, of which the goal is to benefit common users.

5.2.3. Object-oriented approach

The present work uses an object-oriented approach to construct the desired turbulence mod-
els, which will be discussed in detail in Section 5.3. This approach works on higher levels of the
codes, which keeps the existing turbulence model template classes untouched. Therefore, the
maintainability of codes is guaranteed and the naming convention of OpenFOAM is preserved
as well. This benefits both the user and the developer.

5.3. Code implementation

A step-by-step introduction is provided below to show how the new solvers are created.

5.3.1. New class for incompressible turbulence models with varying density

A new class, varRhoIncompressibleTurbulenceModel, is created for the isothermal turbu-
lence models where the density, rho, is explicitly referenced in its constructor, as shown in Listing
4. We use the prefix varRho to denote that this class is designed for variable-density flows. The
same prefix will be used for the newly designed solvers as well.

Listing 4: Constructor for varRhoIncompressibleTurbulenceModel.

Foam:: varRhoIncompressibleTurbulenceModel :: varRhoIncompressibleTurbulenceModel

(

const volScalarField& rho ,

const volVectorField& U,

const surfaceScalarField& alphaRhoPhi ,

const surfaceScalarField& phi ,

const word& propertiesName

)

:

turbulenceModel

(

U,

alphaRhoPhi ,

phi ,

propertiesName

),

rho_(rho)

{}

5.3.2. Construct models from existing turbulence model template classes

With the new class, all the 24 full-form turbulence models listed in Table 1 could be con-
structed without reading thermal properties from the input files, as shown in Listing 5. For any
customized turbulence model, as long as the full-form governing equations are available, this new
class could create a corresponding object for variable-density flows as well.

10

Listing 5: Create variable-density incompressible turbulence models from template classes..

makeBaseTurbulenceModel

(

geometricOneField ,

volScalarField , //the varing density is to be read into this volScalarField

vIncompressibleTurbulenceModel ,

VIncompressibleTurbulenceModel ,

transportModel

);

5.3.3. New solvers for isothermal VOF-based flows

In varRhoTurbVOF, several isothermal VOF-related solvers are provided with which the full-
form turbulence models are employed. All these solvers are modified based on the corresponding
solvers in the official release of OpenFOAM. Since almost the same changes are made to each of
these solvers, only one example is given here to illustrate how to change the existing interIsoFoam
solver to the newly designed varRhoInterIsoFoam. It should be mentioned that such modifications
also apply to isothermal VOF-based solvers in other versions of OpenFOAM and user-customized
isothermal VOF-based solvers.

The first step is to modify the preprocessor directives in the main file of the solver. In
interIsoFoam, turbulentTransportModel.H is included for the construction of the strict in-
compressible turbulence models, as shown in Listing 6. This should be substituted with
varRhoTurbulentTransportModel.H in varRhoInterIsoFoam such that the full form of turbu-
lence models, where the density is explicitly included, could be used, as shown in Listing 7.

Listing 6: Preprocessor directives in interIsoFoam.C.

#include "isoAdvection.H"

#include "fvCFD.H"

#include "subCycle.H"

#include "immiscibleIncompressibleTwoPhaseMixture.H"

#include "turbulentTransportModel.H"

#include "pimpleControl.H"

#include "fvOptions.H"

#include "CorrectPhi.H"

Listing 7: Preprocessor directives in varRhoInterIsoFoam.C.

#include "isoAdvection.H"

#include "fvCFD.H"

#include "subCycle.H"

#include "immiscibleIncompressibleTwoPhaseMixture.H"

#include "varRhoTurbulentTransportModel.H"

#include "pimpleControl.H"

#include "fvOptions.H"

#include "CorrectPhi.H"

The second step is to change the part which actually constructs the turbulence model. As
shown in Listing 8, interIsoFoam only needs the velocity field U and the flux field phi to construct
the turbulence field, and the density rho is not included in phi. As for varRhoInterIsoFoam,

11

two additional fields, i.e. rho and rhoPhi, are necessary for turbulence model construction, as
shown in Listing 9. It should be noted that both rhoPhi and phi are available in the isothermal
VOF solvers, explicitly taking phi as an argument enhances the performance of the turbulence
models.

Listing 8: Turbulence model construction in interIsoFoam.

autoPtr <incompressible :: turbulenceModel > turbulence

(

incompressible :: turbulenceModel ::New(U, phi , mixture)

);

Listing 9: Turbulence model construction in varRhoInterIsoFoam.

autoPtr <incompressible :: turbulenceModel > turbulence

(

incompressible :: turbulenceModel ::New(rho , U, rhoPhi , phi , mixture)

);

Only these two changes are needed to enable the new solver to use the full-form turbulence
models. Therefore, all the other features of the existing solvers are preserved.

5.4. Verification

In order to confirm the correctness of the code implementation, verification tests are carried
out with carefully selected test cases. Different solvers, e.g. two-phase and multiphase, various
turbulence models, e.g. RANS and LES, and diverse features, e.g. adaptive mesh refinement
and parallel computation, are all covered by the selected test cases. It should be noted that the
validation of any specific turbulence model is out of the scope of the verification test and the
scope of the present study.

The first stage is the consistency verification, which is based on the special case shown in
Table 1 that both Smagorinsky and WALE models could be correctly constructed in the official
release. This implies that when these two models are used, both new and original solvers should
provide the same result, which is verified in Appendix B.

The second stage is the modification verification, which aims at verifying that changes have
been made to the codes, as detailed in Appendix C. As mentioned in Section 1, due to the
lack of reference values, it is still not verified whether such changes are correctly implemented
according to the corresponding governing equations.

The third stage is the cross verification, which is a good practice in the absence of reference
values. We have shown several alternative implementations for any given turbulence model in
Appendix A. A cross verification between the object-oriented approach and other alternatives
is provided in Appendix D. This cross verification not only proves the correctness of the code
implementation, but also shows the numerical stability of the implemented code.

6. Usage

The source code is provided in [15]. In order to use the code, one needs to load the environment
variable for OpenFOAM v1706 first and then run ./compile.sh to compile the code. As for the

12

usage for a specific solver, e.g. varRhoInterFoam, it is almost the same with the corresponding
existing solver interFoam. For instance, it could be executed on 1024 processors by simply typing
mpirun -np 1024 varRhoInterFoam -parallel in the terminal.

Since the full-form turbulence models are used in the new solvers, the corresponding dis-
cretization schemes should be provided to solve the governing equations numerically. Other than
this, the users could reuse all their interFoam input files for varRhoInterFoam.

7. Performance evaluation

With both the new and original solvers available, we conduct a simple performance evaluation
based on the experiment conducted by [16]. The comparison will justify our motivation for
developing the new solvers.

The experiments were carried out in a rectangular flow channel with a 0.1% downward slope.
The channel was 12.6 m long, 20 cm wide and 10 cm high. Three co-current air-water stratified
flows are investigated in the present study and the corresponding flow configurations are listed
in Table 2.

Table 2: Flow configurations in the experiment [16].

Run reference Water flow rate [L/s] Air flow rate [L/s]
250 3.0 45.4
400 3.0 75.4
600 3.0 118.7

A 2D computational domain is constructed as shown in Fig. 3. Similarly to the experiment,
air and water are supplied via corresponding inlets. These two inlets are assumed to be separated
by a zero-thickness 100 mm-long baffle. One reason for making such assumption is that details of
the baffle are not provided in the paper. Another reason is that the measuring zone is quite far
away from the inlets indicating that the detailed inlet configurations of the inlet region should
only have minor effects on the results of the measuring zone.

Figure 3: Sketch of the computational domain (unit in mm, not to scale).

13

7.1. Boundary conditions

Boundary conditions for all the flow variables are listed in Table 3.

Table 3: Boundary conditions.

airInlet waterInlet outlet upperWall lowerWall baffleAir baffleWater

α α = 0 α = 1 ∇α = 0 α = 0 α = 1 α = 0 α = 1

~u mappedC * mappedC advective no slip no slip no slip no slip

prgh fixed flux fixed flux
fixed total
pressure

fixed flux fixed flux fixed flux fixed flux

k mappedN ** mappedN ∇k = 0 k = 0 k = 0 wall function wall function

ω mappedN mappedN ∇ω = 0 wall function***wall function wall function wall function

* mapped condition with the constraint on the average value.
** mapped condition without constraints.
*** there is a bug in omegaWallFunction in the official release of OpenFOAM v1706 and it is fixed in the

present study.

7.2. Results

Three meshes with ∆y = 2 mm, 1 mm, and 0.5 mm are constructed for the simulations,
where ∆y denotes the mesh size (around the interface) in the vertical direction. For each mesh,
both the strict incompressible and variable-density incompressible version of kOmegaSST model
are used for turbulence modeling. All the simulations are run in transient modes. After the
initial-condition effects die out, the sampling is carried out for 50 s to consider the variations
caused by the wavy interface.

In Figs. 4-6, the pressure drop and k profiles in the fully developed regions are compared with
the experimental values. Two important conclusions could be easily made from these figures.
One is that the strict incompressible version is much more sensitive to mesh refinement. This
makes it impractical to conduct sensitivity studies on the mesh size. On the other hand, the
variable-density incompressible version could capture the abrupt change in k around the interface.
However, the strict incompressible version totally misses this abrupt change.

According to the discussion in Section 4, this huge performance difference is caused
by the fact that different diffusion terms are used in different models. We could define

Dc = ∇ ·
[(
νm + νt

σk

)
∇k
]

as the constant-density part of the diffusion term and Dv =

∇ρm
ρm
·
[(
νm + νt

σk

)
∇k
]

the variable-density part. For the strict incompressible turbulence modes,

we only have the Dc contribution, as shown in Fig. 7a, and Dc is positive around the interface.
While for the variable-density models, two components both contribute, as shown in Fig. 7b.
There are two very important conclusions that we could get from Fig. 7b. On the one hand, Dv

is negative around the interface. Therefore, strict incompressible turbulence models over-predict
k values around the interface due to the fact that Dv is not included in the equation. On the
other hand, in terms of the absolute value, Dv is orders of magnitude higher than Dc around
the interface meaning that the total diffusion is dominated by Dv for this region resulting in a
negative total diffusion term around the interface. Therefore, strict incompressible turbulence

14

(a) pressure gradient (b) turbulent kinetic energy profiles in the vertical direction,
SI: strict incompreissible, VI: variable-density incompress-
ible

Figure 4: Comparisons for pressure gradient and turbulent kinetic energy velocity profiles (run-250).

(a) pressure gradient (b) turbulent kinetic energy profiles in the vertical direction

Figure 5: Comparisons for pressure gradient and turbulent kinetic energy velocity profiles (run-400).

models over-predict k values to a significant extent around the interface, as already shown in
Figs. 4-6. More results are provided for run-250 in Appendix E.

We are aware that the variable-density incompressible version still fails to match the experi-
mental data on a quantitative level, and that turbulence damping proposed by [17] might help to
give a better prediction. However, they are both out of the scope of the current study. Interested
readers are referred to [18] for more details. By conducting this performance evaluation, we are

15

(a) pressure gradient (b) turbulent kinetic energy profiles in the vertical direction

Figure 6: Comparisons for pressure gradient and turbulent kinetic energy velocity profiles (run-600).

(a) strict incompressilbe (b) variable-density incompressible

Figure 7: Comparisons for diffusion terms for k (run-250).

intending to show that the variable-density version could give a better prediction in comparison
with the strict incompressible version. Therefore, the variable-density incompressible version of
turbulence models should be used in VOF-based solvers.

8. Conclusions and outlooks

Due to the limitations of the turbulence model classification in OpenFOAM, isothermal VOF-
based solvers in the official release could only use the strict incompressible form of turbulence

16

models, which is inconsistent with the fact that such solvers are intended to solve variable-density
flows.

With the object-oriented paradigm, by making the minimal changes to the existing codes,
the developed solvers could construct the correct turbulence models and, at the same time,
preserve all the other features of existing solvers. All the newly designed solvers benefit from the
new class for turbulence models. In addition, the newly designed class for isothermal variable-
density turbulence models could also be applied to other flows that are not described by the
VOF framework.

The newly implemented solvers are released as open-source together with this paper [15]
with the hope that the solvers could be used and further tested against various flow conditions.
Implementations for other recent OpenFOAM versions are provided in [19] (https://github.
com/wenyuan-fan/varRhoTurbVOF). By providing the community a free and user-friendly access
to various VOF solvers and turbulence models, we hope that turbulent VOF simulations could
be widely conducted and further improved, and gradually catch up the demand from practical
applications.

Acknowledgement

The simulations were performed on resources provided by the Swedish National Infrastructure
for Computing (SNIC) at PDC. Wenyuan Fan is also grateful for the support of China Scholarship
Council (CSC).

Appendix A. Candidates for the brute-force approach

The brute-force approach could be further divided into two groups, namely the source term
approach and the full-form approach, depending on how existing codes are utilized in the newly
created model.

Appendix A.1. Source term approach

The idea of this approach is quite simple and straightforward. According to the derivation
in Section 4, Eq. (10) only has one more term than Eq. (8), and we could derive the exact form
of this term for any given governing equation. Therefore, the obvious solution is adding this
additional term, as shown in Eq. (A.1), to the strict incompressible form to get the variable-
density incompressible form. In this approach, all the other parts of the model could be inherited
from the corresponding parent class. Therefore, code repetitions could be avoided. In terms of
numerical realization for the gradient term, ∇k, there are two methods available for the official
release.

Sk =
∇ρm
ρm
·
[(
νm +

νt
σk

)
∇k
]
. (A.1)

Appendix A.1.1. Source term with explicit gradient term

∇k could be calculated explicitly by using the existing value of k, which is denoted by the
superscript old, as shown in Eq. (A.2). Details of implementing this term into the kEpsilon
model could be found in bruteForceExamples/VOFKEpsilonEx folder of the source code. This
might be the simplest brute-force approach to create a variable-density incompressible turbulence

17

https://github.com/wenyuan-fan/varRhoTurbVOF
https://github.com/wenyuan-fan/varRhoTurbVOF

model. However, it has numerical stability issues due to the explicit treatment of the gradient
term, as will be discussed in Appendix D.

Sk =
∇ρm
ρm
·
[(
νm +

νt
σk

)
∇kold

]
. (A.2)

Appendix A.1.2. Source term with implicit gradient term

∇k could also be calculated implicitly by using the unknown value of k, which is denoted by
the superscript new, as shown in Eq. (A.2).

Sk =
∇ρm
ρm
·
[(
νm +

νt
σk

)
∇knew

]
. (A.3)

It should be noted that, in the official release of OpenFOAM, it is impossible to calculate Eq.
(A.3) directly due to the fact that the implicit gradient term is not available in matrix form.
Since the implicit Laplacian term is available in matrix form, Eq. (A.3) could be calculated using
the following equivalent form which is derived from the chain rule

Sk =
1

ρm
∇ ·
[
ρm

(
νm +

νt
σk

)
∇knew

]
−∇ ·

[(
νm +

νt
σk

)
∇knew

]
. (A.4)

The details of adding this term into the kEpsilon model are provided in
bruteForceExamples/VOFKEpsilonIm folder of the source code.

Appendix A.2. Full-form approach

This approach allows us to nominally construct a strict incompressible turbulence model but
actually use a full-form model. The trick is that we still set the density field to unity when
constructing the model. However, this density is a dummy field which will not be used in the
turbulence model. Instead, the code is designed to be able to find out the real density and use
it in the model. The similar procedure is applied to the flux field as well. The implementation
details for the kEpsilon model are provided in bruteForceExamples/kEpsilonFull folder of the
source code. In comparison with the source term approach, this method is more complicated
since it needs to change the structure of existing turbulence models and introduces considerable
code repetitions.

Appendix B. Consistency verification

It is claimed in Table 1 that both Smagorinsky and WALE models survive from the deviation
issue which is caused by the classification of turbulence models in OpenFOAM. Therefore, both
new and original solvers should provide exactly the same result when these two models are used.
In order to verify this, the damBreak4Phase tutorial for multiphaseInterFoam is used for the
consistency verification where the turbulence modeling is changed from laminar to LES with the
Smagorinsky model. The initial condition is given in Fig. B.8, where water, oil, mercury and air
will change their positions as time proceeds due to the density differences. multiphaseInterFoam
and varRhoMultiphaseInterFoam are used to run this case and the simulations last for 6 s. At
the end of the simulation, both solvers give the same prediction for phase distributions, as shown
in Fig. B.9. This consistent performance of both new and original solvers justifies the statement
that we have made in Table 1 and also partially verifies the code implementation.

18

Figure B.8: Initial condition for test case damBreak4Phase where 0, 1, 2, 3 are used to denote water, oil, mercury
and air, respectively.

(a) multiphaseInterFoam (b) varRhoMultiphaseInterFoam

Figure B.9: Phase distribution at the end of simulations. Exactly the same result is predicted by both solvers
with reasonable stratification caused by the density difference.

19

Appendix C. Modification verification

The goal of the modification verification is to show that a new class of turbulence models are
constructed in the new solvers. The motorBike case for interDyMFoam is used for this test. In
the simulation, a motorbike runs on the ground which is covered by water. The flow is turbulent
and a turbulence model (kOmegaSST in Table 1) is used in the simulations. As shown in Fig.
C.10, two solvers give quite different predictions for the shape of water-air interface and the
distribution of velocity magnitude. This proves that varRhoInterDyMFoam does use a different
turbulence model when compared with interDyMFoam. However, further verifications are still
needed to confirm that such changes are correctly implemented.

(a) interDyMFoam

(b) varRhoInterDyMFoam

Figure C.10: Result comparison for interDyMFoam and varRhoInterDyMFoam: water-air interface is denoted by
the gray surface; the middle plane of the domain is colored by the velocity magnitude.

20

Appendix D. Cross verification

As mentioned in Appendix A, we have provided three examples, i.e. VOFKEpsilonEx,
VOFKEpsilonIm, and VOFKEpsilonFull, in the source code to show how to create variable-
density incompressible turbulence models in a brute-force manner. These models are also useful
for the cross-verification test where the classic damBreak tutorial is used. The official solver
interFoam is tested together with these three models and the default kEpsilon model. The
newly designed solver varRhoInterFoam is only tested in combination with the default kEpsilon
model. All the simulations use the same mesh and discretization schemes wherever it is possible.
The simulations run for 0.5 s after the dam breaks, and the results are shown in Fig. D.11. It
should be noted that the result for the combination of interFoam and VOFKEpsilonEx model is
not available due to the crash of the simulation, which is not surprising because of the explicit
treatment of the gradient term. Regarding the available results shown in Fig. D.11, the most
obvious differences between the result predicted by the combination of interFoam and kEpsilon
model (Fig. D.11a) and others are the interaction between the water and the right wall and the
orientation of the droplet. The decent similarity among Fig. D.11b, Fig. D.11c and Fig. D.11d
verifies the correctness of code implementation.

Appendix E. More results on performance evaluation

Fig. E.12 shows ω profiles obtained by different models. Even though there are quantitative
differences, all the curves have similar shapes. This is quite different from the difference between
k profiles shown in Fig. 4b. The reason could be revealed by inspecting Fig. E.13a and Fig.
E.13b where we also split the diffusion term into Dc and Dv parts. For results obtained by the
variable-density incompressible model, Fig. E.13b is quite similar to Fig. 7b around the interface
in the sense that the negative Dv terms overweight the positive Dc terms resulting in negative
total diffusion terms. For results obtained by the strict incompressible model, unlike diffusion
terms for the k equation (Fig. 7a), diffusion terms for the ω equation are negative, as shown in
Fig. E.13a. Therefore, the total diffusion terms always have a negative sign for both the strict
incompressible and the variable-density models. Subsequently, the shape of ω profiles are not
substantially altered in comparison with the shape of k profiles.

As mentioned in Section 3.1, the goal of introducing turbulence models is to calculate the
value of νt, which is used in the momentum equation. As shown in Fig. E.14a, in comparison
with the variable-density one, the strict incompressible calculation predicts higher νt values for
both single-phase and interfacial regions. Consequently, velocity profiles are affected as shown
in Fig. E.14b. It should be noted that, the slope of velocity profiles near the upper wall reflects
the pressure gradient of a given result.

21

(a) interFoam with kEpsilon (b) interFoam with VOFKEpsilonIm

(c) interFoam with VOFKEpsilonFull (d) varRhoInterFoam with kEpsilon

Figure D.11: Water-air distribution at the end of simulations, where air and water are denoted by red and blue,
respectively.

22

Figure E.12: ω profiles in the vertical direction (run-250).

(a) strict incompressilbe (b) variable-density incompressible

Figure E.13: Comparisons for diffusion terms for ω (run-250).

23

(a) νt (b) streamwise velocity

Figure E.14: νt and U profiles for run-250.

24

References

References

[1] C.W Hirt and B.D Nichols. Volume of fluid (VOF) method for the dynamics of free bound-
aries. Journal of Computational Physics, 39(1):201–225, jan 1981.

[2] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to computational
continuum mechanics using object-oriented techniques. Computers in Physics, 12(6):620,
1998.

[3] O. Ubbink and R. I. Issa. A Method for Capturing Sharp Fluid Interfaces on Arbitrary
Meshes. Journal of Computational Physics, 153(1):26–50, 1999.

[4] Hrvoje Jasak. OpenFOAM: Open source CFD in research and industry. International
Journal of Naval Architecture and Ocean Engineering, 1(2):89–94, 2009.

[5] Stéphane Popinet. Gerris: A tree-based adaptive solver for the incompressible Euler equa-
tions in complex geometries. Journal of Computational Physics, 190(2):572–600, 2003.

[6] William J Rider and Douglas B Kothe. Reconstructing Volume Tracking. Journal of Com-
putational Physics, 141(2):112–152, 1998.

[7] P. G. Tucker. Differential equation-based wall distance computation for DES and RANS.
Journal of Computational Physics, 190(1):229–248, 2003.

[8] Sharen J. Cummins, Marianne M. Francois, and Douglas B. Kothe. Estimating curvature
from volume fractions. Computers and Structures, 83(6-7):425–434, 2005.

[9] Kei Ito, Tomoaki Kunugi, Hiroyuki Ohshima, and Takumi Kawamura. A volume-
conservative PLIC algorithm on three-dimensional fully unstructured meshes. Computers
and Fluids, 88:250–261, 2013.

[10] Johan Roenby, Henrik Bredmose, and Hrvoje Jasak. A computational method for sharp
interface advection. Royal Society Open Science, 3(11):160405, nov 2016.

[11] Henning Scheufler and Johan Roenby. Accurate and efficient surface reconstruction from
volume fraction data on general meshes. Journal of Computational Physics, 383:1–23, 2019.

[12] Andrea Prosperetti. Motion of two superposed viscous fluids. Physics of Fluids, 24(7):1217–
1223, 1981.

[13] ANSYS Inc. ANSYS FLUENT 18.0 Theory Guide. 2017.

[14] OpenCFD Ltd. OpenFOAM extended code guide, 2018.

[15] Wenyuan Fan. varRhoTurbVOF. Mendeley Data, v4, 2019.

[16] J. Fabre, C. Suzanne, and Lucien Masbernat. Experimental Data Set No. 7: Stratified Flow,
Part I: Local Structure. Multiphase Science and Technology, 3(1-4):285–301, 1987.

25

[17] Y. Egorov. Validation of CFD codes with PTS-relevant test cases. Technical report, 2004.

[18] Wenyuan Fan and Henryk Anglart. Progress in Phenomenological Modeling of Turbulence
Damping around a Two-Phase Interface. Fluids, 4(3):136, 2019.

[19] varRhoTurbVOF, GitHub.

26

	1 Introduction
	2 Overview of the VOF method
	3 Overview of turbulence modeling in OpenFOAM
	3.1 Turbulence models
	3.2 Turbulence models for incompressible flows

	4 Issues with turbulence modeling in isothermal VOF-based solvers
	5 Code development
	5.1 Usability
	5.2 Object-oriented programming
	5.2.1 Coding strategy for turbulence models in OpenFOAM
	5.2.2 Brute-force approach
	5.2.3 Object-oriented approach

	5.3 Code implementation
	5.3.1 New class for incompressible turbulence models with varying density
	5.3.2 Construct models from existing turbulence model template classes
	5.3.3 New solvers for isothermal VOF-based flows

	5.4 Verification

	6 Usage
	7 Performance evaluation
	7.1 Boundary conditions
	7.2 Results

	8 Conclusions and outlooks
	Appendix A Candidates for the brute-force approach
	Appendix A.1 Source term approach
	Appendix A.1.1 Source term with explicit gradient term
	Appendix A.1.2 Source term with implicit gradient term

	Appendix A.2 Full-form approach

	Appendix B Consistency verification
	Appendix C Modification verification
	Appendix D Cross verification
	Appendix E More results on performance evaluation

