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Using the recently published GJF-2GJ Langevin thermostat, which can produce time-step-

independent statistical measures even for large time steps, we analyze and discuss the causes

for abrupt deviations in statistical data as the time step is increased for some simulations

of nonlinear oscillators. Exemplified by the pendulum, we identify a couple of discrete-time

dynamical modes in the purely damped pendulum equation as the cause of the observed

discrepancies in statistics. The existence, stability and kinetics of the modes are consistent

with the acquired velocity distribution functions from Langevin simulations, and we conclude

that the simulation deviations from physical expectations are not due to normal, systematic

algorithmic time-step errors, but instead due to the inherent properties of discrete time in

nonlinear dynamics.

February 3, 2019

I. INTRODUCTION

For decades, discrete-time Langevin dynamics has been a subject of considerable importance in

computational statistical mechanics, which relies on two main tools; namely Monte Carlo sampling

or Langevin dynamics (see, e.g., Refs. [1, 2]). The former has the advantage of being guaranteed

to sample the correct Boltzmann distribution if enough time is offered to the task, however, the

efficiency of sampling is not always obvious, and the method is limited in its ability to provide

temporal information. The latter offers the ability to mimic time evolution, and the sampling

strategy is given by the simultaneous mutual interactions in the entire system, however, the discrete-

time evolution is known to introduce systematic errors as the time step is increased, as seen in,
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e.g., the well-known stochastic thermostats in Refs. [3–5]. Recent developments have offered the

possibility of conducting discrete-time stochastic Langevin simulations with seemingly no (or at

least very small) errors in the obtained statistics of both configurational [6, 7] and simultaneous

kinetic sampling [8]. The time-step-independent sampling is analytically proven for linear systems

(linear and harmonic potentials), and the applications to nonlinear and complex systems, such as

condensed molecular ensembles, have been demonstrated with very good results [7–10], especially

for molecular simulations of condensed phases. As a result, it is tempting to challenge the time

step to its limit with the expectation that any system will respond according to the linear analysis.

In doing that, some simulations have shown curious deviations from these attractive features for

large time-steps [10], especially for systems with relatively low dissipation. The observed deviations

are not of the typical kind that indicate systematic deviations which are usually associated with

discrete-time algorithms [5]. These systematic deviations can be evaluated by linear analysis, and

linear analysis of the recent method in Ref. [8] has no systematic errors in either configurational or

kinetic sampling. Instead, the deviations under investigation here seem to be absent for small time

steps, and then abruptly appear at a certain threshold below the stability limit of the method.

This is reminiscent of previous observations of nonlinear resonant artifacts in Molecular Dynamics

simulations [11, 12], which have become a field of intense study in Molecular Dynamics [13]. We will

explore this phenomenon in the framework of the very simple, damped, noisy pendulum equation

in order to illuminate the issue from a nonlinear dynamics viewpoint. Such corrugated potential,

in which transport and diffusion are subjects of continued interest, periodic or tilted, is in of itself

a system of both fundamental interest and relevance for many applications in condensed matter

physics, e.g., Josephson applications [14–17] or atomic surface diffusion [18], the latter having

been further numerically addressed in Ref. [19] in order to statistically enhance simulated barrier

transitions.

The equation of interest is the Langevin equation [20]

mv̇ + αṙ = f + β , (1)

where m is the mass of an object with spatial coordinate r, subjected to a force f . Linear friction

is represented by the constant α ≥ 0, which is related to the thermal fluctuations β, which can be

chosen to be represented by the Gaussian distribution [21]

〈β(t)〉 = 0 (2)

〈β(t)β(t′)〉 = 2αkBTδ(t− t′) , (3)
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where kB is Boltzmann’s constant and T is the thermodynamic temperature.

When simulating this equation, we adopt the GJF [7] discrete-time approximation to the

Langevin equation, written:

rn+1 = rn + b[dt vn +
dt2

2m
fn +

dt

2m
βn+1] (4)

vn+1 = a vn +
dt

2m
(afn + fn+1) +

b

m
βn+1 , (5)

where the discrete-time notation rn = r(tn) indicates that we only have approximations at times

tn = t0+n dt, separated by the time step dt. The on-site velocity variable vn approximates v(tn) =

ṙ(tn), and the discrete-time force is fn = f(tn, r
n). The discrete-time fluctuation-dissipation

relationship is ensured by the coefficients

a =
1− αdt

2m

1 +
αdt

2m

(6)

b =
1

1 +
αdt

2m

, (7)

with the associated integrated fluctuations

βn+1 =

∫ tn+1

tn

β(t′) dt′ , (8)

which are uncorrelated Gaussian random numbers with zero mean and a variance given by the

temperature and friction coefficient:

〈βn〉 = 0 (9)

〈βnβl〉 = 2αkBTdtδn,l . (10)

We use the ran3() random number generator as descibed in Ref. [22]. The equations (4) and (5)

can be conveniently written in the compact single time step form

un+
1

2 =
√
b

[

vn +
dt

2m
fn +

1

2m
βn+1

]

(11)

rn+1 = rn +
√
b dt un+

1

2 (12)

vn+1 =
a√
b
un+

1

2 +
dt

2m
fn+1 +

1

2m
βn+1 , (13)

where each time step is initiated by (rn, vn) and concludes with (rn+1, vn+1). The half-step velocity

variable un+
1

2 [8] approximates v(tn+ 1

2

) = ṙ(tn+ 1

2

), and is found to be thermodynamically robust

in its ability to produce reliable kinetic measures. Specifically, for linear systems, when f = −κr
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(κ ≥ 0), it has been shown that the trajectory rn samples the correct configurational Boltzmann

statistics [7] and that the half-step velocity defined by Eq. (12) is resulting in exact kinetic measures

[8] regardless of the applied time step within the stability range. Very robust statistical behavior has

been numerically demonstrated for nonlinear and complex systems as well. However, it is known

that the on-site velocity variable vn does not precisely sample the desired Maxwell-Boltzmann

statistics for κ > 0 [7], and a systematic quadratic error in the reduced time step is found as the

time step is increased.

We will here be concerned with noticeable statistical discrepancies that have been observed in

Langevin simulations of nonlinear systems. In particular, the significant deviations from perfect

statistics observed for, e.g., single particle behavior in nonlinear, including corrugated, potentials

[10] in the low damping limit, are characterized by very sudden departures from correct statistics

at or near relatively large time steps within the stability range. This indicates that the source

of the deviation is not one of the usual algorithmic errors, which tend to increase gradually with

the time step. While the general feature of the described sudden discrepancies are ubiquitous for

the standard Langevin algorithms that we are aware of, including the classic methods described

and analyzed in Refs. [3–5], the deviations are particularly noticeable when using the GJF-2GJ

algorithm, given its reliable statistical properties for elevated time steps. We here simplify and limit

the investigation to a very simple system, the pendulum equation, which we can analyze analytically

and numerically in order to discover the reason for the anomalous errors in the otherwise robust

simulation environment.

II. THE PENDULUM AND ITS DISCRETE-TIME STATISTICS

We consider the corrugated periodic potential

Ep = E0(1− cos
r

r0
) , (14)

where E0 = κr20 ≥ 0 is a characteristic energy, r0 is a characteristic distance, and κ is a constant

κ > 0. The resulting force to be inserted into the Langevin equations and the GJF algorithm above

is then

f = −κr0 sin
r

r0
. (15)

From this potential we define the characteristic time as the inverse of the small-amplitude natural

oscillation frequency Ω0 =
√

κ/m around the stable fixed point at r = 0 for α = 0. The character-

istic velocity is thus v0 = r0Ω0. Given that the largest curvature of the potential is found for r = 0,
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we define the relevant overall stability limit for the Verlet-type [25, 26] integration method as given

by Ω0dt < 2, where Ω0dt is the reduced time step. This limitation ensures that the dynamics

is stable everywhere on the potential surface, including the ground state, and it ensures that the

discrete-time dynamics in the nonlinear regime does not challenge the stability. Thus, algorithmic

stability properties are given by the small amplitude linear oscillations.

The phenomenon under investigation is visible from the simulation results shown in Figures 1

and 2. These data points are derived from simulating 1,000 independent pendula for each set of

parameter values [23]. Each data point is generated from first equilibrating each pendulum for a

normalized time of at least 10×mΩ0/α before making statistical averages for the next 108 time

steps. After this, the time step is increased slightly to make the next set of data points. This is

done using the algorithm Eqs. (11)-(13). We produce the statistics for the following quantities of

energy, energy fluctuations, and diffusion. The displayed measures are

〈Ep〉 = 〈Ep(r
n)〉 (16)

〈Ek〉 =
1

2
kBTk =

1

2
m〈un+ 1

2un+
1

2 〉 (17)

kBTc =
〈(E′

p(r
n))2〉

〈E′′
p (r

n)〉 (18)

σ2
p = 〈(Ep(r

n))2〉 − 〈Ep(r
n)〉2 (19)

σ2
k = 〈(Ek(u

n+ 1

2 ))2〉 − 〈Ek(u
n+ 1

2 )〉2 (20)

DE = lim
n→∞

〈(rq+n − rq)2〉q
2 dt n

, (21)

where 〈Ep〉 and 〈Ek〉 are the mean values of potential and kinetic energy, respectively; σp and σk are

the associated energy fluctuations; and kBTc is the energy of the configurational temperature [24].

If the sampled velocities are given by a correct Maxwell-Boltzmann distribution then the kinetic

fluctuation is expected to be σk = kBT/
√
2. The diffusionDE is measured by the Einstein definition

[27] (see comments on the discrete-time relationship between this definition and the Green-Kubo

approximation in Ref. [8]). Results are shown for representative values of both damping and

temperature as a function of the reduced time step 0 < Ω0dt < 2.

The summarized results shown in Figures 1 and 2 indicate that the statistical response of

the algorithm is predictively robust for all small to moderately sized time steps with time-step-

independent results, regardless of the temperature and the damping coefficient. However, sudden

onsets of discrepancy for the smaller of the time steps are observed for all statistical measures

with the lower damping showing signs of discrepancy at smaller time steps than the simulations

for higher damping. The vertical logarithmic scale demonstrates how dramatic these discrepancies
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FIG. 1: Statistical averages Eq. (16)-(21) as a function of reduced time step Ω0dt for the nonlinear oscillator

described by the potential in Eq. (14), and simulated by Eqs. (11)-(13). Each marker is the result of 109

simulated time steps for 1,000 pendula, and the parameter values represented by the markers are indicated

on the figures. Open markers represent α/mΩ0 = 10−2, filled markers represent α/mΩ0 = 10−1. Simulated

thermal energy is kBT = 0.1E0. Vertical arrows point to Ω0dt =
√
2. Horizontal dotted lines are given at

the expected thermodynamic values Tc = 2〈Ek〉 = kBT (a), and σk = kBT/
√
2 (b).

are, especially in light of the expected time-step independent behavior that is characteristic for the

GJF-2GJ method in both configurational and kinetic sampling. The following section will propose

two types of intrinsic dynamic modes that are responsible for this behavior.

III. ENERGETIC MODES IN DAMPED OSCILLATORS

In order to investigate the existence and stability of specific modes, we use the SV form of the

GJF method [9] without noise

rn+1 = 2brn − arn−1 + b dt2

m
fn , (22)

which for the pendulum equation reads

rn+1 = 2brn − arn−1 − bΩ2
0dt

2r0 sin
rn

r0
. (23)
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FIG. 2: Statistical averages Eq. (16)-(21) as a function of reduced time step Ω0dt for the nonlinear oscillator

described by the potential in Eq. (14), and simulated by Eqs. (11)-(13). Each marker is the result of 109

simulated time steps for 1,000 pendula, and the parameter values represented by the markers are indicated

on the figures. Open markers represent α/mΩ0 = 10−2, filled markers represent α/mΩ0 = 10−1. Simulated

thermal energy is kBT = 0.5E0. Horizontal dotted lines are given at the expected thermodynamic values

Tc = 2〈Ek〉 = kBT (a), and σk = kBT/
√
2 (b).

This equation is the discrete-time representation of a purely damped system for αdt > 0, and the

linear limit for the potential Ep is given near the static ground state fixed point εn ≈ r∗ = 0

(|εn| ≪ r0)

εn+1 = 2b(1 − Ω2
0dt

2

2
)εn − aεn−1 , (24)

for which the solutions to the characteristic polynomial confirms the stability of the fixed point

r∗0 = 0 in the entire range 0 ≤ Ω0dt < 2. The analyses that led to both the time-step-independent

configurational [7] and kinetic [8] results have assumed fluctuations around this fixed point, since

this is the physical minimum of the potential. However, given the observations of onsets of signifi-

cant deviations, as illustrated in Figs. 1 and 2, it is reasonable to explore if other modes exist.

Focusing on the results of the low damping value in Figure 1, we notice that the sudden rise in

statistical values is accompanied by a dramatic increase in the diffusion coefficient. This increase

happens for relatively large time steps, so it is not surprising that spurious events in a noisy
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FIG. 3: Sketch of the periodic potential and the dynamic ghost modes under investigation. Each arrow

indicates the motion of a single time step dt in a mode. The traveling mode is indicated for k = ±1,±2 by

horizontal arrows, and p4 is the oscillating mode.

environment can make the system move from one potential well to the next in one time step.

However, since the onset of discrepancies is sudden, and the diffusion coefficient becomes very

large, we suspect that more intrinsic behavior is at play.

Traveling Mode. The first mode we investigate is the traveling solution (sketched in Fig. 3) rn =

r∗ + 2πr0k n, where r∗ is a constant and k a non-zero integer. This mode travels k potential wells

every time step, and it makes contact with the potential at one value r∗ in each well. Inserting

this traveling solution into Eq. (23) gives

2πk
αdt

m
= −Ω2

0dt
2 sin

r∗

r0
. (25)

Thus, a traveling solution with

sin
r∗

r0
= − α

mΩ0

2πk

Ω0dt
(26)

if

Ω0dt ≥ 2πk
α

mΩ0

. (27)

The existence of this mode is supported by low damping and large time steps such that the

dissipation induced from one time step to the next is compensated by making contact with the
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potential surface only at points r∗ where the force perpetuates the motion. This is a mode that

exists only in discrete time, as can be seen from Eq. (27), and it is, of course, unphysical. The

stability of the mode is investigated by inserting rn = r∗+2πr0k n+ εn for |εn| ≪ r0 into Eq. (23),

with r∗ given by Eq. (26). The resulting equation for the small perturbation εn is then

εn+1 = 2b(1− Ω2
0dt

2

2
cos

r∗

r0
)εn − aεn−1 , (28)

which yields the solutions λ± to the characteristic polynomial

λ± = b(1− Ω2
0dt

2

2
cos

r∗

r0
)±

√

b2(1− Ω2
0dt

2

2
cos

r∗

r0
)2 − a . (29)

It is straightforward to see that for

0 < b2
(

1− Ω2
0dt

2

2
cos

r∗

r0

)2

< a (30)

λ± are complex and |λ±|2 = a < 1. Equally straightforward, albeit more cumbersome, calculations

show that |λ±| < 1 for all values cos r∗

r0
> 0. The traveling mode is therefore stable for all fixed

points in the interval 0 ≤ r∗ < π
2
r0. Notice that Eq. (27) states that the traveling mode can

only exist for damping values πk α/mΩ0 < 1. Thus, any stable and self-sustaining traveling mode

can exist only for α/mΩ0 < 1/kπ. We emphasize that this kind of mode is truly unusual and

unphysical: Not only can the mode be traveling at certain high velocities in a purely damped

system, it may also perpetually travel uphill if a potential tilt of limited slope is added to the

corrugated potential.

In order to see if this spurious discrete-time mode is related to the curious large-time-step

discrepancies observed in Figs. 1 and 2, we select a few characteristic values of the reduced time

step and investigate the velocity density distribution ρ(u) acquired from the simulations in Figs. 1

and 2. The statistical expectation of this distribution ρk(u) is the Maxwell-Boltzmann distribution

ρk(u) ∝ exp(−
1
2
mu2

kBT
) . (31)

Thus, we define an effective kinetic potential UMB(u) from the simulated density distribution ρk(u)

UMB(u) = −kBT ln ρk(u) + Ck , (32)

with Ck = kBT ln ρk(0) such that UMB(u) =
1
2
mu2, if the statistics is in accordance with thermal

physics.

Figure 4 shows the comparisons for α/mΩ0 = 0.01 and α/mΩ0 = 0.1 for different time steps.

In accordance with Fig. 1, we expect that Ω0dt = 1 will show a physically meaningful distribution
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FIG. 4: Effective kinetic potential UMB(u) derived from acquired velocity distribution functions (solid

curves). Results for two values of damping coefficient α/mΩ0 are shown. Results for larger damping are

above those of lower damping unless the curves coincide. The ideal kinetic potential is indicated by the

dashed curve. kBT = 0.1E0. Other parameters given on the figure. Vertical arrows indicate characteristic

velocities of intrinsic dynamical modes discussed in the text. k = ±1 refers to the traveling mode with

velocities given by Eq. (33), and p4 in (c) and (d) refers to the oscillating mode with velocities given by

Eq. (43).

since all the statistical values in Fig. 1 are time-step independent up to at least Ω0dt ≈ 1. That is

confirmed by Fig. 4a, which shows perfect agreement between UMB(u) and
1
2
mu2 for both values

of damping. Thus, the algorithm samples a physically meaningful kinetic distribution even for this

high time step, as expected from Ref. [8].



11

For Ω0dt = 1.4, Fig. 1 shows that the low damping case α/mΩ0 = 0.01 significantly deviates

from the physical result, while the simulation for the damping value α/mΩ0 = 0.1 is still in

accordance with the statistical expectation. Figure 4b shows the details of this result. While the

distributions are in perfect agreement with physical expectations for all velocities up to a certain

value u ≈ 1.5v0, significant large-velocity departure from the quadratic behavior is noticeable in

UMB(u) for α/mΩ0 = 0.01. Further, the departure is characterized by a particular speed, which

coincides precisely with the velocity of the noiseless traveling mode

vk =
2πk

Ω0dt
v0 . (33)

This velocity is indicated on Figs. 4bcd by arrows for k = ±1. Thus, we conclude that the

departure from physical statistics is due to this intrinsic dynamical mode and not a systematic

error that increases by some power of the reduced time step Ω0dt. This indicates that the

algorithm is sampling the phase space correctly, but that the phase space for Ω0dt larger than a

certain threshold contains an expanded set of possible states, which the algorithm is statistically

sampling. However, Fig. 4 shows that for as long as the system is sampling the behavior

around u = 0 then the statistics is in agreement with the Maxwell-Boltzmann distribution.

The observation that the damping value α/mΩ0 = 0.1 does not show departure from physical

statistics in Fig. 1 for Ω0dt = 1.4 is corroborated by the perfect distribution function seen in Fig. 4b.

Oscillating Mode. For higher values of Ω0dt we see from Fig. 1 that both damping values

α/mΩ0 = 0.01 and α/mΩ0 = 0.1 show enhanced statistical averages. Figure 4c shows that while

the distribution for the higher damping indicates that the traveling mode has not been sampled,

the distribution abruptly separates from the physical one (dashed) for |u| > 1, when also the distri-

bution for low damping separates. Given that this is a distinct feature commensurate with neither

the physical nor the traveling mode, we explore other options.

It is tempting to suggest a period two (p2) oscillating mode of the kind rn+1 = −rn = r∗ > 0

as an inherent dynamical mode in a convex potential. Inserting this form into Eq. (23) shows the

following:

r∗ = −2br∗ − ar∗ + bΩ2
0dt

2r0 sin
r∗

r0
(34)

⇒
sin r∗

r0
r∗

r0

=
4

Ω2
0dt

2
. (35)

Since this is not possible within the defined stability limit Ω0dt < 2, we conclude that this mode

does not exist.
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Instead we propose the p4 oscillatory mode sketched in Fig. 3, where rn+1 = r∗1 = −rn−1 > 0

and rn = r∗2 = −rn−2 > 0 with r∗1 ≥ r∗2. Inserting this mode into Eq. (23) yields the two equations

αdt

2m
r∗1 = r∗2 −

Ω2
0dt

2

2
r0 sin

r∗2
r0

(36)

−αdt

2m
r∗2 = r∗1 −

Ω2
0dt

2

2
r0 sin

r∗1
r0

. (37)

For α = 0 we can see that the two equations decouple, and the common solution r∗1 = r∗2 = r∗ is

given by

sin r∗

r0
r∗

r0

=
2

Ω2
0dt

2
. (38)

Thus, it is possible to find such fixed points for Ω0dt >
√
2. Approximating the left hand side of

this equation with its quadratic polynomial expansion around r∗ = 0, we can make a convenient

expression of the solution

r∗ ≈
√

6(1 − 2

Ω2
0dt

2
) r0 . (39)

For 0 < α/mΩ0, we see from Eqs. (36) and (37) that the two values r∗1 and r∗2 split such that, to

first order in αdt/2m,

r∗i ≈ r∗(1±
αdt
2m

Ω2
0
dt2

2
cos r∗

r0
− 1

) , (40)

which is an expression that must be applied for Ω0dt >
√
2 and we must further require that

cos r∗

r0
> 2/Ω2

0dt
2. Applying the approximation Eq. (39) gives

r∗i ≈ r∗ (1±
αdt
2m

5− Ω2
0dt

2
) (41)

=

√

6(1 − 2

Ω2
0dt

2
) r0 (1±

αdt
2m

5− Ω2
0dt

2
) . (42)

The resulting p4 velocities stemming from this oscillating p4 mode are then

vn+
1

2 =
rn+1 − rn

dt
= ±











r∗1 − r∗2
dt

r∗1 + r∗2
dt

, (43)

where v = 0 and v = 2r∗i /dt for α = 0. We have indicated the large magnitude p4 mode velocities

in Figure 4c, and we see that the observation that led to the search for a non-traveling mode is

entirely consistent with this oscillatory mode for both values of simulated damping (notice that we
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FIG. 5: Effective kinetic potential UMB(u) derived from acquired velocity distribution functions (solid

curves). Results for two values of damping coefficient α/mΩ0 are shown. Results for larger damping are

above those of lower damping, unless the curves coincide. The ideal kinetic potential is indicated by the

dashed curve. kBT = 0.5E0. Other parameters given on the figure. Vertical arrows indicate characteristic

velocities of intrinsic dynamical modes discussed in the text. k = ±1 and k = ±2 refer to the traveling

modes with velocities given by Eq. (33).

have not indicated the velocity at v ≈ 0, since that statistical contribution is insignificant compared

to the vast majority of events being found near v = 0).

Figure 4d shows the effective kinetic potential derived from the velocity density distributions for

a time step value, where we observe traveling mode contributions for both simulated damping values

[28]. Again, we see complete consistency between the anomalies in the kinetic distributions and

the identified modes. We also reemphasize that the overall sampling of the low velocity regime (the

regime characterized by velocities lower than the activated dynamic modes) is largely unaffected

by the existence of the large velocity (nonlinear) modes. This indicates that the algorithm is

performing very reasonable statistical sampling of the modes that are present in the discrete-time

system. It is important to note that the two identified modes are not suggested to always be the

only relevant ones. Instead, we expect that other intrinsically dynamical modes may play a role

in corrupting the expected thermal statistics stemming from such large time step simulations at

low damping and non-vanishing temperature. In fact, the shown distributions (effective kinetic

potentials) show fine structures that may suggest exactly that.

The consistency between the data and the identified modes is further exemplified by viewing
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results for the much higher thermal energy kBT = 0.5E0. While Figure 5a shows the distributions

for Ω0dt = 0.75, where both damping values result in expected thermal statistics based on the data

in Figure 2, Figure 5b (simulated at Ω0dt = 1.6) displays not only the k = ±1 traveling modes as

a reason for the enhanced statistical measures, but also visible signatures of the k = ±2 mode for

the lower of the two damping values.

Figure 6 displays direct comparisons between the predicted velocities of the traveling and p4

modes, as given by Eqs. (33) and (43), and results obtained from locating the visible local minima

of UMB(u) in figures of the kind shown in Figs. 4 and 5. Notice that the data shown in Fig. 6

are only cases where we can locate an actual minimum; thus, the effect of, e.g., the p4 mode is

much broader than what this figure indicates. However, the plot clearly shows that the identified

modes are in excellent agreement with the identifiable depressions in the effective kinetic potential

UMB(u), and we conclude that both the traveling and p4 modes are major contributors to the

departure from the physical Maxwell-Boltzmann statistics observed for this system.

We submit that the discrepancies in the expectations of statistical response observed in Figures 1

and 2 are not due to systematic algorithmic time-step errors, but instead are related to the inherent

properties of discrete time, which possesses nonlinear, unphysical and modes that can be activated

by the thermal sampling. The energetics of these ghost modes are therefore relevant components

to understand if and when these modes may become important for the results. For example, we

have found that the traveling modes exist (and are stable) in the entire time step region given by

Eq. (27), which means that it could be observed for Ω0dt > 0.0628 (k = 1 for α/mΩ0 = 0.01)

and Ω0dt > 0.628 (k = 1 for α/mΩ0 = 0.1). Yet, they are activated for much larger time steps.

The reason is likely that while these modes are possible, they have an energy E (mostly kinetic),

inversely proportional to the square of the time step. Thus, it is extremely implausible to reach

these states for small Ω0dt, and if these states are reached then they may only have limited life

time, given the thermal properties of the system. However, for larger time steps, this discrete-

time energy barrier between the physical ground state and one of the ghost modes decreases,

and it becomes more likely to be temporarily trapped in such mode. An interesting detail seen

in Figure 1 is the coexistence of different ghost modes for α/mΩ0 = 0.01 (filled markers). The

onset of the traveling mode is clearly seen by the rise in all kinetic measures at Ω0dt ≥ 1.3. In

contrast, the potential energy and its fluctuations remain depressed up through Ω0dt ≤ 1.4. This is

consistent with the traveling mode for very low damping, since Eq. (26) indicates that the potential

energy contribution from the traveling mode (k = ±1) is Ep ≈ 0.002E0. Thus, this is insignificant

compared to the contribution from the thermal bath. However, the rise in the potential energy
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FIG. 6: Identifiable local minima in UMB(u) (markers) as a function of applied time step Ω0dt. α/mΩ0 =

0.01. Solid curves represent non-thermal velocities for the traveling modes k = 1, 2 (Eq. (33)) and for the

p4 mode (Eq. (43)).

seen for Ω0dt > 1.4 coincides with the emergence of the p4 mode, which we have seen in Figure 4c

(and not in Figure 4b). The p4 mode has an average energy (given by Eq. (39)) of Ep ≈ 0.5E0 for

Ω0dt = 1.55. With the thermal potential energy being less than an order of magnitude below that

value, the emergence of the p4 mode is noticed in the statistics of the potential energy, even if the

kinetic measures are dominated by the traveling mode contributions.

We have given examples of some of the modes possible in this system. However, as mentioned

above, more modes may be relevant, and still others can be found for other types of nonlinear

systems. The message of this presentation is to focus on the phenomenon of inherently stable,

inherently unphysical, large time step modes interfering with the physical statistics under investi-

gation. We also emphasize the difference between this kind of deviation from correct statistics and

the usual systematic errors that are normally expected from numerical algorithms.

IV. DISCUSSION

The discrete-time ghost modes discussed in this paper have been shown to be closely aligned

with the discrepancies observed between simulated thermodynamics for large time steps and the

physical expectations of the continuous-time system of interest, especially those with low char-

acteristic damping. Through detailed investigation of the velocity density distributions obtained
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from discrete-time simulations, we have been able to directly identify signatures of ghost modes in

those distributions, and thereby correlate the sampling of these modes with the observed devia-

tions in other statistical measures, such as averages and fluctuations of energies as well as diffusion.

Interestingly, we observe that the velocity density distributions are in near perfect agreement with

the Maxwell-Boltzmann distribution for low velocities, even if the high velocity contributions are

corrupted by the discrete-time ghost modes. This indicates that the GJF-2GJ method correctly

samples the part of the phase space that behaves physically correct, and that the deviations can be

attributed to identifiable discrete-time resonances instead of a gradual, systematic increase of al-

gorithmic approximation errors expected from other algorithms. The system chosen for this study

has been the simple pendulum, since this is a prototypical system in nonlinear dynamics with both

potential wells and possible diffusion. The most dominant mode that influences this system seems

to be the traveling mode, which is unique to potentials of limited magnitude. However, the other

mode (oscillating p4), which we have explored and identified in the velocity distribution function, is

representative of modes relevant for confining potentials in which unlimited diffusion or transport

is impossible. In fact, we have confirmed that this kind of mode, as well as other modes with higher

periodicity (not discussed above), are sources of statistical errors in confined nonlinear systems,

consistent with the Molecular Dynamics observations in Ref. [11, 12]. Thus, the results put forward

in this paper seem to apply much more generally than just the pendulum model.

One can ask if the existence of ghost modes for a given time step puts simulations into danger,

and if one should always test for these modes before conducting a simulation. For example, for

low damping, we have seen that the traveling ghost modes both exist and are stable even for very

low time steps, where one often conducts otherwise reliable simulations. The reason that the ghost

modes do not typically interfere with the simulation results for smaller time steps is that they

are energetically separated from the physical modes by such a large amount that the probability

of being transitioned into a ghost mode is practically infinitesimal. As we have seen, however,

it is possible to experience these exclusively discrete-time modes under conditions of, e.g., high

temperature or larger time steps. A hint from this paper is that one can use the velocity density

distribution function to accurately identify that such high energy, high velocity resonant mode

has been caught by the sampling. This opportunity is presented by the GJF-2GJ algorithm since

the 2GJ velocity is shown to be statistically correct for as long as the simulation is sampling the

physical ground state [8].

We reemphasize that the resonant discrete-time ghost modes are not unique to the GJF al-

gorithm. In fact, because the origin of the discrepancies are not rooted in linear stability, but
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instead of an interference between system nonlinearity and applied time step, they are present in

many methods, including the well-known Stoll & Schneider [3], Brooks & Brünger & Karplus [4],

and Pastor & Brooks & Szabo [5] methods. However, given that the GJF framework offers the

opportunity to conduct statistical simulations without the usual systematic increase in time-step

errors, the effects of the resonant modes on the statistics become more pronounced, as seen in

Figs. 1 and 2. We also reemphasize that simulations with larger normalized damping values will

depress both stability and existence of the ghost modes, thereby return the statistical sampling in

discrete time to the expected physical results.

We finally comment that the results and considerations in this paper have been exclusively

generated in light of stochastic thermostats without kinetic energy feed-back, such as what is done

in, e.g., the deterministic Nosé-Hoover thermostat [29–31]. One can expect that the feed-back of

excess kinetic energy, which the modes in this paper possess, will be depressed by the algorithmic

features, thereby suppressing the non-physical energetic ghost modes. It is, however, not obvious

that this suppression will happen in accordance with physics, and we have here focused exclusively

on recent stochastic thermostats that have been demonstrated to respond linearly correct to thermal

effects.
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