
A TUTORIAL-DRIVEN INTRODUCTION TO THE PARALLEL FINITE

ELEMENT LIBRARY FEMPAR V1.0.0

SANTIAGO BADIA1,2 AND ALBERTO F. MARTÍN2,3

Abstract. This work is a user guide to the FEMPAR scientific software library. FEMPAR is
an open-source object-oriented framework for the simulation of partial differential equations
(PDEs) using finite element methods on distributed-memory platforms. It provides a rich set
of tools for numerical discretization and built-in scalable solvers for the resulting linear systems
of equations. An application expert that wants to simulate a PDE-governed problem has to
extend the framework with a description of the weak form of the PDE at hand (and additional
perturbation terms for non-conforming approximations). We show how to use the library by
going through three different tutorials. The first tutorial simulates a linear PDE (Poisson equa-
tion) in a serial environment for a structured mesh using both continuous and discontinuous
Galerkin finite element methods. The second tutorial extends it with adaptive mesh refinement
on octree meshes. The third tutorial is a distributed-memory version of the previous one that
combines a scalable octree handler and a scalable domain decomposition solver. The exposition
is restricted to linear PDEs and simple geometries to keep it concise. The interested user can
dive into more tutorials available in the FEMPAR public repository to learn about further capa-
bilities of the library, e.g., nonlinear PDEs and nonlinear solvers, time integration, multi-field
PDEs, block preconditioning, or unstructured mesh handling.

Keywords: Mathematical Software, Finite Elements, Object-Oriented Programming, Partial
Differential Equations

1. Introduction

This work is a user-guide introduction to the first public release, i.e., version 1.0.0, of the
scientific software FEMPAR. FEMPAR is an Object-Oriented (OO) framework for the numerical
approximation of Partial Differential Equations (PDEs) using Finite Elements (FEs). From in-
ception, it has been designed to be scalable on supercomputers and to easily handle multiphysics
problems. FEMPAR v1.0.0 has about 300K lines of code written in (mostly) OO Fortran using the
features defined in the 2003 and 2008 standards of the language. FEMPAR is publicly available in
the Git repository https://github.com/fempar/fempar.

FEMPAR FE technology includes not only arbitrary order Lagrangian FEs, but also curl- and
div-conforming ones. The library supports n-cube and n-simplex meshes. Continuous and dis-
continuous spaces can be used, providing all the machinery for the integration of Discontinuous
Galerkin (DG) terms on facets. It also provides support for dealing with hanging nodes in non-
conforming meshes resulting from h-adaptivity. In all cases, FEMPAR provides mesh partitioning
tools for unstructured meshes and parallel octree handlers for h-adaptive simulations (relying
on p4est [1]), together with algorithms for the parallel generation of FEs spaces (e.g., global
numbering of Degrees Of Freedom (DOFs) across processors).

FEMPAR has been applied to a broad set of applications that includes the simulation of turbulent
flows [2, 3, 4, 5], magnetohydrodynamics [6, 7, 8, 9, 10], monotonic FEs [11, 12, 13, 14, 15],
unfitted FEs and embedded boundary methods [16, 17], additive manufacturing simulations
[18, 19, 20], and electromagnetics and superconductors [21, 22].

Date: August 5, 2019.
1 School of Mathematics, Monash University, Clayton, Victoria, 3800, Australia. —2 Centre Internacional de

Mètodes Numèrics en Enginyeria, Esteve Terrades 5, E-08860 Castelldefels, Spain. 3 Universitat Politècnica de
Catalunya, Jordi Girona 1-3, Edifici C1, E-08034 Barcelona.
E-mails: santiago.badia@monash.edu (SB), amartin@cimne.upc.edu (AM) .

SB gratefully acknowledges the support received from the Catalan Government through the ICREA Acadèmia
Research Program. The authors thankfully acknowledge the computer resources at Marenostrum-IV and the
technical support provided by the Barcelona Supercomputing Center (RES-ActivityID: FI-2019-1-0007).

1

ar
X

iv
:1

90
8.

00
89

1v
1

 [
cs

.M
S]

 2
 A

ug
 2

01
9

https://github.com/fempar/fempar

2 S. BADIA AND A. F. MARTÍN

FEMPAR includes a highly scalable built-in numerical linear algebra module based on state-
of-the-art domain decomposition solvers; the multilevel Balancing Domain Decomposition by
Constraints (BDDC) solver in FEMPAR has scaled up to 1.75 million MPI tasks in the JUQUEEN
Supercomputer [23, 24]. This linear algebra framework has been designed to efficiently tackle
the linear systems that arise from FE discretizations, exploiting the underlying mathematical
structure of the PDEs. It is a difference with respect to popular multi-purpose linear algebra
packages like PETSc [25], for which FEMPAR also provides wrappers. The library also supplies
block preconditioning strategies for multiphysics applications [26]. The numerical linear algebra
suite is very customizable and has already been used for the implementation and scalability
analysis of different Domain Decomposition (DD) solvers [27, 23, 28, 24, 29, 30, 31, 32, 33, 34, 35]
and block preconditioners for multiphysics applications [36].

The design of such a large numerical library is a tremendous task. A comprehensive pre-
sentation of the underlying design of the building blocks of the library can be found in [37].
This reference is more oriented to FEMPAR developers that want to extend or enhance the library
capabilities. Fortunately, users whose application requirements are already fulfilled by FEMPAR

do not require to know all these details, which can certainly be overwhelming. In any case, [37,
Sect. 3] can be a good introduction to the main abstractions in a FE code.

Even though new capabilities are steadily being added to the library, FEMPAR is in a quite
mature state. Minor changes on the interfaces relevant to users have been made during the last
two years. It has motivated the recent public release of its first stable version and the elaboration
of this user guide.

This user guide is tutorial-driven. We have designed three different tutorials covering an
important part of FEMPAR capabilities. The first tutorial addresses a Poisson problem with a
known analytical solution that exhibits an internal layer. It considers both a continuous FE and
a Interior Penalty (IP) DG numerical discretization of the problem. The second tutorial builds
on the first one, introducing an adaptive mesh refinement strategy. The third tutorial consists
in the parallelization of the second tutorial for distributed-memory machines and the set up of
a scalable BDDC preconditioner at the linear solver step.

In order to keep the presentation concise, we do not aim to be exhaustive. Many features of
the library, e.g., the set up of time integrators and nonlinear solvers or multiphysics capabilities,
have not been covered here. Instead, we encourage the interested reader to explore the tutorials
section in the Git repository https://github.com/fempar/fempar, where one can find the
tutorials presented herein and other (more advanced) tutorials that make use of these additional
tools.

2. Brief overview of FEMPAR main software abstractions

In this section, we introduce the main mathematical abstractions in FE problems that are
provided by FEMPAR. In any case, we refer the reader to [37, Sect. 3.1] for a more comprehensive
exposition. Typically, a FEMPAR user aims to approximate a (system of) PDEs posed in a
bounded physical domain Ω stated in weak form as follows: find ug ∈ Vg such that

a(ug, v) = `(v), for any v ∈ V,(1)

where a(u, v) and `(v) are the corresponding bilinear and linear forms of the problem. Vg is
a Hilbert space supplemented with possibly non-homogeneous Dirichlet Boundary Conditions
(BCs) on the Dirichlet boundary ΓD ⊆ ∂Ω, whereas V is the one with homogeneous BCs on ΓD.
In any case, the non-homogeneous problem can easily be transformed into a homogeneous one
by picking an arbitrary Eg ∈ Vg and solving (1) with the right-hand side `g(v)

.
= `(v)−a(Eg, v)

for u = ug − Eg ∈ V .
The numerical discretization of these equations relies on the definition of a finite-dimensional

space Vh that is a good approximation of V , i.e., it satisfies some approximability property.
Conforming approximations are such that Vh ⊂ V . Instead, non-conforming approximations,
e.g., DG techniques, violate this inclusion but make use of perturbed version ah and `g,h of a
and `g, resp. Using FE methods, such finite-dimensional spaces can be defined with a mesh Th
covering Ω, a local FE space on every cell of the mesh (usually defined as a polynomial space in

https://github.com/fempar/fempar

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 3

a reference FE combined with a geometrical map), and a global numbering of DOFs to provide
trace continuity across cells. In the most general case, the FE problem can be stated as: find
uh ∈ Vh such that

ah(uh, v) = `g,h(vh), for any vh ∈ Vh.(2)

One can also define the affine operator

Fh(uh) = ah(uh, ·)− `g,h(·) ∈ V ′h,(3)

and alternatively state (2) as finding the root of Fh: find uh ∈ Vh such that Fh(uh) = 0.
If we denote as Nh the dimension of Vh, any discrete function uh ∈ Vh can be uniquely

represented by a vector u ∈ RNh as uh =
∑Nh

b=1 φ
bub, where {φb}Nhb=1 is the canonical basis

of (global) shape functions of Vh with respect to the DOFs of Vh [37, Sect. 3]. With these
ingredients, (2) can be re-stated as the solution of a linear system of equations Au = f , with
Aab

.
= ah(φb, φa) and fa

.
= `g,h(φa). The FE affine operator in (3) can be represented as

Fh(uh)
.
= Au− f , i.e., a matrix and a vector of size |Nh|.

The global FE space can be defined as cell-wise local FE spaces Vh|K with a basis {φaK} of local
shape functions, for a, b = 1, . . . ,dim(Vh|K), and an index map [·] that transforms local DOF
identifiers into global DOF identifiers. Furthermore, it is assumed that the bilinear form can be
split into cell-wise contributions of cell-local shape functions for conforming FE formulations,
i.e.,

a(u, v) =
∑
K∈Th

aK(u|K , v|K).(4)

In practice, the computation of A makes use of this cell-wise expression. For every cell K ∈ Th,
one builds a cell matrix (AK)ab

.
= aK(φaK , φ

b
K) and cell vector (fK)a

.
= `K(φaK). Then, these

are assembled into A and f , resp., as A[a][b] += (AK)ab and f[a] += (fK)a, where [·] is an index
map that transforms local DOF identifiers into global DOF identifiers. The cell-local bilinear
form can be has the form:

aK(φbK , ψ
a
K) =

∫
K
F(x)dΩ,

where the evaluation of F(x) involves the evaluation of shape function derivatives. The inte-
gration is never performed on the cell in the physical space. Instead, the cell (in the physical
space) is usually expressed as a geometrical map ΦK over a reference cell (e.g., the [−1, 1]3 cube
for hexahedral meshes), and integration is performed at the reference space. Let us represent

the Jacobian of the geometrical mapping with JK
.
= ∂ΦK

∂x . We can rewrite the cell integration
in the reference cell, and next consider a quadrature rule Q defined by a set of points/weights
(x̂gp,wgp), as follows:∫

K
F(x)dΩ =

∫
K̂
F ◦Φ(x)|JK |dΩ =

∑
x̂gp∈Q

F ◦Φ(x̂gp)w(x̂gp)|JK(x̂gp)|.

For DG methods,the additional stabilization terms should also be written as the sum of cell or
facet-wise contributions. In this case, the computation of the matrix entries involves numerical
integration in cells and facets (see Sect. 5.3.2 for an example). A facet is shared by two cells
that we represent with K+ and K−. All the facet terms in a DG method can be written as the
facet integral of an operator over the trial shape functions of K+ or K− times an operator over
the test shape functions of K+ or K−, i.e.,

aF (φbKα , ψaKβ) =

∫
F
Fα,β(x)dF, for α, β ∈ {+,−}.

Thus, we have four possible combinations of local facet matrices. As for cells, we can consider a
reference facet F̂ , and a mapping ΦF : F̂ → F from the reference facet to the every facet of the
triangulation (in the physical space). Let us represent the Jacobian of the geometrical mapping

with JF
.
= ∂ΦF

∂x , which has values in R(d−1)×d. We can rewrite the facet integral in the reference

4 S. BADIA AND A. F. MARTÍN

facet, and next consider a quadrature rule Q on F̂ defined by a set of points/weights (x̂gp,wgp),
as follows:∫

F
Fα,β(x)dΩ =

∫
F̂
Fα,β ◦ΦF (x)|JF |dF =

∑
x̂gp∈Q

Fα,β ◦ΦF (x̂gp)w(x̂gp)|JF (x̂gp)|.

|JF | is defined as:

|JF | =
∥∥∥∥dΦF

dx

∥∥∥∥
2

and |JF | =
∥∥∥∥∂Φ1

F

∂x̂
× ∂Φ2

F

∂x̂

∥∥∥∥
2

,

for d = 2, 3, respectively.
A FEMPAR user must explicitly handle a set of data types that represent some of the previous

mathematical abstractions. In particular, the main software abstractions in FEMPAR and their
roles in the solution of the problem are:

• triangulation t: The triangulation Th, which represents a partition of the physical
domain Ω into polytopes (e.g., tetrahedra or hexahedra).
• fe space t: The FE space, which represents both the test space Vh (with homogeneous

BCs) and the non-homogeneous FE space (by combining Vh and Eg). It requires as
an input the triangulation Th and (possibly) the Dirichlet data g, together with other
additional parameters like the order of the approximation.
• fe function t: A FE function uh ∈ Vh, represented with the corresponding FE space

(where, e.g., the Dirichlet boundary data is stored) and the free DOF values.
• discrete integration t: The discrete integration is an abstract class to be extended by

the user, which computes the cell-wise matrices by integrating aK(φbK , φ
a
K) and `K(φaK)

(analogously for facet terms). At this level, FEMPAR provides a set of tools required
to perform numerical integration (e.g., quadratures and geometrical maps) described in
Sect. 5.3.1 for cell integrals and in Sect. 5.3.2 for facet integrals.
• fe affine operator: The linear (affine) operator Fh, defined in terms of a FE space

and the discrete forms ah and `h. It provides A and f .
• quadrature t: A simple type that contains the integration point coordinates and weights

in the reference cell/facet.

The user also interacts with a set of data types for the solution of the resulting linear system of
equations, providing interfaces with different direct and iterative Krylov subspace solvers and
preconditioners (either provided by FEMPAR or an external library). FEMPAR also provides some
visualization tools for postprocessing the computed results.

3. Downloading and installing FEMPAR and its tutorial programs

The quickest and easiest way to start with FEMPAR is using Docker. Docker is a tool designed
to easily create, deploy, and run applications by using containers. FEMPAR provides a set of
Docker containers with the required environment (serial or parallel, debug or release) to compile
the project source code and to run tutorials and tests. A detailed and very simple installation
guide can be found in https://github.com/fempar/fempar, together with instructions for the
compilation of the tutorial programs explained below.

4. Common structure and usage instructions of FEMPAR tutorials

A FEMPAR tutorial is a FE application program that uses the tools (i.e., Fortran200X derived
data types and their Type-Bound Procedures (TBPs)) provided by FEMPAR in order to approx-
imate the solution of a PDE (or, more generally, a system of such equations). We strive to
follow a common structure for all FEMPAR tutorials in the seek of uniformity and ease of pre-
sentation of the different features of the library. Such structure is sketched in Listing 1. Most
of the code of tutorial programs is encompassed within a single program unit. Such unit is in
turn composed of four parts: 1) import of external module symbols (Lines 2-5); 2) declaration
of tutorial parameter constants and variables (Lines 7-9); 3) the main executable code of the
tutorial (Lines 10-15); and 4) implementation of helper procedures within the contains section
of the program unit (Line 17).

https://github.com/fempar/fempar

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 5

1 program tutorial_#_...

2 use fempar_names

3 use tutorial_#_support_module1_names

4 use tutorial_#_support_module2_names

5 ... ! Usage of the rest of support modules

6 implicit none

7 ... ! Declaration of tutorial_#_... parameter constants

8 ... ! Declaration of data type instances required by tutorial_#_...

9 ... ! Declaration of variables storing CLA values particular to tutorial_#_...

10 call fempar_init () ! (i.e., construct system -wide objects)

11 call setup_parameter_handler ()

12 call get_tutorial_cla_values ()

13 ... ! Calls to the rest of helper procedures within the contains section

14 ! in order to drive all the necessary steps in the FE simulation

15 call fempar_finalize () ! (i.e., destroy system -wide objects)

16 contains

17 ... ! Implementation of helper procedures

18 end program tutorial_#_...

Listing 1. Structure of a prototypical FEMPAR tutorial. The symbol # denotes
the tutorial identifier; e.g. tutorial 01 ...

In part 1), the tutorial uses the fempar names module to import all FEMPAR library symbols
(i.e., derived types, parameter constants, system-wide variables, etc.), and a set of tutorial-
specific module units, which are not part of the FEMPAR library, but developed specifically for
the problem at hand. Each of these modules defines a tutorial-specific data type and its TBPs.
Although not necessarily, these are typically type extensions (i.e., subclasses) of parent classes
defined within FEMPAR. These data type extensions let the user define problem-specific ingredients
such as, e.g., the source term of the PDE, the function to be imposed on the Dirichlet and/or
Neumann boundaries, or the definition of a discrete weak form suitable for the problem at hand,
while leveraging (re-using) the code within FEMPAR by means of Fortran200X native support of
run-time polymorphism.

In part 2), the tutorial declares a set of parameter constants, typically the tutorial name,
authors, problem description, etc. (to be output on screen on demand by the user), the tutorial
data type instances in charge of the FE simulation, such as the triangulation (mesh) of the
computational domain or the FE space from which the approximate solution of the PDE is
sought (see Sect. 2), and a set of variables to hold the values of the Command-Line-Arguments
(CLAs) which are specific to the tutorial. As covered in the sequel in more detail, tutorial
users are provided with a Command-Line-Interface (CLI). Such interface constitutes the main
communication mechanism to provide the input required by tutorial programs apart from, e.g.,
mesh data files generated from the GiD [38] unstructured mesh generator (if the application
problem requires such kind of meshes).

Part 3) contains the main tutorial executable code, which is in charge of driving all the
necessary FE simulation steps. This code in turn relies on part 4), i.e., a set of helper procedures
implemented within the contains section of the program unit. The main tasks of a FE program
(and thus, a FEMPAR tutorial), even for transient, non-linear PDE problems, typically encompass:
a) to set up a mesh and a FE space; b) to assemble a discrete linear or linearized algebraic system
of equations; c) to solve the system built in b); d) to numerically post-process and/or visualize
the solution. As will be seen along the paper, there is an almost one-to-one correspondence
among these tasks and the helper procedures within the contains section.

The main executable code of the prototypical FEMPAR tutorial in Listing 1 is (and must be)
encompassed within calls to fempar init() (Line 10) and fempar finalize() (Line 15). The
former constructs/initializes all system-wide objects, while the latter performs the reverse opera-
tion. For example, in the call to fempar init(), a system-wide dictionary of creational methods
for iterative linear solver instances is set up. Such dictionary lays at the kernel of a Creational OO
design pattern [39, 40] that lets FEMPAR users to add new iterative linear solver implementations
without the need to recompile the library at all. Apart from these two calls, the tutorial main
executable code also calls the setup parameter handler() and get tutorial cla values()

6 S. BADIA AND A. F. MARTÍN

helper procedures in Lines 11 and 12, resp., which are related to CLI processing, and covered in
the sequel.

The code of the setup parameter handler() helper procedure is shown in Listing 2. It sets
up the so-called parameter handler system-wide object, which is directly connected with the
tutorial CLI. The process parameters TBP registers/defines a set of CLAs to be parsed, parses
the CLAs provided by the tutorial user through the CLI, and internally stores their values into
a parameter dictionary of <key,value>pairs; a pointer to such dictionary can be obtained by
calling parameter handler%get values() later on.1

1 subroutine setup_parameter_handler ()

2 call parameter_handler%process_parameters (&

3 define_user_parameters_procedure=define_tutorial_clas ,&

4 progname=tutorial_name ,&

5 version=tutorial_version ,&

6 description=tutorial_description ,&

7 authors=tutorial_authors)

8 end subroutine setup_parameter_handler

Listing 2. The setup parameter handler() tutorial helper procedure.

There are essentially two kind of CLAs registered by process parameters. On the one hand,
FEMPAR itself registers a large bunch of CLAs. Each of these CLAs corresponds one-to-one to a
particular FEMPAR derived type. The data type a CLA is linked with can be easily inferred from
the convention followed for FEMPAR CLA names, which prefixes the name of the data type (or an
abbreviation of it) to the CLA name. Many of the FEMPAR data types require a set of parameter
values in order to customize their behaviour and/or the way they are set up. These data types
are designed such that these parameter values may be provided by an instance of the afore-
mentioned parameter dictionary. Thus, by extracting the parameter dictionary stored within
parameter handler, and passing it to the FEMPAR data type instances, one directly connects the
CLI with the instances managed by the FE program. This is indeed the mechanism followed by
all tutorial programs. In any case, FEMPAR users are not forced to use this mechanism in their
FE application programs. They can always build and pass an ad-hoc parameter dictionary to
the corresponding instance, thus by-passing the parameter values provided to the CLI.

On the other hand, the tutorial program itself (or, in general, any FE application pro-
gram) may optionally register tutorial-specific CLAs. This is achieved by providing a user-
declared procedure to the optional define user parameters procedure dummy argument of
process parameters. In Listing 2, the particular procedure passed is called define tutorial clas.
An excerpt of the code of such procedure is shown in Listing 3. In this listing, the reader may ob-
serve that registering a CLA involves defining a parameter dictionary key ("FE FORMULATION"),
a CLA name ("--FE FORMULATION"), a default value for the CLA in case it is not passed ("CG"),
a help message, and (optionally) a set of admissible choices for the CLA.

1 subroutine define_tutorial_clas ()

2 call parameter_handler%add("FE_FORMULATION", "--FE_FORMULATION", "CG", &

3 help="Select Finite Element formulation for the problem at hand; &

4 either Continuous (CG) or Discontinuous Galerkin (DG)", &

5 choices="CG,DG")

6 ! ... Register the rest of tutorial -specific CLAs

7 end subroutine define_tutorial_clas

Listing 3. An excerpt of a tutorial helper procedure that is used to register
tutorial-specific CLAs.

The parameter dictionary key passed when registering a CLA can be used later on in order
to get the value of the corresponding CLA or to override it with a fixed value, thus ignoring the

1This parameter dictionary, with type name parameterlist t, is provided by a stand-alone external software
library called FPL [41].

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 7

(a) 2D benchmark problem. (b) 3D benchmark problem.

Figure 1. Manufactured solution (6) for Prob. (5).

value provided to the CLA. This is achieved by means of the get...() and update() TBPs
of parameter handler. Listing 4 shows an excerpt of the helper subroutine called in Line 12
of Listing 1. This subroutine uses the getasstring() TBP of parameter handler in order to
obtain the string passed by the tutorial user to the "--FE FORMULATION" tutorial-specific CLA.
Examples on the usage of update() can be found, e.g., in Sect. 5.

1 subroutine get_tutorial_cla_values ()

2 call parameter_handler%getasstring("FE_FORMULATION", fe_formulation)

3 call parameter_handler%get("ALPHA", alpha)

4 ... ! Obtain the rest of tutorial -specific CLA values

5 end subroutine get_tutorial_cla_values

Listing 4. An excerpt of a tutorial helper procedure that is used to obtain
tutorial-specific CLA values.

The full set of tutorial CLAs, along with rich help messages, can be output on screen by
calling the tutorial program with the "--help" CLA, while the full list of parameter dictionary
of <key,value>pairs after parsing, with the "--PARAMETER HANDLER PRINT VALUES" one. This
latter CLA may be useful to confirm that the tutorial program invocation from command-line
produces the desired effect on the values actually handled by the program.

5. Tutorial 01: Steady-state Poisson with a circular wave front

5.1. Model problem. Tutorial 01 tackles the Poisson problem. In strong form this problem
reads: find u such that

−∆u = f in Ω,(5)

where f : Ω→ R is a given source term, and Ω := [0, 1]d is the unit box domain, with d := 2, 3
being the number of space dimensions. Prob. (5) is supplied with inhomogeneous Dirichlet2

BCs u = g on ∂Ω, with g : ∂Ω → R a given function defined on the domain boundary. We in
particular consider the standard benchmark problem in [42]. The source term f and Dirichlet
function g are chosen such that the exact (manufactured) solution of (5) is:

u(x) := arctan(α(
√

(x− xc) · (x− xc)− r)).(6)

This solution has a sharp circular/spherical wave front of radius r centered at xc. Fig.1a and
Fig. 1b illustrate the solution for d = 2, 3, resp., and parameter values α = 200, r = 0.7, and
xc = (−0.05,−0.05), xc = (−0.05,−0.05,−0.05) for d = 2, 3, resp.

2Other BCs, e.g., Neumann or Robin (mixed) conditions can also be considered for the Poisson problem. While
these sort of BCs are supported by FEMPAR as well, we do not consider them in tutorial 01 for simplicity.

8 S. BADIA AND A. F. MARTÍN

5.2. FE discretization. Tutorial 01 implements two different FE formulations for the Poisson
problem. On the one hand, a conforming Continuous Galerkin (CG) formulation, which is
covered in Sect. 5.2.1, and a non-conforming DG one, covered in Sect. 5.2.2. In this tutorial,
both formulations are used in combination with a uniform (thus conforming) triangulation Th of
Ω made of quadrilateral/hexahedral cells. Apart from solving (5), tutorial 01 also evaluates
the FE discretization error. In particular, for each cell K, it computes the square of the error
energy norm, which for the Poisson problem is defined as e2

K :=
∫
K ∇(u−uh) ·∇(u−uh), with u

and uh being the exact and FE solution, resp. It also records and prints on screen the total error
e := (

∑
K e

2
K)1/2. On user-demand, the cell quantities e2

K can be written to post-processing data
files for later visualization; see Sect. 5.3 for more details.

5.2.1. CG FE formulation. In order to derive a CG FE formulation, one starts with the weak
form of the problem at hand, the Poisson problem in the case of tutorial 01. This problem can
be stated as in (1) with a(u, v) :=

∫
Ω ∇u·∇ v and `(v) :=

∫
Ω fv. The weak form (1) is discretized

by replacing H1
0 (Ω) by a finite-dimensional space Vh, without any kind of perturbation. As we

aim at building a conforming FE formulation, i.e., Vh ⊂ H1
0 (Ω), we must ensure that the

conformity requirements of H1
0 (Ω) are fulfilled. In particular, we must ensure that the functions

in Vh have continuous trace across cell interfaces. We refer to [37, Sect. 3] for a detailed
exposition of how H1

0 (Ω)-conforming FE spaces can be built using the so-called Lagrangian
(a.k.a. nodal) FEs. When such FE is combined with hexahedral cells, Vh|K := Qq(K), i.e.,
the space of multivariate polynomials that are of degree less or equal to q with respect to each
variable in (x1, . . . , xd) ∈ K. The system matrix can be computed as described in (4) with
aK(u, v) :=

∫
K ∇u ·∇ v, `K(v) :=

∫
K fv (assuming f ∈ L2(Ω)).

5.2.2. DG FE formulation. Tutorial 01 also implements a non-conforming DG formulation for
the Poisson problem. In particular, an IP DG formulation described in [43]. This formulation,
as any other non-conforming discretization method, extracts the discrete solution uh from a
global FE space Vh which does not conform to H1(Ω), i.e., Vh 6⊂ H1(Ω). In particular, Vh is
composed of functions that are continuous within each cell, but discontinuous across cells, i.e.,
Vh = {uh ∈ L2(Ω) : uh|K ∈ Qq(K) ⊂ H1(K), K ∈ Th}, with Qq(K) as defined in Sect. 5.2.1.
While this extremely simplifies the construction of Vh, as one does not have to take care of
the inter-cell continuity constraints required for H1(Ω)-conformity (see [37, Sect. 3] for more
details), one cannot plug Vh directly into (1), since the original bilinear form has no sense for
a non-conforming FE space. Instead, one requires judiciously numerical perturbations of the
continuous bilinear and linear forms in (1) in order to weakly enforce conformity.

In the IP DG FE formulation at hand, and in contrast to the one presented in Sect. 5.2.1
(that imposes essential Dirichlet BCs strongly) the condition u = g on Ω is weakly imposed,
as it is natural in this kind of formulations. If we denote FΩ

h and F∂Ω
h as the set of interior

and boundary facets of Th, resp., the discrete weak form of IP DG method implemented by
tutorial 01 reads: find uh ∈ Vh such that

ah(uh, vh) = `h(vh), for any vh ∈ Vh,(7)

with

ah(uh, vh) =
∑
K∈Th

∫
K
∇uh ·∇ vh−

∑
F∈FΩ

h

∫
F

[[vh]] · {{∇uh}} − τ
∑
F∈FΩ

h

∫
F

[[uh]] · {{∇ vh}}+
∑
F∈FΩ

h

γ|F |−1

∫
F

[[uh]] · [[vh]]−

∑
F∈F∂Ω

h

∫
F
vh∇uh · n− τ

∑
F∈F∂Ω

h

∫
F
uh∇ vh · n +

∑
F∈F∂Ω

h

γ|F |−1

∫
F
uhvh,

(8)

and

`h(vh) =
∑
K∈Th

∫
K
fvh − τ

∑
F∈F∂Ω

h

∫
F
g∇ vh · n +

∑
F∈F∂Ω

h

γ|F |−1

∫
F
gvh.(9)

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 9

In (8) and (9), τ is a fixed constant that characterizes the particular method at hand, γ is a
facet-wise positive constant referred to as penalty parameter, and |F | denotes the surface of the
facet; τ and γ should be suitably chosen such that ah(·, ·) is well-posed (stable and continuous)
in the discrete setting, and the FE formulation enjoys optimal rates of convergence [43]. Finally,
if we denote as K+ and K− the two cells that share a given facet, then {{wh}} and [[wh]] denote
mean values and jumps of wh across cells facets:

{{wh}} =
w+
h + w−h

2
, [[wh]] = w+

h n
+ + w−h n

−,

with n+, n− being the facet outward unit normals, and w+
h , w−h the restrictions of wh to the

facet, both from either the perspective of K+ and K−, resp.
The assembly of the cell integrals in (8) and (9) is performed as described in Sect. 5.2.1.

With regard to the facet integrals, assuming that we are sitting on an interior facet F ∈ FΩ
h ,

four facet-wise matrices, namely AF
K+K+ , AF

K+K− , AF
K−K+ , and AF

K−K− , are computed.3 The

entries of, e.g., AF
K+K− , are defined as:

(10)
(
AF
K+K−

)
ab

= −
∫
F

[[φbK−]] · {{∇φaK+}}− τ
∫
F

[[φaK+]] · {{∇φbK−}}+ γ|F |−1

∫
F

[[φaK+]] · [[φbK−]],

for a, b = 1, . . . ,dim(Qq(K)). This matrix is assembled into A as A[a][b] += (AF
K+K−)ab.

5.3. The commented code. The main program unit of tutorial 01 is shown in Listing 5.
Apart from fempar names, it also uses three tutorial-specific support modules in Lines 3-5. The
one used in Line 3 implements the data type instances declared in Line 16 and 17, the one in
Line 4, the ones declared in Lines 12 and 13, and the one in Line 5, the data type instance
declared in Line 20. The rest of data type instances declared in part 2) of the tutorial pro-
gram (Lines 6-21) are implemented within FEMPAR. Tutorial 01’s main executable code spans
Lines 22-36. As there is almost a one-to-one mapping among the data type instances and the
helper procedures called by tutorial 01, we will introduce them in the sequel step-by-step along
with code snippets of the corresponding helper procedures. The setup parameter handler

and get tutorial cla values helper procedures have been already introduced in Sect. 4.
Tutorial 01 registers CLAs to select the values of α, r, and xc (see Sect. 5.1), and the FE
formulation to be used (see Sect. 5.2).

The setup context and environment helper procedure is shown in Listing 6. Any FEMPAR

program requires to set up (at least) one context and one environment. In a nutshell, a context
is a software abstraction for a group of parallel tasks (a.k.a. processes) and the communica-
tion layer that orchestrates their concurrent execution. There are several context implemen-
tations in FEMPAR, depending on the computing environment targeted by the program. As
tutorial 01 is designed to work in serial computing environments, world context is declared
of type serial context t. This latter data type represents a degenerated case in which the
group of tasks is just composed by a single task. On the other hand, the environment orga-
nizes the tasks of the context from which it is set up into subgroups of tasks, referred to as
levels, and builds up additional communication mechanisms to communicate tasks belonging
to different levels. As world context represents a single-task group, we force the environment
to handle just a single level, in turn composed of a single task. This is achieved using the
parameter handler%update(...) calls in Lines 3 and 4 of Listing 6, resp; see Sect. 4. The
rationale behind the environment will become clearer in tutorial 03, which is designed to work
in distributed-memory computing environments using Message Passing Interface (MPI) as the
communication layer.

The triangulation Th of Ω is set up in Listing 7. FEMPAR provides a data type hierarchy of trian-
gulations rooted at the so-called triangulation t abstract data type [37, Sect. 7]. In the most

3The case of boundary facets F ∈ F∂Ω
h is just a degenerated case of the one corresponding to interior facets

where only a single facet-wise matrix AF
K+K+ has to be computed; we omit these facets from the discussion in

order to keep the presentation short.

10 S. BADIA AND A. F. MARTÍN

1 program tutorial_01_poisson_sharp_circular_wave

2 use fempar_names

3 use tutorial_01_discrete_integration_names

4 use tutorial_01_functions_names

5 use tutorial_01_error_estimator_names

6 ... ! Declaration of tutorial_01_ ... parameter constants

7 type(serial_context_t) :: world_context

8 type(environment_t) :: environment

9 type(serial_triangulation_t) :: triangulation

10 type(serial_fe_space_t) :: fe_space

11 type(strong_boundary_conditions_t) :: strong_boundary_conditions

12 type(sharp_circular_wave_source_term_t) :: source_term

13 type(sharp_circular_wave_solution_t) :: exact_solution

14 type(fe_affine_operator_t) :: fe_affine_operator

15 type(fe_function_t) :: discrete_solution

16 type(cg_discrete_integration_t), target :: cg_discrete_integration

17 type(dg_discrete_integration_t), target :: dg_discrete_integration

18 type(direct_solver_t) :: direct_solver

19 type(output_handler_t) :: output_handler

20 type(poisson_error_estimator_t) :: error_estimator

21 ... ! Declaration of variables storing CLA values particular to tutorial_01_ ...

22 call fempar_init ()

23 call setup_parameter_handler ()

24 call get_tutorial_cla_values ()

25 call setup_context_and_environment ()

26 call setup_triangulation ()

27 call setup_problem_functions ()

28 call setup_strong_boundary_conditions ()

29 call setup_fe_space ()

30 call setup_discrete_solution ()

31 call setup_and_assemble_fe_affine_operator ()

32 call solve_system ()

33 call compute_error ()

34 call write_postprocess_data_files ()

35 call free_all_objects ()

36 call fempar_finalize ()

37 contains

38 ... ! Implementation of helper procedures

39 end program tutorial_01_poisson_sharp_circular_wave

Listing 5. Tutorial 01 program unit.

1 subroutine setup_context_and_environment ()

2 call world_context%create ()

3 call parameter_handler%update(environment_num_levels_key , 1)

4 call parameter_handler%update(environment_num_tasks_x_level_key , [1])

5 call environment%create(world_context , parameter_handler%get_values ())

6 end subroutine setup_context_and_environment

Listing 6. The setup context and environment procedure.

general case, triangulation t represents a non-conforming mesh partitioned into a set of subdo-
mains (i.e., distributed among a set of parallel tasks) that can be h-adapted and/or re-partitioned
(i.e., re-distributed among the tasks) in the course of the simulation. Tutorial 01, however,
uses a particular type extension of triangulation t, of type serial triangulation t, which
represents a conforming mesh centralized on a single task that remains static in the course of the
simulation. For this triangulation type, the user may select to automatically generate a uniform
mesh for simple domains (e.g., a unit cube), currently of brick (quadrilateral or hexahedral)
cells, or, for more complex domains, import it from mesh data files, e.g., generated by the GiD
unstructured mesh generator [38]. Listing 7 follows the first itinerary. In particular, in Line 3,
it forces the serial triangulation t instance to be generated by a uniform mesh generator of
brick cells, and in Lines 5-12, that Ω = [0, 1]d is the domain to be meshed, as required by our
model problem. The rest of parameter values of this mesh generator, such as, e.g., the number

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 11

of cells per space dimension, are not forced, so that the user may specify them as usual via the
corresponding CLAs. The actual set up of the triangulation occurs in the call at Line 13.

1 subroutine setup_triangulation ()

2 integer(ip) :: num_dims

3 call parameter_handler%update(static_triang_generate_from_key , &

4 static_triang_generate_from_struct_hex_mesh_generator)

5 call parameter_handler%get(struct_hex_mesh_generator_num_dims_key , num_dims)

6 if (num_dims == 2) then

7 call parameter_handler%update(struct_hex_mesh_generator_domain_limits_key , &

8 [0.0_rp ,1.0_rp ,0.0_rp ,1.0 _rp])

9 else

10 call parameter_handler%update(struct_hex_mesh_generator_domain_limits_key , &

11 [0.0_rp ,1.0_rp ,0.0_rp ,1.0_rp ,0.0 ,1.0 _rp])

12 end if

13 call triangulation%create(environment , parameter_handler%get_values ())

14 end subroutine setup_triangulation

Listing 7. The setup triangulation procedure.

Listing 8 sets up the exact solution and source term objects. These represent the exact
(analytical) solution u and source term f of our problem. The program does not need to imple-
ment the Dirichlet function g, as it is equivalent to u in our model problem. While we do not cover
their implementation here, the reader is encouraged to inspect the tutorial 01 functions names

module. Essentially, this module implements a pair of program-specific data types extending
the so-called scalar function t FEMPAR data type. This latter data type represents an scalar-
valued function h, and provides interfaces for the evaluation of h(x), ∇h(x), etc., with x ∈ Ω,
to be implemented by type extensions. In particular, tutorial 01 requires u(x) and ∇u(x)
for the imposition of Dirichlet BCs, and the evaluation of the energy norm, resp., and f(x) for
the evaluation of the source term.

1 subroutine setup_problem_functions ()

2 call source_term%create(triangulation%get_num_dims () ,&

3 alpha ,circle_radius ,circle_center)

4 call exact_solution%create(triangulation%get_num_dims () ,&

5 alpha ,circle_radius ,circle_center)

6 end subroutine setup_problem_functions

Listing 8. The setup problem functions subroutine.

Listing 9 sets up the strong boundary conditions object. With this object one can define
the regions of the domain boundary on which to impose strong BCs, along with the function to
be imposed on each of these regions. It is required for the FE formulation in Sect. 5.2.1 as, in this
method, Dirichlet BCs are imposed strongly. It is not required by the IP DG formulation, and
thus not set up by Listing 9 for such formulation. The rationale behind Listing 9 is as follows.
Any FEMPAR triangulation handles internally (and provides on client demand) a set identifier
(i.e., an integer number) per each Vertex, Edge, and Face (VEF) of the mesh. On the other
hand, it is assumed that the mesh generator from which the triangulation is imported classifies
the boundary of the domain into geometrical regions, and that, when the mesh is generated, it
assigns the same set identifier to all VEFs which belong to the same geometrical region.4 For
example, for d = 2, the uniform mesh generator classifies the domain into 9 regions, namely the
four corners of the box, which are assigned identifiers 1, . . . , 4, the four faces of the box, which
are assigned identifiers 1, . . . , 8 , and the interior of the box, which is assigned identifier 9. For
d = 3, we have 27 regions, i.e., 8 corners, 12 edges, 6 faces, and the interior of the domain. (At
this point, the reader should be able to grasp where the numbers 8 and 26 in Listing 9 come
from.) With the aforementioned in mind, Listing 9 sets up the strong boundary conditions

4We stress, however, that the VEF set identifiers can be modified by the user if the classification provided by
the mesh generator it is not suitable for their needs.

12 S. BADIA AND A. F. MARTÍN

instance conformally with how the VEFs of the triangulation laying on the boundary are flagged
with set identifiers. In the loop spanning Lines 6-11, it defines a strong boundary condition to be
imposed for each of the regions that span the boundary of the unit box domain, and the same
function, i.e., exact solution, to be imposed on all these regions, as required by the model
problem of tutorial 01.

1 subroutine setup_strong_boundary_conditions ()

2 integer(ip) :: i, boundary_ids

3 if (fe_formulation == "CG") then

4 boundary_ids = merge(8, 26, triangulation%get_num_dims () == 2)

5 call strong_boundary_conditions%create ()

6 do i = 1, boundary_ids

7 call strong_boundary_conditions%insert_boundary_condition(boundary_id=i, &

8 field_id=1, &

9 cond_type=component_1 , &

10 boundary_function=exact_solution)

11 end do

12 end if

13 end subroutine setup_strong_boundary_conditions

Listing 9. The setup strong boundary conditions subroutine.

In Listing 10, tutorial 01 sets up the fe space instance, i.e., the computer representation
of Vh. In Line 3, the subroutine forces fe space to build a single-field FE space, and in Line 4,
that it is built from the same local FE for all cells K ∈ Th. In particular, from a scalar-valued
Lagrangian-type FE (Lines 5-6 and 7-8, resp.), as required by our model problem. The parameter
value corresponding to the polynomial order of Vh|K is not forced, and thus can be selected from
the CLI. Besides, Listing 10 also forces the construction of either a conforming or non-conforming
Vh, depending on the FE formulation selected by the user (see Lines 10 and 15, resp.). The actual
set up of fe space occurs in Line 11 and 16 for the conforming and non-conforming variants of
Vh, resp. In the latter case, fe space does not require strong boundary conditions, as there
are not BCs to be strongly enforced in this case.5 The call in these lines generates a global
numbering of the DOFs in Vh, and (if it applies) identifies the DOFs sitting on the regions of
the boundary of the domain which are subject to strong BCs (combining the data provided by
the triangulation and strong boundary conditions). Finally, in Lines 19 and 21, Listing 10
activates the internal data structures that fe space provides for the numerical evaluation of cell
and facet integrals, resp. These are required later on to evaluate the discrete bilinear and linear
forms of the FE formulations implemented by tutorial 01. We note that the call in Line 21 is
only required for the IP DG formulation, as in the CG formulation there are not facet integrals
to be evaluated.

Listing 11 sets up the discrete solution object, of type fe function t. This FEMPAR

data type represents an element of Vh, the FE solution uh in the case of tutorial 01. In
Line 2, this subroutine allocates room for storing the DOF values of uh, and in Line 4, it
computes the values of those DOFs of uh which lay on a region of the domain boundary which
is subject to strong BCs, the whole boundary of the domain in the case of tutorial 01. The
interpolate dirichlet values TBP of fe space interpolates exact solution, i.e., u, which
is extracted from strong boundary conditions, using a suitable FE interpolator for the FE
space at hand, i.e., the Lagrangian interpolator in the case of tutorial 01. FEMPAR supports
interpolators for curl- and div-conforming FE spaces as well. Interpolation in such FE spaces
involves the numerical evaluation of the functionals (moments) associated to the DOFs of Vh
[22].

In Listing 12, the tutorial program builds the fe affine operator instance, i.e., the computer
representation of the operator defined in (3). Building this instance is a two-step process. First,
we have to call the create TBP (see Line 12). Apart from specifying the data storage format and

5In any case, passing it would not result in an error condition, but in unnecessary overhead to be paid.

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 13

1 subroutine setup_fe_space ()

2 type(string) :: fes_field_types (1), fes_ref_fe_types (1)

3 call parameter_handler%update(fes_num_fields_key ,1)

4 call parameter_handler%update(fes_same_ref_fes_all_cells_key ,.true.)

5 fes_field_types (1) = String(field_type_scalar)

6 call parameter_handler%update(fes_field_types_key ,fes_field_types)

7 fes_ref_fe_types (1) = String(fe_type_lagrangian)

8 call parameter_handler%update(fes_ref_fe_types_key , fes_ref_fe_types)

9 if (fe_formulation == "CG") then

10 call parameter_handler%update(fes_ref_fe_conformities_key , [.true .])

11 call fe_space%create(triangulation = triangulation , &

12 conditions = strong_boundary_conditions , &

13 parameters = parameter_handler%get_values ())

14 else if (fe_formulation == "DG") then

15 call parameter_handler%update(fes_ref_fe_conformities_key , [.false .])

16 call fe_space%create(triangulation = triangulation , &

17 parameters = parameter_handler%get_values ())

18 end if

19 call fe_space%set_up_cell_integration ()

20 if (fe_formulation == "DG") then

21 call fe_space%set_up_facet_integration ()

22 end if

23 end subroutine setup_fe_space

Listing 10. The setup fe space subroutine.

1 subroutine setup_discrete_solution ()

2 call discrete_solution%create(fe_space)

3 if (fe_formulation == "CG") then

4 call fe_space%interpolate_dirichlet_values(discrete_solution)

5 end if

6 end subroutine setup_discrete_solution

Listing 11. The setup discrete solution subroutine.

properties of the stiffness matrix A6, this call equips fe affine operator t with all that it re-
quires in order to evaluate the entries of the operator. Second, we have to call the compute

TBP (Line 18), that triggers the actual numerical evaluation and assembly of the discrete
weak form. With extensibility and flexibility in mind, this latter responsibility does not fall on
fe affine operator t, but actually on the data type extensions of a key abstract class defined
within FEMPAR, referred to as discrete integration t [37, Sect. 11.2]. Tutorial 01 imple-
ments two type extensions of discrete integration t, namely cg discrete integration t,
and dg ... t. The former implements (the discrete variant of) (1), while the second, (7). In
Lines 3-11, Listing 12 passes to these instances the source term and boundary function to be
imposed on the Dirichlet boundary. We note that the IP DG formulation works directly with
the analytical expression of the boundary function (i.e., exact solution), while the CG formu-
lation with its interpolation (i.e., discrete solution). Recall that the CG formulation imposes
Dirichlet BCs strongly. In the approach followed by FEMPAR, the strong imposition of BCs re-
quires the values of the DOFs of uh(= gh) sitting on the Dirichlet boundary when assembling the
contribution of the cells that touch the Dirichlet boundary; see [37, 10.4]. On the other hand,
the IP DG formulation needs to evaluate the last two facet integrals in (9) with the boundary
function g (i.e., u in our case) as integrand. It is preferable that this formulation works with the
analytical expression of the function, instead of its FE interpolation, to avoid an extra source of
approximation error.

Listing 13 finds the root of the FE operator, i.e., uh ∈ Vh such that Fh(uh) = 0. For such
purpose, it first sets up the direct solver instance (Lines 3-5) and later uses its solve TBP

6In particular, Listing 12 specifies sparse matrix CSR format and symmetric storage, i.e., that only the upper
triangle is stored, and that the matrix is Symmetric Positive Definite (SPD). These hints are used by some linear
solver implementations in order to choose the most appropriate solver driver for the particular structure of A,
assuming that the user does not force a particular solver driver, e.g., from the CLI.

14 S. BADIA AND A. F. MARTÍN

1 subroutine setup_and_assemble_fe_affine_operator ()

2 class(discrete_integration_t), pointer :: discrete_integration

3 if (fe_formulation == "CG") then

4 call cg_discrete_integration%set_source_term(source_term)

5 call cg_discrete_integration%set_boundary_function(discrete_solution)

6 discrete_integration => cg_discrete_integration

7 else if (fe_formulation == "DG") then

8 call dg_discrete_integration%set_source_term(source_term)

9 call dg_discrete_integration%set_boundary_function(exact_solution)

10 discrete_integration => dg_discrete_integration

11 end if

12 call fe_affine_operator%create (sparse_matrix_storage_format = csr_format , &

13 diagonal_blocks_symmetric_storage = [.true.], &

14 diagonal_blocks_symmetric = [.true.], &

15 diagonal_blocks_sign = [SPARSE_MATRIX_SIGN_POSITIVE_DEFINITE], &

16 fe_space = fe_space , &

17 discrete_integration = discrete_integration)

18 call fe_affine_operator%compute ()

19 end subroutine setup_and_assemble_fe_affine_operator

Listing 12. The setup and assemble fe affine operator subroutine.

(Line 7). This latter method is fed with the “translation” of Fh, i.e., the right hand side f of
the linear system, and the free DOF values of uh as the unknown to be found. The free DOFs
of uh are those whose values are not constrained, e.g., by strong BCs. direct solver t is a
FEMPAR data type that offers interfaces to (non-distributed) sparse direct solvers provided by
external libraries. In its first public release, FEMPAR provides interfaces to PARDISO [44] (the
version available in the Intel MKL library) and UMFPACK [45], although it is designed such that
additional sparse direct solver implementations can be easily added. We note that Listing 13
does not force any parameter value related to direct solver t; the default CLA values are
appropriate for the Poisson problem. In any case, at this point the reader is encouraged to
inspect the CLAs linked to direct solver t and play around them.

1 subroutine solve_system ()

2 class(vector_t), pointer :: dof_values

3 call direct_solver%set_type_from_pl(parameter_handler%get_values ())

4 call direct_solver%set_parameters_from_pl(parameter_handler%get_values ())

5 call direct_solver%set_matrix(fe_affine_operator%get_matrix ())

6 dof_values => discrete_solution%get_free_dof_values ()

7 call direct_solver%solve(fe_affine_operator%get_translation (),dof_values)

8 end subroutine solve_system

Listing 13. The solve system subroutine.

As any other FE program, tutorial 01 post-processes the computed FE solution. In par-
ticular, in the compute error subroutine (Listing 14), it computes e2

K for each K ∈ Th, and
the global error e; see Sect. 5.2. These quantities along with the FE solution uh are written to
output data files for later visualization in the write postprocess data files helper subroutine
(Listing 15). The first subroutine relies on the error estimator instance, implemented in one
of the support modules of tutorial 01. In particular, the actual computation of e2

K occurs at
the call to the compute local true errors TBP of this data type (Line 6 of Listing 14). At
this point, the user is encouraged to inspect the implementation of this data type in order to
grasp how the numerical evaluation of the integrals required for the computation of e2

K is carried
out using FEMPAR; see also [37, Sect. 8, 10.5].

The generation of output data files in Listing 15 is in charge of the output handler instance.
This instance lets the user to register an arbitrary number of FE functions (together with
the corresponding FE space these functions were generated from) and cell data arrays (e.g.,
material properties or error estimator indicators), to be output in the appropriate format for
later visualization. The user may also select to apply a differential operator to the FE function,
such as divergence, gradient or curl, which involve further calculations to be performed on each

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 15

1 subroutine compute_error ()

2 real(rp) :: global_error_energy_norm

3 call error_estimator%create(fe_space ,parameter_handler%get_values ())

4 call error_estimator%set_exact_solution(exact_solution)

5 call error_estimator%set_discrete_solution(discrete_solution)

6 call error_estimator%compute_local_true_errors ()

7 global_error_energy_norm = &

8 sqrt(sum(error_estimator%get_sq_local_true_error_entries ()))

9 ... ! Write error on screen along with the number of cells and DOFs

10 end subroutine compute_error

Listing 14. The compute error subroutine.

1 subroutine write_postprocess_data_files ()

2 if (write_postprocess_data) then

3 call output_handler%create(parameter_handler%get_values ())

4 call output_handler%attach_fe_space(fe_space)

5 call output_handler%add_fe_function(discrete_solution , 1, ’solution ’)

6 call output_handler%add_cell_vector (&

7 error_estimator%get_sq_local_true_errors () ,&

8 ’cell_error_energy_norm_squared ’)

9 call output_handler%open()

10 call output_handler%write()

11 call output_handler%close()

12 end if

13 end subroutine write_postprocess_data_files

Listing 15. The write postprocess data files subroutine.

cell. The first public release of FEMPAR supports two different data output formats, the standard-
open model VTK [46], and the XDMF+HDF5 [47] model. The first format is the recommended
option for serial computations (or parallel computations on a moderate number of tasks). The
second model is designed with the parallel I/O data challenge in mind. It is therefore the
recommended option for large-scale simulations in high-end computing environments. The data
format to be used relies on parameter values passed to output handler. As Listing 15 does
not force any parameter value related to output handler t, tutorial 01 users may select the
output data format readily from the CLI. At this point, the reader may inspect the CLAs
linked to output handler t and play around them to see the differences in the output data files
generated by Listing 15.

5.3.1. Discrete integration for a conforming method. As commented in Sect. 2 and one can
observe in Listing 12, the definition of the FE operator requires a method that conceptually
traverses all the cells in the triangulation, computes the element matrix and right-hand side
at every cell, and assembles it in a global array. The abstract type in charge of this is the
discrete integration t, which must be extended by the user to integrate their PDE sys-
tem. In Listing 16, we consider a concrete version of this type for the Poisson equation using
conforming Lagrangian FEs.

The integration of the (bi)linear forms requires cell integration machinery, which is provided
by fe space t through the creation of the fe cell iterator t in Line 15. Conceptually, the
computed cell iterator is an object that provides mechanisms to iterate over all the cells of
the triangulation (see Line 17 and Line 46). Positioned in a cell, it provides a set of cell-wise
queries. All the integration machinery of a new cell is computed in Line 19. After this update
of integration data, one can extract from the iterator the number of local shape functions (see
Line 30) and an array with their values (resp., gradients) at the integration points in Line 25
(resp., Line 26). We note that the data types of the entries of these arrays can be scalars (see
Line 10), vectors (of type vector field t, see Line 9), or tensors (of type tensor field t). It
can also return information about the Jacobian of the geometrical transformation (see, e.g., the
query that provides the determinant of the Jacobian of the cell map in Line 28). The iterator

16 S. BADIA AND A. F. MARTÍN

1 subroutine cg_discrete_integration_integrate_galerkin (this , fe_space , assembler)

2 implicit none

3 class(cg_discrete_integration_t), intent(in) :: this

4 class(serial_fe_space_t) , intent(inout) :: fe_space

5 class(assembler_t) , intent(inout) :: assembler

6 class(fe_cell_iterator_t), allocatable :: fe

7 type(quadrature_t) , pointer :: quad

8 type(point_t) , pointer :: quad_coords (:)

9 type(vector_field_t) , allocatable :: shape_gradients (:,:)

10 real(rp) , allocatable :: shape_values (:,:)

11 real(rp), allocatable :: elmat (:,:), elvec (:)

12 integer(ip) :: qpoint , idof , jdof

13 real(rp) :: dV , source_term_value

14
15 call fe_space%create_fe_cell_iterator(fe)

16 ... ! Allocate elmat , elvec

17 do while (.not. fe%has_finished ())

18 ! Update cell -integration related data structures

19 call fe%update_integration ()

20 ! Get quadrature and quadrature coordinates mapped to physical space

21 quad => fe%get_quadrature ()

22 quad_coords => fe%get_quadrature_points_coordinates ()

23 ! Compute cell matrix and vector

24 elmat = 0.0_rp; elvec = 0.0_rp

25 call fe%get_values(shape_values)

26 call fe%get_gradients(shape_gradients)

27 do qpoint = 1, quad%get_num_quadrature_points ()

28 dV = fe%get_det_jacobian(qpoint) * quad%get_weight(qpoint)

29 ! Compute cell matrix (bilinear form)

30 do idof = 1, fe%get_num_dofs ()

31 do jdof = 1, fe%get_num_dofs ()

32 elmat(idof ,jdof) = elmat(idof ,jdof) + &

33 dV * shape_gradients(jdof ,qpoint) * shape_gradients(idof ,qpoint)

34 end do

35 end do

36 ! Compute cell vector (linear form)

37 call this%source_term%get_value(quad_coords(qpoint),source_term_value)

38 do idof = 1, fe%get_num_dofs ()

39 elvec(idof) = elvec(idof) + &

40 dV * source_term_value * shape_values(idof ,qpoint)

41 end do

42 end do

43 ! Assemble elmat/elvec into assembler while taking care of strong

44 ! Dirichlet BCs (in turn extracted from this%discrete_boundary_function)

45 call fe%assembly(this%discrete_boundary_function , elmat , elvec , assembler)

46 call fe%next()

47 end do

48 call fe_space%free_fe_cell_iterator(fe)

49 ... ! Free shape_* arrays , elmat , elvec

50 end subroutine cg_discrete_integration_integrate_galerkin

Listing 16. The integrate galerkin TBP of the tutorial 01-specific
cg discrete integration t data type..

also provides a method to fetch the cell quadrature (see Line 21), which in turn has procedures
to get the number of integration points (Line 27) and their associated weights (Line 28).

With all these ingredients, the implementation of the (bi)linear forms is close to its blackboard
expression, making it compact, simple, and intuitive (see Line 32). It is achieved using operator
overloading for different vector and tensor operations, e.g., the contraction and scaling operations
(see, e.g., the inner product of vectors in Line 33). The computation of the right-hand side is
similar. The only peculiarity is the consumption of the expression for f in Line 37, which
has to receive the quadrature points coordinates in physical space, i.e., with the entries of
the quad coords(:) array. We recall that cg discrete integration was supplied with the
expression for f in Listing 12.

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 17

The fe cell iterator t data type also offers methods to assemble the element matrix and
vector into assembler, which is the object that ultimately holds the global system matrix and
right-hand side within the FE affine operator. The assembly is carried out in Line 45. The
call in this line is provided with the DOF values of the function to be imposed strongly on the
Dirichlet boundary, i.e., discrete boundary function; see discussion accompanying Listing 12
in Sect. 5.3.

5.3.2. Discrete integration for a non-conforming method. Let us consider the numerical integra-
tion of the IP DG method in (8). For non-conforming FE spaces, the formulation requires also
a loop over the facets to integrate the perturbation DG terms. It can be written in a similar
fashion to Sect. 5.3.1, but considering also facet-wise structures. For such purposes, FEMPAR

provides FE facet iterators (see Line 19), which are similar to the FE cell iterators but travers-
ing all the facets in the triangulation. This iterator provides a method to distinguish between
boundary facets and interior facets (see Line 22), since different terms have to be integrated in
each case. As above, at every facet, one can compute all the required numerical integration tools
(see Line 24). After this step, one can also extract a facet quadrature (Line 25), which provides
the number of quadrature points (see Line 27) and its weights (see Line 30). The FE facet
iterator also provides methods that return n+, n− (facet outward unit normals) (see Line 28),
a characteristic facet size (see Line 29), or the determinant of the Jacobian of the geometrical
transformation of the facet from the reference to the physical space (see Line 30).

An interior facet is shared between two and only two cells. After some algebraic manipulation,
the DG terms in (8) can be decomposed into a set of terms that involve test functions (and
gradients) of both cells, as shown in (10). The loop over the four facet matrices is performed in
Lines 31-34. For each cell sharing the facet, one can also compute the shape functions and its
gradients (see Lines 32-33 and 35-36). With all these ingredients, we compute the facet matrices
in Lines 40-44. We note that the constant γ in (8) has been defined in Line 18 as 10p2, where p
is the order of the FE space. The FE facet iterator also provides a method for the assembly of
the facet matrices into global structures (see Line 50).

6. Tutorial 02: tutorial 01 problem tackled with AMR

6.1. Model problem. See Sect. 5.1.

6.2. FE discretization. While tutorial 01 uses a uniform (thus conforming) mesh Th of Ω,
tutorial 02 combines the two FE formulations presented in Sect. 5.2 with a more clever/efficient
domain discretization approach. Given that the solution of Prob. (5) exhibits highly localized
features, in particular an internal sharp circular/spherical wave front layer, tutorial 02 exploits
a FEMPAR triangulation data structure that efficiently supports dynamic h-adaptivity techniques
(a.k.a. Adaptive Mesh Refinement and coarsening (AMR)), i.e., the ability of the mesh to be
refined in the course of the simulation in those regions of the domain that present a complex
behaviour (e.g., the internal layer in the case of Prob. (5)), and to be coarsened in those areas
where essentially nothing relevant happens (e.g., those areas away from the internal layer).
Tutorial 02 restricts itself to h-adaptivity techniques with a fixed polynomial order. This is
in contrast to hp-adaptivity techniques, in which the local FE space polynomial order p also
varies among cells. In its first public release, the support of hp-adaptivity techniques in FEMPAR

is restricted to non-conforming FE formulations.
In order to support AMR techniques, FEMPAR relies on the so-called forest-of-trees approach

for efficient mesh generation and adaptation. Forest-of-trees can be seen as a two-level decompo-
sition of Ω, referred to as macro and micro level, resp. In the macro level, we have the so-called
coarse mesh, i.e., a conforming partition Ch of Ω into cells K ∈ Ch. For efficiency reasons,
Ch should be as coarse as possible, but it should also keep the geometrical discretization error
within tolerable margins. For complex domains, Ch is usually generated by an unstructured
mesh generator, and then imported into the program. For simple domains, such as boxes in the
case of Prob. (5), a single coarse cell is sufficient to resolve the geometry of Ω. On the other
hand, in the micro level, each of the cells of Ch becomes the root of an adaptive tree that can

18 S. BADIA AND A. F. MARTÍN

1 subroutine dg_discrete_integration_integrate_galerkin (this , fe_space , assembler)

2 implicit none

3 class(dg_discrete_integration_t), intent(in) :: this

4 class(serial_fe_space_t) , intent(inout) :: fe_space

5 class(assembler_t) , intent(inout) :: assembler

6 ... ! Declare local variables in Listing 16

7 class(fe_facet_iterator_t), allocatable :: fe_face

8 real(rp), allocatable :: shape_values_Kminus (:,:), &

9 shape_values_Kplus (:,:)

10 type(vector_field_t), allocatable :: shape_gradients_Kminus (:,:), &

11 shape_gradients_Kplus (:,:)

12 type(vector_field_t) :: normals (2)

13 real(rp) :: h_length , C_IP ! Interior Penalty constant

14 real(rp), allocatable :: facemat (:,:,:,:), facevec (:,:)

15 integer(ip) :: Kminus , Kplus

16
17 ... ! Integrate and assemble cell integrals (see Listing 16)

18 C_IP = 10.0 _rp * real(fe%get_order ()**2, rp)

19 call fe_space%create_fe_facet_iterator(fe_face)

20 ... ! Allocate facemat , facevec

21 do while (.not. fe_face%has_finished ()) ! Loop over all triangulation facets

22 if (.not. fe_face%is_at_boundary ()) then ! Interior facet

23 ! Update facet -integration related data structures

24 call fe_face%update_integration ()

25 quad => fe_face%get_quadrature () ! Get facet quadrature

26 facemat = 0.0_rp

27 do qpoint = 1, quad%get_num_quadrature_points ()

28 call fe_face%get_normal(qpoint ,normals)

29 h_length = fe_face%compute_characteristic_length(qpoint)

30 dV = fe_face%get_det_jacobian(qpoint) * quad%get_weight(qpoint)

31 do Kminus = 1, fe_face%get_num_cells_around ()

32 call fe_face%get_values(Kminus ,shape_values_Kminus)

33 call fe_face%get_gradients(Kminus ,shape_gradients_Kminus)

34 do Kplus = 1, fe_face%get_num_cells_around ()

35 call fe_face%get_values(Kplus ,shape_values_Kplus)

36 call fe_face%get_gradients(Kplus ,shape_gradients_Kplus)

37 do idof = 1, fe_face%get_num_dofs(Kminus)

38 do jdof = 1, fe_face%get_num_dofs(Kplus)

39 !- ({{ grad u}}[[v]] + (1-xi)*[[u]]{{ grad v}}) + C*p^2/h * [[u]] [[v]]

40 facemat(idof ,jdof ,Kminus ,Kplus) = facemat(idof ,jdof ,Kminus ,Kplus) + &

41 dV * &

42 (-0.5_rp*shape_gradients_Kplus(jdof ,qpoint)*normals(Kminus)*

shape_values_Kminus(idof ,qpoint) - &

43 0.5 _rp*shape_gradients_Kminus(idof ,qpoint)*normals(Kplus)*

shape_values_Kplus(jdof ,qpoint) + &

44 c_IP / h_length * shape_values_Kplus(jdof ,qpoint)*shape_values_Kminus(idof

,qpoint)*normals(Kminus)*normals(Kplus))

45 end do

46 end do

47 end do

48 end do

49 end do

50 call fe_face%assembly(facemat , assembler)

51 else if (fe_face%is_at_boundary ()) then

52 ... ! Integrate and assemble boundary facet terms

53 end if

54 call fe_face%next()

55 end do

56 call fe_space%free_fe_facet_iterator(fe_face)

57 ... ! Free shape_* arrays , facemat , facevec

58 end subroutine dg_discrete_integration_integrate_galerkin

Listing 17. The integrate galerkin TBP of the tutorial 01-specific
dg discrete integration t data type..

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 19

be subdivided arbitrarily (i.e., recursively refined) into finer cells. The locally refined mesh Th
to be used for FE discretization is defined as the union of the leaves of all adaptive trees.

In the case of quadrilateral (2D) or hexahedral (3D) adaptive meshes, the recursive application
of the standard isotropic 1:4 (2D) and 1:8 (3D) refinement rule to the coarse mesh cells (i.e., to
the adaptive tree roots) leads to adaptive trees that are referred to as quadtrees and octrees,
resp., and the data structure resulting from patching them together is called forest-of-quadtrees
and -octrees, resp., although the latter term is typically employed in either case. FEMPAR provides
a triangulation data structure suitable for the construction of generic FE spaces Vh (grad-, div-
, and curl-conforming FE spaces) which exploits the p4est [1] library as its forest-of-octrees
specialized meshing engine. We refer to [48, Sect. 3] for a detailed exposition of the design
criteria underlying the h-adaptive triangulation in FEMPAR, and the approach followed in order
to reconstruct it from the light-weight, memory-efficient representation of the forest-of-octrees
that p4est handles internally.

Tree-based meshes provide multi-resolution capability by local adaptation. The cells in Th
(i.e., the leaves of the adaptive trees) might be located at different refinement level. How-
ever, these meshes are (potentially) non-conforming, i.e., they contain the so-called hanging
VEFs. These occur at the interface of neighboring cells with different refinement levels. Mesh
non-conformity introduces additional complexity in the implementation of both conforming and
non-conforming FE formulations. In the former case, DOFs sitting on hanging VEFs cannot
have an arbitrary value, as this would result in Vh violating the trace continuity requirements
for conformity across interfaces shared by a coarse cell and its finer cell neighbours. In order to
restore conformity, the space Vh has to be supplied with suitably defined algebraic constraints
that express the value of hanging DOFs (i.e., DOFs sitting on hanging VEFs) as linear combi-
nations of true DOFs (i.e., DOFs sitting on regular VEFs); see [48, Sect. 4]. These constraints,
in most approaches available in the literature, are either applied to the local cell matrix and
vector right before assembling them into their global counterparts, or, alternatively, eliminated
from the global linear system later on (i.e., after FE assembly). In particular, FEMPAR follows
the first approach. Therefore, hanging DOFs are not associated to an equation/unknown in the
global linear system; see [48, Sect. 5]. On the other hand, in the case of non-conforming FE
formulations, the facet integration machinery has to support the evaluation of flux terms across
neighbouring cells at different refinement levels, i.e., facet integrals on each of the finer subfacets
hanging on a coarser facet. FEMPAR supports such kind of facet integrals as well.

Despite the aforementioned, we note the following. First, the degree of implementation com-
plexity is significantly reduced by enforcing the so-called 2:1 balance constraint, i.e., adjacent
cells may differ at most by a single level of refinement; the h-adaptive triangulation in FEMPAR

always satisfies this constraint [48]. Second, the library is entirely responsible for handling
such complexity. Library users are not aware of mesh non-conformity when evaluating and
assembling the discrete weak form of the FE formulation at hand. Indeed, as will be seen in
Sect. 6.3, tutorial 02 re-uses “as-is” the cg discrete integration t, and dg ... t objects
of tutorial 01; see Sect. 5.3.

6.3. The commented code. In order to illustrate the AMR capabilities in FEMPAR, while
generating a suitable mesh for Prob. (5), tutorial 01 performs an AMR loop comprising the
steps shown in Fig. 2.

The main program unit of tutorial 02 is shown in Listing 18. Tutorial 02 re-uses “as-is”
the tutorial-specific modules of tutorial 01: no adaptations of these modules are required
despite the higher complexity underlying FE discretization on non-conforming meshes; see
Sect. 6.2. Compared to tutorial 01, tutorial 02 declares the triangulation instance to
be of type p4est serial triangulation t (instead of serial triangulation t). This data
type extension of triangulation t supports dynamic h-adaptivity (see Sect. 6.2) on serial com-
puting environments (i.e., the triangulation is not actually distributed, but centralized on a single
task) using p4est under the hood. On the other hand, it declares the refinement strategy

instance, of type fixed fraction refinement strategy t. The role of this FEMPAR data type
in the loop of Fig. 2 will be clarified along the section.

20 S. BADIA AND A. F. MARTÍN

(1) Generate a conforming mesh Th by uniformly refining, a number user-defined steps, a
single-cell coarse mesh Ch representing the unit box domain (i.e., Ω in Prob. (5)).

(2) Compute an approximate FE solution uh using the current mesh Th.
(3) Compute e2

K for all cells K ∈ Th; see Sect. 5.2.
(4) Given user-defined refinement and coarsening fractions, denoted by αr and αc, resp.,

find thresholds θr and θc such that the number of cells with eK > θr (resp., eK < θc) is
(approximately) a fraction αr (resp., αc) of the number of cells in Th.

(5) Refine and coarsen the mesh cells, i.e., generate a new mesh Th, accordingly to the input
provided by the previous step.

(6) Repeat steps (2)-(5) a number of user-defined steps.

Figure 2. Tutorial 02 AMR loop.

1 program tutorial_02_poisson_sharp_circular_wave_amr

2 use fempar_names

3 ... ! Use tutorial_01_ ... support modules

4 implicit none

5 ... ! Declaration of tutorial_02_ ... parameter constants

6 type(p4est_serial_triangulation_t) :: triangulation

7 type(fixed_fraction_refinement_strategy_t) :: refinement_strategy

8 ... ! Declaration of remaining objects of tutorial_02_ ... (see Listing 5)

9 ... ! Declaration of variables storing tutorial_02_ ... CLA values

10 call fempar_init ()

11 call setup_parameter_handler ()

12 call get_tutorial_cla_values ()

13 call setup_context_and_environment ()

14 current_amr_step = 0

15 ... ! See Lines 26-33 of Listing 18

16 call setup_refinement_strategy ()

17 call output_handler_initialize ()

18 do

19 call output_handler_write_current_amr_step ()

20 if (current_amr_step == num_amr_steps) exit

21 current_amr_step = current_amr_step + 1

22 call refinement_strategy%update_refinement_flags(triangulation)

23 call setup_triangulation ()

24 call setup_fe_space ()

25 call setup_discrete_solution ()

26 call setup_and_assemble_fe_affine_operator ()

27 call solve_system ()

28 call compute_error ()

29 end do

30 call output_handler_finalize ()

31 call free_all_objects ()

32 call fempar_finalize ()

33 contains

34 ... ! Implementation of helper procedures

35 end program tutorial_02_poisson_sharp_circular_wave_amr

Listing 18. Tutorial 02 program unit.

Tutorial 02’s main executable code spans Lines 10-32. Apart from those CLAs registered
by tutorial 01, in the call to setup parameter handler, tutorial 02 registers two additional
CLAs to specify the number of user-defined uniform refinement and AMR steps in Steps (1)
and (6), resp., of Fig. 2. The main executable code of Tutorial 02 is mapped to the steps in
Fig. 2 as follows. Line 15, which actually triggers a sequence of calls equivalent to Lines 26-33
of Listing 18, corresponds to Step (1), (2) and (3) with Th being the initial conforming mesh
generated by means of a user-defined number of uniform refinement steps. In particular, the
call to setup triangulation implements Step (1), and the call to compute error, Step (3).
The rest of calls within Lines 26-33 of Listing 18 are required to implement Step (2). The
loop in Listing 18 spanning Lines 18-29, implements the successive generation of a sequence

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 21

of hierarchically refined meshes. In particular, Line 22 implements Step (4) of Fig. 2, Line 23
Step (5), and Lines 24-27 and Line 28 Step (2) and Step (3), resp., with Th being the newly
generated mesh.

The tutorial 01 helper subroutines in Listings 6, 8, 9, and 11, are re-used “as-is” for
tutorial 02. In the particular case of setup strong boundary conditions, this is possible
as the h-adaptive triangulation assigns the VEF set identifiers equivalently to the triangulation
that was used by tutorial 01 (when both are configured to mesh box domains). The rest of
tutorial 02 helper subroutines have to be implemented only slightly differently to the ones
of tutorial 01. In particular, tutorial 02 handles the current amr step counter; see List-
ing 18. Right at the beginning, the counter is initialized to zero (see Line 14), and incremented
at each iteration of the loop spanning Lines 18-29 (Line 21). Thus, this counter can be used
by the helper subroutines to distinguish among two possible scenarios. If current amr step ==

0, the program is located on the initialization section right before the loop, or within this loop
otherwise. The usage of current amr step by setup triangulation and setup fe space is
illustrated in Listings 19 and 20, resp.

1 subroutine setup_triangulation ()

2 integer(ip) :: i, num_dims

3 if (current_amr_step == 0) then

4 ... ! Force the triangulation to mesh the unit box domain

5 call triangulation%create(environment , parameter_handler%get_values ())

6 do i=1, num_uniform_refinement_steps

7 call flag_all_cells_for_refinement ()

8 call triangulation%refine_and_coarsen ()

9 end do

10 else

11 call triangulation%refine_and_coarsen ()

12 end if

13 end subroutine setup_triangulation

14
15 subroutine flag_all_cells_for_refinement ()

16 class(cell_iterator_t), allocatable :: cell

17 call triangulation%create_cell_iterator(cell)

18 do while (.not. cell%has_finished ())

19 call cell%set_for_refinement ()

20 call cell%next()

21 end do

22 call triangulation%free_cell_iterator(cell)

23 end subroutine flag_all_cells_for_refinement

Listing 19. The setup triangulation procedure.

1 subroutine setup_fe_space ()

2 if (current_amr_step == 0) then

3 ... ! See Listing 10

4 else

5 call fe_space%refine_and_coarsen ()

6 end if

7 end subroutine setup_fe_space

Listing 20. The setup fe space subroutine.

In Listing 19 one may readily observe that the setup triangulation helper subroutine be-
haves differently depending on the value of current amr step. When its value is zero (Lines 4-9),
the subroutine first generates a triangulation of the unit box domain which is composed of a single
brick cell, i.e., a forest-of-octrees with a single adaptive octree (Lines 4 5). Then, it enters a loop
in which the octree root is refined uniformly num uniform refinement steps times (Lines 6-9)
in order to generate Th in Step (1) of Fig. 2; this program variable holds the value provided by the
user through the corresponding CLA. The loop relies on the flag all cells for refinement

helper procedure, which is shown in Lines 15-23 of Listing 19, and the refine and coarsen

22 S. BADIA AND A. F. MARTÍN

TBP of triangulation (Line 8). The first procedure walks through over the mesh cells, and
for each cell, sets a per-cell flag that tells the triangulation to refine the cell, i.e., we flag all
cells for refinement, in order to obtain a uniformly refined mesh.7 On the other hand, the
refine and coarsen TBP adapts the triangulation based on the cell flags set by the user, while
transferring data that the user might have attached to the mesh objects (e.g., cells and VEFs
set identifiers) to the new mesh objects generated after mesh adaptation.

When current amr step is larger than zero, Listing 19 invokes the refine and coarsen TBP
of the triangulation (Line 11). As commented in the previous paragraph, this procedure adapts
the mesh accordingly to how the mesh cells have been marked for refinement, coarsening, or to be
left as they were prior to adaptation. This latter responsibility falls on the refinement strategy

instance, and in particular in its update refinement flags TBP. This TBP, which is called
in Line 22 of Listing 18, right before the call to setup triangulation in Line 23 of Listing 18,
follows the strategy in Step (4) of Fig. 2.

Listing 20 follows the same pattern as Listing 19. When the value of current amr step is
zero, it sets up the fe space instance using exactly the same sequence of calls as in Listing 10.
When the value of current amr step is larger than zero, it calls the refine and coarsen TBP
of fe space to build a new global FE space Vh from the newly generated triangulation, while
trying to re-use its already allocated internal data buffers as much as possible. Optionally, this
TBP can by supplied with a FE function uh (or, more generally, an arbitrary number of them). In
such a case, refine and coarsen injects the FE function provided into the newly generated Vh
by using a suitable FE projector for the FE technology being used, the Lagrangian interpolator
in the case of tutorial 02. This feature is required by numerical solvers of transient and/or
non-linear PDEs.

Listing 21 shows those lines of code of the solve system procedure of tutorial 02 which
are different to its tutorial 01 counterpart in Listing 13.8 Apart from the fact that List-
ing 21 follows the same pattern as Listings 19 and 20, the reader should note the call to the
update hanging dof values TBP of fe space in Line 9. This TBP computes the values of uh
corresponding to hanging DOFs using the algebraic constraints required to enforce the confor-
mity of Vh; see Sect. 6.2. This is required each time that the values of uh corresponding to true
DOFs are updated (e.g., after linear system solution). Not calling it results in unpredictable
errors during post-processing, or even worse, during a non-linear and/or time-stepping iterative
solution loop, in which the true DOF values of uh are updated at each iteration.

1 subroutine solve_system ()

2 if (current_amr_step == 0) then

3 ... ! Lines 3-5 of Listing 13

4 else

5 call direct_solver%reallocate_after_remesh ()

6 end if

7 ... ! Lines 6-7 of Listing 13

8 if (fe_formulation == "CG") then

9 call fe_space%update_hanging_dof_values(discrete_solution)

10 end if

11 end subroutine solve_system

Listing 21. The solve system subroutine.

7Iteration over the mesh cells is performed by means of the polymorphic variable cell of declared
type cell iterator t. Iterators are data types that provide sequential traversals over the full sets of ob-
jects that all together (conceptually) comprise triangulation t as a mesh-like container without exposing
its internal organization. Besides, by virtue of Fortran200X native support of run-time polymorphism, the
code of flag all cells for refinement can be leveraged (re-used) for any triangulation that extends the
triangulation t abstract data type, e.g., the one that will be used by tutorial 03 in Sect. 7. We refer to
[37, Sect. 7] for the rationale underlying the design of iterators in FEMPAR.

8In order to keep the presentation concise, the adaptation of the rest of tutorial 01 helper subroutines to
support the AMR loop in Fig. 2 is not covered in this section. At this point, the reader might inspect how the
rest of tutorial 02 subroutines are implemented by looking at the source code Git repository.

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 23

Listing 22 shows the helper subroutine that sets up the refinement strategy object. As
mentioned above, this object implements the strategy in Step (2) of Fig. 2.9 In Lines 2-
3, the procedure forces refinement strategy to use parameter values αr = 0.1 and αc =
0.05; see Step (2) of Fig. 2. The actual set up of refinement strategy occurs at Line 5.
We note that, in this line, refinement strategy is supplied with the error estimator in-
stance, of type poisson error estimator t. This tutorial-specific data type, which is also
used by tutorial 01, extends the error estimator t FEMPAR abstract data type. This lat-
ter data type is designed to be a place-holder of a pair of cell data arrays storing the per-
cell true and estimated errors, resp. These arrays are computed by the data type extensions
of error estimator t in the compute local true errors and compute local estimates (de-
ferred) TBPs. Neither tutorial 02 nor tutorial 01 actually uses a-posteriori error estimators.
Thus, the compute local estimates TBP of poisson error estimator t just copies the lo-
cal true errors into the estimated errors array. While the compute error helper subroutine of
tutorial 01 (Listing 14) does not call the compute local estimates TBP, its counterpart in
tutorial 02 must call it, as the refinement strategy object extracts the data to work with
from the error estimators array of error estimator.

1 subroutine setup_refinement_strategy ()

2 call parameter_handler%update(ffrs_refinement_fraction_key , 0.10 _rp)

3 call parameter_handler%update(ffrs_coarsening_fraction_key , 0.05 _rp)

4 call parameter_handler%update(ffrs_max_num_mesh_iterations_key , num_amr_steps)

5 call refinement_strategy%create(error_estimator ,parameter_handler%get_values ())

6 end subroutine setup_refinement_strategy

Listing 22. The setup refinement strategy subroutine.

Listing 18 handles the output of post-processing data files rather differently from Listing 5. It
in particular generates simulation results for the full set of triangulations generated in the course
of the simulation. In order to do so, it relies on the ability of output handler t to manage the
time steps in transient simulations on a sequence of triangulations which might be different at
each single time step. The output ... initialize procedure resembles Listing 15, except that
it does not call neither the write nor the close TBPs of output handler t. Besides, it forces
a parameter value of output handler t to inform it that the triangulation might be different
at each single step. If the mesh does not evolve dynamically, then it is only written once,
instead of at every step, saving disk storage (as far as such feature is supported by the output
data format). The output handler write ... step procedure (see Listing 18) first calls the
append time step and, then, the write TBPs of output handler t. The combination of these
two calls outputs a new step into the output data files. Finally, the output handler finalize

procedure (see Listing 18) just calls the close TBP of output handler t. This call closes all
file units handled by output handler, thus flushing into disk all pending write operations.

6.4. Numerical results. In Fig. 3a and 3b we show the FE solution computed by tutorial 02,
along with e2

K , for all K ∈ Th, for the 2D version of Problem (5.1) discretized with an adapted
mesh resulting from 8 and 20 AMR steps, resp., and bilinear Lagrangian FEs. The number of
initial uniform refinement steps was set to 2, resulting in an initial conforming triangulation
made of 16 quadrilateral cells. As expected, the mesh tends to be locally refined close to the
internal layer.

On the other hand, in Fig. 4, we show error convergence history plots for the 2D benchmark
problem. The results in Fig. 4a were obtained with tutorial 01, while those in Fig.4b, with
tutorial 02. As expected, the benefit of using local refinement is substantial for the problem
at hand.10

9FEMPAR v1.0.0 also provides an implementation of the Li and Bettess refinement strategy [49]. We stress,
nevertheless, that the library is designed such that new refinement strategies can be easily added by developing
type extensions (subclasses) of the refinement strategy t abstract data type.

10We note that the plots in Fig 4 can be automatically generated using the Unix bash shell scripts located at
the convergence plot subfolder accompanying the source code of tutorial 01 and tutorial 02.

24 S. BADIA AND A. F. MARTÍN

(a) 8 AMR steps; 322 cells; 243 (true) DOFs.

(b) 20 AMR steps; 13,564 cells; 11,535 (true) DOFs.

Figure 3. Mesh and FE solution (left) and e2
K for all K ∈ Th (right).

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1.0e+02

 0 100 200 300 400 500 600 700 800 900 1000

T
ru

e
 e

rr
o

r
in

 e
n

e
rg

y
 n

o
rm

 (
H

1
 s

e
m

in
o

rm
)

Square root of the number of DOFs

2D Poisson sharp circular wave front. CG, ALPHA=200, RADIUS=0.7, CENTER=(-0.05,-0.05)

order 1 uniform
order 2 uniform
order 4 uniform
order 8 uniform

(a) Uniform meshing.

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1.0e+02

 0 100 200 300 400 500 600 700 800 900 1000

T
ru

e
 e

rr
o

r
in

 e
n

e
rg

y
 n

o
rm

 (
H

1
 s

e
m

in
o

rm
)

Square root of the number of DOFs

2D Poisson sharp circular wave front. CG, ALPHA=200, RADIUS=0.7, CENTER=(-0.05,-0.05)

order 1 AMR
order 2 AMR
order 4 AMR
order 8 AMR

(b) AMR.

Figure 4. Convergence history for the 2D benchmark problem using the CG
FE formulation with different polynomial order.

7. Tutorial 03: Distributed-memory parallelization of tutorial 02

7.1. Model problem. See Sect. 5.1.

7.2. Parallel FE discretization. Tutorial 03 exploits a set of fully-distributed data struc-
tures and associated algorithms available in FEMPAR for the scalable solution of PDE problems
in high-end distributed-memory computers [48]. Such data structures are driven by tutorial 03

in order to efficiently parallelize the AMR loop of tutorial 02 (Fig. 2). In order to find uh
at each adaptation step (Step (2), Fig. 2), tutorial 03 combines the CG FE formulation for
Prob. (5) (Sect. 5.2.1) with a scalable domain decomposition preconditioner for the fast itera-
tive solution of the linear system resulting from FE discretization.11 In this section, we briefly

11FEMPAR v1.0.0 also supports parallel DG-like non-conforming FE formulations for the Poisson problem. How-
ever, a scalable domain decomposition preconditioner suitable for this family of FE formulations is not yet available
in its first public release. This justifies why tutorial 03 restricts itself to the CG FE formulation. In any case, we
stress that FEMPAR is designed such that this preconditioner can be easily added in future releases of the library.

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 25

introduce some key ideas underlying the extension of the approach presented in Sect. 6.2 to dis-
tributed computing environments. On the other hand, Sect. 7.3 overviews the preconditioning
approach used by tutorial 03, and its parallel implementation in FEMPAR.

It order to scale FE simulations to large core counts, the adaptive mesh must be partitioned
(distributed) among the parallel tasks such that each of these only holds a local portion of the
global mesh. (The same requirement applies to the rest of data structures in the FE simulation
pipeline, i.e., FE space, linear system, solver, etc.) Besides, as the solution might exhibit
highly localized features, dynamic mesh adaptation can result in an unacceptable amount of
load imbalance. Thus, it urges that the adaptive mesh data structure supports dynamic load-
balancing, i.e., that it can be re-distributed among the parallel processes in the course of the
simulation. As mentioned in Sect. 6.2, dynamic h-adaptivity in FEMPAR relies on forest-of-
trees meshes. Modern forest-of-trees manipulation engines provide a scalable, linear runtime
solution to the mesh (re-)partitioning problem based on the exploitation of Space-Filling Curves
(SFCs). SFCs provide a natural means to assign an ordering of the forest-of-trees leaves, which
is exploited for the parallel arrangement of data. For example, in the p4est library, the forest-
of-octrees leaves are arranged in a global one-dimensional data array in increasing Morton index
ordering [1]. This ordering corresponds geometrically with the traversal of a z-shaped SFC
(a.k.a. Morton SFC) of Th; see Fig. 5a. This approach allows for fast dynamic repartitioning.
A partition of Th is simply generated by dividing the leaves in the linear ordering induced by
the SFC into as many equally-sized segments as parallel tasks involved in the computation.

(a) Th. (b) T 1
h . (c) T 2

h .

Figure 5. 2:1 balanced forest-of-quadtrees mesh with two quadtrees (i.e., |Ch| =
2) distributed among two processors, 1:4 refinement and the Morton SFC [1].
Local cells are depicted with continuous boundary lines, while those in the ghost
layer with dashed ones.

The parallel h-adaptive triangulation in FEMPAR reconstructs the local portion of Th corre-
sponding to each task from the distributed forest-of-octrees that p4est handles internally [48].
These local portions are illustrated in Fig. 5b and 5c when the forest-of-octrees in Fig 5a is
distributed among two processors. The local portion of each task is composed by a set of cells
that it owns, i.e., the local cells of the task, and a set of off-processor cells (owned by remote
processors) which are in touch with its local cells, i.e., the ghost cells of the task. This over-
lapped mesh partition is used by the library to exchange data among nearest neighbours, and
to glue together the global DOFs of Vh which are sitting on the interface among subdomains,
as required in order to construct FE spaces for conforming FE formulations in a distributed
setting [48].

The user of the library, however, should also be aware to some extent of the distributed
data layout of the triangulation. Depending on the numerical method at hand, it might be
required to perform computations that involve the ghost cells, or to completely avoid them. For
example, the computation of facet integrals on the interface among subdomains requires access
to the ghost cells data (e.g., local shape functions values and gradients). On the other hand,
cell integrals are typically assembled into global data structures distributed across processors

26 S. BADIA AND A. F. MARTÍN

(e.g., the linear system or the global energy norm of the error). While it is practically possible
to evaluate a cell integral over a ghost cell in FEMPAR, this would result in excess computation,
and even worse, to over-assembly due to the overlapped mesh partition (i.e., to wrong results).
To this end, cell iterators of the parallel h-adaptive triangulation provide TBPs that let the user
to distinguish among local and ghost cells, e.g., in an iteration over all cells of the mesh portion
of a parallel task.

7.3. Fast and scalable parallel linear system solution. Tutorial 03 solves the linear
system resulting from discretization iteratively via (preconditioned) Krylov subspace solvers [50].
To this end, FEMPAR provides abstract implementations (i.e., that can be leveraged either in serial
or distributed computing environments, and/or for scalar or blocked layouts of the linear(ized)
system) of a rich suite of solvers of this kind, such as, e.g., the Conjugate Gradients and GMRES
solvers. Iterative solvers are much better suited than sparse direct solvers for the efficient
exploitation of distributed-memory computers. However, they have to be equipped with an
efficient preconditioner, a cornerstone ingredient for convergence acceleration, robustness and
scalability.

Preconditioners based on the DD approach [51] are an appealing solution for the fast and
scalable parallel iterative solution of linear systems arising from PDE discretization [52, 24,
53]. DD preconditioners make explicit use of the partition of the global mesh into sub-meshes
(see Fig. 5), and involve the solution of local problems and communication among nearest-
neighbour subdomains. In order to achieve algorithmic scalability, i.e., a condition number
that remains constant as the problem size and number of subdomains are scaled, they have to
be equipped with a suitably defined coarse-grid correction. The coarse-grid correction globally
couples all subdomains and rapidly propagates the error correction information across the whole
domain. However, it involves the solution of a global problem whose size typically increases
(at best) linearly with respect to the number of subdomains. If not tackled appropriately by
the underlying parallel implementation[52, 24, 53], this increase can jeopardize the practical
scalability limits of this kind of preconditioners.

Among the set of scalable DD preconditioners available in the literature [51, 54], FEMPAR

built-in preconditioning capabilities are grounded on the so-called BDDC preconditioning ap-
proach [55, 52], and its multi-level extension[56, 24] for extreme-scale computations. BDDC
preconditioners belong to the family of non-overlapping DD methods [51]. Computationally
speaking, BDDC preconditioners require to solve a local Dirichlet and a local constrained Neu-
mann problem at each subdomain, and a global coarse-grid problem [55]. These methods rely
on the definition of a FE space, referred to as the BDDC space, with relaxed inter-subdomain
continuity. The local constrained Neumann problems and the global coarse-grid problem are
required in order to extract a correction of the solution from the BDDC space. Such space
is defined by choosing some quantities to be continuous across subdomain interfaces, i.e., the
coarse or primal DOFs. The definition of the coarse DOFs in turn relies on a geometrical
partition of the mesh VEFs laying on the subdomain interfaces into coarse objects, i.e., coarse
VEFs. Next, we associate to some (or all) of these objects a coarse DOF. Once a correction has
been extracted from the BDDC space, the continuity of the solution at the interface between
subdomains is restored with an averaging operator.

The actual definition of the coarse DOFs depends on the kind of FE space being used for
PDE discretization. For grad-conforming (i.e., H1-conforming) FE spaces, as those required for
the discretization of the Poisson PDE, the coarse DOFs of a FE function uh are defined as the
value of the function at vertices, or the mean values of the function on coarse edges/faces. These
concepts have been generalized for div- and curl-conforming FE spaces as well; see, e.g., [35],
and references therein, for the latter kind of spaces.

While tutorial 03 uses a 2-level BDDC preconditioner suitable for the Poisson PDE, FEMPAR
actually goes much beyond than that by providing an abstract OO framework for the imple-
mentation of widely applicable BDDC-like preconditioners. It is not the aim of this paper that
the reader fully understands the complex details underlying this framework. However, it is at
least convenient to have some familiarity with the data types on which the framework relies,

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 27

and their basic roles in the construction of a BDDC preconditioner, as these are exposed in the
code of tutorial 03 in Sect. 7.4. These are the following ones:

• coarse triangulation t. The construction of this object starts with the usual FE
discretization mesh distributed among parallel tasks; see Fig. 5. Each of these tasks
locally classifies the mesh VEFs lying on the interface among its local and ghost cells into
coarse VEFs (see discussion above). Then, these coarse VEFs are glued together across
parallel tasks by generating a global numbering of coarse VEFs in parallel. Finally, all
coarse cells (i.e., subdomains) and its coarse VEFs are transferred from each parallel task
to an specialized task (or set of tasks in the case it is distributed) that assembles them
into a coarse triangulation t object. This mesh-like container very much resembles
the triangulation t object (and indeed re-uses much of its code), except for the fact
that the former does not discretize the geometry of any domain, as there is no domain
to be discretized in order to build a BDDC coarse space.
• coarse fe space t. This object very much resembles fe space t. It handles a global

numbering of the coarse DOFs of the BDDC space. However, it does not provide data
types for the evaluation of cell and facet integrals, as the cell matrices and vectors
required to assemble the global coarse-grid problem are not actually computed as usual
in FE methods, but by Galerkin projection of the sub-assembled discrete linear system
using the basis functions of the coarse-grid space [55]. As coarse triangulation t,
coarse fe space t is stored in a specialized parallel task (or set of tasks) that builds it
by assembling the data provided by the tasks on which the FE space is distributed.
• coarse fe handler t. This is an abstract data type that very much resembles a local

FE space, but defined on a subdomain (i.e., a coarse cell). It defines the association
among coarse DOFs and coarse VEFs, and provides mechanisms for the evaluation of
the functionals associated to coarse DOFs (i.e., the coarse DOF values), given the values
of a FE function. It also defines the so-called weighting operator as a basic customizable
building block required to define the averaging operator required to restore continuity.
Data type extensions of coarse fe handler t suitably define these ingredients for the
FE space used for PDE discretization.
• mlbddc t. This is the main data type of the framework. It orchestrates the previous

objects in order to build, and later on apply the BDDC preconditioner at each iteration
of a Krylov subspace solver. For example, using coarse fe handler t, and the sub-
assembled local Neumann problems (i.e., the local matrices that the user assembles on
each local subdomain), it builds the local constrained Neumann problem required, among
others, in order to compute the basis functions of the coarse-grid space, or to extract a
correction from the BDDC space [55]. It also builds the coarse cell matrices and vectors
at each subdomain, and transfers them to the task (or set of tasks) that assembles the
coarse-grid linear system. This task in turn uses coarse fe space t in order to extract
the local-to-global coarse DOF index map.

The scalability of the framework is boosted with the advanced parallel implementation ap-
proach discussed in detail in [52, 24]. This approach exploits a salient property of multilevel
BDDC-like preconditioners, namely that there are computations at different levels that can be
overlapped in time. To this end, the coarse-grid problem is not actually handled by any of the
tasks on which the FE mesh is distributed, but by an additional, specialized parallel task (set
of tasks) that is (are) spawn in order to carry out such coarse-grid problem related duties. The
environment t FEMPAR data type, which was already introduced in Sect. 5.3, splits the full set
of tasks into subgroups of tasks (i.e., levels), and defines communication mechanisms to transfer
data among them. For example, for a 2-level BDDC preconditioner, one sets up an environment
with 2 levels, and FEMPAR devotes the tasks of the first and second levels to fine-grid and coarse-
grid related duties, resp., while achieving the desired overlapping effect among the computations
at different levels. This will be illustrated in the next section.

7.4. The commented code. The main program unit of tutorial 03 is shown in Listing 23.
For conciseness, we only show those lines of code of tutorial 03 which are different from those

28 S. BADIA AND A. F. MARTÍN

of tutorial 02 (Listing 18). The first worth noting difference is that tutorial 03 uses its
own tutorial-specific support modules in Lines 3-5 . While the one in Line 4 is actually fully
equivalent to its counterparts in tutorial 01 and 02, only minor adaptations were required in
the other two. Recall that these modules encompass an integration loop over the mesh cells. We
aim to build a local sub-assembled Neumann problem at each subdomain in the former module
(as required by non-overlapping DD preconditioners; see [48, Sect. 5.1]), and to only compute
e2
K for the local cells in each parallel task in the latter (in order to avoid excess computation,

and over-assembly of e when these local quantities are reduced-sum in all parallel tasks in
the compute error helper subroutine). Following the discussion at the end of Sect. 7.2, the
cell integration loops in these modules must be restricted to local cells. This is accomplished
by embracing the body of the integration loop (see, e.g. Lines 19-46 of Listing 16) by an
if(fe%is local())then...endif statement. The is local() TBP of a FE iterator returns
.true. if the iterator is positioned on a local cell, and .false. otherwise; see Fig 5.

1 program tutorial_03_poisson_sharp_circular_wave_parallel_amr

2 use fempar_names

3 use tutorial_03_discrete_integration_names

4 use tutorial_03_functions_names

5 use tutorial_03_error_estimator_names

6 ... ! Declaration of tutorial_03_ ... parameter constants

7 type(mpi_context_t) :: world_context

8 type(environment_t) :: environment

9 type(p4est_par_triangulation_t) :: triangulation

10 type(p_l1_coarse_fe_handler_t), allocatable :: coarse_fe_handlers (:)

11 type(h_adaptive_ ... _coarse_fe_handler_t) :: coarse_fe_handler

12 type(par_fe_space_t) :: fe_space

13 ... ! strong_boundary_conditions , source_term , exact_solution

14 ... ! discrete_solution , cg_discrete_integration

15 type(iterative_linear_solver_t) :: iterative_linear_solver

16 type(parameterlist_t) :: mlbddc_parameters

17 type(mlbddc_t) :: mlbddc

18 ... ! output_handler , refinement_strategy

19 type(std_vector_real_rp_t) :: my_rank_cell_array

20 ...! Declaration of variables storing CLA values particular to tutorial_03_ ...

21 ... ! Lines 10-14 of Listing 18

22 ... ! Lines 26-28 of Listing 5

23 call setup_coarse_fe_handler ()

24 call setup_fe_space ()

25 ... ! Lines 30-31 of Listing 5

26 call setup_preconditioner ()

27 ... ! solve_system (), compute_error ()

28 ... ! setup_refinement_strategy (), output_handler_initialize ()

29 do

30 ... ! Lines 19-22 of Listing 18

31 call setup_triangulation ()

32 call setup_fe_space ()

33 call redistribute_triangulation_and_fe_space ()

34 ... ! Lines 25-28 of Listing 18

35 end do

36 ... ! Lines 30-32 of Listing 18

37 contains

38 ... ! Implementation of helper procedures

39 end program tutorial_03_poisson_sharp_circular_wave_parallel_amr

Listing 23. Tutorial 03 program unit.

The reader may also observe subtle differences in the objects declared by tutorial 03

(Lines 7-17 of Listing 23) compared to those declared by tutorial 02 (Lines-6-8 of Listing 18).
First, world context is declared of type mpi context t. This FEMPAR data type represents a
group of parallel tasks (as many as specified to the mpirun script when the parallel program is
launched) which uses MPI as communication layer. Second, the triangulation and fe space

objects were declared to be of type p4est par triangulation t and par fe space t. These
FEMPAR data types are the distributed-memory counterparts of the ones used by tutorial 02.

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 29

The former is a data type extension of triangulation t that follows the ideas in Sect. 7.2.
Finally, tutorial 03 declares extra objects which are not necessary in tutorial 02. These are
covered in the next paragraph.

First, tutorial 03 declares an object of type h adaptive ... coarse fe handler t. This
FEMPAR data type is a type extension of coarse fe handler t (see Sect. 7.3) suitable for grad-
conforming FE spaces on h-adaptive meshes [57].12 The coarse fe handlers(:) array holds
polymorphic pointers to data type extensions of coarse fe handler t, as many as fields in
the system of PDEs at hand. As tutorial 03 tackles a single-field PDE, this array is set up
in the setup coarse fe handler helper subroutine (Line 23) to be a size-one array pointing
to coarse fe handler. Second, tutorial 03 declares iterative linear solver. This object
provides a rich suite of abstract implementations of Krylov subspace solvers (see Sect. 7.3).
Third, it also declares the mlbdc instance, in charge of building and applying the BDDC pre-
conditioner at each iterative solver iteration (see Sect. 7.3). The configuration of this instance
cannot be performed directly from parameter handler, but by means of a rather involved pa-
rameter dictionary (declared in Line 16) that lets one customize the solver parameters required
for each of the subproblems solved by the BDDC preconditioner at each level. This parame-
ter dictionary is set up in the setup preconditioner helper subroutine (Line 26), which will
be covered later in this section. Finally, tutorial 03 declares my rank cell array for post-
processing purposes. This is a dynamic array which is adapted along with the triangulation
at each AMR loop iteration. It has as many entries as local cells in each parallel task, and
for all of these entries, it holds the parallel task identifier. It is written into output data files,
so that the user may visualize how the adaptive mesh is distributed among the parallel tasks.
For conciseness, it is left as an exercise to the reader to grasp how this array is handled by
tutorial 03 in order to achieve this goal.

Tutorial 03’s main executable code spans Lines 20-36. It very much resembles the one
of Tutorial 02, despite it is being executed in a significantly more complex, non-standard
parallel execution environment. In particular, all parallel tasks in world context execute the
bulk of code lines of Tutorial 03, despite these are split into two levels by environment t

(Listing 24) and assigned different duties (and data) at different levels; see discussion at the
end of Sect. 7.3. We have devoted daunting efforts in order to hide as much as possible this
complex execution environment to library users. The vast majority of TBPs associated to the
library data types can be called safely from any task in world context. For example, one may
call triangulation%get num local cells() from all tasks. In the case of L1 tasks (i.e., tasks
belonging to the first environment level), this call returns the number of local cells in the mesh
portion of the task, while it returns a degenerated value, i.e., zero, in the case of L2 tasks, as
triangulation is only distributed among the tasks in the first environment level. If, e.g., one
allocates an array with the output of this call, this ends up with a zero-sized array in L2 tasks,
which is perfectly fine with the Fortran standard. Another paradigmatic example are loops over
the cells using iterators. L2 tasks do not enter the loop, as there are no cells to be traversed in
this case. The only reasonable exception to this in tutorial 03 is the compute error helper
subroutine, that the reader is encouraged to inspect at this point using the source code Git
repository. This subroutine uses environment in order to dispatch the path followed by L1 and
L2 tasks such that: (1) only a single L1 task logs into the screen the number of global cells and
DOFs, thus avoiding that the screen if flood with output messages coming from all L1 tasks; (2)
only a single L2 task logs the number of coarse cells and DOFs (for the same reason). The same
task-level-dispatching mechanism is being used by many procedures within FEMPAR, mostly those
related with the BDDC preconditioner, although for a different purpose, namely to achieve the
desired overlapping effect among computations at different levels.

Tutorial 03 helper procedures very much resemble their counterparts in tutorial 02. A
main difference is in the procedures that set up the triangulation and FE space. When the value
of current amr step is zero, setup triangulation calls the setup coarse triangulation

12We note that this data type is connected with the CLI. Using the corresponding CLAs, one may select
whether to associate coarse DOFs to coarse vertices, and/or coarse edges, and/or coarse faces.

30 S. BADIA AND A. F. MARTÍN

1 subroutine setup_context_and_environment ()

2 !* Create a group of tasks (as many as specified to mpirun)

3 call world_context%create ()

4 !* Force environment to split world_context into two subgroups of tasks (levels)

5 !* composed by "world_context%get_num_tasks () -1" and a single task , resp.

6 call parameter_handler%update(environment_num_levels_key , 2)

7 call parameter_handler%update(environment_num_tasks_x_level_key , &

8 [world_context%get_num_tasks () -1,1])

9 call environment%create(world_context , parameter_handler%get_values ())

10 end subroutine setup_context_and_environment

Listing 24. The setup context and environment procedure.

TBP of triangulation, right after the latter triangulation is built. This procedure triggers the
process described in Sect. 7.3 in order to build a coarse triangulation t object. This object is
kept inside triangulation, although the user may have access to it via triangulation getters.
The same pattern is borrowed by setup fe space, which calls the setup coarse fe space TBP
of fe space. For obvious reasons (see Sect. 7.3), this TBP must be fed with the coarse fe handlers(:)

array. On the other hand, when current amr step is not zero, it is not needed to explicitly call
these TBPs, as they are reconstructed automatically after mesh adaptation.

Apart from the aforementioned, the reader must note the call in Line 33 of Listing 23, right
after the triangulation and the FE space are adapted within the current AMR loop iteration. The
code of this helper subroutine is shown in Listing 25. This subroutine calls the redistribute

TBP of triangulation, which dynamically balances the computational load by redistributing
the adaptive mesh among the parallel tasks. The default criteria is to balance the number of
cells in each task. Alternatively, the user might associate to each cell a partition weight. In this
case, the primitive balances the sums of the cell partition weights among processors. The data
that the user might have attached to the mesh objects (i.e., cells and VEFs set identifiers) is
also migrated. On the other hand, Listing 25 also calls the redistribute TBP of fe space,
which migrates the data that fe space holds conformally to how the triangulation has been
redistributed. Optionally, this TBP can by supplied with a FE function uh (or, more generally,
an arbitrary number of them). In such a case, redistribute migrates the DOF values of uh
as well. This feature is required by numerical solvers of transient and/or non-linear PDEs.
Finally, we note that Listing 23 redistributes the data structures at each iteration of the AMR
loop, just as demonstrator of FEMPAR capabilities. In an actual FE application problem, one
may tolerate load unbalance as long as it remains within reasonable margins. In general, the
frequency of redistribution should be chosen in order to achieve an optimal trade-off among the
overhead associated to migration, and the computational benefit that one obtains by dynamically
balancing the computational load.

1 subroutine redistribute_triangulation_and_fe_space ()

2 call triangulation%redistribute ()

3 call fe_space%redistribute ()

4 ... ! Re -adjust the size and contents of my_rank_cell_array

5 ... ! to reflect the current status of the triangulation

6 end subroutine redistribute_triangulation_and_fe_space

Listing 25. The redistribute triangulation and fe space helper subroutine.

Listing 26 shows the code of the setup preconditioner procedure. It first builds the
mlbddc parameters parameter dictionary. To this end, it calls the setup mlbddc parameters ...

subroutine, provided by FEMPAR. This call takes the solver-related CLA values provided by
parameter handler, and populates mlbddc parameters such that the same parameter values
are used for the solvers of all subproblems that mlbddc handles internally (e.g., the Dirichlet
and constrained Neumann subproblems).13 The actual set up of the preconditioner occurs in

13If one wants to use different solver parameters values for each of these subproblems, then mlbddc parameters

has to be built manually.

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 31

Line 6 of Listing 26. We note that mlbddc directly receives the FE affine operator, instead of
the coefficient matrix that it holds inside. This lets the BDDC framework to access to the appli-
cation FE discretization-related data, so that this information can be exploited when building
an optimal preconditioner for the PDE problem at hand.

1 subroutine setup_preconditioner ()

2 call setup_mlbddc_parameters_from_reference_parameters (&

3 environment , &

4 parameter_handler%get_values (), &

5 mlbddc_parameters)

6 call mlbddc%create(fe_affine_operator , mlbddc_parameters)

7 end subroutine setup_preconditioner

Listing 26. The setup preconditioner helper subroutine.

Finally, the solve system subroutine is shown in Listing 27. In Line 5, we force the Conjugate
Gradients solver, as this is the most suitable iterative solver for the Poisson PDE. The rest of
CLA values linked to iterative linear solver t are not forced, so that the user may choose,
e.g., among several convergence criteria and related solver tolerances, or whether to print on
screen or not the convergence history of the solver. An iterative solver needs a matrix and a
preconditioner to solve the system. These are provided to iterative linear solver in Line 8.

1 subroutine solve_system ()

2 class(vector_t), pointer :: dof_values

3 if (current_amr_step == 0) then

4 call iterative_linear_solver%create(environment)

5 call parameter_handler%update(ils_type_key , cg_name)

6 call iterative_linear_solver%set_type_from_pl(parameter_handler%get_values ())

7 call iterative_linear_solver%set_parameters_from_pl(parameter_handler%get_values ())

8 call iterative_linear_solver%set_operators(fe_affine_operator%get_matrix (), mlbddc)

9 else

10 call iterative_linear_solver%reallocate_after_remesh ()

11 end if

12 dof_values => discrete_solution%get_free_dof_values ()

13 call iterative_linear_solver%solve(fe_affine_operator%get_translation (),dof_values)

14 call fe_space%update_hanging_dof_values(discrete_solution)

15 end subroutine solve_system

Listing 27. The solve system helper subroutine.

7.5. Numerical results. In Fig. 6 we show the FE solution computed by tutorial 03 invoked
with 10 parallel tasks, along with Th and its partition into 9 subdomains, for the 3D version of
Problem (5.1) discretized with an adapted mesh resulting from 13 AMR steps, resp., and trilinear
Lagrangian FEs. The number of initial uniform refinement steps was set to 2, resulting in an
initial conforming triangulation made of 8 hexahedral cells. The BDDC space was supplied with
corner, edge, and face coarse DOFs, resulting in a total of 77 coarse DOFs for the subdomain
partition in Fig. 6. The Preconditioned Conjugate Gradients solver converged to the solution in
14 iterations with a relative residual tolerance of 10−6.

8. Conclusions

In this article we have provided three tutorials that cover some of the capabilities of the FEMPAR
library. The tutorials come with a comprehensive description of all the steps required in the sim-
ulation of PDE-based problems. They cover the numerical approximation of a linear PDE, struc-
tured and octree meshes with AMR strategies (both in serial and parallel environments), and the
usage of parallel iterative solvers with scalable preconditioning techniques. This set of tutorials
provides FEMPAR users with a complete introduction to some key FEMPAR tools. In any case, we re-
fer to the tutorials folder in the FEMPAR public repository https://github.com/fempar/fempar

for more advanced topics not covered here (e.g., nonlinear solvers, time integration, curl and div
conforming FE spaces, multi-field FE spaces, or block preconditioning techniques).

https://github.com/fempar/fempar

32 S. BADIA AND A. F. MARTÍN

Figure 6. Mesh and FE solution (left) and its partition into 9 subdomains
(right). 13 AMR steps; 218,590 cells; 153,760 (true) DOFs.

References

[1] C. Burstedde, L. C. Wilcox, O. Ghattas, SIAM Journal on Scientific Computing 33 (3)
(2011) 1103–1133.

[2] O. Colomés, S. Badia, R. Codina, J. Principe, Computer Methods in Applied Mechanics
and Engineering 285 (2015) 32–63.

[3] O. Colomés, S. Badia, International Journal for Numerical Methods in Engineering 105 (5)
(2016) 372–400.

[4] O. Colomés, S. Badia, J. Principe, Computer Methods in Applied Mechanics and Engineer-
ing 304 (2016) 294–318.

[5] O. Colomés, S. Badia, Computer Methods in Applied Mechanics and Engineering 313 (2017)
189–215.

[6] S. Badia, R. Codina, R. Planas, Journal of Computational Physics 234 (0) (2013) 399–416.
[7] S. Badia, R. Planas, J. V. Gutiérrez-Santacreu, International Journal for Numerical Meth-

ods in Engineering 93 (3) (2013) 302–328.
[8] R. Planas, S. Badia, R. Codina, Journal of Computational Physics 230 (8) (2011) 2977–

2996.
[9] S. Smolentsev, S. Badia, R. Bhattacharyay, L. Bühler, L. Chen, Q. Huang, H.-G. Jin,

D. Krasnov, D.-W. Lee, E. M. de les Valls, C. Mistrangelo, R. Munipalli, M.-J. Ni,
D. Pashkevich, A. Patel, G. Pulugundla, P. Satyamurthy, A. Snegirev, V. Sviridov, P. Swain,
T. Zhou, O. Zikanov, Fusion Engineering and Design 100 (2015) 65–72.

[10] S. Badia, R. Codina, R. Planas, Archives of Computational Methods in Engineering 22 (4)
(2015) 621–636.

[11] S. Badia, A. Hierro, Computer Methods in Applied Mechanics and Engineering 286 (2015)
107–122.

[12] S. Badia, A. Hierro, SIAM Journal on Scientific Computing 36 (6) (2014) A2673–A2697.
[13] A. Hierro, S. Badia, P. Kus, Computer Methods in Applied Mechanics and Engineering 309

(2016) 532–553.
[14] S. Badia, J. Bonilla, Computer Methods in Applied Mechanics and Engineering 313 (2017)

133–158.
[15] S. Badia, J. Bonilla, A. Hierro, Computer Methods in Applied Mechanics and Engineering

320 (2017) 582–605.
[16] S. Badia, A. F. Martin, F. Verdugo, SIAM Journal on Scientific Computing 40 (6) (2018)

B1541–B1576.
[17] F. Verdugo, A. F. Mart́ın, S. Badia, arXiv.arXiv:1902.01168.
[18] M. Chiumenti, E. Neiva, E. Salsi, M. Cervera, S. Badia, J. Moya, Z. Chen, C. Lee, C. Davies,

Additive Manufacturing 18 (2017) 171–185.
[19] E. Neiva, M. Chiumenti, M. Cervera, E. Salsi, G. Piscopo, S. Badia, A. F. Mart́ın, Z. Chen,

C. Lee, C. Davies, arXiv.arXiv:1811.12372.
[20] E. Neiva, S. Badia, A. F. Mart́ın, M. Chiumenti, International Journal for Numerical Meth-

ods in Engineering (2019) nme.6085.

http://arxiv.org/abs/1902.01168
http://arxiv.org/abs/1811.12372

A TUTORIAL-DRIVEN INTRODUCTION TO FEMPAR V1.0.0 33

[21] M. Olm, S. Badia, A. F. Mart́ın, Computer Physics Communications 237 (2019) 154–167.
[22] M. Olm, S. Badia, A. F. Mart́ın, Advances in Engineering Software 132 (2019) 74–91.
[23] S. Badia, A. F. Mart́ın, J. Principe, Parallel Computing 50 (2015) 1–24.
[24] S. Badia, A. F. Mart́ın, J. Principe, SIAM Journal on Scientific Computing (2016) C22–C52.
[25] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,

V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F.
Smith, S. Zampini, H. Zhang, H. Zhang, 2016.

[26] H. C. Elman, D. J. Silvester, A. J. Wathen, Oxford University Press, 2005.
[27] S. Badia, A. F. Mart́ın, J. Principe, Archives of Computational Methods in Engineering

20 (3) (2013) 239–262.
[28] S. Badia, A. F. Mart́ın, J. Pŕıncipe, International Journal for Numerical Methods in Engi-

neering 96 (4) (2013) 203–230.
[29] S. Badia, H. Nguyen, SIAM Journal on Numerical Analysis 54 (6) (2016) 3436–3464.
[30] S. Badia, A. F. Mart́ın, H. Nguyen, Journal of Scientific Computing 79 (2) (2019) 718–747.
[31] S. Badia, A. F. Mart́ın, J. Principe, SIAM Journal on Scientific Computing 36 (2) (2014)

C190–C218.
[32] S. Badia, M. Olm, SIAM Journal on Scientific Computing 39 (2) (2017) C194–C213.
[33] S. Badia, F. Verdugo, Journal of Computational and Applied Mathematics 344 (2018) 740–

759.
[34] S. Badia, A. F. Mart́ın, H. Nguyen, Applied Mathematics Letters 87 (2019) 93–100.
[35] S. Badia, A. F. Mart́ın, M. Olm, Finite Elements in Analysis and Design 161 (2019) 16–31.
[36] S. Badia, A. F. Mart́ın, R. Planas, Journal of Computational Physics 274 (2014) 562–591.
[37] S. Badia, A. F. Mart́ın, J. Principe, Archives of Computational Methods in Engineering

25 (2) (2018) 195–271.
[38] GiD–the personal pre and post processor, http://www.gidhome.com.
[39] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Addison-Wesley, 1995.
[40] E. Freeman, E. Robson, K. Sierra, B. Bates (Eds.), O’Reilly, Sebastopol, CA, 2004.
[41] FPL – Fortran parameter list, https://gitlab.com/fempar/FPL.
[42] W. F. Mitchell, M. A. McClain, A Survey of hp-Adaptive Strategies for Elliptic Partial

Differential Equations, in: Recent Advances in Computational and Applied Mathematics,
Springer Netherlands, Dordrecht, 2011, pp. 227–258.

[43] A. Quarteroni, Springer Milan, Milano, 2014.
[44] Intel MKL PARDISO - Parallel Direct Sparse Solver Interface, https://software.intel.

com/en-us/articles/intel-mkl-pardiso.
[45] T. A. Davis, T. A., ACM Transactions on Mathematical Software 30 (2) (2004) 196–199.
[46] W. Schroeder, K. M. Martin, W. E. Lorensen, Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1998.
[47] XDMF – eXtensible Data Model and Format, http://www.xdmf.org/index.php/Main Page.
[48] S. Badia, A. F. Mart́ın, E. Neiva, F. Verdugo, arXiv.arXiv:1907.03709.
[49] L.-y. Li, P. Bettess, Applied Mechanics Reviews 50 (10) (1997) 581.
[50] Y. Saad, 2nd Edition, Society for Industrial and Applied Mathematics, 2003.
[51] A. Toselli, O. Widlund, Springer-Verlag, 2005.
[52] S. Badia, A. F. Mart́ın, J. Principe, SIAM Journal on Scientific Computing (2014) C190–

C218.
[53] S. Zampini, SIAM J. Sci. Comput. 38 (2016) S282–S306.
[54] S. C. Brenner, R. Scott, softcover reprint of hardcover 3rd ed. 2008 Edition, Springer, 2010.
[55] C. R. Dohrmann, SIAM Journal on Scientific Computing 25 (1) (2003) 246–258.
[56] J. Mandel, B. Soused́ık, C. Dohrmann, Computing 83 (2) (2008) 55–85.
[57] P. Kus, J. Sistek, Advances in Engineering Software 110 (2017) 34–54. arXiv:1703.06494.

http://www.gidhome.com
https://gitlab.com/fempar/FPL
https://software.intel.com/en-us/articles/intel-mkl-pardiso
https://software.intel.com/en-us/articles/intel-mkl-pardiso
http://www.xdmf.org/index.php/Main_Page
http://arxiv.org/abs/1907.03709
http://arxiv.org/abs/1703.06494

	1. Introduction
	2. Brief overview of FEMPAR main software abstractions
	3. Downloading and installing FEMPAR and its tutorial programs
	4. Common structure and usage instructions of FEMPAR tutorials
	5. Tutorial_01: Steady-state Poisson with a circular wave front
	5.1. Model problem
	5.2. FE discretization
	5.3. The commented code

	6. Tutorial_02: tutorial_01 problem tackled with AMR
	6.1. Model problem
	6.2. FE discretization
	6.3. The commented code
	6.4. Numerical results

	7. Tutorial_03: Distributed-memory parallelization of tutorial_02
	7.1. Model problem
	7.2. Parallel FE discretization
	7.3. Fast and scalable parallel linear system solution
	7.4. The commented code
	7.5. Numerical results

	8. Conclusions
	References

