
The dynamic parallel distribution algorithm for hybrid density-functional calculations in
HONPAS package

Honghui Shang0a, Lei Xu0a, Baodong Wua, Xinming Qinb, Yunquan Zhanga, Jinlong Yangb

aState Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing
bHefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and

Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

Abstract

This work presents a dynamic parallel distribution scheme for the Hartree-Fock exchange (HFX) calculations based on the real-
space NAO2GTO framework. The most time-consuming electron repulsion integrals (ERIs) calculation is perfectly load-balanced
with 2-level master-worker dynamic parallel scheme, the density matrix and the HFX matrix are both stored in the sparse format, the
network communication time is minimized via only communicating the index of the batched ERIs and the final sparse matrix form
of the HFX matrix. The performance of this dynamic scalable distributed algorithm has been demonstrated by several examples of
large scale hybrid density-functional calculations on Tianhe-2 supercomputers, including both molecular and solid states systems
with multiple dimensions, and illustrates good scalability.

Keywords: density-functional theory, Hartree-Fock, hybrid functionals, numeric atomic orbitals, linear scaling, MPI

1. Introduction

The hybrid density-functional calculations [1–12], which
contains the Hartree-Fock exchange (HFX), shows the great ac-
curacy performance for the geometry parameters, band struc-
ture properties and cohesive energies of a large range of mate-
rials. However, the computational time is extremely expensive
compared to the conventional ground state density-functionals
theory (DFT) calculation duo to the calculation of the electron
repulsion integrals (ERIs), which is the most time-consuming
part in the HFX matrix construction. Therefore, a highly ef-
ficient and scalable implementations of the ERIs is urgently
needed.

There have been a variety of implementation of the hybrid
density-functionals for solid state physics calculations. We
broadly classify these works in the two categories by the us-
age of the basis set: plane waves (PW) method[12–20] or lin-
ear combination of atomic orbitals (LCAO) method[10, 11, 21].
The plane wave basis set is the complete basis set, but not local-
ized. On the contrary, the atomic orbitals basis sets are local-
ized, which make the Hamiltonian matrices to be sparse. As a
result, the atomic basis sets have attracted considerable interest
for DFT calculations because of their favorable scaling with re-
spect to the number of atoms and their potential for massively
parallel implementations for large-scale calculations [11, 22–
29]. There are mainly two types of the atomic orbitals, one
is the gaussian type orbital (GTO), as adopted in Gaussian[11]
and CRYSTAL[21]et al.; the other one is the numerical atomic
orbital (NAO), which is adopted in SIESTA[23], DMOL[22],
OPENMX[30],FHI-aims[24] et al.. The advantage of GTO is

0Both authors contributed equally to this work.

the analytical calculation of the ERIs, and the advantage of
NAO is its strict locality, which naturally leads to lower or-
der scaling of computational time versus system size. We have
proposed a mixed scheme called NAO2GTO[29] to take ad-
vantages of both types of atomic orbitals. In the NAO2GTO
method, the strict cutoff of the atomic orbitals is satisfied with
NAO, and then the NAO is fitted with several GTOs to analyti-
cally calculate the ERIs, after employing several ERI screening
techniques, the construction of HFX matrix can be very efficient
and scale linearly[29, 31].

In the parallelization of HFX matrix construction, we have to
pay attention to two problems, one is the load balancing of the
ERIs, and the other one is the communications of the density
and HFX matrices. Previously, the load balancing of ERIs were
solved by static or dynamic distribution schemes[21, 32–37].

The major difference between static[21, 32, 37] and
dynamic[33–36] parallel distribution algorithm is the way how
to parallelize the computation of the ERIs. In the static paral-
lel distribution algorithm, the ERIs are distributed among the
processors before all the calculations of the ERIs; In the dy-
namic parallel distribution algorithm, the distribution and the
calculation of the ERIs are performed simultaneously, which
improves the load balance and parallel efficiency. For instance,
the NWchem[33] software uses a simple centralized dynamic
scheduling algorithm to distribute the ERIs to the worker pro-
cesses, but the parallel efficiency decreases when very large
numbers of processes are used. The GTFock[34, 35] code uses
an initial static task partitioning scheme along with a work-
stealing distributed dynamic scheduling algorithm, and it gives
very good parallel scalability for the ERIs calculations. In
CP2K/Quickstep[36], the ERIs are coarse grained using bins,
and then based on the estimated cost of each bin, the simu-

Preprint submitted to Computer Physics Communications June 16, 2021

ar
X

iv
:2

00
9.

03
55

5v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 8
 S

ep
 2

02
0

lated annealing method is adopted to redistribute all the bins
to improve the load balance, which is limited by the accu-
racy of the estimated cost of each bin. In order to reduce
the communication time, both NWchem and GTFock use the
Global Arrays framework which provides the one-sided com-
munication scheme to achieve high parallel performance with
the distributed HFX matrix computations. On the contrary,
the CP2K/Quickstep[36] replicates the global density and HFX
matrix on each MPI process in order to minimize the commu-
nication, however, it limits system size because as the memory
usage scaling as O(N2), and it also limits the parallel scalability
as the synchronization of the HFX matrix becomes the bottle-
neck when using very large numbers of cores.

Recently, we have proposed two static distribution
strategies[32] for the calculation of the ERIs, however,
the static distribution of ERI shell pairs produces load im-
balance that causes the decreasing of the parallel efficiency,
while the static distribution of ERI shell quartet can yield
very high load balance, but because of the need of the global
ERI screening calculation, the parallel efficiency has also
been dramatically reduced, that both of the static distribution
schemes limiting parallel scalability. In order to improve the
parallel efficiency, the dynamic parallel distribution algorithm
is needed.

Here in this work, a new dynamic parallel distribution al-
gorithm based on the NAO2GTO scheme[29] has been pro-
posed and implemented in the Order-N performance HONPAS
code[31]. In our approaches, the calculations of the ERIs are
perfectly loading balanced and can scale to very large num-
bers of cores thanks to the 2-level master-worker distribution of
shell pairs. Furthermore, the communication time is minimized
by using the global sparse matrix with linear scaling memory
usage. The efficiency and scalability of these algorithms are
demonstrated by benchmark timings in the periodic solid sys-
tem with hundreds to thousands of atoms in the unit cell.

The remainder of the paper is organized as follows. In Sec. 2
we succinctly summarize the fundamental background of this
study. Then the dynamic parallel scheme and the detailed im-
plementation of our parallel distribution strategies are discussed
in Sec. 3. Furthermore, we demonstrated the parallel scalability
of our implementation in Sec. 4. Finally, Sec. 5 summarizes the
main ideas and findings of this work.

2. Background

In this section, we recall the basis theoretical framework used
in this work. A spin-unpolarized notation is used throughout the
text for the sake of simplicity, but a formal generalization to the
collinear spin case is straightforward. The total-energy in the
Kohn-Sham DFT is defined as

EKS = Ts[n] + Eext[n] + EH[n] + Exc[n] + Enuc-nuc . (1)

Here, n(r) is the electron density, Ts is the kinetic energy of
non-interacting electrons, while Eext is external energy stem-
ming from the electron-nuclear attraction, EH is the Hartree
energy, Exc is the exchange-correlation energy, and Enuc-nuc is

the nucleus-nucleus repulsion energy. The ground state elec-
tron density n0(r) (and the associated ground state total energy)
is obtained by variationally minimizing Eq. (1) under the con-
straint that the number of electrons Ne is conserved. This yields
the chemical potential µ = δEKS /δn of the electrons and the
Kohn-Sham single particle equations

ĥKSψi =
[
t̂s + vext(r) + vH + vxc

]
ψi = εpψi , (2)

for the Kohn-Sham Hamiltonian ĥKS. In Eq. (2), t̂s denotes
the kinetic energy operator, vext the external potential, vH the
Hartree potential, and vxc the exchange-correlation potential.
Solving Eq. (2) yields the Kohn-Sham single particle states ψp

and their eigenenergies εp. The single particle states determine
the electron density via

n(r) =
∑

i

fi|ψi|
2 , (3)

in which fi denotes the Fermi-Dirac distribution function, and i
is the suffix for different Kohn-Sham state.

The Eq. (2) can be solved numerically by expanding the
Kohn-Sham states ψi with a finite basis set. In periodic sys-
tems, such Kohn-Sham states are also called crystalline orbitals,
which are normalized in the full space with a linear combina-
tion of Bloch functions φµ(k, r) to satisfy the periodic boundary
condition,

ψi(k, r) =
∑
µ

cµ,i(k)φµ(k, r) . (4)

Such Bloch functions are defined in terms of atomic orbitals
χR
µ (r).

φµ(k, r) =
1
√

N

∑
R

χR
µ (r)eik·(R+rµ) , (5)

where the Greek letter µ is the index of atomic orbitals, R is the
origin of the auxiliary supercell, N is the number of unit cells in
the system. χR

µ (r) = χµ(r − R − rµ) is the µ-th atomic orbital,
whose center is displaced from the origin of the auxiliary super-
cell at R by rµ. cµ,i(k) is the wave function coefficient, which is
obtained by solving the following generalized eigenvalue equa-
tion,

H(k)c(k) = E(k)S (k)c(k) , (6)

where

[H(k)]µν =
∑

R

< χ0
µ|Ĥ|χ

R
ν > eik·(R+rν−rµ) , (7)

and
[S (k)]µν =

∑
R

< χ0
µ|χ

R
ν > eik·(R+rν−rµ) . (8)

The Hamiltonian matrix can be distributed into two parts, one
is the conventional DFT part called HDFT, and the other is HHFX

part which contains the calculation of the ERIs

[HDFT]G
µλ =< χ0

µ|t̂s + vext(r) + vH + vxc|χ
G
λ > , (9)

2

[HHFX]G
µλ = −

1
2

∑
νσ

∑
N,H

PH−N
νσ [(χ0

µχ
N
ν |χ

G
λ χ

H
σ)] , (10)

where G, N, and H represent the different origin of the auxiliary
supercell (the unit cell indexes), and the Greek letters µ, λ, ν, σ
represent the indexes of atomic orbitals. Here the PN

νσ denotes
the density matrix which is computed by an integration of the
wave function coefficient over the Brillouin zone (BZ) using

PN
νσ =

∑
j

∫
BZ

c∗ν, j(k)cσ, j(k)θ(εF − ε j(k))eik·Ndk , (11)

where θ is the step function, εF is the fermi energy and ε j(k) is
the j-th eigenvalue at point k. And the full-range ERI is defined
as

(χ0
µχ

N
ν |χ

G
λ χ

H
σ) =

∫ ∫
χ0
µ(r)χN

ν (r)χG
λ (r′)χH

σ (r′)
|r − r′|

drdr′ . (12)

For screened hybrid functional calculation, such as HSE06,
only the short range part of the ERIs is needed,

EHSE06
xc =

1
4

ESR−HF
x (ω) +

3
4

ESR−PBE
x (ω) + ELR−PBE

x (ω) + EPBE
c ,

(13)

where ω=0.11Bohr−1 and erfc(r) =
2
√
π

∫ ∞
r e−t2

dt. The short-

range and long-range part of PBE exchange functional is cal-
culated following the Ref.[10]. All the ERIs’ calculation of the
following paper is for the short-range part, i.e.

(χ0
µχ

N
ν |χ

G
λ χ

H
σ)

SR
=∫ ∫

χ0
µ(r)χN

ν (r)erfc(ω|r − r′|)χG
λ (r′)χH

σ (r′)
|r − r′|

drdr′ . (14)

It should be noted that this work focuses on the short-range
HFX because the current auxiliary supercell is typically deter-
mined by the extent of the numerical orbitals, which is only
valid for the short-range HFX. However, for the full HFX, this
may not be enough since a larger auxiliary supercell is required
for convergence.

After building the whole Hamiltonian, the KS wave function
coefficients cµ,i(k) are calculated using the standard diagonal-
ization scheme, and finally we have the density matrix by using
Eq.11.

The above procedures are repeated until the change of the
density matrix element is smaller than a threshold, then we get a
converged density and Hamiltonian matrices in the hybrid func-
tional calculation as shown in Fig.1.

In order to make the calculation of the ERIs more efficient,
we have adopted the following computational schemes. Firstly,
in our implementation, the 8-fold full permutation symmetry of
the ERIs has been considered for both the molecules and the
solids systems, and in this way, we have a speedup of a factor 8
for the CPU time and a memory reduction of the same size.

(µ0νH|λGσN) = (µ0νH|σNλG) =

(ν0µ−H|λG−HσN−H) = (ν0µ−H|σN−HλG−H) =

(λ0σN−G|µ−GνH−G) = (λ0σN−G|νH−Gµ−G) =

(σ0λG−N|µ−NνH−N) = (σ0λG−N|νH−Nµ−N) . (15)

Secondly, our NAO2GTO scheme[29] is adopted to calcu-
late the ERIs analytically with fitted GTOs, and as the angular
part of the NAOs is spherical harmonic while the GTOs are
Cartesian harmonic function, a transformation[38] between the
Cartesian and spherical harmonic functions are performed. Af-
ter the transformation, the GTOs are grouped into shells ac-
cording to the NAOs’ angular momentum, thus, if µ ∈ I, ν ∈ J,
λ ∈ K, σ ∈ L, for the I, J, K, L shell quartet, then all the in-
tegrals (µν|λσ) are computed together for one shell quartet at a
time. As a result, the computational expense is strongly depen-
dent on the angular momenta of the shell quartet which needs
to be distributed in parallel.

Thirdly, before the SCF cycle, two shell pair lists (list-
IJ and list-KL) are firstly preselected according to Schwarz
screening[39], as shown in Fig.1

|(µν|λσ)| 6
√

(µν|µν)(λσ|λσ) , (16)

and only the shell list indexes with (IJ|IJ) > τ or (KL|KL) > τ
(here τ is the drop tolerance) are stored. As shown in Eq.
(10), the first index I runs only within the unit cell, while the
indexes (J,K,L) run over the whole supercell, so the list-IJ is
smaller than the list-KL. Then in the ERIs calculations, the
loops run over these two shell lists. Then before the calcula-
tion of every ERI, we use Schwarz inequality Eq. (16) again to
estimate a rigorous upper bound, that only the ERIs with non-
negligible contributions are calculated, we note this screening
method as Schwarz screening. Because the exponential decay
of the charge distributions, the Schwarz screening reduces the
total number of ERIs to be computed from O(N4) to O(N2). In
addition to Schwarz screening, the NAO screening[29] and the
distance screening[29] is also adopted to reduce the total num-
ber of ERIs from O(N2) to O(N).

Finally, we use the density matrix screening to further reduce
the number of ERIs, that the maximal value of the density ma-
trix of each shell (Pmax) is calculated during every SCF cycle,
and then the density matrix screening is,

Pscreening ×
√

(IJ|IJ)(KL|KL) 6 εS chwarz , (17)

where Pscreening = max(|PIK
max|, |P

IL
max|, |P

JK
max|, |P

JL
max|) Here four

density matrix elements are needed for the maximal value be-
cause of the 8-fold full permutation symmetry of the ERIs is
exploited in the implementation. The maximal density matrix
elements are chosen from the density matrix of the previous
SCF cycle, which produce a stable direct SCF cycle[40].

3. Parallelization strategies

In order to solve the contradiction between parallel efficiency
and load imbalance in the static distribution strategy, the dy-
namic load balancing scheme is adopted based on the mas-
ter/worker method, that one of these processes is responsible
for managing the distribution of all the ERIs , which is called

3

 build H-HFX

 calculate P

 input

 build H-DFT

 build shell
 pair list

 output

Conventional DFT
 Hamiltonian

Hartree-Fock Exchange

 Hamiltonian

Density Matrix

SCF

Figure 1: The flowchart of the hybrid functional calculation in the linear com-
bination of atomic orbitals (LCAO) approach.

the master, as shown in Algorithm 17, and the other processes
compute the assigned ERIs, which are called the workers, as
shown in Algorithm 2.

We can choose to assign only one task to the worker at a
time, that the worker process requests only one ERI shell quar-
tet from the master at one time and after receiving it, proceeds
to compute it. However, such a scheme introduces too much
communication time, and it will increase the execution time so
as to reduces the parallel efficiency. As a result, here we choose
to assign more than one ERI shell quartets at a time from the
master process to the worker processes. Such a set of tasks
is called the batched ERIs, and only the start and end indexes
of the batched ERIs are communicated. In practice, we use
the receiver-initiated method. The task distribution procedure
is initiated by the worker, which requests tasks from the mas-
ter. Then the master chooses to send the indexes of the batched
ERIs or terminal token based on whether there are tasks left or
not. The worker who receives the task executes the task imme-
diately and then requests the task after execution. If the worker
receives a terminal token, it jumps out of the loop and ends
the program. The master also exits the program after deter-
mining that the terminal token was sent to each worker. Such
a master-worker scheme has been implemented using point-to-
point blocking send and receive operations, and the full permu-
tational symmetry of the ERIs has been considered.

Although we can simply increase our computing power by
increasing the number of workers, this increase is not infinite.
Because the master process can only distribute one task at one
time. When there are multiple task requests, a task request can-
not be satisfied until the master has processed requests before
it. This bottleneck will limit the efficiency of large-scale par-
allelism. In our test, the performance of single-level master-
worker parallelism began to decreases when the 4000 cores
were used, and the parallel efficiency of the ERIs calculation

Algorithm 1 Flowchart of Master algorithms for ERIs. N
means the number of the ERIs in one batch, Nworkers means the
number of the workers in the mater-worker scheme.

MPI IRECV (to accept request)
while TaskCount > 0 do

if request detected then
send the MESSAGE (indexes of the batched ERIs)
TaskCount = TaskCount − N
MPI IRECV (to accept request)

end if
end while
if request detected then

send terminal token
end if
for i = 0; i < Nworkers − 1; i + + do

MPI IRECV (to accept request)
if request detected then

send terminal token
end if

end for

Algorithm 2 Flowchart of worker algorithms for ERIs.
while .TRUE. do

send a task request
receive MESSAGE (indexes of the batched ERIs)
if MESSAGE is terminal token then

exit
end if
compute the batched ERIs

end while

4

decreases to only 87% when 10000 cores were used. This is
because the master process is too busy to assign the tasks, re-
sulting in the performance bottlenecks.

In order to solve this problem, our approach is to distribute
tasks with 2-level master-worker parallel algorithm, and we add
a set of “sub-master” processes between the master and workers
as shown in Fig.2. Each sub-master controls a group of work-
ers and all sub-masters share the workload of master. Thus,
multiple task fragments can be sent by multiple sub-masters at
one time. When master and worker processes are almost un-
changed, the sub-master process consists of three steps: request
task, send task and close worker process, as shown in Algorithm
3. The parameters are more complex than the single-level distri-
bution tasks mentioned above. In addition to considering how
many tasks are sent between levels, we also need to consider
how many sub-masters are set up and how many workers each
sub-master has to manage. In our approach, each sub-master
has been assigned to around 100 worker processes.

Algorithm 3 Flowchart of sub-master algorithms for ERIs. N
means the number of the ERIs in one batch, Nworkers means the
number of the workers.

while .TRUE. do
send a task request to Master
receive MESSAGE (indexes of the batched ERIs or termi-
nal token)
if MESSAGE is terminal token then

exit
end if
MPI IRECV (to accept request)
while TaskCount > 0 do

if request detected then
send the MESSAGE (indexes of the batched ERIs)
TaskCount = TaskCount − n
MPI IRECV (to accept request)

end if
end while

end while
if request detected then

send terminal token
end if
for i = 0; i < Nworkers − 1; i + + do

MPI IRECV (to accept request)
if request detected then

send terminal token
end if

end for

In order to reduce the memory usage and minimize the com-
munication time, the sparse format of both the density matrix
and the HFX matrix are replicated, which are much smaller
than the dense matrix objects, as shown in Table 1, for in-
stance, the dense format matrix of TiO2 system has 19927296
elements which is 34 times larger than the sparse matrix format
with 578616 elements. The sparse density matrices can be ac-
cessed by every MPI process, so after the worker processes get
the indexes of the grouped ERIs that need to be calculated, the

 master

 sub-master sub-master

 worker worker worker worker

Figure 2: The illustration of the 2-level master-worker dynamic load balancing
scheme.

corresponding local HFX matrices are built using such global
density matrices, and finally the MPI ALLREDUCE operation
is adopted to build the global HFX matrix. It should be noted
that, during the construction of the HFX matrix, the transforma-
tion between the sparse matrix index and the dense matrix index
need to performed twice, one time for the read from the sparse
density matrix, the other one time for the write into the sparse
HFX matrix. The flowchart for the HFX matrix construction is
shown in Algorithm 4, which loops over shell pair lists.

Algorithm 4 Flowchart of the HFX matrix construction.
I, J,K, L are for shell indexes. Pgs is the global sparse density
matrix, HHFX

gs is the global sparse HFX matrix.

for shell list-IJ and list-KL do
if shell ERI (IJ|KL) is not screened then

compute shell ERI (IJ|KL)
transform dense matrix indexes to sparse matrix index
get HHFX

gs using (IJ|KL) and Pgs
end if

end for
MPI AllReduce to get HHFX

gs

4. Performance Results

All the results are calculation on the Tianhe-2 supercomputer
located at the National Supercom- puting Center in Guangzhou,
China, which was developed by the National University of
Defense Technology, China. Tianhe-2 is composed of 17920
nodes with a custom interconnect called TH Express-2 using
a fat-tree topology. Each node is composed of two Intel Ivy
Bridge E5-2692 processors (12 cores each at 2.2 GHz) and
three Intel Xeon Phi 31S1P coprocessors (57 cores at 1.1 GHz).
Memory on each node is 64 GB DRAM and 8 GB on each
Intel Xeon Phi card. Capable of a peak performance of 54.9
PFlops, Tianhe-2 has achieved a sustained performance of 33.9
PFlops with a performance-per-watt of 1.9 GFlops/W. Tianhe-2
has 1.4 PB memory, 12.4 PB storage capacity, and power con-
sumption of 17.8 MW. The larges number of nodes that we can
use for performance test is 2150 (51600 cores), and only the

5

Intel Xeon Ivy Bridge CPUs are adopted in this work. Since
HONPAS is developed in the framework of SIESTA code, only
the norm-conserving pseudopotentials can be adopted. In the
following calculations, the norm-conserving pseudopotentials
generated with the Troullier-Martins[41] scheme, in fully sep-
arable form developed by Kleiman and Bylader[42], are used
to represent interaction between core ion and valence electrons.
The screened hybrid functional HSE06[10] was used in the all
the calculations. The size of the batched ERIs is set to 2000000
in the master processor, and is set to 10000 in the sub-master
processors.

The performance of our method is demonstrated using the in-
stances of the DNA, titanium dioxide surface, and silicon solid
to test the strong scaling of the HONPAS code, which is mea-
sured by the change in CPU time with the number of core used
to make the construction of the HFX matrix. The time mea-
surements are for the HFX matrix construction in a single SCF
step, including the time used to setup the Pmax for density ma-
trix screening, to calculate the ERIs, and to sum up and redis-
tribute the global sparse HFX matrix. It should be noted that,
the Pmax time is a constant value, and takes very small frac-
tion of the total time for these systems when the CPU cores are
smaller than 1000. The time for synchronization of the HFX
matrix is increase with the number of cores, and the fraction of
this part is also increased. The sample of the test systems are
listed in Tabel 1. These three examples have been chosen as
they range from the one to three dimensional, and they are the
typical applications in the materials science community.

The first system is the DNA contained 715 atom in the unit-
cell. The P, H, C, N and O atoms are described using double-ζ
plus polarization (DZP) valence basis sets yielding 7183 atomic
orbitals per unitcell which is the rank of the Fock matrix. One k-
point is used to sample the reciprocal space due to the large unit
cell. In Fig. 3, the scalability of the HFX construction in one
SCF cycle is presented and separated into its three major com-
ponents: calculation of the two-electron integrals (i.e. ERI),
the calculation of the maximal values of density matrix in each
shell at every SCF cycle(i.e. Pmax) and the global summation
of the HFX matrix(i.e. MPI ALLREDUCE). The scalability is
good, especially almost ideal scaling is achieved for the calcula-
tion of the ERIs, which takes almost 98% time with 1200 cores,
on the other hand, the time for Pmax and MPI ALLREDUCE do
not scale with the number of CPU cores, so as the number of the
CPU cores increased, the Pmax time percentage change from 1%
to 15%, while the MPI ALLREDUCE time percentage change
from 1% to 25%. Although the Pmax and MPI ALLREDUCE
are responsible for a small fraction of the total runtime, it is
clear that the scaling of the Pmax and MPI ALLREDUCE ul-
timately limits the final parallel scaling of the total HFX cal-
culation. As a result, despite the parallel efficiency of ERIs at
24000 cores is nearly 100%, the parallel efficiency of the total
HFX time which including ERI, Pmax, and MPI ALLREDUCE
is only 61% at 24000 cores.

The second example is a TiO2 surface system supercell con-
sisting of 144 atoms. The Ti and O atoms are described us-
ing single-ζ plus polarization (SZP) valence basis sets yield-
ing 1488 atomic orbitals within the unitcell and 13392 atomic

1200 2400 4800 9600 15120 24000
Number of Cores

0

100

200

300

400

500
T
im

e
 (

s)

451.4

232.6

123.5

69.2
49.3

36.5

441.0

220.6

109.8

54.6
34.5

21.6

HFX
ERI

50

60

70

80

90

100

Pa
ra

lle
l E

ff
ci

e
n
cy

 (
%

)

1200 2400 4800 9600 15120 24000
Number of Cores

0

2

4

6

8

10

Ti
m

e
(s

)

5.7 5.6 5.6 5.7 5.7 5.6

4.8

6.3

8.0

8.9
9.2 9.3

Pmax
MPI_ALLREDUCE

Figure 3: The strong scalability for the periodic DNA system. The
blue/red/brown/orange bars correspond to the simulation time for the total HFX
construction/ERI calculation/Pmax construction/MPI ALLREDUCE. The par-
allel efficiency of the HFX construction is labels with blue circles while the
parallel efficiency of the ERIs calculations is labels with red squares. The time
are annotated on top of the bars. The difference between the HFX time and
the ERI time comes from the contributions from the Pmax selection process and
the MPI ALLREDUCE operation for the HFX matrix which are shown in the
lower panel.

6

System Atoms in unit cell Basis in unit cell Atoms in supercell Basis in supercell Elements in sparse matrix
1D-DNA 715 7183 715 7183 3500871
2D-TiO2 144 1488 1296 13392 578616
3D-Si-SZ 2000 8000 2000 8000 2116000

3D-Si-DZP 512 6656 512 6656 5016064

Table 1: The systems used in this work.

orbitals within the supercell. It should be noted that the SZP
calculations underestimate the electronic bandgap by roughly
8% with respect to the DZP basis set for the TiO2 bulk. Here
we use SZP for the TiO2 surface system just to evaluate the
parallel efficiency since the scalability does not depend on the
basis set as shown in Fig.7. The calculations have been per-
formed using 6×6×10 k-points in the primitive Brillouin zone.
In Fig. 4, the total runtime for the HFX construction in one
SCF cycle and the contributions from the calculation of the
two-electron integrals (i.e. ERI), the calculation of the max-
imal values of density matrix in each shell at every SCF cy-
cle(i.e. Pmax) and the global summation of the HFX matrix(i.e.
MPI ALLREDUCE) are displayed. Comparing to the 1 dimen-
sion DNA system, the parallel scaling of the calculation of the
ERIs is again near ideal with 100% parallel efficiency, which
takes almost 95% time with 480 cores, on the other hand, the
time for Pmax and MPI ALLREDUCE do not scale with the
number of CPU cores, so as the number of the CPU cores in-
creased, the Pmax time percentage change from 4% to 37%,
while the MPI ALLREDUCE time percentage change from 1%
to 42%. As a result, although the parallel efficiency of ERIs at
192000 cores is nearly 100%, the parallel efficiency of the total
HFX time which including ERI, Pmax, and MPI ALLREDUCE
is only 20% at 192000 cores. Here the very low 20% parallel ef-
ficiency comes from two reasons: firstly, the calculation of Pmax

is not distributed, which accounts for 37% of the total time at
192000 cores; secondly, the MPI ALLREDUCE communica-
tion time is relatively long, accounting for 42% of the total time
at 19200 cores. It should be noted that, the MPI ALLREDUCE
communication time can be dramatically reduced by changing
the number of ERIs in one batch,which we called n block in the
flowing, as shown in Fig.5. When decreasing the n block value
from 10000 to 100, the communication time can be reduced by
20 times, this is because the n block could affect the balance of
the number of the ERIs in each core, and finally the communi-
cation time. If we use an optimal value of the n block and also
distribute the calculation of Pmax , then the parallel efficiency
should be increased.

The third example is a silicon (10×10×10) supercell consist-
ing of 2000 atoms, a single-ζ basis set for Si atom is adopted.
One k-point is used to sample the reciprocal space due to the
large unit cell. In Fig. 6, the runtime for the HFX construc-
tion in one SCF cycle and the contributions from the calcu-
lation of the two-electron integrals (i.e. ERI), the calculation
of the maximal values of density matrix in each shell at every
SCF cycle(i.e. Pmax) and the global summation of the HFX
matrix(i.e. MPI ALLREDUCE) are displayed. Comparing this
system to the second example, the integral calculation main-

tains perfect scalability over the whole range of CPU cores that
considered from 480 to 28800, while now the parallel efficiency
of the HFX matrix construction step is dramatically improved
to 80% at 19200 cores, this is because in this case, the Pmax

and MPI ALLREDUCE time percentage is 16% and 5% re-
spectably. The improved scalability in this example is basi-
cally owning to the more balancing distribution of the num-
ber of the ERIs as only the s-type and p-type orbitals have been
considered. On the other hand, in the first and the second exam-
ples, the polarization d-type orbitals have been involved, which
caused the imbalance of the number of the ERIs as well as the
corresponding HFX matrix elements, and increase their time of
the communication costs (MPI ALLREDUCE). Finally, in this
third example, the parallel efficiency of ERIs at 28800 cores is
nearly 100%, while the parallel efficiency of the total HFX time
is 70% at 28800 cores.

In order to see the influence of the basis set, the parallel scal-
ability for a unit cell containing 2000 Si atoms with SZ basis
set and 512 Si atoms with DZP basis set is shown in Fig. 7.
All calculations again use one k-point to sample the reciprocal
space due to the large unit cell. Here we can see for both the
SZ and DZP basis set, almost ideal scaling is achieved for the
ERI calculations, however, at 28800 cores, the communication
costs (MPI ALLREDUCE) for SZ/DZP basis set are 0.7s/12.6s
respectively, which caused the final parallel efficiency of the
total HFX time is 67%/70% at 28800 cores. The largest num-
ber of CPU cores we have tested is 51600 for the Si consisting
of the 512 atoms with DZP basis set, and in this case, duo to
the communication time increased to 12.8s with the percentage
24% of the total HFX time, the parallel efficiency of the HFX is
53% although the integral calculation maintains perfect 100%
scalability.

5. Conclusion

In summary, we have shown our dynamic parallel algorithms
for the ERIs calculations based on the real-space NAO2GTO
framework. We have also analyzed the performance of the par-
allel algorithms for parallel efficiency. Based on our results, the
dynamic distribution of ERI shell quartet can yield very high
load balance, nearly ideal 100% parallel efficiency for the cal-
culation of ERIs has been achieved. However, because the Pmax

selection and the summation of the HFX matrix procedures do
not distribute over CPU cores, the parallel efficiency of the total
HFX construction is not as good as the calculation of the ERIs.
On the next step, we need to also distribute the Pmax calculation
by using the dynamic parallel distribution algorithm to improve
the parallel efficiency. Furthermore, a shared memory method

7

480 960 4800 9600 19200
Number of Cores

0

20

40

60

80

100

120

140

160

180

T
im

e
 (

s)

160.0

84.3

24.6
18.2 18.2

152.6

76.2

15.2
7.6

3.8

HFX
ERI

20

40

60

80

100

Pa
ra

lle
l E

ff
ci

e
n
cy

 (
%

)

480 960 4800 9600 19200
Number of Cores

0

2

4

6

8

10

T
im

e
 (

s)

6.7 6.7 6.7 6.7 6.7

0.8

1.4

2.7

3.9

7.7

Pmax
MPI_ALLREDUCE

Figure 4: The strong scalability for the periodic TiO2 surface system. The
blue/red/brown/orange bars correspond to the simulation time for the total HFX
construction/ERI calculation/Pmax construction/MPI ALLREDUCE. The par-
allel efficiency of the HFX construction is labels with blue circles which the
parallel efficiency of the ERIs calculations is labels with red squares. The time
are annotated on top of the bars. The difference between the HFX time and
the ERI time comes from the contributions from the Pmax selection process
and the MPI ALLREDUCE operation for the HFX matrix which are shown in
the lower panel. The discussion about the low 20% HFX parallel efficiency at
19200 cores for this example is given in the text.

10 100 1000 10000
Number of ERIs in one batch

0

50

100

150

200

250

300

T
im

e
 (

s)

313.2

180.5 177.4 178.1

ERI

10 100 1000 10000
Number of ERIs in one batch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 (

s)

0.038 0.038

0.378

0.765MPI_ALLREDUCE

Figure 5: The time used for the periodic TiO2 surface system with respect to
the number of the ERIs in one batch. Here 480 cores are used. The red bars
correspond to the simulation time for the ERI calculation, which are shown in
the upper panel; the orange bars correspond to the MPI ALLREDUCE, which
are shown in the lower panel. The time are annotated on top of the bars.

8

480 960 2400 4800 19200 28800
Number of Cores

0

50

100

150

200

250

300

350

400

T
im

e
 (

s)

349.1

175.5

71.5

36.9

11.0 8.2

347.1

173.4

69.3

34.6

8.6 5.7

HFX
ERI

60

65

70

75

80

85

90

95

100

Pa
ra

lle
l E

ff
ci

e
n
cy

 (
%

)

480 960 2400 4800 19200 28800
Number of Cores

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 (

s)

1.8 1.8 1.8 1.8 1.8 1.8

0.2
0.3

0.4
0.5

0.6
0.7

Pmax
MPI_ALLREDUCE

Figure 6: The stronge scalability for the periodic silicon solid system. The
blue/red/brown/orange bars correspond to the simulation time for the total HFX
construction/ERI calculation/Pmax construction/MPI ALLREDUCE. The par-
allel efficiency of the HFX construction is labels with blue circles which the
parallel efficiency of the ERIs calculations is labels with red squares. The time
are annotated on top of the bars. The difference between the HFX time and
the ERI time comes from the contributions from the Pmax selection process and
the MPI ALLREDUCE operation for the HFX matrix which are shown in the
lower panel.

 10

 100

 1000

 10000

 100000

 1000 10000 100000

T
im

e
(s

)

 Number of CPU cores

HFX(Si, 512 atoms, DZP)
ERI(Si, 512 atoms, DZP)
HFX(Si, 2000 atoms, SZ)
ERI(Si, 2000 atoms, SZ)

Figure 7: The strong scalability for the periodic silicon solid system with dif-
ferent system sizes and the basis set.

with one-sided commutation method should also be adopted to
improve the performance. Such a two-level master-worker dy-
namic parallel distribution algorithm proposed in this work can
also be extended to adopt the graphics processing units (GPUs)
as accelerators.

References

[1] A. D. Becke, The Journal of Chemical Physics 98 (1993) 5648–5652.
URL: https://doi.org/10.1063%2F1.464913. doi:10.1063/1.
464913.

[2] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, The Journal of
Physical Chemistry 98 (1994) 11623–11627. URL: https://doi.org/
10.1021%2Fj100096a001. doi:10.1021/j100096a001.

[3] B. G. Janesko, T. M. Henderson, G. E. Scuseria, Phys. Chem.
Chem. Phys. 11 (2009) 443–454. URL: https://doi.org/10.1039%
2Fb812838c. doi:10.1039/b812838c.

[4] J. Paier, C. V. Diaconu, G. E. Scuseria, M. Guidon, J. Van-
deVondele, J. Hutter, Physical Review B 80 (2009). URL:
https://doi.org/10.1103%2Fphysrevb.80.174114.
doi:10.1103/physrevb.80.174114.

[5] H. J. Monkhorst, Physical Review B 20 (1979) 1504–1513. URL:
https://doi.org/10.1103%2Fphysrevb.20.1504. doi:10.1103/
physrevb.20.1504.

[6] J. Delhalle, J.-L. Calais, Physical Review B 35 (1987) 9460–9466.
URL: https://doi.org/10.1103%2Fphysrevb.35.9460. doi:10.
1103/physrevb.35.9460.

[7] M. Gell-Mann, K. A. Brueckner, Physical Review 106 (1957)
364–368. URL: https://doi.org/10.1103%2Fphysrev.106.372.
doi:10.1103/physrev.106.372.

[8] J. Heyd, G. E. Scuseria, M. Ernzerhof, The Journal of Chemical
Physics 118 (2003) 8207–8215. URL: https://doi.org/10.1063%
2F1.1564060. doi:10.1063/1.1564060.

[9] J. Heyd, G. E. Scuseria, M. Ernzerhof, The Journal of Chemical
Physics 124 (2006) 219906. URL: https://doi.org/10.1063%2F1.
2204597. doi:10.1063/1.2204597.

[10] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, The Journal
of Chemical Physics 125 (2006) 224106. URL: https://doi.org/10.
1063%2F1.2404663. doi:10.1063/1.2404663.

[11] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Peters-
son, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov,
J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toy-

9

https://doi.org/10.1063%2F1.464913
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.464913
https://doi.org/10.1021%2Fj100096a001
https://doi.org/10.1021%2Fj100096a001
http://dx.doi.org/10.1021/j100096a001
https://doi.org/10.1039%2Fb812838c
https://doi.org/10.1039%2Fb812838c
http://dx.doi.org/10.1039/b812838c
https://doi.org/10.1103%2Fphysrevb.80.174114
http://dx.doi.org/10.1103/physrevb.80.174114
https://doi.org/10.1103%2Fphysrevb.20.1504
http://dx.doi.org/10.1103/physrevb.20.1504
http://dx.doi.org/10.1103/physrevb.20.1504
https://doi.org/10.1103%2Fphysrevb.35.9460
http://dx.doi.org/10.1103/physrevb.35.9460
http://dx.doi.org/10.1103/physrevb.35.9460
https://doi.org/10.1103%2Fphysrev.106.372
http://dx.doi.org/10.1103/physrev.106.372
https://doi.org/10.1063%2F1.1564060
https://doi.org/10.1063%2F1.1564060
http://dx.doi.org/10.1063/1.1564060
https://doi.org/10.1063%2F1.2204597
https://doi.org/10.1063%2F1.2204597
http://dx.doi.org/10.1063/1.2204597
https://doi.org/10.1063%2F1.2404663
https://doi.org/10.1063%2F1.2404663
http://dx.doi.org/10.1063/1.2404663

ota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Ki-
tao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision
B.01, 2009.

[12] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, J. G. Ángyán,
The Journal of Chemical Physics 124 (2006) 154709. URL: https://
doi.org/10.1063%2F1.2187006. doi:10.1063/1.2187006.

[13] X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Ap-
plencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk,
E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F. Dahm, F. Da Pieve,
M. Delaveau, M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste,
L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D. Hamann,
L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt,
A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M. Oliveira,
S. Poncé, Y. Pouillon, T. Rangel, G.-M. Rignanese, A. Romero,
B. Rousseau, O. Rubel, A. Shukri, M. Stankovski, M. Torrent,
M. Van Setten, B. Van Troeye, M. Verstraete, D. Waroquiers,
J. Wiktor, B. Xu, A. Zhou, J. Zwanziger, Comput. Phys. Commun.
(2016). URL: http://linkinghub.elsevier.com/retrieve/pii/
S0010465516300923. doi:10.1016/j.cpc.2016.04.003.

[14] L. Lin, Journal of Chemical Theory and Computation 12
(2016) 2242–2249. URL: https://doi.org/10.1021/

acs.jctc.6b00092. doi:10.1021/acs.jctc.6b00092.
arXiv:https://doi.org/10.1021/acs.jctc.6b00092, pMID:
27045571.

[15] I. Duchemin, F. Gygi, Computer Physics Communications 181
(2010) 855 – 860. URL: http://www.sciencedirect.com/

science/article/pii/S0010465509004135. doi:https:
//doi.org/10.1016/j.cpc.2009.12.021.

[16] R. A. DiStasio, B. Santra, Z. Li, X. Wu, R. Car, The Jour-
nal of Chemical Physics 141 (2014) 084502. URL: https:

//doi.org/10.1063/1.4893377. doi:10.1063/1.4893377.
arXiv:https://doi.org/10.1063/1.4893377.

[17] T. A. Barnes, T. Kurth, P. Carrier, N. Wichmann, D. Prendergast, P. R.
Kent, J. Deslippe, Computer Physics Communications 214 (2017) 52
– 58. URL: http://www.sciencedirect.com/science/article/
pii/S0010465517300085. doi:https://doi.org/10.1016/j.cpc.
2017.01.008.

[18] A. Natan, Phys. Chem. Chem. Phys. 17 (2015) 31510–31515.
URL: http://dx.doi.org/10.1039/C5CP01093D. doi:10.1039/
C5CP01093D.

[19] N. M. Boffi, M. Jain, A. Natan, Journal of Chemical Theory and Compu-
tation 12 (2016) 3614–3622. URL: https://doi.org/10.1021/acs.
jctc.6b00376. doi:10.1021/acs.jctc.6b00376.

[20] X. Wu, A. Selloni, R. Car, Phys. Rev. B 79 (2009) 085102. URL:
https://link.aps.org/doi/10.1103/PhysRevB.79.085102.
doi:10.1103/PhysRevB.79.085102.

[21] I. J. Bush, S. Tomić, B. G. Searle, G. Mallia, C. L. Bailey, B. Monta-
nari, L. Bernasconi, J. M. Carr, N. M. Harrison, Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 467 (2011)
2112–2126. doi:10.1098/rspa.2010.0563.

[22] B. Delley, The Journal of Chemical Physics 92 (1990) 508–517. URL:
https://doi.org/10.1063%2F1.458452. doi:10.1063/1.458452.

[23] J. M. Soler, E. Artacho, J. D. Gale, A. Garcı́a, J. Junquera, P. Ordejón,
D. Sánchez-Portal, Journal of Physics: Condensed Matter 14 (2002)
2745–2779. URL: https://doi.org/10.1088%2F0953-8984%

2F14%2F11%2F302. doi:10.1088/0953-8984/14/11/302.
[24] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren,

K. Reuter, M. Scheffler, Comput. Phys. Commun. 180 (2009) 2175–
2196. URL: http://linkinghub.elsevier.com/retrieve/pii/

S0010465509002033. doi:10.1016/j.cpc.2009.06.022.
[25] V. Havu, V. Blum, P. Havu, M. Scheffler, J. Comput. Phys. 228 (2009)

8367–8379. URL: http://linkinghub.elsevier.com/retrieve/

pii/S0021999109004458. doi:10.1016/j.jcp.2009.08.008.

[26] X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko,
A. Sanfilippo, K. Reuter, M. Scheffler, New J. Phys. 14 (2012)
053020. URL: http://stacks.iop.org/1367-2630/14/i=5/a=

053020?key=crossref.351b343783c2c1df1596219a941a74eb.
doi:10.1088/1367-2630/14/5/053020.

[27] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. DuÅak, L. Fer-
righi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristof-
fersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-
Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero,
J. Stausholm-Mø ller, M. Strange, G. A. Tritsaris, M. Vanin, M. Wal-
ter, B. Hammer, H. Häkkinen, G. K. H. Madsen, R. M. Nieminen,
J. K. Nø rskov, M. Puska, T. T. Rantala, J. Schiø tz, K. S. Thyge-
sen, K. W. Jacobsen, J. Phys. Condens. Matter 22 (2010) 253202. URL:
http://stacks.iop.org/0953-8984/22/i=25/a=253202.

[28] S. Mohr, L. E. Ratcliff, P. Boulanger, L. Genovese, D. Caliste, T. Deutsch,
S. Goedecker, J. Chem. Phys. 140 (2014) 204110. URL: http://www.
ncbi.nlm.nih.gov/pubmed/24880269. doi:10.1063/1.4871876.

[29] H. Shang, Z. Li, J. Yang, The Journal of Chemical Physics 135 (2011)
034110. URL: https://doi.org/10.1063%2F1.3610379. doi:10.
1063/1.3610379.

[30] T. Ozaki, Physical Review B 67 (2003). URL: https://doi.org/

10.1103%2Fphysrevb.67.155108. doi:10.1103/physrevb.67.
155108.

[31] X. Qin, H. Shang, H. Xiang, Z. Li, J. Yang, International Journal of
Quantum Chemistry 115 (2014) 647–655. URL: https://doi.org/
10.1002%2Fqua.24837. doi:10.1002/qua.24837.

[32] X. Qin, H. Shang, L. Xu, W. Hu, J. Yang, S. Li, Y. Zhang, The Inter-
national Journal of High Performance Computing Applications (2019)
109434201984504. doi:10.1177/1094342019845046.

[33] M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. V.
Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus, W. de Jong, Com-
puter Physics Communications 181 (2010) 1477–1489. URL: https:
//doi.org/10.1016%2Fj.cpc.2010.04.018. doi:10.1016/j.cpc.
2010.04.018.

[34] X. Liu, A. Patel, E. Chow, in: 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, IEEE, 2014. URL: https://doi.
org/10.1109%2Fipdps.2014.97. doi:10.1109/ipdps.2014.97.

[35] E. Chow, X. Liu, M. Smelyanskiy, J. R. Hammond, The Journal of Chem-
ical Physics 142 (2015) 104103. URL: https://doi.org/10.1063%
2F1.4913961. doi:10.1063/1.4913961.

[36] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing,
J. Hutter, Computer Physics Communications 167 (2005) 103–128. URL:
https://doi.org/10.1016%2Fj.cpc.2004.12.014. doi:10.1016/
j.cpc.2004.12.014.

[37] V. Weber, M. Challacombe, The Journal of Chemical Physics 125 (2006)
104110. URL: https://doi.org/10.1063/1.2222359. doi:10.
1063/1.2222359. arXiv:https://doi.org/10.1063/1.2222359.

[38] H. B. Schlegel, M. J. Frisch, International Journal of Quantum Chem-
istry 54 (1995) 83–87. URL: https://doi.org/10.1002%2Fqua.

560540202. doi:10.1002/qua.560540202.
[39] M. Hser, R. Ahlrichs, Journal of Computational Chemistry 10 (1989)

104–111. URL: https://doi.org/10.1002%2Fjcc.540100111.
doi:10.1002/jcc.540100111.

[40] J. Almlof, K. Faegri Jr., K. Korsell, Journal of Computational Chemistry
3 (1982) 385–399. URL: https://onlinelibrary.wiley.com/

doi/abs/10.1002/jcc.540030314. doi:10.1002/jcc.540030314.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.540030314.

[41] N. Troullier, J. L. Martins, Physical Review B 43 (1991) 1993–2006.
URL: https://doi.org/10.1103%2Fphysrevb.43.1993. doi:10.
1103/physrevb.43.1993.

[42] L. Kleinman, D. M. Bylander, Physical Review Letters 48 (1982) 1425–
1428. URL: https://doi.org/10.1103%2Fphysrevlett.48.1425.
doi:10.1103/physrevlett.48.1425.

6. Acknowledgments

This work is supported by the Special Fund for Strategic Pilot
Technology of Chinese Academy of Sciences (XDC01040000).

10

https://doi.org/10.1063%2F1.2187006
https://doi.org/10.1063%2F1.2187006
http://dx.doi.org/10.1063/1.2187006
http://linkinghub.elsevier.com/retrieve/pii/S0010465516300923
http://linkinghub.elsevier.com/retrieve/pii/S0010465516300923
http://dx.doi.org/10.1016/j.cpc.2016.04.003
https://doi.org/10.1021/acs.jctc.6b00092
https://doi.org/10.1021/acs.jctc.6b00092
http://dx.doi.org/10.1021/acs.jctc.6b00092
http://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.6b00092
http://www.sciencedirect.com/science/article/pii/S0010465509004135
http://www.sciencedirect.com/science/article/pii/S0010465509004135
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2009.12.021
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2009.12.021
https://doi.org/10.1063/1.4893377
https://doi.org/10.1063/1.4893377
http://dx.doi.org/10.1063/1.4893377
http://arxiv.org/abs/https://doi.org/10.1063/1.4893377
http://www.sciencedirect.com/science/article/pii/S0010465517300085
http://www.sciencedirect.com/science/article/pii/S0010465517300085
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2017.01.008
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2017.01.008
http://dx.doi.org/10.1039/C5CP01093D
http://dx.doi.org/10.1039/C5CP01093D
http://dx.doi.org/10.1039/C5CP01093D
https://doi.org/10.1021/acs.jctc.6b00376
https://doi.org/10.1021/acs.jctc.6b00376
http://dx.doi.org/10.1021/acs.jctc.6b00376
https://link.aps.org/doi/10.1103/PhysRevB.79.085102
http://dx.doi.org/10.1103/PhysRevB.79.085102
http://dx.doi.org/10.1098/rspa.2010.0563
https://doi.org/10.1063%2F1.458452
http://dx.doi.org/10.1063/1.458452
https://doi.org/10.1088%2F0953-8984%2F14%2F11%2F302
https://doi.org/10.1088%2F0953-8984%2F14%2F11%2F302
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://linkinghub.elsevier.com/retrieve/pii/S0010465509002033
http://linkinghub.elsevier.com/retrieve/pii/S0010465509002033
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://linkinghub.elsevier.com/retrieve/pii/S0021999109004458
http://linkinghub.elsevier.com/retrieve/pii/S0021999109004458
http://dx.doi.org/10.1016/j.jcp.2009.08.008
http://stacks.iop.org/1367-2630/14/i=5/a=053020?key=crossref.351b343783c2c1df1596219a941a74eb
http://stacks.iop.org/1367-2630/14/i=5/a=053020?key=crossref.351b343783c2c1df1596219a941a74eb
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://stacks.iop.org/0953-8984/22/i=25/a=253202
http://www.ncbi.nlm.nih.gov/pubmed/24880269
http://www.ncbi.nlm.nih.gov/pubmed/24880269
http://dx.doi.org/10.1063/1.4871876
https://doi.org/10.1063%2F1.3610379
http://dx.doi.org/10.1063/1.3610379
http://dx.doi.org/10.1063/1.3610379
https://doi.org/10.1103%2Fphysrevb.67.155108
https://doi.org/10.1103%2Fphysrevb.67.155108
http://dx.doi.org/10.1103/physrevb.67.155108
http://dx.doi.org/10.1103/physrevb.67.155108
https://doi.org/10.1002%2Fqua.24837
https://doi.org/10.1002%2Fqua.24837
http://dx.doi.org/10.1002/qua.24837
http://dx.doi.org/10.1177/1094342019845046
https://doi.org/10.1016%2Fj.cpc.2010.04.018
https://doi.org/10.1016%2Fj.cpc.2010.04.018
http://dx.doi.org/10.1016/j.cpc.2010.04.018
http://dx.doi.org/10.1016/j.cpc.2010.04.018
https://doi.org/10.1109%2Fipdps.2014.97
https://doi.org/10.1109%2Fipdps.2014.97
http://dx.doi.org/10.1109/ipdps.2014.97
https://doi.org/10.1063%2F1.4913961
https://doi.org/10.1063%2F1.4913961
http://dx.doi.org/10.1063/1.4913961
https://doi.org/10.1016%2Fj.cpc.2004.12.014
http://dx.doi.org/10.1016/j.cpc.2004.12.014
http://dx.doi.org/10.1016/j.cpc.2004.12.014
https://doi.org/10.1063/1.2222359
http://dx.doi.org/10.1063/1.2222359
http://dx.doi.org/10.1063/1.2222359
http://arxiv.org/abs/https://doi.org/10.1063/1.2222359
https://doi.org/10.1002%2Fqua.560540202
https://doi.org/10.1002%2Fqua.560540202
http://dx.doi.org/10.1002/qua.560540202
https://doi.org/10.1002%2Fjcc.540100111
http://dx.doi.org/10.1002/jcc.540100111
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540030314
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540030314
http://dx.doi.org/10.1002/jcc.540030314
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.540030314
https://doi.org/10.1103%2Fphysrevb.43.1993
http://dx.doi.org/10.1103/physrevb.43.1993
http://dx.doi.org/10.1103/physrevb.43.1993
https://doi.org/10.1103%2Fphysrevlett.48.1425
http://dx.doi.org/10.1103/physrevlett.48.1425

The authors thank the Tianhe-2 Supercomputer Center for com-
putational resources.

11

	1 Introduction
	2 Background
	3 Parallelization strategies
	4 Performance Results
	5 Conclusion
	6 Acknowledgments

