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Abstract

The numerical simulation of the time-dependent Schrödinger equation for quantum
systems is a very active research topic. Yet, resolving the solution sufficiently in
space and time is challenging and mandates the use of modern high-performance
computing systems. While classical parallelization techniques in space can reduce
the runtime per time step, novel parallel-in-time integrators expose parallelism in the
temporal domain. They work, however, not very well for wave-type problems such
as the Schrödinger equation. One notable exception is the rational approximation of
exponential integrators. In this paper we derive an efficient variant of this approach
suitable for the complex-valued Schrödinger equation. Using the Faber-Carathéodory-
Fejér approximation, this variant is already a fast serial and in particular an efficient
time-parallel integrator. It can be used to augment classical parallelization in space
and we show the efficiency and effectiveness of our method along the lines of two
challenging, realistic examples.

Keywords: Schrödinger equation, parallel-in-time, rational approximation of
exponential integrators, parallel across the method, Faber-Carathéodory-Fejér
approximation

1. Introduction

The time-dependent, non-relativistic Schrödinger equation [1] is a complex-valued
linear partial differential equation (PDE) that describes the time-evolution of a quantum
system. Being able to predict the behavior of a quantum system is important for many
applications. Without an analytical, tractable solution, however, numerical methods are
needed to evaluate the solution of the PDE. Interest in simulating the time-dependent
Schrödinger equation started in the end of the 1950s [2]. With the availability of
sufficiently powerful computers, these simulations became increasingly popular for the
investigation of molecular structures around 1970 [3, 4, 5] and are still relevant today
[6, 7, 8].
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For this work we restrict ourselves to the single-particle Schrödinger equation in d
dimensions,

i~
∂

∂t
ψ(r, t) =

(
− ~

2

2m
∆ + V(r)

)
ψ(r, t) , (1)

where ~ is the reduced Planck constant, m the mass of the particle, ∆ the Laplace
operator, V : Rd → R the potential, and ψ : Rd ×R→ C is the unknown wave function
ψ. Given an initial wave function ψ0 at some time t, the Schrödinger equation can
be used to compute the wave function at any later time. The function ψ encodes the
probability distribution of the position and momentum of the particle. More precisely,
the probability density of the position of the particle at time t is given by |ψ(r, t)|2,
while the momentum of the particle is, loosely speaking, encoded in the wave-length
of ψ via the de Broglie relation λ = h/p. For more details see, e.g., [9, 10, 11].

The Schrödinger equation is defined on an unbounded domain, which causes prob-
lems for numerical computations. Hence, we introduce a finite, but sufficiently large,
domain Ω ⊆ Rd . We then demand that ψ fulfills the Schrödinger equation for r ∈ Ω
and conforms to zero Dirichlet boundary conditions, i.e., we require that

ψ(r, t) = 0 for r ∈ ∂Ω .

These boundary conditions imply that the particle leaves the domain Ω with zero
probability. If Ω is large enough, this is a reasonable assumption and does not change
the outcome of the simulation.

In order to perform such a simulation, the continuous Schrödinger equation has to
be discretized both in space and time. Depending on the dimension, the smoothness
of the solution and the dynamics of the system, the resulting numerical method may
require fine and advanced discretization schemes to resolve the solution adequately and
over long time-scales. This mandates the application of parallel numerical algorithms
on high-performance computing systems.

Classical parallelization techniques primarily target the spatial domain and are very
successful in reducing the time-to-solution per time step. However, this approach can
neither mitigate the need for a better resolution in time nor can it scale indefinitely
for a fixed-size problem. One promising remedy is the application of parallel-in-time
integration techniques. They expose parallelism also in the temporal domain, either
within each time step, referred to as parallelization across the method, or by computing
multiple time steps simultaneously, referred to as parallelization across the steps [12].

Parallel-in-timemethods have been applied to amultitude of problems, ranging from
reaction-diffusion systems [13] and a kinematic dynamo [14] to eddy current problems
[15], fusion plasma simulations [16] as well as power systems [17] and robotics [18], to
name just a few very recent ones. For further reading, we refer to the comprehensive list
of references that is provided on the communitywebsite on parallel-in-time integration1.

Yet, many of these approaches fail for wave-type problems, which includes the non-
relativistic Schrödinger equation, we are interested in. For this class of problems, only
very specialized and often purely theoretical ideas exist. One promising one, which

1https://parallel-in-time.org
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has indeed shown its practical relevance, is the rational approximation of exponential
integrators (REXI). While it has been well known that certain forms of rational approx-
imations can be used to compute the matrix exponential in parallel [19, 20], it has been
first applied for the construction of a parallel-in-time solver for wave-type problems in
[21]. This method targets linear problems and forms a parallelizable approximation of
the exponential matrix function using rational functions, which can then be used to ap-
proximate the solution of the linear PDE. The approximation is designed in a way such
that its evaluation consists mainly of the computation of a sum, where the computation
of each summand is expensive. The benefit of this structure is that each individual
summand in the approximation can be computed in parallel. It can thus be classified as
parallel across the method, although its approach allows to take much larger time steps
as more classical methods like Crank-Nicolson. REXI has been successfully applied
to shallow-water equation on the rotating sphere [22] and to linear oscillatory prob-
lems [21, 23], making parallel-in-time integration possible even for these challenging
problems.

The rational approximation chosen in the original REXI approach presented in [21],
however, involves taking the real part of a complex quantity. While the method can still
be applied for complex-valued problems such as the Schrödinger equation, it becomes
significantly more expensive.

In this paper, we therefore present a variant of the REXImethod specifically targeted
toward complex-valued problems. We use a variation of the Faber-Carathéodory-
Fejér (Faber-CF) approximation together with a conformal Riemann mapping, which
is tailored for the purely imaginary eigenvalues of the semi-discretized Schrödinger
equation. This approach reduces the cost of the REXI method substantially, i.e., fewer
summands are needed for the rational approximation, thereby increasing the ratio of
accuracy per parallel task. For a given accuracy, this method imposes a restriction on
the time-step size, which is also discussed in this paper. We note that this restriction is
inherent to the REXI approach itself and needs to be considered for the original version
as well.

We begin by briefly explaining the finite element discretization in space (Section 2)
which leads to a system of ordinary differential equations (ODEs) that needs to be
solved. Then, we discuss how to solve this system by approximating a certain matrix
exponential (Section 3) and how this computation can be performed in parallel (Sec-
tion 3.1). For this approximation we need to find a suitable rational approximation to
the exponential function, which we construct by using the Faber-Carathéodory-Fejér
method (Section 3.2). Finally, we apply the method to two challenging, realistic prob-
lems, namely the quantum tunneling and the double-slit experiment, analyzing the
performance of the method (Section 4) and finally discuss the applicability of the
numerical method (Section 5) beyond the Schrödinger equation.

2. Space Discretization

To simulate the Schrödinger equation, we need an appropriate discretization of the
equation. We start by applying the method of lines approach to turn the PDE into a
system of ODEs, by applying the finite element method [24, 25, 26] to the spatial part
of the PDE.
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The finite element discretization is based on the weak formulation of the PDE. For
a domain Ω, let H1(Ω) ⊂ CΩ be the Sobolev space of order one and let H̊1(Ω) be
the subset of H1(Ω) that consists of functions whose trace vanishes, i.e., H̊1(Ω) :={
u ∈ H1(Ω) : u|∂Ω = 0

}
, where u|∂Ω is the trace of u [25]. The weak formulation of the

Schrödinger equation (1) is to find ψ such that

ψ(t, ·) ∈ H̊1(Ω) and ib
(
φ,

∂ψ
∂t (t)

)
= a(φ, ψ(t)) for all φ ∈ H̊1(Ω) ,

where a and b are the bilinear forms given by

a(φ, ψ) :=
∫ (

~2

2m∇φ · ∇ψ + Vφψ
)

dr and b
(
φ,

∂ψ
∂t

)
:= ~

∫
φ
∂ψ
∂t dr

[27, 28].
We can turn the weak formulation into a discrete problem using the famous Ritz

approach [29], which approximates the solution of the weak form of the PDE.We select
a suitable subspaceVh ⊆ H̊1 and replace H̊1 byVh in the weak formulation. In our case,
we choose Vh = {u ∈ H̊1(Ω) : u|T ∈ P2 for all T ∈ T }, where T is a triangulation
of the domain Ω. More precisely, we use Lagrange finite elements of order 2 on each
triangle [26, 25]. Introducing basis vectors χ1, . . . , χn forVh , we can write the modified
weak formulation as

iB ∂u
∂t (t) = Au(t) , (2)

where A, B ∈ Rn×n with Ajk = a(χj, χk), and Bjk = b(χj, χk). The vector u ∈ Cn
contains the basis coefficients of the approximation of the solution. Together with
suitable initial conditions u(0) = u0, this system of ODEs defines the initial value
problem (IVP) that we intend to solve using an efficient, parallel-in-time integrator.

3. Time Discretization

Some of themost efficient time integrationmethods for the Schrödinger equation are
based on the approximation of the matrix exponential [30]. Classical time integration
schemes require the step size of the method to be a fraction of the shortest wave-
length that is present in the problem. Methods based on the computation of the matrix
exponential usually do not have this restriction and can in principle use much larger
step sizes.

The matrix exponential can be used to compute the solution of the IVP. Since the
matrices A and B do not depend on the time variable t, the solution u(τ) for τ > 0 of
the IVP (2) is given by

u(τ) = exp(τM) u0 with M := (iB)−1 A , (3)

where exp is the matrix exponential [31, 32]. Thus, one way to solve the IVP is to
compute an approximation to the product of the vector u0 and the matrix exponential
of M .
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3.1. Rational Approximation of Exponential Integrators
We want to use rational approximations to compute the matrix exponential numeri-

cally. There are various ways to compute the exponential of a matrix [33, 34], however,
we are interested in methods that use rational approximations, because these methods
can be constructed in a way that allows for parallelizing the time integration scheme
itself, increasing the parallelism of the overall solution process [21, 23, 22].

It can be shown that the matrix τM = τ (iB)−1 A is diagonalizable with purely
imaginary eigenvalues. Hence, for simplicity, we restrict ourselves in the following to
the computation of exponentials of matrices that have these properties. The method,
however, can be applied in cases where these two assumptions do not hold.

Thematrix exponential is a special case of amatrix function, which is away to extend
a scalar function f : C→ C to the set of matrices, i.e., to a function f : Cn×n → Cn×n
[35]. If G is diagonalizable, i.e., G = XΩX−1, Ω = diag(ω1, . . . , ωn), the matrix
function of f is given by f (G) = X diag( f (ω1), . . . , f (ωn)) X−1. Diagonalizing a large
matrix, however, is computationally expensive, and thus this formula is usually not
useful for computing the function of a matrix.

We can reduce the computational costs by replacing the direct computation of the
matrix function by a suitable approximation. By using the diagonalization of G, we see
that if f̃ is a function which approximates f in the eigenvalues of G then the matrix
function f̃ (G) is close to f (G). Thus, if f̃ (G) is cheap to compute, we have a practical
way for evaluating the matrix function f (G) numerically.

Matrix functions of rational functions can be computedwithout the need of explicitly
computing the diagonalization of the matrix. Assume that r = p/q, and p, q are
polynomials such that r approximates f in the eigenvalues of G. Computing r(G) to
approximate f (G) is a feasible approach for the numerical evaluation of the matrix
exponential on its own, however, by making an additional assumption, we can derive a
time-stepping scheme that intrinsically allows for the simultaneous execution of certain
parts of the computation.

Assume that deg p < deg q and that the roots of p are distinct. In this case, we can
use the partial fraction decomposition to obtain that

r(z) =
K∑
j=1

βj

z − σj
(4)

for proper shifts σj ∈ C and coefficients βj ∈ C, j = 1, . . . ,K , K ∈ N, and the
corresponding matrix function

r(G) =
K∑
j=1

βj(G − σj I)−1 ,

which approximates f (G).
Using the rational approximation of the matrix function f (G), we can define the

REXI time stepping scheme. Let f = exp, G = τM , and r a rational approximation as
discussed above, i.e., r(τM) ≈ exp(τM). Then, the exponential formula for the solution

5



of the ODE (3) implies that u(τ) ≈ r(τM)u0. Hence, we define one time step of the
REXI method by u1 = r(τM) u0, which can be computed by

u1 =

K∑
j=1

βj(τ(iB)−1 A − σj I)−1u0 =

K∑
j=1

βj((iB)−1(τA − σj iB))−1u0

=

K∑
j=1

βj(τA − σj iB))−1 (iB) u0 ,

(5)

where we used the definition of M .
The benefit of computing matrix exponential times vector by evaluating the rational

approximation via (5) is that the evaluation of this approximation can be readily paral-
lelized, because each summand can be evaluated independently. Thus, each of the K
linear systems can be solved independently, using K different parallel tasks. We refer
to this particular splitting of the computation into tasks as time-parallelization, because
it uses only properties that are inherent to the time-stepping scheme itself. Note that
each of these K temporal tasks can be parallelized themselves, since they involve a set
of vector and matrix routines, which can be executed in parallel as well. We call this
second splitting space-parallelization, because the vectors and matrices describe the
spatial dimension of the problem. Using time-parallelization into Pt tasks and then
applying space-parallelization into Ps sub-tasks to each of the temporal tasks yields
Pt · Ps sub-tasks that can be executed simultaneously.

To be able to implement and apply this method, it remains to derive proper shifts σj

and coefficients βj (for j = 1, . . . ,K). Note that, in general, we only need to compute
these shifts and coefficients once, because they do not depend on the initial values or
the time step. In the following, we will describe the derivation of these parameters
in detail using the Faber-Carathéodory-Fejér (Faber-CF) approximation, introduced in
[36]. The intention here is to allow interested readers to comprehend and reproduce the
steps necessary to obtain the σj and βj and thus the full algorithm.

We point out that the use of the Faber-CF approximation is a key difference to the
REXI approach in [21] and [23]. There, an approximation of the form

eix ≈ Re ©«
K∑
j=1

γj

ix + µj
ª®¬

for certain γj, µj ∈ C is used. If all eigenvalues of M are purely imaginary, as in our
case, and all eigenvectors can be chosen to be real, then

eτM ≈ Re ©«
K∑
j=1

γj(τM + µj I)−1ª®¬ ,
where Re denotes the element-wise real-part of the matrix.

The problem when applying this approximation to the Schrödinger equation is that
we want to compute eτM u0 where u0 has complex entries without explicitly computing
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the matrix eτM . If u0 would be real, then u0 could just be moved inside the computation
of the real part. Since u0 is complex, however, we need to compute

eτM u0 ≈ Re ©«
K∑
j=1

γj(τM + µj I)−1 Re(u0)
ª®¬ + i Re ©«

K∑
j=1

γj(τM + µj I)−1 Im(u0)
ª®¬ ,

which is twice as much work as in the real case. The Faber-CF approximation that we
use does not have this drawback.

Furthermore, the shifts used in the method derived in [21, 23] form conjugate pairs.
Using properties of the real numbers, the method only needs to solve one linear system
for each conjugate pair. Since the matrix M of the discretization of the Schrödinger
equation has complex entries and the right-hand side of the linear systems are complex
valued, such an simplification is not possible in the setting we consider in this paper.

There exists another difference between the two approaches. The Faber-CF ap-
proximation computes the approximation essentially in one step, while the method in
[21] involves a two step approximation. First, a rational approximation to a Gaussian
function is constructed. Then, this approximation is used, to approximate the function
eix . This procedure has the benefit that it is easy to compute approximations that are
accurate over large intervals and thus allow for the large time steps (see Section 3.3).
In our experience, however, using the same accuracy and same approximation interval,
the Faber-CF approximation requires fewer poles and therefore fewer linear systems to
solve, as detailed in Section 3.3 below.

3.2. Faber-Carathéodory-Fejér Approximation
The Faber-Carathéodory-Fejér approximation is based on the Carathéodory-Fejér

(CF) approximation introduced in [37]. The latter computes an approximation to
holomorphic functions on the unit disc. The former uses the Faber transform, to
generalize the Carathéodory-Fejér approximation to almost arbitrary approximation
domains.

3.2.1. The Carathéodory-Fejér Approximation
The CF approximation is a rational approximation to a holomorphic function on the

unit disc D := {z ∈ C : |z | ≤ 1}. The resulting rational approximations are only close
to the best approximation, but easier to obtain.

Let us start by introducing the following notation. Let Rmn be the set of rational
functions r(z) = p(z)

q(z) with deg(p) ≤ m and deg(q) ≤ n that are holomorphic in D.
Furthermore, let S := {z : |z | = 1} denote the unit circle. We define the uniform norm
of a complex valued function u on the unit disc by ‖u‖D := sup{|u(z)| : z ∈ D} and the
uniform norm of a complex valued function u on the unit circle by ‖u‖S := sup{|u(z)| :
z ∈ S}.

With this notation at hand, our next step is to simplify the problem. Assume that
r ∈ Rmn is an approximation to a function f which is holomorphic on D. In this case,
the error e(z) := f (z) − r(z) is also holomorphic on D. We want that the size of the
error to be as small as possible, i.e., we want ‖e‖D to be small. Since e is holomorphic
on D, its maximum is located on the boundary of D. Thus, to minimize ‖e‖D we just
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have to minimize ‖e‖S , i.e., we just have to find a rational function that approximates f
well on the sphere S.

It is difficult to find the best approximation to f in Rmn. The key idea of the CF
approximation is to find the best approximation to f in a larger space R̃mn with respect
to the ‖ · ‖S norm and then approximate the best approximation from R̃mn with a function
from Rmn. The space R̃mn is defined as follows. Let G be the set of functions that are
analytic and bounded in 1 < |z | ≤ ∞ and zero at z = ∞. Then define R̃nn := Rnn + G
and R̃mn := zm−n R̃nn. One can show that the space R̃mn consists of the functions

r̃(z) =
∑m

k=−∞ dk zk∑n
k=0 ek zk

, (6)

where the poles of the numerator lie inside the unit disc and the roots of the denominator
lie outside the unit disc.

Once we have obtained the best approximation r̃∗ ∈ R̃mn in the form of (6) we
can use it to find an approximation in Rmn that is close to r̃∗—the CF approximation.
Consider the asymptotic analysis of approximating a function z 7→ f (ε z) for ε → 0,
ε > 0 where f is smooth. In [37] it was shown that for small enough ε , the best
approximation r̃∗ gets arbitrarily close to a rational function. This behavior motivates
the construction of the CF approximation rcf : we compute r̃∗ in the form of (6) and
discard the summands with negative indices from the numerator, i.e.,

rcf(z) =
∑m

k=0 dk zk∑n
k=0 ek zk

.

We thus need to find the best approximation r̃∗ of f in R̃mn. First of all note that
f can be written in Maclaurin series form, because f is holomorphic. In case the
Maclaurin series is not known, it can be computed via the fast Fourier transform (FFT).
Since the Maclaurin series converges, we can find an L ∈ N such that the polynomial h
of degree L that we get by truncating the series after L + 1 terms approximates f with
negligible error. Thus, the problem simplifies to finding the best approximation r̃∗ to
a polynomial h. The theorem below enables us to compute the best approximation in
R̃mn of a polynomial.

Theorem 1 (Trefethen). The polynomial h(z) = a0 + · · · + aL zL has a unique best-
approximation r̃∗ out of R̃mn. Let

Hmn :=

©«

am−n+1 am−n+2 am−n+3 · · · aL

am−n+2 am−n+3 · · · aL

am−n+3 · · · aL

... . .
.

aL 0

ª®®®®®®¬
∈ C(K+n−m)×(K+n−m) ,

where we define ak = 0 for k < 0. The error of the approximation r̃∗ is

‖h − r̃∗‖S = σn+1(Hmn) ,
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where σn+1(Hmn) is the (n+ 1)-st singular value of the matrix Hmn. Furthermore, r̃∗ is
given by

h(z) − r̃∗(z) = σn+1zL
u1 + · · · + uK+n−mzL+n−m−1

vL+n−m + · · · + v1zL+n−m−1 (7)

where u = (u1, . . . , uL+n−m)T and v = (v1, . . . , uL+n−m)T are the (n + 1)st columns of
U and V , respectively, in the singular value decomposition Hmn = UΣVH .

Proof. See [37, Theorem 3.2]. �

This theorem provides us with a formula for the error of the approximation and
we can now work backwards from the error to obtain the approximation r̃∗ ∈ R̃mn

via (7). From r̃∗ we then obtain the CF-approximation rcf ∈ Rmn by dropping the
terms with negative indices from the numerator. Since we want to be able to write the
rational approximation in partial fraction decomposition form (4), we restrict ourselves
to the case n = m + 1 in the following. The whole procedure for this case is listed in
Algorithm 1.

Algorithm 1 Computation of the Carathéodory-Fejér Approximation
1: function CF((ai)Lj=0, n)
2: h(z) :=

∑L
j=0 aj z j . the polynomial to approximate

3: H :=

©«

a0 a1 a2 · · · aL

a1 a2 . .
.

a2 . .
.

... . .
.

aL 0

ª®®®®®®®®¬
4: U, Σ,V := SVD(H) . UΣVH is the singular value decomposition of H
5: σn+1 := Σn+1,n+1 . the (n + 1)-st singular value of H
6: u := U∗,n+1 . the (n + 1)-st column of U
7: v := V∗,n+1 . the (n + 1)-st column of V
8: p(z) := u1 + u2z + · · · + uk+1zL

9: q(z) := vK+1 + vK z + · · · + v1zL

10: r̃∗(z) := h(z) − σn+1zL
p(z)
q(z)

11: z1, . . . , zK := the roots of q whose absolute modulus is larger than one
12: qout(z) := (z − z1) · (z − z2) · · · (z − zK )

. the denominator of the CF-approximation
13: (dj)∞j=−∞ := LaurentSequence(qoutr̃∗) . q∗outr̃ =

∑∞
j=−∞ dj z j

14: rcf(z) :=
d0 + d1z + · · · + dn−1zn−1

qout(z)
. drop the coefficients with negative

indices
15: return (rcf, (z1, . . . , zK ))
16: end function

9



The algorithm starts by computing the quantities used in Theorem 1 (ll. 3–9).
Rearranging the error equation (7) yields r̃∗, the best approximation in R̃mn (l. 10).
Unfortunately, in this form r̃∗ does not provide us with the coefficients of the numerator
and denominator. Since h is a polynomial, it is easy to see that the poles of r̃∗ are the
roots of the polynomial q. We want to write r̃∗ in the form of (6). By definition, all
roots of the denominator lie outside of the unit disc, while the poles inside the unit disc
are part of the numerator. Thus, we obtain the denominator of r̃∗ by multiplying all
linear factors of q corresponding to roots outside the unit disc (ll. 11–12). Finally, we
obtain the coefficients of the numerator by computing the Laurent series of qoutr̃∗ and
then dropping the terms with negative indices.

Note that K ≤ n and in general we expect K to be equal to n. In the case where
a root of the denominator q lies on the unit circle, K can be less than n. In this case,
the root in the denominator is canceled by a root in the numerator p. For all practical
purposes, however, we can assume that by choosing n we can choose the degree K of
the rational approximation [37].

3.2.2. Using the Faber Transform
Inmany practical applications it is desirable to compute approximations to functions

that are defined on domains other than the unit disc. In our case we are interested in
computing an approximation that is accurate at the eigenvalues of the matrix M (3).
Since the eigenvalues of M are purely imaginary we can restrict the approximation
domain to an interval on the imaginary axis. While it would be simple to compute
approximations on a disc with a radius large enough to include the desired interval,
being able to choose the approximation domain more precisely, and hence smaller,
often leads to a better approximation accuracy.

Using the Faber transform, the CF approximation can be extended to allow for the
approximation of functions defined on more general domains. Key to this modification
is the observation in [36] that the Faber transform maps a rational function onto a
rational function. We shall discuss the method introduced in [36], which we modify to
compute the rational approximation in partial fraction decomposition form (4).

The Faber transform is based on the fact that Faber polynomials can be used to
derive a series expansion of analytic functions. More precisely, let E ⊂ C be a compact
set such that the complement Ec of E is simply connected in the extended complex
plane. Then, an argument involving the Riemann mapping theorem [38] shows that
there exists a conformal map η that maps the complement Dc of the closed unit disc
conformally onto Ec such that η(∞) = ∞ and limz→∞ η(z)/z = c. Using this function
η we can construct a family of polynomials pj (for j = 1, 2, . . . ) with p0(w) = 1 and
deg(pj) = j, such that every analytic function f on E can be written as

f (w) =
∞∑
j=0

ajpj(w) where an =
1

2πi

∫
|z |=1+ε

f (η(z))z−n−1 dz , (8)

where ε > 0 has to be chosen small enough [39, 36] such that g is analytic on η(D1+ε ),
where D1+ε := {z : |z | ≤ 1+ε}. These polynomials pj are called theFaber polynomials
of E . Note that they only depend on η and not on f .
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Let g be analytic on the unit disc, i.e., g(z) = ∑∞
j=0 cj z j . The Faber transform of g

is given by

[T g](w) =
∞∑
j=0

ajpj(w) .

In other words, the inverse Faber transform T −1 f of f is given by replacing pj by zj
in the Faber series (8) of f . Furthermore, the Faber coefficients aj can be computed
without knowing the Faber polynomials.

As already mentioned, the Faber transform maps rational functions onto rational
functions. Hence, we can obtain an approximation to a function f defined on E by
computing theCF approximation of the inverse Faber transformof f and then computing
the Faber transform of the resulting rational approximation. The whole method is given
in Algorithm 2.

Algorithm 2 Computation of the Faber-CF-Approximation
1: function FaberCF( f , η, L, n)
2: (aj)∞j=0 := FaberSequence( f ) . f (w) = ∑∞

j=0 ajpj(w)
3: (rcf, (z1, . . . , zK )) := CF((aj)Lj=0, n) . use Alg. 1 here
4: σj := η(zj) for j = 1, . . . ,K
5:

(
b(k)j

)∞
j=0 := FaberSequence(w 7→ 1

w−σk
) for k = 1, . . . ,K

.
∑∞

j=0 b(k)j pj(w) = 1
w−σk

6: (cj)∞j=0 := Maclaurin(rcf) . r̃(z) = ∑∞
j=0 cj z j

7: solve

©«
b(1)0

. . .

b(K)0
b(1)1 b(K)1
...

...

b(1)
K−1 b(K)

r−1

ª®®®®®¬
©«
β1
β2
...
βK

ª®®®®¬
=

©«
c0
c1
...

cK−1

ª®®®®¬
8: return ((σ1, . . . , σK ), (β1, . . . , βK )) . f (w) ≈ ∑K

j=1
β j

w−σj

9: end function

First, the algorithm computes the coefficient of the Faber series (l. 2). These are
the coefficients of the Maclaurin series of T −1 f . The algorithm then uses the first
L + 1 coefficients to compute a CF approximation for this analytic function (l. 3). It
has been shown in [36] that the poles of T rcf are η(zj), where zj for j = 1, . . . ,K are
the poles of rcf. These poles are computed in the next step (l. 5). At this stage of
the algorithm we know that the approximation takes the form w 7→ ∑K

j=1
β j

w−σj
and it

remains to determine the coefficients βj for j = 1, . . . ,K . Since the Faber transform is
linear, considering the Maclaurin series of both sides of the equation

rcf = T −1
(
w 7→

K∑
j=1

βj

w − σj

)
yields a linear system for the coefficient βj . This computation is the final step of the
algorithm (l. 6–7).

11



For the purpose of applying this algorithm to the Schrödinger equation, we need to
find a suitable mapping η. As mentioned before, the eigenvalues of the matrix M are
all purely imaginary. Hence, we choose the conformal mapping

η(z) := R1
2

(
z − 1

z

)
, (9)

which maps the unit sphere S onto the interval i[−R1, R1] imaginary axis, where all
eigenvalues of the matrix M are located. It is here where the problem at hand needs
to be taken into account. Specifically, if the matrix M has eigenvalues in a different
domain, the Riemann mapping η needs to be chosen differently.

To summarize, with η tailored for the IVP (2), we can a priori compute shifts σj

and coefficients βj , j = 1, . . . ,K , to compute the rational approximation r(M) in partial
fraction decomposition form (4). This allows us to approximate the matrix exponential
in order to evaluate the matrix exponential (3) for a given time τ.

3.3. Step-Size Requirements
In principle, the exponential formula (3) allows us to compute arbitrary large time

steps. There are, however, practical limitations. Assume, we choose a large time-step
size τ. The solution of the IVP at time τ is given by exp(τM) u0. When τ is large,
the spectral radius of τM is large as well. As discussed in Section 3.1 the rational
approximation should be close to the true function values at the eigenvalues of τM ,
which makes the computation of the rational approximation more challenging.

Computing the CF approximation for a large domain ismore expensive than comput-
ing it for a smaller domain. For a larger domain the degree of the rational approximation
needs to be larger, and the number of terms of the Maclaurin series that we need also
becomes larger, whichmakes the computation of the singular value decompositionmore
and more expensive. Furthermore, the computation of the CF approximation is already
expensive on its own. Hence, we would like to compute the approximation only once
and then reuse it. This choice, however, limits the step size that our method is able to
perform, as we shall see.

Let us examine the approximation error of the REXI method. For this purpose, let
f : C → C be a given function. We would like to compute the matrix function f (G)
for some matrix G. For an approximation r to f we define the error function e by
e(ω) := f (ω) − r(ω). Computing r(G) instead of f (G) results in the error f (G) − r(G)
and it is easy to see that f (G) − r(G) = e(G). Hence, to compute a bound on the
approximation error, we need to find a bound on the norm of e(G). It turns out that if
we can bound the error function e in the eigenvalues of G, we can bound e(G).

Proposition 2. Let G ∈ Cn×n and assume that G = X diag(ω1, . . . , ωn)X−1. Further-
more, assume that there exists ε > 0 such that

e(ωj) < ε for j = 1, . . . , n.

Then, ‖e(G)‖∞ ≤ ε cond∞(X) where ‖v‖∞ := maxj |vj |, ‖G‖∞ is the corresponding
operator-norm, ‖G‖∞ = maxk

∑n
j=0 |Gk j |, and cond∞(X) = ‖X ‖∞ ‖X−1‖∞.

Proof. Follows from [35, Theorem 4.25]. �
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Table 1: A parameter choice for the Faber-CF-Approximation with corresponding properties.

K η R1 Approx. Domain ‖e‖∞
16 see eq. (9) 10 i[−10, 10] 2.38 × 10−9

We can apply this proposition to the case of solving the Schrödinger equation using
the REXI method. We know that all eigenvalues of M lie on the imaginary axis.
Assume that e(ω) = f (ω) − r(ω) < ε for ω ∈ i[−R1, R1]. Then, if we set

τ =
R1

sr(M) , (10)

where sr(M) := maxj |λj | is the spectral radius of M , we have that the eigenvalues of
τM , which are τλj , fulfill that |τλj | < R1. Hence, then the assumptions of Proposition 2
are satisfied. Thus, to guarantee proper simulations results we should make sure that
(10) is satisfied. This restriction is inherent to all variants of the REXI methods.

Note that we only need a rough estimate for the largest eigenvalue of M in order to
ensure that the accuracy condition (10) is fulfilled. Such an estimate can be obtained
by running only a few iterations of a sparse eigensolver [see, e.g., 40, and the references
therein]. Especially when running many time steps, the time for estimating the largest
eigenvalue can be neglected, since it only needs to be computed once.

Furthermore, note that in order to compute larger time steps, we can choose larger
values for R1 in the conformal map (9). Choosing larger values of R1, however, is likely
to increase the approximation error ε . Hence, to compensate for an increase in error,
one needs to increase the degree K of the rational approximation, which increases the
overall cost of the method, because it requires more linear systems to be solved.

In the remainder of this paper, we shall use the Faber-CF-Approximation defined
by the parameters listed in Table 1. This choice leads to an approximation which has
an error of roughly 1 × 10−9 on the approximation interval i[−10, 10]. This interval
contains about three periods of exp(iω). Hence, using this approximation one time step
of the REXI method can contain up to three oscillations of the solution (at a specific
point in the spatial domain).

Comparing this approximation to the approximation derived in [21, 23], we con-
structed an approximation using the method from these publications with a comparable
accuracy on the approximation interval i[−10, 10]. To the best of our knowledge, this
approximation requires at least 34 poles to achieve the same accuracy. Thus, while the
REXI method using the Faber-CF-Approximation needs to solve 16 linear systems per
time step, the method from these publications needs to solve 68 linear systems for the
same time-step size, because it has to solve two linear systems per pole, as discussed in
Section 3.1.

3.4. Stability
Since every step of the computation introduces rounding errors and an approxi-

mation error, it is important that these errors are not amplified in the following steps.
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Figure 1: Stability of the REXI method using the Faber-CF approximation specified in Table 1.

Amplification of these errors would cause a run-away effect, which leads to an expo-
nential growth of the error and needs to be avoided. Methods that are stable damp the
error and thus keep the error under control.

A standard way to asses the stability of a method is to apply it to Dahlquist’s test
equation [41, 42], which is the ODE

∂u
∂t
(t) = ω · u(t) for t > 0

u(0) = 1
(11)

for ω ∈ C. Let un
ω be the value computed by the method under consideration after n

steps for a particular choice of ω. We define the domain of absolute stability of the
method by

S = {ω ∈ C : |un
ω | → 0 for n→∞} .

The process of solving our ODE of interest (2) using a method with stability domain
S and time step τ is considered stable, if τλ ∈ S for all eigenvalues λ of the matrix
M = (iB)−1 A [cf. 42, Chapter IV]. Hence, to analyze the stability of the REXI method,
we compute the domain of absolute stability of the method.

To compute the stability domain, we need to solve the test equation (11) using the
REXImethod, which yields the iteration un+1

ω = r(ω) ·un
ω , where r is the chosen rational

approximation of the exponential. Thus, un
ω = (r(ω))n · u0

ω , and as a consequence,
|un
ω | → 0 for n → ∞ if and only if |r(ω)| < 1. Therefore, the stability domain of the

REXI method is given by

S = {ω ∈ C : |r(ω)| < 1} .

Turning to the specific REXI method considered in this paper, we see in Figure 1(a)
that the method has a large stability domain. The eigenvalues of the matrix M , however,
are located on the imaginary axis, which is not fully contained in the stability domain
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of the method. Taking a closer look at the values of |r(z)| − 1 for z ∈ iR, as shown in
Figure 1(b), reveals that |r(z)| exceeds one by roughly 1 × 10−9 on the approximation
interval i[−10, 10]. That |r(z)| is close to one on the approximation interval is no
surprise, because r(z) approximates exp(z), and | exp(z)| = 1 on the imaginary axis.
The absolute value of the approximation, however, exceeds one on the approximation
interval by at most ‖e‖∞, the size of the approximation error. Hence, the method can
be stabilized by multiplying all coefficients βj used in rational approximation (4) by a
factor of 1 − ε , where ε is slightly larger than ‖e‖∞. Since this modification introduces
an error which is of the same order of magnitude as the approximation error, the overall
accuracy of the method is only slightly reduced. Recall that in order for all eigenvalues
of M to be contained in the approximation interval, the accuracy condition (10) needs
to be fulfilled.

Theremight be cases where the largest eigenvalues of thematrix M is not known and
estimating its size is too expensive. Since, the degree of the numerator is smaller than
the degree of the denominator of the rational approximation r , |r(z)| → 0 for |z | → ∞
and thus large eigenvalues have a good chance of falling into the region of stability.
Hence, if the corresponding mode is irrelevant for the solution process, usable results
might still by obtained. Nevertheless, we recommend to compute a rough estimate for
the largest eigenvalue and use the accuracy condition (10) to choose the step size. Note,
this behavior is in contrast to polynomial approximations, like the Chebyshev method
[43], we will discuss below. For a polynomial (of degree larger than zero), |p(z)| → ∞
for |z | → ∞, and hence the method becomes almost immediately unstable if one of the
eigenvalues of M lies outside of the approximation region.

Turning to the specific approximation as specified by Table 1, we observe that
|r(z)| exceeds one by only 10−9, which results in an error growth proportional to
(1 + 10−9)n = en ·log(1+10−9) ≈ en ·10−9 . Even though the error grows exponentially, since
the base is only slightly larger than one, it requires a large number of time steps for
the exponential effect to dominate. For example, for an error amplification of a factor
of 2 we need to run the method for 7 × 108 time steps. Here, we do not plan to run
our method for such a large number of time steps. Hence, in the following, we do not
stabilize the method for the benefit of a higher accuracy.

4. Numerical Experiments

We carry out numerical experiments to study the potential, effectiveness and effi-
ciency of the method presented above. To test the algorithms in a realistic setting, we
simulate two different quantum mechanical systems that feature two famous quantum
mechanical phenomena that cannot be explained by classical mechanics.

To this end, we use an implementation of the REXI method written in C++ and
parallelized using MPI2. For the finite element discretization we use libMesh [44] and
all matrix and vector operations are implemented using the PETSc library [45]. All
computations are performed on the JURECA3 cluster [46], which consists of 1872 nodes

2Message Passing Interface
3Jülich Research on Exascale Cluster Architectures
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Table 2: Parameters of the quantum tunneling simulation.

Parameter m Vmax Cbarr Σ σ r̄ p̄

Value 1 me 15 Eh 0.005 a0 σI 4 a2
0 −3 a0 5 ~

a0

connected via InfiniBand. The nodes we use contain a two-socket board equipped with
two Intel Xeon E5-2680 v3 and 128GiB of memory.

In many applications we want to start the simulation with a particle at a certain
location and with a certain momentum and see how it evolves in time. Due to the
Heisenberg uncertainty relation, however, we can either give a quantum particle a
defined position or a defined momentum, but not both. Hence we choose a Gaussian-
wave package as initial condition.

A Gaussian wave-package is defined as

ψ(r) := Cnorm · e−
1
2 (r−r̄)T Σ−1(r−r̄) · ei〈p̄,r−r̄〉/~ (12)

where Σ ∈ Rd×d is a symmetric, positive definite matrix and Cnorm ∈ R is chosen such
that ∫

Ω

ψψ dr = 1 .

The wave-package describes a particle ensemble with position expectation value r̄ and
momentum expectation value p̄. The matrix Σ describes the uncertainty of the particle
position. At the same time the matrix influences the uncertainty of the momentum—the
smaller the uncertainty of the position the larger the uncertainty of the momentum and
vice versa.

For simplicity, all quantities are measured in Hartree atomic units [47, 48], i.e., we
choose a system of measurement in which the electron mass me, the elementary charge
e, the reduced Plank constant ~, and the inverse Coulomb constant 4πε0 are all equal to
one. In this system, length is measured in bohr, a0, i.e., the Bohr radius, and energy is
measured in Hartree, Eh = ~/(mea2

0).

4.1. Quantum Tunneling
We start our numerical investigation by considering a simulation of quantum particle

tunneling through a step-potential barrier. Quantum tunneling describes a phenomenon
in which a quantum particle passes through a potential barrier even though its kinetic
energy is smaller than the height of the barrier [see, e.g., 9, 10, 11]. This behavior is in
contrast to classical mechanics where such a behavior is not possible.

We consider the tunneling process defined as follows. An electron moves in the
step-potential given by

V(r) =
{

Vmax if |r1 | ≤ Cbarr
2

0 otherwise
,

which has a barrier at x = 0. The electron starts at the left of the barrier and moves
to the right, with a speed typical for electrons that are emitted by electron guns. When
the electron reaches the barrier it has a certain probability of being reflected from the
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Figure 2: A 1D tunneling problem. Simulation of the Schrödinger equation using the parameters from Table 2
and a Gaussian wave-package as initial values at two different times.

barrier or tunneling though the barrier. We simulate this process by numerically solving
the Schrödinger equation (1) with the step-potential, a Gaussian wave-package (12) as
initial values, and the parameters listed in Table 2.

Figure 2 shows the state of the quantum system at two different times. In the initial
state (Figure 2(a)) the probability density is concentrated at the left of the domain. At a
later time (Figure 2(b)) a part of the particle ensemble has passed through the barrier at
x = 0, which can be seen by a raise of the probability density for x > 0. A large portion
of the particles, however, is reflected from the barrier, which results in the interference
pattern caused be the superposition of the incoming and reflected waves.

For the numerical simulation, we discretize the equation using finite elements as
described in Section 2. We choose 4000 equally sized finite elements of order two,
which results in an ODE system with 8001 degrees of freedom. We then simulate this
system using the REXI time-stepping scheme (Section 3.1).

In our first experiment, we compare the serial execution time and accuracy of the
REXI method to other ODE solvers. This comparison is important, because we later
want to investigate the parallel performance of the REXI method, and thus we need to
know the fastest serial method as a reference point, to get a realistic impression of the
effectiveness of the parallelization.

Using REXI requires the construction of a rational approximation of the exponential
function. We compute the Faber-CF approximation (Section 3.2.2) as defined by the
parameters listed in Table 1 and discussed earlier.

The first method that we compare the REXI method with is the Chebshev method
[43]. It works by approximating exp(z) via p(z) :=

∑N
k=0 akTk(−iz/R) on the interval

−i[−R, R], where Tk (k ∈ N) is the Chebyshev polynomial of degree k [49, 50] and
ak ∈ R. The coefficients ak can be efficiently computed using the FFT [51]. The
polynomial is then used to approximate exp(τB−1 A)u0 by evaluating p(τB−1 A)u0, which
can be done using the Clenshaw algorithm [52]. In contrast to the REXI method, the
Chebyshev method only allows for spatial parallelization. Note that because of the
mass matrix B, stemming from the finite elements approach, the application of the
Chebyshev method also involves the solution of linear systems, making it significantly
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Table 3: Tunneling problem timings, LU decomposition in space. Comparison of different time-stepping
schemes in serial. The time in parenthesis is the time needed for solving linear systems involving the mass
matrix B.

∆t error time/s

Chebyshev 2 × 10−4 3.17 × 10−6 7.49 (3.08)
REXI 2 × 10−4 6.66 × 10−7 2.59
Rosenbrock 4 2 × 10−4 1.11 × 10−5 4.50

2 × 10−5 2.43 × 10−6 44.80
5 × 10−6 4.23 × 10−7 179.56

more expensive than in the case of B = I. For the sake of a meaningful comparison,
we match the approximation quality of the Chebyshev polynomial with the one of
the Faber-CF approximation. We choose the approximation interval i[−10, 10] and a
polynomial of degree 26, which leads to an error of the same order of magnitude as the
rational approximation.

The second method that we compare the REXI method with is a fourth order
Rosenbrock method. More precisely, we choose the L-stable method listed in [42,
Section IV.7, Table 7.2]. Rosenbrock methods are diagonally implicit Runge-Kutta
methods, and hence the method requires the solution of four linear equations per time
step. We use the implementation of this method provided in PETSc [45].

There are further methods for numerically simulating the ODE system arising from
the discretization of the Schrödinger equation, e.g., the Crank-Nicolson [4] or the
leapfrog [53] method (see also [30]). These methods, due to their low order, however,
require very small time steps. Hence, we do not consider them in the comparison.

We simulate the 1D tunneling problem using the three different methods for a time
period of 0.2~/Eh , and measure the time the different methods require for the time
stepping. All linear systems are solved using the LU decomposition, implemented
in the SuperLU_DIST software package [54], and all computations are performed
sequentially. The results are listed in Table 3. Note that we choose ∆t for the REXI and
Chebshev method such that the accuracy condition (10) is fulfilled.

Considering the results, we see that the REXI method is the overall fastest method
for this simulation. Furthermore, when taking accuracy into account, the Rosenbrock
method needs substantially more time steps to reach the same accuracy as the REXI
method. Note that the Rosenbrock method has to solve only four linear systems, while
the REXI method has to solve 16. Hence, we would expect that the Rosenbrock
method would be four times faster per time step than the REXI method, while we
measure it to be two times slower. We assume that the Rosenbrock method shows this
behavior, because we used the generic implementation provided by PETSc, and a more
specialized implementation would perform better. Nevertheless, due to the smaller
step-size requirement of the Rosenbrock method, the REXI method would still be the
fastest method. Justified by these results, we shall use the time of the serial execution
of the REXI method as the reference point for computing the parallel speedup of the
method.
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Table 4: Tunneling problem timings, LU decomposition in space, four refinements.

time/s

nodes cores total rhs local reduce speedup efficiency

1 1 39.92 1.38 38.51 0.01 1.00 1.00
1 2 26.12 1.49 23.87 0.76 1.53 0.76
1 4 19.20 1.70 16.29 1.21 2.08 0.52
1 8 16.21 2.74 12.01 1.45 2.46 0.31
1 16 15.06 3.33 7.82 3.90 2.65 0.17
2 2 21.64 1.36 19.52 0.75 1.84 0.92
4 4 12.11 1.31 9.73 1.07 3.30 0.82
8 8 8.13 1.31 4.92 1.89 4.91 0.61

16 16 5.68 1.27 2.37 2.03 7.03 0.44

In the second experiment, we want to investigate the parallelization potential of the
REXI method. In this experiment we simulate the same quantum system. To obtain
more meaningful time-measurements and to give the method enough work that can be
distributed along multiple processors, we increase the number of degrees of freedom
by refining the mesh four times. Each refinement split one mesh cell into two and
thus roughly doubles the degrees of freedom each time. Bearing in mind the accuracy
condition (10), we have to reduce the step size of the REXI method. We use a time step
size of 5 × 10−7~/Eh and simulate the system for 5 × 10−4~/Eh . Recall that we have
two types of parallelization that we can use—time and space-parallelization. For now
we restrict ourselves to inspecting the time-parallelization only.

Note that the time-parallelization is limited by the number of poles of the rational
approximation, because the number of poles determine the maximum number K of
linear systems in (5) that can/need to be solved simultaneously. Hence, using the
approximation described above allows us to split the computation of one time step into
16 independent tasks.

The results of the experiment are listed in Table 4, which contains the time mea-
surements for running the method with different numbers of nodes. In the first half
of the table, we keep the number of compute nodes constant, which means that all
tasks are running on the same two-socket system and thus have direct access to the
same memory. In the second half of the table, we use one compute node per tasks,
which means that each tasks has its own CPU4 and memory. In addition to the total
runtime, the times for the individual phases of the algorithm are also given. The REXI
method evaluates (5) in three phases. First, the method has to compute the right-hand
side (rhs) of the linear systems by multiplying the matrix iB and the vector u0. Note
that from the time-parallelization perspective, this is a sequential part of the algorithm.
Second, each process performes the local part of the computation, i.e., it solves the

4Central Processing Unit

19



Electrons Two Slits Screen
Wave Function Radial

Waves

e−

Interference
Pattern

Figure 3: Double-slit experiment.

local linear systems and the local sums. Third, all processes compute the the global
sum and distribute the result to all processes (reduce), which is the step that involves
communication. In addition to the time measurements, the table contains the speedup
and the parallel efficiency.

Inspecting the table, we see that the efficiency when running on one node is low.
The time for the computation of the right-hand side increases with increasing number
of cores. The time for the local computation achieves only a speedup of 5 when running
on 16 cores. Furthermore, the time needed for the reduction increases. This behavior
is due to the fact that modern CPUs can run at higher clock speeds when only a few
cores are used, and that all cores on one node share the same memory interface, which
becomes a limiting factor.

Using multiple nodes, the method scales better. We observe that the time for the
right-hand side computation remains constant, which is expected, because it is the
sequential part of the algorithm. The time for the local operations scales perfectly. The
time for the global summation, however, increases. Hence, due to the sequential part
and the increased communication cost, we only achieve an efficiency of 0.44. Note
however, that this algorithm is not meant to be used alone. It should be used to provide
additional parallelism in the situation where increasing spatial parallelism is not feasible
anymore. With respect to these considerations the speedup is promising. As a next
step, we considered a larger problem and combine temporal and spatial parallelism.

4.2. Double Slit Experiment
For the purpose of applying the REXI method to a larger problem, we consider

the simulation of a double-slit interference experiment with electrons. This experiment
demonstrates the wave-like character of matter particles and shows the limits of classical
mechanics [10]. Assume that we are shooting electrons at a wall that has two thin slits,
each of which can be closed. Most electrons will hit the wall, some, however, will
pass through one of the slits. If we place a fluorescent screen at the other side of the
wall, we can record the probability density of the incidenting electrons. We repeat this
experiment three times. Once with both slits open, once where the first slit is closed,
and once where the second slit is closed.
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Table 5: Parameters of the double-slit experiment simulation.

Parameter m Σ σ r̄ p̄

Value 1 me σI 10−4 a2
0 (0,−350) a0 (0, 0.1) ~a0

Classical mechanics would predict that the probability density we measure with
both slits open is just the sum of the probability density that we obtain in the two cases
where just one slit is open. It turns out, however, that we observe an interference pattern
in the case of two open slits. This interference pattern can be explained using quantum
mechanics. We describe the incidenting electrons by a planar probability wave that
moves in the direction of the screen. When the planar wave hits the wall, each of
the two slits emits radially outward going waves. These waves interfere, and when
the electrons hit the screen, the probability density that results from this interference
becomes visible. Figure 3 shows a schematic overview of the experiment.

Note that this experiment has never been actually performed in precisely this way.
It resembles, however, the essential features of many experiments that have been per-
formedwithout the technical complications they involve. Yet, Tonomura et al. conducted
an experiment very close5 to the one that we described [55] and that we shall simulate.

For the simulation, we need to determine the appropriate parameters of the Schrö-
dinger equation. We can model the wall with the two slits by choosing the domain of
the PDE appropriately (see Figure 4), imposing zero Dirichlet boundary conditions.
These conditions imply that the particle has a zero possibility of reaching the boundary
of the domain and, hence, must be contained within. Since the electron is supposed to
move freely within the domain we choose the zero potential, V(r) = 0. Furthermore, to
fulfill the condition (10) we chose a step size of 10 a0. The remaining parameters are
listed in Table 5.

The state of the simulation is shown in Figure 4 at two different times. At the
beginning the wave package is located in the lower part of the domain and moving
towards the wall. At the second time most of the particles have been reflected from the
wall, but a fraction of them have passed through either of the slits. At the other side of
the wall an interference pattern forms.

We discretize the equation using the finite element method as described in Section 2.
We use a suitable triangulation to obtain a discretization using 179620 finite elements
of order two, leading to an ODE system with 288796 unknowns. Note that in this case
the finite element method is by far the preferred discretization due to the complicated
geometry of the domain.

Our first numerical experiment for this setting aims at comparing the space- and the
time-parallelization. We use, again, SuperLU_DIST to solve all linear systems in the
REXImethod. The results can be found in Table 6. We see that the space-parallelization
achieves a speedup of barely 1.36 when using 16 cores. This is due to the fact that
SuperLU_DIST does not seem to parallelize well for this problem size, but we did

5Instead of a wall with two slits an electron biprism was used.
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(a) Reψ(r, t) at t = 0 ~/Eh (b) ψ(r, t)ψ(r, t) at t = 0 ~/Eh

(c) Reψ(r, t) at t = 6 × 105 ~/Eh (d) ψ(r, t)ψ(r, t) at t = 6 × 105 ~/Eh

Figure 4: Simulation of the Schrödinger equation using parameters from Table 5 at two different times. The
real part (left) and the probability density function (right) are shown.

Table 6: REXI with LU

cores time / s

time× space total reduce speedup efficiency

1× 1 132.85 0.00 1.00 1.00
1× 2 123.77 0.00 1.07 0.54
1× 4 114.43 0.00 1.16 0.29
1× 8 99.70 0.00 1.33 0.17
1× 12 94.68 0.00 1.40 0.12
1× 16 97.45 0.00 1.36 0.09
2× 1 78.00 0.04 1.70 0.85
4× 1 46.74 0.07 2.84 0.71
8× 1 27.14 0.20 4.90 0.61
16× 1 17.42 1.51 7.63 0.48
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Table 7: Double Slit, Solving with GMRES

cores time / s

time× space total total reduce speedup efficiency

1× 1 1 299.74 0.00 1.00 1.00
1× 12 12 46.62 0.00 6.43 0.54
1× 24 24 21.29 0.00 14.08 0.59
1× 48 48 7.81 0.00 38.40 0.80
1× 96 96 2.97 0.00 100.87 1.05
1× 192 192 2.01 0.00 149.08 0.78
1× 384 384 1.98 0.00 151.15 0.39
8× 24 192 2.84 0.09 105.72 0.55
8× 48 384 1.18 0.02 254.50 0.66
8× 96 768 1.05 0.04 286.56 0.37
16× 12 192 3.12 0.13 96.04 0.50
16× 24 384 1.57 0.11 190.62 0.50
16× 48 768 0.89 0.08 335.15 0.44

not investigate this issue further. Furthermore, we can see that the time-parallelization
is much more effective than the space-parallelization: using 16 cores in time gave a
speedup of about 7.63, about 5 times as high as before. To avoid the complications
induced by the LU solver and to compare to a more practical choice, for the next
numerical experiment we replace the LU solver by the GMRES method [56], which is
an iterative solver.

The results of the second numerical experiment can be found in Table 7. We increase
the number of cores that we use for the space-parallelization until the speedup saturates.
This happens at about 192 cores. Then we start adding more cores by increasing the
time-parallelization. Instead of using 384 cores in space, we compute 8 summands
of the rational approximation in parallel, each using 48 cores for the matrix-vector
operations. This way, the same problem is solved, but the speedup is increased from
151.15 to 254.50. Doubling the number of cores in time to the maximum of 16 parallel
summands, we get a maximum speedup of 335.15 on 768 CPU cores. Note that already
when going from 1 × 48 to 8 × 48 instead of 1 × 384 (time × space) the speedup is
better. We see that by combining the space-parallelization with the time-parallelization
we can increase the speedup substantially.

Note that an interesting effect is observed when using 1 × 96 cores—the efficiency
is larger than one. We assume that this effect is caused by a better CPU utilization. The
smaller the problem per node gets the less data needs to be stored on one node. Thus,
at some point, the whole problem fits into the CPU cache of the node. Adding more
(spatial) nodes to the problem, however, degrades efficiency severely.
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5. Conclusions and Outlook

In this paper we have derived and applied a new variant of the rational approxima-
tion of exponential integrators (REXI) approach for the non-relativistic, single-particle
Schrödinger equation. This time-integration scheme, being already more efficient than
the standard integrators used for the examples in thiswork, can be parallelized efficiently.
Each summand of the approximation can be computed in parallel, thus implement-
ing a parallel-across-the-method approach, which augments a classical parallelization
strategy in space. With this approach, scaling limits of distributed matrix- and vector-
operations that correspond to operations in the spatial domain can be overcome. While
parallel-in-time techniques are rather successful for problems of parabolic-type, prop-
agations of waves like in the case of the Schrödinger equation are hard to tackle. With
the REXI variant presented here, solving wave-type problems in a time-parallel manner
is indeed possible, making efficient fully space-time parallel simulations of quantum
systems with the Schrödinger equation possible for the first time.

We have derived and explained the rational approximation strategy chosen for
this problem in detail, making use of the Faber-Carathéodory-Fejér approximation
to compute the shifts and coefficients of the rational approximation of the matrix
exponential. The derivation of the approximation algorithm in Section 3 can be used as
a single-source reference to reproduce or potentially improve the numerical properties
of this integrator. While the classical REXI method [21] is originally tailored for
real-valued problems, this approach is also capable of dealing with complex-valued
solutions in an efficient way. In comparison, fewer summands are necessary to achieve
the same accuracy, leading to an improved ratio of accuracy per parallel task. We
have shown along the lines of two challenging, real-world examples the impact of the
parallel-in-time integrator, in particular with respect to a standard spatial parallelization
technique.

For this work we have exclusively focused on the time-dependent, single-particle
Schrödinger equation. The parallel-in-time method used and extended here was mo-
tivated by this equation, but its application is not limited to this particular problem.
The approach can be extended to the many-particle Schrödinger equation and, using
Newton’s method or a suitable implicit-explicit splitting strategy like spectral deferred
corrections [57], general nonlinear Schrödinger equations can be addressed. However,
there are features of the spatial discretization scheme, which actually limit the potential
speedup gained by the REXI approach itself.

When assessing the potential of a parallel method, it is important to compute the
speedup with respect to the fastest serial method available. In the case we considered
in this paper, the REXI method was also the fastest serial method. This, however, is in
general not the case.

Let us discuss some different situations in which we compare the REXI and the
Chebyshev method, to highlight the factors that need to be taken into account when
determining the speedup the REXI method can provide. We do not consider non-
exponential methods like Crank-Nicolson, since there the time-step size is prohibitively
small. For the sake of simplicity, we restrict ourselves to comparing the dominant costs
of both methods. The dominant cost of the REXI method is the solution of nR linear
systems, while the dominant cost of the Chebyshev method is the computation of nC
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matrix vector products involving the matrix M (3). In the case that we considered in
Section 4, nR = 16 and nC = 26. In general, solving a linear system is much more
expensive than computing amatrix-vector product. The reasonwhy in our case the serial
REXI method is faster than the Chebyshev method is that M = −iB−1 A, i.e., applying
M to a vector involves solving a linear system as well. If we use a discretization in
which B = I, e.g., a finite difference discretization this argument no longer holds.

Consider the case where B = I. If the time it takes to solve one linear system is
longer than it takes to compute nC matrix-vector products, the REXI method provides
no speedup over the Chebshev method independent of the number of processors that
are used. Note that for spectral methods with suitable domain geometries, the costs for
solving a linear system and applying a matrix to a vector are very similar. Thus, for
those discretizations REXI can provide speedup, too, and the original papers did indeed
focus on those methods. In the case that we considered, nC = 26. When solving the
linear system not in spectral space but with a linear solver like GMRES, the statement
essentially means that each system must be solved using fewer than 26 iterations, which
is a severe limit on the number of iterations.

Let us now assume that we are in a situation where B = I and solving one of
the linear systems in (5) is actually faster than nC matrix-vector products. If we use
the GMRES method to solve the linear systems, we can use a method like the shifted
GMRES method [58], which is able to solve a set of shifted linear systems at about the
same cost as it takes to solve one system. While this leads to a very efficient method,
it leaves no room for any speedup due to time-parallelization. If we now assume
that we need to precondition the GMRES iteration and each shift required a different
preconditioner, we can no longer apply the shifted GMRES method. Hence, in this
situation, is is again possible to obtain a speedup using time-parallelization.

Thus, in the case where solving a linear system involving the matrix B is expensive
enough, using the time-parallelization of the REXI method provides a speedup over
solving sequentially. If solving these linear systems is cheap, it is not clear that the
REXI method yields a speedup with respect to a certain sequential method. In the case
of a finite element discretization, we are, however, in the situation, where solving a
linear system is expensive enough to make the use of the time-parallel REXI method
beneficial.
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