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Abstract

We present VegasFlow , a new software for fast evaluation of high dimensional integrals based on Monte Carlo integration
techniques designed for platforms with hardware accelerators. The growing complexity of calculations and simulations
in many areas of science have been accompanied by advances in the computational tools which have helped their
developments. VegasFlow enables developers to delegate all complicated aspects of hardware or platform implementation
to the library so they can focus on the problem at hand. This software is inspired on the Vegas algorithm, ubiquitous
in the particle physics community as the driver of cross section integration, and based on Google’s powerful TensorFlow
library. We benchmark the performance of this library on many different consumer and professional grade GPUs and
CPUs.
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PROGRAM SUMMARY

Program Title: VegasFlow

Program URL: https://github.com/N3PDF/vegasflow

Licensing provisions: GPLv3

Programming language: Python

Nature of problem: The solution of high dimensional integrals
require the implementation of Monte Carlo algorithms such as
Vegas. Monte Carlo algorithms are known to require long com-
putation times.

Solution method: Implementation of the Vegas algorithm using
the dataflow graph infrastructure provide by the TensorFlow
framework. Extension of the algorithm to take advantage of
multi-threading CPU and multi-GPU setups.

1. Introduction and motivation

State-of-the-art computations in High Energy Physics
(HEP) require computing very complex multi-dimensional
integrals numerically, as the analytical result is often not
known. Monte Carlo (MC) algorithms are generally the
option of choice, be it in the HEP application or elsewhere,
as the error of such algorithms does not grow with the
number of dimensions.
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In particular, in the HEP literature, MC methods based
on the idea of importance sampling are widespread as they
combine the robustness of MC algorithms for high dimen-
sional situations with the flexibility of adaptative grids.

The Vegas algorithm [1, 2] is the main driver for multi-
purpose parton level event generation programs based on
fixed order calculations such as MCFM[3, 4], NNLOJET [5]
and also of more general tools such as MG5 aMC@NLO [6]
and Sherpa [7]. Whereas the original implementation of
the algorithm was written for a single CPU, nowadays it is
usually implemented to take advantage of multi-threading
CPUs and distributed computing. Indeed, MC compu-
tation are what is informally known as “embarrassingly
parallel”.

However, the parallelization of a computation over mul-
tiple CPUs does not decrease the number of CPU-hours
required to complete a computation and the cost of such
calculations is driving the budget of big science experi-
ments such as ATLAS or CMS [8].

In this paper we present the VegasFlow library [9],
where the main contribution is a novel implementation
of the importance sampling algorithm used in the afore-
mentioned event generation programs able to run both in
CPUs and GPUs, enabling further acceleration of compli-
cated integrals. The library is written using the Tensor-
Flow [10] library hence the chosen name: VegasFlow .

With this publication we do not aim to overthrow or
dethrone Vegas but rather empowering it even more by en-
abling the frictionless integration of complicated processes
in all kinds of hardware supported by TensorFlow with
little to no effort made by the user.

The importance sampling “à la” Vegas is the main al-
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gorithm included in VegasFlow but the library is designed
such that new algorithms can be easily implemented. We
believe this design choice together with the TensorFlow
back-end will enable a much faster development cycle to-
wards the much desired goal of a Neural Network-based
integration algorithm able to surpass Vegas and further
reduce computational costs. This feat is yet to come and
the effort is not limited to the HEP community but it is
rather multidisciplinary. One such example is the Neural
Importance Sampling [11] developed in the context of im-
age rendering whose finding have inspired new research in
the field of particle physics [12, 13, 14].

2. Technical Implementation

The goal of this manuscript is to present a novel open-
source library for Monte Carlo integration which takes ad-
vantage from hardware accelerators such as GPUs, lower-
ing the barrier in terms of computational knowledge from
the user point of view. Our motivation is primarily tech-
nical as until now there are no public available libraries
which provide such features and thus we think that the
scientific community may benefit from a practical imple-
mentation. Our aim is for VegasFlow to set a new imple-
mentation standard for future Monte Carlo calculations.

2.1. Acceleration paradigm

Hardware acceleration combines the flexibility of general-
purpose processors, such as CPUs, with the efficiency of
fully customized hardware, such as GPUs, ASICs and FP-
GAs, increasing efficiency by orders of magnitude. In par-
ticular, hardware accelerators such as GPUs with large
number of cores and memory are getting popular thanks
to its great efficiency in deep learning applications through
open-source frameworks such as TensorFlow which sim-
plifies the development strategy by reducing the required
hardware knowledge from the developer point of view. In
this context, VegasFlow implements for the first time a
Monte Carlo integration produce using TensorFlow primi-
tives together with job scheduling for multi-GPU synchro-
nization. The choice of TensorFlow as the back-end devel-
opment framework for VegasFlow is motivated by its sim-
ple mechanism to write efficient python code which can be
distributed to hardware accelerators without complicated
installation procedures.

2.2. Integration algorithms

The main algorithm in VegasFlow is importance sam-
pling as implemented in Vegas [1, 2], hence the name cho-
sen for the library.

Nonetheless, the library aims to be a general purpose
MonteCarlo library. We provide a MonteCarloFlow class
from which the developer can inherit in order to construct
a custom integrator algorithm. The developer has to worry
just about what the integrator should do for every partic-
ular event (for instance, how to generate the random num-
bers) and what to do after an integration is finished (for

instance, refine how the random numbers are generated).
All other technicalities, GPU distribution, multithreading
or vectorization of the computation will be dealt with by
the library.

2.3. Integrands

For a better integration with VegasFlow, integrands
should be written with TensorFlow primitives in python.
Written operations using TensorFlow operators allows for
the usage of all the hardware TensorFlow is compatible
with. The library, however, is not limited and can run in-
tegrands written in Fortran, C/C++ or even CUDA [15]
through the CFFI library 1. Alternatively, both C++ and
CUDA integrands can be easily linked as TensorFlow op-
erators. The VegasFlow package available in [9] contains
some examples in the source code.

Features such as exporting histograms during integra-
tion can also be implemented and some examples are pack-
aged with the source code.

3. Benchmark

3.1. Toy integrands

As a first test and benchmark of VegasFlow we use sev-
eral toy models for which the analytical solution is known.
We start by using a spherically symmetric Gaussian as
it was also the first example shown in the original Vegas
paper [1].

In = N exp

[
− 1

a2

n∑
i=1

(
xi −

1

2

)2
]
. (1)

We also implement some of the integrands proposed
by Genz as a test of multidimensional integration algo-
rithms [17], in particular the Genz discontinuous function

In =


0 If any xi ≤ ai

N exp

(
n∑

i=1

xici

)
otherwise

(2)

and the Genz product peak function

In = N
n∏

i=1

1

c−2
i + (xi − ai)2

. (3)

In all cases the factor N normalizes the integrand such
that it integrates exactly to one. The number of dimen-
sions is set by n and the difficulty of the integration in-
creases with ci.

1https://github.com/cffi/cffi
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Integrand Plain MC Vegas VegasFlow CPU VegasFlow GPU
SymGauss 8-d 0.99 ±0.08 1.00002 ±0.00023 (18.7s) 1.00005 ±0.00018 (9.87s) 1.00008 ±0.00016 (6.21s)
SymGauss 20-d - 1.00003 ±0.00002 (38min) 1.00002 ±0.00005 (26min) 1.00003 ±0.00003 (5min)

Genz Eq.(2) 16-d - 0.99992 ±0.00008 (1004s) 1.00010±0.00011 (609s) 0.99998 ±0.00009 (86s)
Genz Eq.(3) 16-d - 0.99996 ±0.00011 (1086s) 1.00013 ±0.00010 (468s) 1.00026 ±0.00020 (92s)

Table 1: Comparison of VegasFlow with other MC implementations. The number of events per iteration is constant for all integrators for
a given integrand. The Plain MC is able to get results in a reasonable amount of time only for the Symmetric Gaussian function in 8
dimensions. The same feature is observed for all integrands where the GPU run of VegasFlow achieves the final result much faster than its
CPU or Vegas [16] counterparts. Note that the choice of parameters (e.g. number of subdivisions of the grid) are arbitrarily chosen for the
purposes of this benchmark to be the same across implementations but are not necessarily the optimal choices.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio to eager time

2 cores

4 cores

8 cores

16 cores

Titan V

RTX 2080 Ti

Titan V and RTX 2080 Ti

Eager mode Vs graph mode performance 
 Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Figure 1: Comparison of performance between the eager and graph
compilation TensorFlow mode. The results are shown as a ratio of
the time it took the eager computation to complete one iteration. We
find comparable (albeit improved) results when running the compiled
graph in only CPU mode but a 3x improvement when running on
the GPUs.

3.2. Eager mode vs graph mode

In TensorFlow 2 the so called eager execution was in-
troduced as the default behaviour. Eager execution im-
plements the imperative programming paradigm into Ten-
sorFlow, and as a consequence, statements are executed in
place instead of building a graph that is subsequently exe-
cuted later in the program. In this mode, the development
and debugging is simplified in exchange for an expected
decreased performance.

In order to quantify the performance hit of the eager
mode in comparison to the graph mode we run the same
integration in both modes and show the results in Fig. 1.
In such figure we compare the results of a professional-
grade CPU (Intel i9-9980XE) with a consumer-grade GPU
(NVIDIA RTX 2080 Ti) and a professional-grade GPU
(NVIDIA Titan V). We find the greater improvement with
respect to eager execution is found in highly parallel sce-
narios, such as multi-CPU computation or GPU runs.

It is clear that, whereas eager mode facilitates devel-
opment, production runs of the code should always be run
on graph compiled mode.

3.3. Result benchmark

As a first test we ensure that our integrator produces
the correct results for several different integrands. For

0 10 20 30 40 50
Time (s)

2 cores

4 cores

8 cores

16 cores

Titan V

RTX 2080 Ti

Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Figure 2: VegasFlow running the same integration in 2, 4, 8, 16
threads in a CPU and in the RTX 2080 Ti and Titan V GPUs. Less
is better.

this we make use of Lepage’s python implementation of
the Vegas algorithm [16] and a plain MC algorithm with
no adaptation.

The results are shown in Table 1. It can be observed
that both implementations of importance sampling pro-
duce (as one would expect) compatible result. Both Vegas
and VegasFlow CPU are using all CPUs from an Intel(R)
Core(TM) i9-9980XE CPU. In the next section we per-
form a more detailed benchmark of the running time of
different integrators but we can already see a strong im-
provement due to the usage of the GPU by VegasFlow as
the computation becomes more complicated.

3.4. Performance

Arguably the main contribution from VegasFlow is the
ability to use one single implementation across many dif-
ferent devices. The GPUs can take advantage of the huge
parallelizability of Monte Carlo simulations reducing the
time it takes to finish one computation in an order of mag-
nitude. Furthermore, the reduction is also very apparent
on the power consumption of the different devices, indeed,
as seen in Table 2, running the same computation is much
more slow and expensive when it is run in the CPU. The
average power consumption of the CPU is comparable to
the Titan V, but with a much longer computational time.

We have also made sure VegasFlow can be used in a
multi-GPU setting with many different brand and devices.
At the moment only distribution on devices within the
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Device Total Time Avg. Power Consumption
i9 (16 cores) 609s 85 W
RTX 2080 Ti 93s 105 W

Titan V 89s 75 W

Table 2: Comparison on the power consumption of different devices.
The CPU power consumption is provided by the powertop utility
while the GPU power consumption is a sum of the power draw re-
ported by nvidia-smi and powertop.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Ratio to time of RTX 2080

Titan V
RTX 2080 Ti

Titan V and RTX 2080 Ti
V100 PCIe 32GB-1
V100 PCIe 32GB-2

two of V100 PCIe 32GB
P100

RTX 2080
Tesla V100 16GB

2x Tesla V100 16GB
3x Tesla V100 16GB
4x Tesla V100 16GB
5x Tesla V100 16GB
6x Tesla V100 16GB
7x Tesla V100 16GB
8x Tesla V100 16GB

Radeon VII

GPU performance

Figure 3: VegasFlow running in different GPU devices. We use the
consumer-grade RTX 2080 as the measure of performance (less is
better).

same physical machine is supported but we plan to im-
plement distribution over different physical machines. We
can observe in Fig. 3 how the hierarchy between different
GPU devices corresponds to what one would expect from
their technical specifications. In Fig. 3 we also observe
a good scaling of the speed of the code with the number
of GPUs although as the number of GPUs grow we hit a
problem of diminishing returns. Similar results are also
presented for different CPU models in Fig. 5.

3.5. Single t-quark production at leading order

For the purposes of this benchmark we have considered
the calculation of a particle physics process at the partonic
level, this is, without considering the convolution with the
parton density functions (PDFs). We compare our calcu-
lation with the numbers produced by MG5 aMC@NLO [6]
for the single t-quark production (t-channel) at leading or-
der (LO) [18] using the same physical parameters such as
the t-quark mass, mt = 173.2 GeV and centre of mass
energy

√
s = 8 TeV.

In Fig. 4 we compare the execution time for VegasFlow for
the single GPU, multi-GPU and multithreading CPU con-
figurations with the equivalent fixed LO order provided by
MG5 aMC@NLO 3.0.2. The stopping criteria for the total
number of events relies on a target accuracy of 1.4 · 10−2

pb (with no PDFs). Finally, also in this setup, we observe
a great improvement in terms of execution time for the
VegasFlow approach.

0 10 20 30 40 50
Time (minutes)

MG5_aMC@NLO
36 active CPU cores

VegasFlow
36 active CPU cores

VegasFlow
Titan V

VegasFlow
RTX 2080 Ti

VegasFlow
Titan V and RTX 2080 Ti

LO single top @ 8 TeV, target uncertainty 0.014 pb 
 Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Figure 4: Comparison of a Leading Order calculation ran in
both VegasFlow and MG5 aMC@NLO [6]. The CPU-only ver-
sion of VegasFlow is able to improve the performance obtained by
MG5 aMC@NLO for the same level of target accuracy. The usage
of the GPU devices further improves the performance.

4. Outlook

We hope this library can accelerate research by grant-
ing to users and researchers the ability to implement with
simplicity high-dimensional complex integrations without
having to know about the technicalities or the difficulties
of their implementation on multithreading systems or the
data placement and memory management that GPU and
multi-GPUs computing requires.

VegasFlow is also aimed to developers of new integra-
tion methods which can focus on the algorithm technical-
ities and reduce to a minimum the implementation effort
required to adapt the computation into different hardware
platforms.

The current release of VegasFlow has only been tested
in GPUs and CPUs, however we believe that investiga-
tion about new hardware accelerators such as Field Pro-
grammable Gate Arrays (FPGA) and Tensor Processing
Units (TPUs) could provide even more impressive results
in terms of performance and power consumption results.
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Figure 5: Benchmark of VegasFlow on CPU. We observe an improvement of the performance as the number of allowed cores grows until the
number of allowed cores is of the same order of the number of physical cores in the machine. The control of the threads for each run was left
to TensorFlow with default values, while the binding of the process to the desired number of cores was done with taskset.
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