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Abstract

We show how a Monte Carlo method for generating self-avoiding walks on lattice geometries which employs a binary-
tree data structure can be adapted for hard-sphere polymers with continuous degrees of freedom. Data suggests that
the time per Monte Carlo move scales logarithmically with polymer size. We combine the method with a variant of
the Metropolis algorithm and preserve this scaling for Lennard-Jones polymers with untruncated monomer-monomer
interaction. We further show how the replica-exchange method can be adapted for the same purpose.

1. Introduction

The simplest model for a polymer chain realizing noth-
ing but its linear geometry is provided by a random walk,
e.g., a random path on a cubic lattice. While these ob-
jects can be treated very easily with analytical methods,
they do not posses an abundance of realistic features and
real polymers behave similar to random walks only at the
Θ-point. If, as a step towards more realistic representa-
tions, excluded volume interaction is to be included, the
simplest model is the self-avoiding walk. It is similar to
the random walk, but any lattice site may only be visited
once. Different parts of the polymer are not allowed to
occupy the same space. Now the problem becomes more
difficult and since in three dimension the Flory exponent
– signifying the scaling behavior of geometric quantities
such as the end-to-end distance or the radius of gyration
– as well as corrections to scaling are not exactly known,
numerical methods are applied.

Ideally, in order to determine expectation values of ob-
servables of interest, one would like to sum over all possible
walks and algorithms that can efficiently generate these
are, therefore, strongly desired. While simple recursive
methods on the simple-cubic lattice require days to gen-
erate all walks up to 20 steps, much more sophisticated
techniques have been applied in order to enumerate walks
of 36 steps [1]. Monte Carlo (MC) computer simulation
methods introduce a statistical uncertainty, but are able
to investigate much larger systems and until not too long
ago N ≈ 105 was the state of the art. Recently, however,
Clisby introduced an ingenious technique [2, 3, 4] for the
investigation of self-avoiding walks by means of a binary
tree representation simulating walk of length N ≈ 3×107.
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One of the technique’s main features is a variable reso-
lution; if possible large parts of the walk are treated as
single units that are only ‘zoomed-into’ if the situation at
hand demands it. The first part of this study is dedicated
to adapting this technique to off-lattice hard-sphere poly-
mers.

The effect of solution on a polymer is often modeled
implicitly by an attractive term in the Hamiltonian. The
transition from a bad solvent with the polymer in a col-
lapsed, globular state towards a good solvent with con-
figurations resembling swollen coils then corresponds to a
change from low temperature where the interaction has
a strong influence to high temperature where it is rather
unimportant. The most commonly used potential is the
12-6 Lennard-Jones potential, where both the repulsive
and the attractive component are polynomial with expo-
nents 12 and 6, respectively. Since this potential exerts
forces at all distances the recalculation of the energy of the
polymer after a modification of the configuration is of com-
plexity O(N2). In order to achieve a better performance
the interaction is often truncated ensuring that beyond a
certain distance the forces become zero. We show how this
can be avoided by combining the tree-like data structure
with an implementation of the Metropolis algorithm that
does not require complete information.

In this paper we discuss in section 2 the models un-
der consideration and explore in section 3 the mathemat-
ical properties of the transformations that are used to af-
fect conformational updates. In section 4 our version of
Clisby’s binary trees is described followed by its applica-
tion to hard-sphere polymers in section 5. We then in-
troduce a variant of the Metropolis algorithm in section
6 which permits the simulation of polymers with untrun-
cated interactions as described in section 7, where we also
briefly discuss how the replica exchange method can bene-
fit from the same ideas. We consider polymers with trun-
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cated interaction in section 8 and present some conclusions
in section 9. Finally, in the appendix we describe a proce-
dure for different types of updates.

2. Models

2.1. Hard-sphere polymer

We first consider a freely-jointed chain with hard spheres,
i.e., the continuum model that most closely resembles the
self-avoiding walk on a lattice.

The positions of monomers x1, . . . , xN are given by

xk =

k−1
∑

i=1

bi, (1)

where the bond vectors have a constant length |bi| = b
and the distance between any two monomers has a lower
bound

|xk − xl| ≥ D (2)

corresponding to the diameter of the hard spheres. All
values from D = 0 (the ideal chain) to D = b are in prin-
ciple possible. However, for the latter case some caution
is required. Since continuum coordinates carry rounding
errors, calculated distances between adjacent monomers
will deviate slightly from the theoretical value b. If the
model is to be investigated for D = b, this can lead to false
overlaps if bonds are smaller than b and consequently to
needless rejections of proposed Monte Carlo moves. For
the polymer length we considered (N < 107) the errors of
bond length did not exceed 10−7b and it is possible to use
D ≤ (1 − 10−6)b ensuring that |bi| > D regardless of nu-
merical errors. Alternatively, a few lines of additional code
can exempt pairs of adjacent monomers from the testing
with little effect on overall performance.

2.2. Lennard-Jones polymer

For the second model we abandon the hard spheres in
favor of a 12-6 Lennard-Jones interaction

ULJ(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(3)

acting between all pairs of monomers. The Hamiltonian
thus reads

H =
N−1
∑

i=1

N
∑

j=i+1

ULJ(xi − xj). (4)

The performance of the method depends on the choice of σ,
with smaller values leading to faster simulations. For the
simulations presented in this paper we chose σ = b/21/6

such that the minimum of ULJ(r) coincides with b.
Note that for both models we have N monomers con-

nected by N − 1 bonds as opposed to the notation of N
steps and N + 1 occupied sites that is often used in the
context of random walks.

3. Transformations

During the simulation we modify the polymer configu-
ration using transformations that we derive as follows. We
choose a k ∈ {1, . . . , N − 1} and a random axis through
xk perpendicular to bk = xk+1 − xk. The rotation angle
is drawn such that as a result the new position x′

k+1 is at
a random position on the sphere of radius |b| around xk.
For the pivot update we apply the rotation that is given by
this axis and the angle to all monomers xk+1, . . . ,xN . We
also use a bond-rotation update which modifies xk+1 in the
same way, but keeps all bonds bi with i 6= k unchanged
such that x′

i|i>k+1 = xi + x′

k+1 − xk+1.
In general the rotation of a monomer position x around

an axis that passes through the point p is given by

x′ = R(x − p) + p = Rx−Rp+ p, (5)

where R is the rotation matrix. Hence

x′ = Rx+ b, (6)

with
b = p−Rp. (7)

It is easy to see that reflections on arbitrary planes as well
as simple shifts by some vector can also be expressed in
this form.

Applying two transformations consecutively,

x′′ = R2x
′ + b2, (8)

= R2 (R1x+ b1) + b2, (9)

= (R2R1)x+ (R2b1 + b2) , (10)

we obtain the same structure as in (6) which means that it
is easily possible to ‘multiply’ two transformations before
applying them to the monomer:

T1 ≡ {R1,b1}, T2 ≡ {R2,b2}, (11)

T1 • x := R1x+ b1, (12)

T2 • (T1 • x) = (T2 ◦ T1) • x, (13)

with
T2 ◦ T1 := {R2R1,R2b1 + b2}. (14)

It is also easy to see that this operation is associative

(T3 ◦ T2) ◦ T1 = T3 ◦ (T2 ◦ T1). (15)

4. Binary tree

A few years ago Clisby [2] has introduced the binary
tree as a fundamental data structure for the simulation of
self-avoiding walks on lattices and has achieved most im-
pressive results. Strongly inspired by his ground-breaking
work we adapt this approach for off-lattice polymers.

All data is organized in a binary tree where the leaves
represent individual monomers and any internal node, i.e.,
a node that is not a leaf, provides a coarse-grained rep-
resentation of its children: Each node contains among
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A

B

k k + 1

k + 2

xk

xk+1

yB
rB

xk+2

yA

rA

Figure 1: Left: A subtree with three monomers represented
by the leaf-nodes k,k + 1, and k + 2 and two internal nodes.
Right: The contained geometric information. Monomer posi-
tions xk,xk+1,xk+2 and sphere parameters yA, rA and yB , rB.

other data the parameters for a sphere that comprises all
monomers in the sub-tree to which it is root (Fig. 1). Such
a representation serves two purposes. On the one hand it
allows to ensure that distinct parts of the polymer repre-
sented by different nodes do not overlap, since a sufficient
(although not necessary) condition is that the respective
spheres do not intersect. On the other hand modifications
to the polymer can be applied at a level of low resolu-
tion to nodes high in the tree. To that end each internal
node is able to store a transformation of the shape de-
fined in (11) that applies to all nodes in its sub-tree, i.e.,
the nodes constituting its collective offspring, except the
node itself. Consider for instance the tree in Fig. 2(a). Al-
though the monomer position stored in the lower left node
is x1, the actual position of the first monomer is given by
TA •(TB •x1), and the position of the center of sphere that
belongs to node B is actually TA • yB . Only when a need
to access a certain position in a node arises the respective
transformations in the ‘ancestor’-nodes are applied. This
is either done separately outside the tree or by pushing
down transformations as depicted in Figs. 2(b,c).

Let us summarize which data has to be stored in a
single node:

• links relevant for the geometry of the tree, i.e., links
to the parent-node and the two children,

• parameters for a sphere that contains all monomers
in the sub-tree to which the node is root,

• the data for a transformation that is to be applied to
all nodes in the nodes sub-tree, but not to the node
itself,

• additional information, e.g., index of the node or size
of the sub-tree.

Since the underlying data structure is a binary tree it
is natural although not required to chose system sizes that
are powers of two.

TA,yA

TB,yB

x1 x2

TC ,yC

x3 x4

(a)

I,yA

TA ◦ TB,
TA • yB

x1 x2

TA ◦ TC ,
TA • yC

x3 x4

(b)

TA,yA

TB,yB

x1 x2

I,yC

TC • x3 TC • x4

(c)

Figure 2: (a) A binary tree for a polymer with four monomers
with transformations in the internal nodes. (b) The tree in (a)
with the transformation TA pushed down. (c) The tree in (a)
with the transformation TC pushed down. Here, I stands for
the identity or absence of a transformation.
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5. Simulating the hard-sphere polymer

In order to perform an update of the polymer it is
convenient to rearrange the tree. Consider Fig. 3, where
versions of a section of a tree are displayed. Transitions
between them are called tree-rotations. With respect to
the parts of the polymer they contain, during these opera-
tions only the nodes B and D are altered: Node B has the
children A and D while node B’ links to A and C, while
the children of D are C and E as opposed to B’ and E for
D’. This means that during such an operation one has to
recalculate the spheres in the nodes B’ and and D’ if go-
ing from left-to-right in Fig. 3 or in D and B when moving
right-to-left. First, however, it is important to take care of
potentially stored transformations. The easiest way to do
this is to push down the transformations in B and D (B’
and D’) such that both nodes do not hold a transforma-
tion when the actual tree-rotation is performed. Note that
the horizontal order of the nodes is not affected. From left
to right the nodes read A,B,C,D,E or A,B’,C,D’,E. Fur-
thermore, each internal node, i.e., each node that does not
represent a single monomer, is in such a horizontal order
always placed between the same two leaves (monomers)
while there is exactly one internal node between any two
adjacent leaves. This is exploited when an update is to
be performed. Assume that the following update of the
polymer configuration is proposed1

x′

i =

{

xi if i ≤ k

TU • xi else
. (16)

One can then identify the internal node that is (in horizon-
tal order) positioned between the leaves corresponding to
xk and xk+1 and use tree-rotations to move up this node
until it becomes the root-node, i.e., the node on top with-
out a parent. Since the horizontal order is preserved and
the root node is between xk and xk+1, it is clear that the
leaves x1, . . . ,xk are now in the left part, i.e., the sub-tree
to which the left child of the root-node is root, and the
leaves xk+1, . . . ,xN are in the right part. This situation
is depicted in Fig. 4. Once the tree is in this shape, one
can test whether the original left part overlaps with the
transformed right part. If the spheres of the children of
the root node do not overlap, which is the case if the dis-
tance between their midpoints is larger than the sum of
the radii,

|yl − TU • yr| > rl + rr , (17)

then there can be no overlap of any two individual monomers.
Otherwise the resolution on one side has to be increased
by stepping down one level in the tree. One has to either
test that

|yll − TU • yr| > rll + rr

and |ylr − TU • yr| > rlr + rr (18)

1In practice it is, of course, more efficient to modify the left part
(i = 1, . . . , k − 1) if k < N/2. This is part of our implementation,
but omitted here in favor of a simpler description.

B

A D

C E

D’

B’

A C

E

Figure 3: Tree-rotations are used to move nodes up or down.
Only the nodes B and D are affected.

or that

|yl − TU • yrl| > rl + rrl

and |yl − TU • yrr| > rl + rrr. (19)

Beforehand, either the transformation Tl or Tr has to be
pushed down such that the actual positions yll,ylr or
yrl,yrr are used. This process is continued iteratively;
whenever an individual inequality is violated, it has to
be replaced by two conditions that are derived by split-
ting one of the participating nodes. Intuitively, one should
split the larger one. For this model, it seems that splitting
the node which contains more monomers is slightly more
efficient (≈ 1%) than splitting the node with the larger ra-
dius. The update is rejected if the process reaches a point
where two nodes that are leaves, i.e., monomers, overlap.
Otherwise, when the process terminates with all remain-
ing inequalities fulfilled, the update is accepted and the
transformation TU is stored in the node r:

T ′

r = TU , (20)

or is multiplied to the existing transformation, if this node
still contains one:

T ′

r = TU ◦ Tr. (21)

Finally, we retrace our steps and use the inverse tree-
rotations as before, in order to rebalance the binary tree.

There are some differences to Clisby’s technique be-
yond the mere transition from lattice to continuum. In
particular, in our case the transformation in a given node
applies to all nodes in the sub-tree to which it is root while
in Ref. [2] transitions apply only to the sub-tree to which
the right child of the node containing the transformation is
root. This means that in our case for every monomer there
are potentially log2 N transformations that need to be ap-
plied, while for the original version this number is smaller
on average, e.g., there are no transformations that apply
to the first monomer x1 in any case. On the other hand,
since in our version we push down transformations, about
half of all nodes do not hold transformations at all such
that the number that actually applies is smaller then the
maximal value. In order to facilitate the tree-rotations we

4
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l

ll lr

r

rl rr

x1 xk xk+1 xN

Figure 4: The binary tree during an update.
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Figure 5: The average time t (in seconds) required for a sin-
gle update for a hard-sphere polymer as a function of N .
Inset: An estimate for the derivative dt/dN ≈ D(N) =
[

t(N
√
2)− t(N/

√
2)
]

/
(

N/
√
2
)

with a fitted function as guide
for the eye.

push down the transformations so that the relevant nodes
are empty. This is not easily done in Clisby’s version. In-
stead new transformations that keep the polymer configu-
rations unchanged are determined which – at least in one
direction – requires the inversion of one of the transforma-
tions. Since this is more complicated in continuum than
on the lattice we chose this modification. On the other
hand, with the original strategy it is in principle possible
to omit the nodes containing individual monomers which
would reduce the required memory by half [5]. Achiev-
ing a similar improvement with our method would only
be possible by using structurally different nodes that do
not store transformations, radii, or sizes for leaves, which
would render the code a bit more complicated. We have
not compared both methods and do not claim that one
performs better than the other.

Testing our implementation for D = 0.5 with the pivot
update we find that the desired efficiency is indeed achieved

0.7

0.75

0.8

0.85

0.9

0.95

1

100 101 102 103 104 105 106 107

10−4

10−3

10−2

10−1

100

102 104 106

〈r
2 e
e
〉

A
(N

−
1
)ν

N − 1

N − 1

1− 〈r2ee〉
A(N−1)ν

b/
√
N − 1

Figure 6: Scaling of the average squared end-to-end distance.
Inset: Over several orders of magnitude in length N − 1 the
first correction to scaling is very well described by a single term
with exponent −0.5.

and that simulations with sizes up to N ≈ 107 are possible.
In Fig. 5 we show the mean time t(N) that is required for
a single pivot update. Although we can not conclusively
decide how this function behaves in the thermodynamic
limit, it seems plausible that its derivative (inset of Fig. 5)
for large N becomes proportional to N−1 which would im-
ply that t(N) scales like logN . Updates are accepted with
satisfying probability which is, however, decreasing with
system size. While 80% of all updates are accepted for
N ≈ 10 this decreases to 25% for N = 222. We find that
the rate of acceptance for pivot updates attempted at the
center of the polymer is reasonably well described by Nκ

with κ = −0.0926.
When looking at the data, we find that results agree

with expectations. We acknowledge that analyzing the
behavior of quantities like the squared end-to-end distance
〈

r2ee
〉

as a function of the number of bonds (or steps of a
walk) N −1 is an intricate business and that the exponent
of the first correction is not known. We might revisit it
in detail in the future. With a brief glance at the case
D = 1.0 we notice that using the latest and most precise
value for the Flory exponent available from a recent lattice
study [4], ν = 0.5875970(4), we find that

〈

r2ee
〉

= A(N − 1)2ν
(

1− b√
N − 1

)

, (22)

with A = 1.77254 and b = 0.701 obtained from a fit for
N > 103, provides a decent description of the scaling
(Fig. 6) with some room for improvement. This demon-
strates very convincingly the expected universality of lat-
tice and continuum self-avoiding walks.

For the notation used in this paper rotations are real-
ized as matrices. However, we found that for sizes above
N = 216 at D = 1.0 an implementation using quarternions
shows a better performance.
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6. A parsimonious Metropolis algorithm

Since the dawn of the information age the Metropo-
lis algorithm [6] has been the workhorse of computational
statistical physics. Detailed balance,

P (µ)W (µ, ν) = P (ν)W (ν, µ), (23)

provides a solution to the Master equation. Here, µ, ν
are states of the system, P occupation probabilities, and
W (µ, ν) is the probability to occupy ν in the next step
if µ is occupied now. To be precise, the probability for
a transition between two states in a Monte Carlo simu-
lation is often the product of the probability of such an
update being proposed and of it being accepted. Usually
the probabilities for proposals are symmetric such that

P (µ)Waccept(µ, ν) = P (ν)Waccept(ν, µ), (24)

which in turn is solved by

Waccept(µ, ν) = min

(

1,
P (ν)

P (µ)

)

. (25)

If a canonical distribution at the inverse temperature β =
(kBT )

−1 with P (µ) ∝ exp (−βE(µ)) is aimed at, this be-
comes

Waccept(µ, ν) = min
(

1, e−β∆E
)

, (26)

with ∆E = E(ν) − E(µ). The usual procedure is to cal-
culate ∆E, determine this probability, and to draw a uni-
formly distributed random number ξ ∈ [0, 1). The update
is accepted if ξ < Waccept(µ, ν). We intend to reverse this
sequence. The last condition is equivalent to

ξ < e−β∆E (27)

and consequently to

− ln ξ

β
> ∆E, (28)

assuming that β > 0. Hence, it is possible to draw ξ first
and then to estimate ∆E with increasing precision until
it can be decided whether (28) is fulfilled or violated. In
cases where such an estimate can be done with less compu-
tational effort than a complete calculation, the simulation
should run faster than with the standard technique, while
with both methods the same updates are accepted or re-
jected and the trajectories through the configuration space
are, therefore, identical.

7. Simulating the Lennard-Jones polymer without

cutoff

For applying this idea to polymers with Lennard-Jones
interaction the binary tree as used for the hard-sphere
polymer again provides a well-suited data structure. Us-
ing trees in order to hierarchically estimate the interac-
tions of N -body problems is not a new approach. Similar

strategies have been used to simulate the (approximate)
dynamics of gravitational systems as early as 1986 [7]. In
these studies a more or less homogeneous three dimen-
sional system is separated into cubic cells which are orga-
nized in an octree, where each internal node has eight chil-
dren. The linear nature of the polymer simplifies the sit-
uation considerably. Again, distinct groups of monomers
A = {xk, . . . ,xk+sA−1} and B = {xl, . . . ,xl+sB−1}, with
k ≥ 1, l ≥ k + sA, N ≥ l + sB − 1, are represented by
spheres

|xi − yA| < rA, i = k, . . . , k + sA − 1,

|xj − yB | < rB, j = l, . . . , l + sB − 1. (29)

The interaction between two such groups can be estimated
if the distance between the spheres exceeds the minimum
position of the Lennard-Jones potential

|yA − yB | − rA − rB > 21/6σ. (30)

Due to the monotony of the interaction ULJ(r) for r >
21/6σ the energy

EAB =

k+sA−1
∑

i=k

l+sB−1
∑

j=l

ULJ(|xi − xj |) (31)

has a lower bond

EAB ≥ sAsBULJ(|yA − yB | − rA − rB) = Emin
AB (32)

and an upper bound

EAB ≤ sAsBULJ(|yA − yB|+ rA + rB) = Emax
AB . (33)

The energy is minimal if all monomers are concentrated
at the point closest to the opposite sphere and maximal
if they are at the farthest point.2 If the estimate is not
precise enough, it can be refined by splitting one of the
contributing nodes A → {Al, Ar} or B → {Bl, Br} such
that for instance

Emin
AB = Emin

AlB
+ Emin

ArB and

Emax
AB = Emax

AlB + Emax
ArB (34)

provides an improved estimate. This can be done in a re-
cursive fashion similar to the process applied for the hard-
sphere polymer. One of the interaction partners also has to
be split up if the two spheres are too close to each other in
order to allow for an estimation in the first place. For the
Lennard-Jones polymer, single monomers are represented

2More sophisticated estimates are possible. For example, if one
keeps track of the center of gravity of each group and if the distance
between the spheres exceeds the inflection point of the Lennard-Jones
potential, it can be shown that the energy is maximal if all monomers
are concentrated in the centers of gravity of their respective groups.
This energy is, therefore, also an upper bound. However, we found
that the additional computations lead to a slower simulation in spite
of the reduced depth resulting from the improved estimates.
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by spheres with zero radius, consequently the estimate be-
comes exact calculation,

Emin
AB = Emax

AB = ULJ(|xk − xk|), (35)

if sA = sB = 1, and it can be evaluated also for distances
below the potential’s minimum distance.

If the binary tree is prepared as was done previously
(Fig. 4) with the root node possessing the children l and r
and if we intend to modify the right part using the trans-
formation TU such that symbolically r → r′ = TUr then

∆E ∈ [Emin
lr′ − Emax

lr , Emax
lr′ − Emin

lr ]. (36)

Hence, the update is accepted if

Emax
lr′ − Emin

lr < − ln ξ

β
(37)

and rejected if

Emin
lr′ − Emax

lr > − ln ξ

β
. (38)

The interactions between l and r as well as l and r′ = TUr
have to be evaluated and since in almost all cases initially
the spheres will be too close or the estimates too rough,
almost always interactions between nodes at lower levels
will have to be included. Of course, we hope to avoid to
consider too many interactions between small groups of
monomers such that a decision is reached while interac-
tions are evaluated at a low spatial resolution. This raises
the question which particular interaction’s estimate should
be refined at any given point in order to improve the sum
such that the overall process is efficient, i.e., terminates
early. Similarly to the hard-sphere polymer it is possible
to set up a recursive process that proceeds to smaller nodes
until a particular condition is met. While previously non-
intersection of the spheres was the only choice, now it is
not so straightforward. Clearly the precision of an esti-
mate of a node-node interaction EAB can be derived by
just calculating the difference Emax

AB −Emin
AB , but since this

scales with the product sAsB of the number of monomers
of the two groups, it is useful to normalize

αAB :=
Emax

AB − Emin
AB

sAsB
, (39)

thus measuring the precision per monomer-monomer in-
teraction. Now, we can define a target value αc and de-
scend to smaller nodes until only interactions that have
smaller values α remain. If the result is not sufficiently
precise for reaching a decision according to (37), (38) the
process is repeated with a lower target value, e.g., αc/2.
This approach has the advantage that it can easily be im-
plemented using a recursive function and does not require
additional data organization, since only the information
about the particular interaction at hand is required.

An alternative, perhaps more intuitive and – as it turns
out – more efficient strategy is to select the node-node in-
teraction EAB that possesses the largest absolute uncer-
tainty Emax

AB − Emin
AB and split its larger node. However,

since for large polymers there can be many millions of in-
teractions, finding the most uncertain one is not entirely
trivial. Note that the node-node interactions form two
binary trees themselves. The roots are the interactions
between the nodes l, r and l, r′. Inner nodes in these trees
represent estimates of interactions that at some point have
been found to be too uncertain or impossible to make, due
to close or intersecting spheres, and the current estimate of
the total interaction energy is obtained by summation over
the leaves. A tree is grown by adding two new interaction
nodes to a former leaf, thus replacing its contribution in
the total sum. These trees can be implemented as actual
data structures and used as search trees in order to easily
identify the leaf with the largest energy difference. This
might be achieved by adding a link (pointer) to every node
that points at the leaf with the largest energy difference
in the sub-tree to which this node is root. Leafs point to
themselves and whenever a leaf is modified, only the leaf
itself and its direct ancestors have to be potentially modi-
fied by comparing the links in their children. If large poly-
mers are considered with the number of monomers being
in the range of several thousands, the trees can reach sizes
of multiple millions of nodes. In order to limit the size of
required memory we choose to limit the size of the tree and
in those rare cases where the limiting size is reached we
refrain from growing it further and proceed to improve the
estimates in the leaves using the aforementioned recursive
function and target precisions.

Comparisons with a standard algorithm that calculates
∆E accessing monomer coordinates directly have been done.
Although our method should in principle create the same
trajectory in state space, associativity as presented in (15)
does not hold in a computer simulation. It makes a slight
difference whether multiple transformations are sequen-
tially applied to the monomer’s coordinates or whether
they are combined beforehand via the multiplication op-
eration. The unavoidable rounding errors that occur in
both cases lead to different results. Initially, these dif-
ferences are tiny and do not affect whether an update is
accepted or rejected, but after a short while the trajecto-
ries diverge. For an individual run for a polymer of size
N = 256 at kBT = 4ǫ, i.e., near the Θ-point, using pivot
and bond-rotation moves alternatingly, we found that it
took about 10N such combined steps until differences in
the monomer positions exceeded one bond length (Fig. 7).

Simulations for different sizes at the same tempera-
ture allows for comparisons and scaling of running times
(Fig. 8). It is of little surprise that the standard technique
that requires the calculation of all modified monomer-mono-
mer distances soon approaches quadratic complexity. Our
method is now substantially slower than for the hard-
sphere polymer, but again it can be suspected that for
large systems logarithmic scaling is realized. The accep-
tance rate is now more strongly affected by the polymer
length and seems to decay in polynomial order with a
larger albeit still favorably small exponent. We estimate
∝ N−0.28 for the pivot and ∝ N−0.18 for the bond-rotation
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Figure 7: Difference in monomer positions for different meth-
ods (see text). Simplified algorithms that always modify the
right part of the polymer were employed, hence the continued
agreement for small k.

update.
Once a function that estimates the interaction between

two nodes in the tree has been set up, it can also be used
to obtain an estimate for the energy of the entire polymer.
If we define the energy of a node recursively as the sum
of the interaction between its children and the energy of
its children with individual monomers (leaves) possessing
zero energy,

Hk,...,k+s−1 := Hk,...,k+ s

2
−1 +Hk+ s

2
,...,k+s−1

+

k+ s

2
−1

∑

i=k

k+s−1
∑

j=k+ s

2

ULJ(|xi − xj |),

Hl := 0, (40)

then the energy of the polymer is given by the energy of
the root node

H = H1,...,N . (41)

Since there are N − 1 internal nodes, we need N − 1 esti-
mates of node-node interactions while each of which might
recursively require multiple additional estimates. How-
ever, there is a good chance that for non-collapsed states
and a target precision not too small this can be done with
complexity O(N logN) or faster. Once we can estimate
the energy of one configuration the estimation of the dif-
ference between energies of two configurations is straight-
forward which allows to implement a replica-exchange al-
gorithm [8]. The exchange probability for swaps between
two walkers at inverse temperatures β1 > β2 is given by

P accept
swap = min

(

1, e(β1−β2)(E1−E2)
)

, (42)

so that the condition for accepting a replica-exchange up-
date with reduced information reads

E1 − E2 >
ln ξ

β1 − β2
. (43)
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Figure 8: Required times (in seconds) for the combination of
a pivot and a bond-rotation update for the standard method
and our algorithm at kBT = 4ǫ for a Lennard-Jones polymer
of length N with untruncated interaction. Inset: Acceptance
rate as function of N for the pivot (+) and bond-rotation (×)
updates.

8. Simulating the Lennard-Jones polymer with cut-

off

Finally let us consider the case with a truncated poten-
tial which is the traditional technique to deal with large
systems. The potential is set to zero beyond a certain
cutoff-distance rc and the remaining part is shifted in or-
der to avoid a discontinuity:

ŨLJ(r) =

{

ULJ(r) − ULJ(rc) if r < rc

0 otherwise
. (44)

There are two intuitive ways of simulating such a sys-
tem using the binary-tree structure. During an update
one could proceed similar to the hard-sphere case and es-
tablish which pairs of monomers are closer than the cutoff
distance. Calculating their energies allows for a precise de-
termination of ∆E and the standard Metropolis algorithm
can be applied. Or the algorithm using reduced informa-
tion could simply be used with the truncated potential.
We would expect that the former is more efficient at low
temperatures, since the estimation of interactions at small
distances in dense configurations is less precise and many
refinements might be necessary. At conditions near the
collapse (kBT = 3.5ǫ, rc = 3σ), however, we find that both
methods perform similarly well (Fig. 9). It is worth noting
that in comparison to the untruncated case even for the
largest systems considered (N = 215) the introduction of
the cutoff has only led to a threefold speedup.

9. Conclusion and outlook

In this study we have shown how the binary-tree method
developed by Clisby for the simulation of self-avoiding
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rotation update as function of polymer size N for the two ver-
sions of the Metropolis algorithm. The Lennard-Jones potential
is truncated at 3σ and kBT = 3.5ǫ.

walks on a lattice can adapted to hard-sphere polymers
with continuous degrees of freedom. It turns out that sys-
tem sizes of N ≈ 107 are not beyond the capabilities of
these techniques. Although we can not be certain at this
point, it seems that for very large systems the computa-
tional complexity of an individual Monte Carlo move scales
like logN .

We introduced a version of the Metropolis algorithm
that does not rely on exact knowledge of the change in
energy and reaches decisions based on sufficiently precise
estimates. We applied this method to a Lennard-Jones
polymer without any interaction-range cutoff close to the
collapse transition and find that again a scaling of logN
for single steps seems to be the asymptotic behavior and
that polymers up to length N ≈ 104 can be investigated
easily. The same idea in combination with the fact that
estimates of the total energy can be obtained much faster
than the exact value can be used to implement a replica-
exchange algorithm for these systems.

Although an interaction-range cutoff of the potential as
a means to enable a simulation in the first place is no longer
required, polymers using such a truncated interaction can,
of course, be simulated using these methods. We find that
simulations are only modestly faster when a cutoff to the
Lennard-Jones potential is used.

Since this work is intended to serve mainly as a proof-
of-concept, relatively simple models were considered. How-
ever, it should be possible to introduce extensions like flex-
ible spring-like bonds, bending stiffness or fixed bond an-
gles, or multiple types of monomers with little effort.
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Appendix A. Modifying central parts of the poly-

mer

As we have shown, for the Lennard-Jones polymer the
acceptance rates decline when the system becomes large.
It is, therefore, desirable to introduce additional updates
of a more local nature that are not affected in this manner.
This can be a crank-shaft move, where a part of the poly-
mer is rotated around an axis passing through the limiting
monomers or – if a model with flexible bonds is used – the
shift of one or more adjacent monomers by a constant vec-
tor. The procedure is similar to the discussed update, with
the distinction that now we have two internal nodes that
pose the boundaries of the section that is to be moved. The
tree is rearranged in a way that first one of them becomes
root and in a second phase the other becomes a child of
the new root node (Fig. Appendix A.1). With the tree
in this shape the three relevant parts of the polymer are
represented by single nodes and interaction between them
can be evaluated recursively. Once the update is accepted
it is again possible to apply the respective transformation
at the highest level to a single node before rebalancing the
tree.
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