
TTK-20-04 — February 2020

FeynGame

R.V. Harlander, S.Y. Klein, M. Lipp

Institute for Theoretical Particle Physics and Cosmology,
RWTH Aachen University, 52074 Aachen, Germany

Abstract

A java-based graphical tool for drawing Feynman diagrams is presented. It differs
from similar existing tools in various respects. For example, it is based on models,
consisting of particles (lines) and (optionally) vertices, each of which can be given
their individual properties (line style, color, arrows, label, etc.). The diagrams can
be exported in any standard image format, or as PDF. Aside from its plain graphical
aspect, the goal of FeynGame is also educative, as it can check a Feynman diagrams
validity. This provides the basis to play games with diagrams, for example. Here we
describe on such game where a given set of initial and final states must be connected
through a Feynman diagram within a given interaction model.

1

ar
X

iv
:2

00
3.

00
89

6v
1

 [
ph

ys
ic

s.
ed

-p
h]

 2
8

Fe
b

20
20

PROGRAM SUMMARY

Program title: FeynGame
Distribution format: gzipped tar archive, GitLab repository
Authors: R.V. Harlander, S.Y. Klein, M. Lipp
Licensing provisions: GNU General Public License 3 (GPL)
Programming language: Java
Operating systems: Linux, Windows, MacOS
Keywords: Feynman diagrams, Java, GUI
Nature of problem: Efficient drawing of Feynman diagrams for presentations and publica-
tions; playful elementary introduction to the concept of Feynman diagrams
Method of solution: Graphical interface which incorporates the Feynman rules for various
models of particle interactions.
Restrictions: Only the topological information of the Feynman rules is incorporated.
Running time: The running time depends on the diagram to be drawn and the skill and
practice of the user.

2

http://www.robert-harlander.de/software/feyngame
https://gitlab.com/feyngame/FeynGame

1 Introduction

Feynman diagrams are a central tool for particle physics [1]. Not only are they indispensable
for perturbative calculations of observables such as cross sections or decay rates. They are
also extremely useful in every-day scientific communication, from the professional research
to the educational and even the popular science level (see, e.g., Ref. [2, 3]). In this way,
they provide an excellent bridge to convey scientific knowledge to a broad audience.

A perturbative calculation for a given process within a specific model (e.g. the Standard
Model (SM)) typically starts with the generation of the relevant Feynman diagrams. This
is an algorithmic process which can be implemented into a computer program. The most
prominent examples for such implementations are FeynArts [4, 5] and qgraf [6]. The dia-
grams are then usually passed on to other programs which translate them into mathemati-
cal expressions according to the so-called Feynman rules, and yet again to other tools which
actually evaluate these expressions. A paradigm example where all these steps are incor-
porated up to next-to-leading order (NLO) in perturbation theory in a single framework is
MadGraph [7].

In all of this process chain, the actual visualization of the diagrams is not required, since in
the ideal case no human intervention is necessary. Only the computer “sees” the diagrams,
albeit in some mathematical encoding such as incidence matrices. Nevertheless, commu-
nication about particle physics still relies heavily on Feynman diagrams, for example in
order to refer to a particular process or specific contributions to it (see, e.g., Ref. [8]).
On the other hand, their one-to-one correspondence to Feynman integrals also increases
the readability of relations among these integrals. For example, a famous identity among
massless scalar integrals takes the form [9]

ε
q

kp

=
q

kp

− q

kp

, (1)

which the expert reader immediately translates into Feynman integrals:

ε

∫
dDp dDk

p2k2(k − q)2(p− q)2(k − p)2
=

=

∫
dDp dDk

p2k2(k − q)4(k − p)2
−
∫

dDp dDk

p2k2(k − q)2(p− q)4

(2)

which holds for space-time dimensions D = 4− 2ε, with ε 6= 0.

For these reasons, computer tools for the actual visualization of Feynman diagrams are
important. It is probably fair to say that the discussion about the most suitable tool

3

for this purpose is one of physicists’ favorite (non-scientific) controversial subjects. It
seems that the optimal compromise between handiness, flexibility, and esthetics has not
been achieved yet by any of the existing computer tools that have been designed for this
purpose.

The latter naturally fall into two categories: text-based and graphical tools. The former
usually provide a set of routines and statements (“packages”) within a framework like LATEX
or C++ which encode graphical objects. The user needs to write some code which, upon
compilation, produces a visual image of the diagram. Graphical tools, on the other hand,
provide a graphical user interface (GUI) which allows the user to directly draw the diagrams
onto a “canvas” with the “mouse”.1

The earliest examples for text-based tools are probably FeynDiagram [10], which is a set of
C++ objects for producing Feynman diagrams in PostScript format, or axodraw [11] and
FeynMF/FeynMP [12, 13], both of which allow to include the code directly into the source of
a LATEX document. The diagram is then generated by compiling the LATEX code, possibly
with accompanying runs of additional programs such as metafont, metapost, or ps2pdf.
More recent tools are axodraw2 [14] and PyFeyn [15] while currently the most popular text-
based system seems to be TikZ-Feynman [16], which uses lualatex [17] to automatically
position the vertices properly.

The most widely used tool which includes a GUI is probably JaxoDraw [18], which is a
java interface for axodraw. Recently, a few other graphical tools have appeared, most
notably feynman[19] and Feynman diagram maker [20], both of which can be run online
from within a browser.

All of the tools above, whether text- or GUI-based, are designed to draw individual Feyn-
man diagrams “line-by-line”. There are only very few tools that automatically visual-
ize the output of Feynman diagram generators. The prototype of such tools has been
FeynArts [5, 4], which can even be combined with the FeynEdit GUI [21] in order to feyn-,
sorry: fine-tune the output of FeynArts (it can also be used stand-alone).

The only tool to produce animated Feynman diagrams that we are aware of is aximate [22].

Rather than doing a detailed comparison of FeynGame with existing tools, let us simply
state what we believe are its most important, and in particular its unique features. The
purpose of FeynGame is two-fold: on the one hand, it should allow to draw Feynman
diagrams of high quality in a very fast manner. It is thus well-suited for quickly supplying
Keynote or PowerPoint presentations with Feynman diagrams through a simple cut-and-
paste operation. By exporting the diagrams as PDF, they can of course be included in
type-set documents such as books or scientific papers as well.

1We use the expressions “mouse”, “mouse wheel”, “click” etc. in a generic way, referring to all kinds of
“mouse-like” input devices such as track pads or tablet pens, and the corresponding control actions.

4

The second purpose of FeynGame is educational: since its usage is based on particle models
(QED, SM, etc.), it can check whether a particular Feynman diagram is consistent with
the underlying model. This provides the basis for playing games with Feynman diagrams.
The current version of FeynGame contains the game InFin, where the player is asked to
turn a random pair of initial and final states into a valid connected Feynman diagram. We
believe that this may help to bring the concept of Feynman diagrams closer to high-school
students or undergraduates. Forthcoming versions of FeynGame will include further games.

FeynGame is used through a GUI written in java. It is therefore highly portable and should
run on any platform which provides java (version 8 or later). Even though FeynGame
should work out-of-the-box, it is designed to be personalized. This means that the user
can provide her own model file which defines all the desired (or required) line and vertex
styles. This avoids the need to modify every individual line or vertex in case its appearance
is required to deviate from the overall default. For example, FeynGame provides a model
file for the SM which contains a unique line for each particle of that model. To draw a
particular Feynman diagram, one simply picks the individual lines which are displayed in
the main window of FeynGame. The user can conveniently change the overall appearance
of these lines, either through the GUI itself, or by editing the model file.

Another unique feature of FeynGame is the automatic splitting of a line once another line
is connected with it through a vertex. This greatly facilitates the iterative drawing of
diagrams, i.e. adding lines to lower order diagrams to create higher order effects through
internal loops or real radiation. Lines can be moved, stretched, or rotated using a single
click-and-drag, the curving of lines is achieved by turning the mouse wheel, their direction
can be changed and labels can be added with a single keystroke. Almost all line parameters
can be adjusted either through keyboard shortcuts, via a menu (the EditFrame), or by
editing the model file.

The state of the canvas (and thus the current diagram) can be stored in an internal format
(.fg files) which includes up to the last thousand steps in the history of the current state.
This allows to undo/redo any modification of the diagram, no matter when the diagram
was originally created. The current diagram is stored automatically, so that closing and
re-opening FeynGame allows one to seamlessly continue working on the current session.

A diagram can be exported as an image in various formats to a file, it can be copied to
the clipboard (which allows to simply paste it into presentation tools like PowerPoint or
Keynote), and it can be turned into vector graphics in PDF format, which is useful for
including it in a typeset document as produced by LATEX or Word.

The current document gives a first introduction to FeynGame, roughly following a step-
by-step procedure. For simplicity, we will assume that FeynGame was downloaded from

5

(i) (ii) (iii)

(iv) (v) (vi)

Figure 1: Drawing a diagram for b→ sγ. Step (i): draw a b-line. Step (ii): draw
a W line. This splits the original b-line into three. Step (iii): curve W boson
line (mouse wheel). Step (iv): add a photon line and curve it slightly. Step (v):
using EditFrame, turn the central b-line to a t-line. Step (vi): using EditFrame,
turn the left b-line to a s line (The label positions have been slightly adjusted at
intermediate steps.)

6

Figure 2: The default main window of FeynGame, showing the menu bar with
items File , Edit , View , and About , the canvas below it, and the default model bar
at the bottom with tiles for the t, g, γ, and H line, and the “+” tile to add new
objects to the model.

this URL2 in the form of a tarball. Unpacking the tarball will produce a folder named
feyngame, with the following structure:

1 img/ java/ levels/ models/

We assume that the user’s current directory is feyngame.

2 Draw Mode

Let us start FeynGame without command line arguments and without loading a model file
(see Sect. 2.4). The call from a terminal will thus look something like

1 $ java -jar java/FeynGame.jar

while on many systems (e.g. Windows, Linux) double clicking FeynGame.jar will work as
well. Either way, this will open a dialogue window which allows one to choose between
“drawing mode” and “game mode”. Let us consider drawing mode first.

7

http://www.robert-harlander.de/software/feyngame

Table 1: The three main auxiliary features of FeynGame. They can be toggled by pressing
the corresponding key, or via the menu item View , which also allows one to adjust the grid
size.

feature key description
grid g equidistant grid of points on the canvas
helper lines h indicate the active region of an object
show active object a moving dash pattern for active object on the canvas

2.1 The main window

Selecting the drawing mode, FeynGame will open only the “main window”, shown in Fig. 2.
It contains the “canvas” on which the Feynman diagram will be drawn, and below it a
number of tiles. The latter define graphical objects (the current model) which can be used
to draw diagrams, except for the left-most tile (showing a big “+”) which allows to add new
objects to the current model (see Sect. 2.4). The elements of the menu bar at the top of
the main window will be described in the course of this paper, whenever the corresponding
functionality is discussed.

By default (i.e. without loading a model file, see Sect. 2.4), FeynGame will use a toy model
as the current model, consisting of only a few particles which we will refer to as quark,
gluon, photon, and Higgs, respectively (see the tiles of the main window in Fig. 2). It is one
of the central ideas of FeynGame that this default model can be replaced by a personalized
model via File Load model file in the main menu, see Sect. 2.4 below. This model file will
then define the current model.

For the moment, we will assume that the three main auxiliarly features of FeynGame,
described in Table 1 are de-activated. Thus, if your canvas shows a grid of points, press
g to switch off the grid feature for the moment.

2.2 Single line

Let us select a quark line by a single click on the corresponding tile. Subsequent click-
and-drag on the canvas will draw a straight quark line between the click and the release
point, see Fig. 3 (a). If that line shows a moving dash pattern, press a to switch off the
show active object feature for the moment. If you hover the mouse pointer over that line
(without clicking), the width of that line increases slightly; this indicates that clicking at
this point will grab the line. If part of the line changes color when hovering over it, press

2http://www.robert-harlander.de/software/feyngame

8

http://www.robert-harlander.de/software/feyngame

(a) (b) (c) (d)

Figure 3: (A) the canvas contains a single t line; (b) adding a γ line close to it
results in two t lines, a γ line, and a vertex marker; (c) moving the γ line away
from the vertex results in a single t line and a single γ line; (d) moving the vertex
in (b) moves also the ends of the lines connected with it.

h to switch off the helper lines feature for the moment.

You can now modify this line in several ways. Let us first discuss geometrical modifications
which are most conveniently applied by operating directly with the mouse on the canvas:

move: You can either move the entire line by grabbing the line close to its center, or only
one end of the line by grabbing it in the vicinity of this end. Hovering over the line,
FeynGame will display a small textbox in the upper left corner of the canvas which
tells you whether grabbing the line at this point will move the entire line or just one
end of it. Switching on the helper lines feature (toggle with h , see Table 1) will
indicate this directly by highlighting the “active region” of the line when hovering
over it with the mouse pointer.

curve: Turning the mouse wheel will curve the line. Of course, after curving, you can
again move the line in the same way as above. Moving an end of a curved line
will preserve the height of the corresponding circular segment, which means that the
radius of the segment will change. This makes it easy to draw closed circles, see
Sect. 2.8.6.

invert : You can invert the “direction” of this line by pressing i . For the quark line,
this will invert the direction of the arrow on the line. For photons and gluons, it will
invert the wiggles/spirals. The position of the line label will change accordingly (see
Sect. 2.7).

Other line properties like color, stroke size, or arrow size may preferably be changed using
the EditFrame. This is a separate window which can be opened (and closed) by selecting
an object on the canvas and pressing e , or via the View menu item. The actual content

9

Figure 4: The EditFrame window for a gluon line.

of the EditFrame window depends on the object that shall be modified; Fig. 4 shows the
EditFrame window for gluon lines, for example. It also allows to change the relevant
parameters which determine the form of the wiggles. Furthermore, one may attach a text
label which will retain its relative position to the line even when it is moved or curved, see
Sect. 2.7.

For most parameters and options accessible through EditFrame there are keyboard short-
cuts. A complete list can be displayed through the menu item View Show keyboard shortcuts .
On the other hand, the position, curvature and orientation of a line can also be controlled
through EditFrame, which even overrides the presence of the grid.

Any object on the canvas can be removed by selecting it and pressing backspace, or via
the menu item Edit Delete active object .

2.3 Connecting lines

Let us now pick a photon line by selecting the corresponding tile below the canvas. Again,
click-and-drag will add that line to the canvas. If one of the end points of the new line is
close to the already existing quark line, the photon line will be connected with it, indicated
by a vertex marker (the black dot), see Fig. 3 (b). In this process, the quark line is split into
two adjacent quark lines, each inheriting the properties of the original quark line (except
for the length, of course). The canvas now contains four objects: two quark lines, one
photon line, and a vertex marker. Clicking on one of these objects will make it “active”;
the EditFrame window will always refer to the active object. Switching on the show active

10

Table 2: Line types in FeynGame.
fermion

photon

gluon

scalar

object feature (toggle with a , see Table 1) will indicate the active object through a moving
dash pattern.

Each of the three lines can be modified in the same way as above. Removing the photon
line from the canvas (see Sect. 2.2), or detaching it from the vertex will cause the two quark
lines to re-combine to a single quark line if they still have the same essential properties
such as color, width, angle, etc.3 and the vertex marker will disappear, see Fig. 3 (c).

Moving the vertex, on the other hand, will move all ends of the lines connected with it,
see Fig. 3 (d). This is a convenient feature for fine tuning of Feynman diagrams. Other
properties of the vertex that can be modified are accessible by activating it (i.e. clicking
on it) and opening EditFrame (i.e. pressing e).

2.4 Model file

As described above, EditFrame allows one to modify the appearance of lines and vertices.
However, it is more along the philosophy of FeynGame to use a pre-defined model (say, QED,
the SM, the Minimal Supersymmetric SM (MSSM), or a subset of the associated particles)
where each particle corresponds to a line with a certain appearance. For example, if we
are only interested in weak interactions of the first two generations of leptons, the main
window of FeynGame could look like Fig. 5. The leading-order diagram for muon decay can
then be simply drawn by selecting a muon line, drawing it on the canvas, followed by the
line for aW boson, a muon neutrino νµ, an electron, and an electron neutrino νe. It should
not be necessary to change the line styles or manually add particle labels.

Drawing a printable version of a diagram thus literally becomes a matter of seconds,
because the different line styles for the individual particles have been defined beforehand,
using the model file. The model file for the example above reads

3Text labels will be combined if they differ.

11

Table 3: Line options.
option value applies to
color color name, hex all
label string, html all

stroke pixels all
dash true/false all

dashLength pixels all
arrowSize pixels fermion

wiggleSize pixels photon, gluon
wiggleHeight pixels photon, gluon
wiggleOffset pixels gluon

wiggleSharpness pixels photon
double true/false all

1 [e, E, fermion , color=Red , label=e]
2 [nue , Nue , fermion , color=dc27e7 , label=<html >&nu<sub >e]
3 [mu , Mu, fermion , color=Green , label=<html >&mu]
4 [numu , Numu , fermion , color =27e7b3 ,label=<html >&nu<sub >&mu]
5 [W, W, photon , color=dc27e7 , label=W]
6 [Z, Z, photon , color=Blue , label=Z]
7 [ph , ph, photon , color=Green , label=<html >&gamma]

For future reference, let us assume that these lines are the content of a file named
EW2gen.model. Each pair of square brackets defines a particle. The first two entries assign
an internal name for the particle. Since fermion lines have a direction, the two entries
are different in this case (e.g. e,E for the electron, or nue,Nue for the electron-neutrino),
while they are identical for bosons (W,W or Z,Z). The third entry defines the basic line style
according to Table 2. These three entries are required when defining a line in the model
file. The label parameter is optional and will be discussed in more detail in Sect. 2.7. Other
optional parameters are listed in Table 3.

Starting FeynGame by giving it the name of the model file as argument (including its path)
will load the specific model instead of the default one. For example, if we say

1 $ java -jar java/FeynGame.jar models/EW2gen.model

FeynGame will directly start in drawing mode, using the model defined in EW2gen.model as
the current model, with the main window as shown in Fig. 5. Alternatively, one can change
the current model from the main menu of FeynGame using File Load model file .

Aside from the default, built-in model, FeynGame comes with model files for QED, the SM,

12

Figure 5: FeynGame’s main window when called with EW2gen.model.

and also with EW2gen.model, see Fig. 5. The user may adjust the parameters of these
models to ones personal taste simply by editing the corresponding model file. Another,
sometimes more convenient option is to modify the appearance of an existing line within
FeynGame (for example by using EditFrame), and then selecting the “+” tile in the main
window. This will add a new object tile to the current model at the bottom of the main
window. The new line is thus available as a new object in FeynGame. Selecting File
Save model file (as) will modify the current model file (or create a new one), so that the new

line is available also in future sessions. Similarly, one may remove existing object tiles by
-clicking the tile and subsequently saving the model file.

A third way to modify the model file, which is a mixture of the two options just discussed,
will be described in Sect. 2.8.3.

2.5 Vertices

Optionally, you may also specify the vertices of a model in the model file. Unless you
assign specific markers to these vertices (see Sect. 2.6 below), this has no effect on the
actual drawing or appearance of a diagram. However, if the vertices of the model are
specified, you can ask FeynGame to check whether the specific diagram on the canvas is
consistent with the current model. For example, assume that you add the following lines
to EW2gen.model:

1 {e, E, ph}
2 {mu , Mu , ph}
3 {e, E, Z}

13

(a) (b)

Figure 6: (a) A “wrong” diagram for µ decay. (b) Pressing f reports the errors.

4 {mu , Mu , Z}
5 {nue , Nue , Z}
6 {mue , Mue , Z}
7 {e, Nue , W}
8 {nue , E, W}
9 {mu , Numu , W}

10 {numu , Mu, W}
11 {W, W, ph}
12 {W, W, Z}

This tells FeynGame the topological Feynman rules for the electro-weak interaction of the
first two lepton generations. It will still allow you to draw any Feynman diagram you like,
for example the one shown in Fig. 6 (a). However, by pressing f , FeynGame will report
that this diagram is not consistent with the current model by displaying the message in
Fig. 6 (b).

The main purpose of defining the vertices of a model is in the context of the game mode of
FeynGame though, see Sect. 3. However, aside from the simple consistency check described
here, it may also be useful to assign specific vertex markers to some of the vertices. This
is described in the next section.

2.6 Vertex markers

As described in Sect. 2.3, FeynGame draws a vertex marker at the point where lines are
connected with one another. Using EditFrame, the style of this marker can be modified.

14

Figure 7: Triple gauge boson vertices are marked in red.

By selecting the “+” tile, an object tile for the currently active vertex marker will be
created. Similar to newly created lines, the new marker style can even be saved to the
model file using File Save model file , so that it is available as a free-floating object for future
sessions when calling FeynGame with this file (see below). The model file format for a
marker is

1 (vname=redmark , size=10, borderColor=ff000000 , borderDashed=false ,
borderDashLength =5, borderStroke =1, fillingColor=Red)

This would define a big red vertex marker in FeynGame. The meaning of the parameters
should be self-explanatory. If the parameter vname is missing or is equal to the string
“default”, FeynGame will use this marker as default.4 Otherwise, it will use the internal
default marker. On the other hand, you can assign a specific marker to an individual vertex
by adding the attribute type to the vertex definition. For example, modifying the triple
gauge boson vertices defined above in EW2gen.model according to

1 {W, W, ph, type=redmark}
2 {W, W, Z, type=redmark}

will use the red marker for these vertices, and the default marker for all others, see Fig. 7.

The new marker will now also appear as a tile object in the FeynGame main window. It
can be placed anywhere on the canvas as a free-floating object, in the sense that it will not

4If there are multiple vertices without the vname parameter or it being equal to “default”, the uppermost
of these vertex definitions is used as the default vertex.

15

Table 4: JavaFX vertex markers.
fxpath vertex marker

cross.fx
hatched.fx

crosshatched.fx
star.fx

be connected with any other object (it does “clip” to grid points though, see Sect. 2.8.1).

FeynGame provides a set of more elaborate vertex markers. They are accessible through
the drop-down menu Select filling from default patterns of the vertex marker EditFrame, or by
adding the fxpath option to the vertex definition in the model file. For example,

1 (fxpath = cross.fx)

will provide a vertex marker with a cross in the middle. A list of available vertex markers
and their corresponding fxpath parameter are shown in Table 4.

2.7 Labels

As indicated in Sect. 2.4, it is possible to attach labels to lines. In the model file, this is
done by including the label=<label> keyword in the line definition, see EW2gen.model.
Currently, labels can be given in plain text format, or using basic HTML commands. In
this case, the label definition should start with the string “<html>” (see the definition of
the νe label in EW2gen.model, for example). Using the <html> combined with the
tag, it is possible to change the color and the font of the text.

The position of a label is relative to its associated line, but it can be changed by mouse or
using EditFrame. Moving the line will also move the label, such that the relative position
of the two remains fixed. On the other hand, the orientation of the label is defined relative
to the canvas, i.e. rotating the line will not rotate the label relative to the canvas. The
default properties of the label (position, size, orientation, etc.) are the same for all lines;
they can be changed by pressing the Set as default button in EditFrame. In this way, one
can also determine whether the label is shown or not by default. Pressing l will toggle
the displaying of the active line’s label.

In the same way, labels can also be attached to vertex markers and other objects.

16

2.8 Other features

2.8.1 Grid

If the grid is switched on (toggle with g , see Table 1), all objects except for line labels
will be “clipping” to this grid.5 This means that the endpoints of lines, or the center of
free-floating objects (see Sect. 2.6), can only be placed at the grid points. The grid points
are shown on the canvas, but are not included when the diagram is exported as an image or
a PDF. This also holds for the other auxiliary options like helper lines or show active object.
The spacing of the grid points can be changed from the menu View In(De)crease grid spacing ,
or through the associated keyboard shortcut, see View Show keyboard shortcuts .

In addition to the visible grid points on the canvas, every line on the canvas introduces a
“local” set of grid points along this line, roughly at the same distance as the visible grid
points on the canvas. If the grid is active, lines can be connected with one another only
at these line-specific grid points.

Sometimes one may want to have an object to be located off the grid. This can be achieved
either by temporarily switching off the grid (e.g. by pressing g). An object placed without
the grid will remain at its (possibly off-grid) position even after the grid is switched back
on. The other option to place an object off the grid is via EditFrame, which allows one to
specify the coordinates of the object in pixels.

2.8.2 Clipping

Independent of whether the grid is on or off, FeynGame will do additional kinds of clipping
when objects are moved by mouse or curved by mouse wheel:

Vertex clipping. If the end of a line is moved closer to another line (or to its other end)
than a certain minimal distance, it will be connected with that line through a vertex.

Curvature clipping. If the curvature of a line is decreased below a certain minimal value
via the mouse wheel, it will be set to zero.

Angle clipping. If the slope of a straight line is close to a multiple of π/2, it will be
replaced by that multiple of π/2. Via the menu item Edit Clipping angles or by
repeatedly pressing c , that value can be changed to π/4 or π/16, or zero.

This kind of clipping is introduced for the user’s convenience, because otherwise it would
be rather clumsy to connect lines, or to turn a curved line into a completely straight line.

5This applies only to newly positioned objects. The position of object already on the canvas will not
be altered by switching on the grid.

17

In order to overrule such clipping, one can use EditFrame to do a pixel-wise modification
of the position or the curvature.

2.8.3 Copy/Paste

Objects can be copied and pasted using Edit Copy and Edit Paste from the main menu,
or through the system-defined keyboard shortcut (-c / -v for MacOS, for example). The
object will be pasted to the center of the canvas (if pasted from menu) or close to the
mouse pointer (if pasted from keyboard).

One may also copy an object from the canvas to the clipboard, and then paste it to a
regular text editor. It will then display the model-file format of that object. Vice versa,
one may paste any line from the model file into the FeynGame canvas, and it will show the
graphical representation of that object.

2.8.4 Text

There is no specific text object in FeynGame. As described above, labels of lines and vertices
are attributes of these objects. If one really needs a separate text element which is not
associated with any visible object, one may define a vertex of size zero, and introduce the
text as the vertex label, e.g.

1 (vname=text , size = 0, label=mytext)

2.8.5 Images

There are different ways to include an image on the canvas. The first one is to define it as
a vertex marker, for example by opening EditFrame for an arbitrary vertex on the canvas,
and clicking Select image / JavaFX file , which opens the file chooser, from where one may
select an arbitrary image (JPG, PNG, GIF or BMP). One can then include it in the current
model with the “+” tile. Or one defines it directly in the model file; the syntax is:

1 (imagePath=<path_to_image >/ Unicorn.jpg)

Other options like size, rotation, etc. are available but not shown here. Note that
this method puts the image into a round shape, which means that part of it may be cut
away. However, one can use this object like an other vertex marker; for example, one may
associate it with a specific vertex as described in Sect. 2.6.

Another way to include an image is to simply paste it from the clipboard into the FeynGame
canvas, using the system-defined keyboard shortcut. For example, in MacOS one could use

18

Figure 8: A circle can be drawn by identifying the ends of a curved line (a)–(c).
Attaching a line to the circle turns it into a tadpole (d); the vertex becomes the
new “glue point”.

-ctrl- -4 to take a screen shot and paste it into the FeynGame canvas using -v . Again,
the image can be added as an object to the current model using the “+” tile. When stored
to the model file, it will appear there as a line of the following form:

1 |imagePath=<path >/<image >.png , rotation=0, scale =1|

The options should be self-explanatory.

2.8.6 Circles and Tadpoles

We define a circle diagram as a closed loop which is not connected with any other line. It
can be obtained by connecting the ends of a curved line with each other, see Fig. 8 (a)–(c).
One can “re-open” the circle and turn it back to a regular curved line simply by click-and-
drag in the vicinity of the “glue point”. Once we connect a (single) line with the circle, it
becomes a tadpole diagram, see Fig. 8 (d). While the actual position of the original circle
does not change, its glue point gets identified with the new vertex.

2.9 Saving and Exporting

Saving a diagram. FeynGame automatically saves the status of the canvas across ses-
sions in an internal format (.fg file), including its history.6 This means that if you open
FeynGame, the session will start at the point where it was previously closed. Selecting File
New from the menu, on the other hand, will clear the canvas and the history.

Selecting File Save (as) from the menu allows you to save the status of the canvas, including
its history, in the internal format to a specific file. You can modify the diagram at a later
stage by opening it in the canvas using File Open . Selecting Edit Delete history will delete

6Up to the last thousand steps.

19

the history of the canvas. Storing a diagram without history typically reduces the size of
the .fg-file significantly.

Export as image. A diagram can be exported to an image file in various formats using
File Export as image from the menu. None of the auxiliary features from Table 1 will be
exported, only the plain diagram will be visible. Exporting as “Portable Network Graphics
(∗.png)”, the background of the diagram will be transparent. In addition, the diagram can
be exported to the clipboard using File Export to clipboard . In this case, the background of
the image will be transparent. This is particularly useful for including the diagram into a
PowerPoint or Keynote presentation.

Exporting as PDF/printing. With File Print / to PDF , a diagram can be exported as
PDF, or directly sent to a printer. FeynGame will open a dialog box which controls the
following features, see Fig. 9 (b):

• automatic boundaries: The bounding box of the PDF is determined automatically
from the actual location of the diagram on the canvas, roughly as indicated by the
dotted black frame around the diagram in Fig. 9 (a).

• print full canvas: The bounding box is determined by the size of the canvas.

• Show parameters of bounding box: The bounding box parameters are displayed
when the diagram is printed or exported, see Fig. 9 (c). They can then be copied
to the clipboard and pasted into a text editor, for example as parameters for the
\includegraphics command in LATEX:

1 \includegraphics[viewport = 18 347 577 824,
2 size =.3\ textwidth]{ggh.pdf}

Equivalently, one can use the trim parameters, see Fig. 9 (b).

• Print in B/W: Print in black-and-white. More precisely: Lines and the borders of
vertices are drawn in black. The interior of the vertices is drawn black or white
depending on the brightness of its actual color. All other objects remain untouched.

2.10 Misc

Object layering: Lines on the canvas are layered according to their activation history,
i.e. the line that was active last is at the top, etc. This also holds for their labels.
Vertex markers, including their labels, are always on top of everything.

20

(a) (b)

(d)

Figure 9: Printing to PDF. (a) Diagram to be printed using File Print / to PDF ;
the bounding box is indicated as a black dotted frame in this picture. (b) Di-
alogue box with bounding box and black-and-white options. (c) Bounding box
information.

21

(a) (b)

Figure 10: FeynGame in game mode. (a) the “challenge” is to connect the initial
(left) with the final state (right) through a connected Feynman diagram which
only uses lines and vertices of the underlying model. (b) a possible solution.

Canvas shifting: -Click-and-drag on empty space on the canvas will move the whole
diagram.

Right-clicking: Right-clicking anywhere on the canvas opens a menu next to the mouse
pointer which provides an alternative to selecting objects by clicking on the tiles in the
main window. Right-clicking close to an object in addition provides the possibility
to change the style of this object, as an alternative to using the EditFrame.

3 Game mode

3.1 Idea of the game

Currently, FeynGame provides a single game mode, called InFin (for Initial-Final). It can
be started by passing a level file to FeynGame upon start-up:

1 java -jar java/FeynGame.jar levels/SMLevel.if

22

Alternatively, one can start FeynGame without any argument, choose InFin from the dia-
logue window, and subsequently specify the level file. With the level file SMLevel.if pro-
vided with the FeynGame distribution, the main window typically looks similar to Fig. 10.
The lines on the canvas indicate the initial and the final state of a process. The goal is to
draw a connected Feynman diagram that contributes to this process, using the Feynman
rules of the current model (the SM in this case). An example for a valid diagram is shown
in Fig. 10 (b). Pressing Finish will add the “Points of this challenge” as indicated below
the canvas to the total number of points. If the diagram is not valid, pressing Finish will
report the errors. Choosing “Use a timer with duration in seconds” in the dialogue box
upon starting FeynGame in game mode will restrict the total available time for the game
to the specified number of seconds. This can also be achieved by passing the number of
seconds as an integer to FeynGame when calling it from the command line like above.

When drawing the diagram, it is important to note that the outer end of each external
particle is tied to the border of the window and cannot be moved; the other end has to
be connected with some other particle (external or internal). Also, this is the only way
to connect an external particle with the diagram, i.e., other particles cannot be connected
with external lines anywhere else but at this “inner end”.

3.2 Level file

A sample level file looks like this:
1 model = ../ models/standard.model
2

3 easy
4 start: e,E
5 end: e,E
6 start: e,e
7 end: e,e
8

9 medium
10 start: H
11 end: Z,g,g
12 start: mu
13 end: e,numu ,Nue
14

15 hard
16 start: b
17 end: s,ph
18 start: b,S
19 end: B,s

Of course, FeynGame needs to know the underlying model. For that purpose, one needs

23

to point to a proper model file, including the vertex information, whose structure is as
discussed in Sect. 2.4 and 2.5. This is done in line 1; the path to the file can be relative to
the path of the level file or absolute.7 The rest of the level file is divided into three blocks,
headed by the keywords “easy”, “medium”, and “hard”. Below each of these headings is a
list of processes, specified by their initial state and final state (start and end, respectively).
Easy/medium/hard processes are assigned 5/15/25 points.

The user may modify the level file by adding or removing processes, changing the model
file, etc. In principle, given a model file, the generation of the level file could be automated,
of course; this is currently work in progress.

3.2.1 Directories and Files

As indicated above, FeynGame automatically stores the current state of the canvas anytime
during the session. It will report the location of the corresponding files upon exit. For
example, in MacOS, it prints the following message on the terminal:

1 Saved preferences to: <home >/ Library/Preferences/FeynGame/DrawMode.ini
2 Saved diagram to: <home >/ Library/Preferences/FeynGame/last.fg

While last.fg is a binary file which contains the current status of the canvas, including
its history, DrawMode.ini is a regular ASCII file which lists the current parameters of
the session. They will be applied upon the next start of FeynGame. While it is not
recommended, one may thus modify the parameters in DrawMode.ini using a text editor.
However, it is usually simpler (and safer) to adjust the global parameters from within
FeynGame.

4 Conclusions and Outlook

The purpose of FeynGame is two-fold: On the one hand, it should be a useful tool for the
efficient and intuitive drawing of Feynman diagrams for presentations and publications. On
the other hand, it serves a didactic purpose, in the sense that it should playfully convey
the concept of Feynman diagrams to non-experts. The basis for this is its ability to check
the validity of a certain Feynman diagram w.r.t. an underlying model. The current version
of FeynGame contains one such game, called InFin, which is close to one of the main actual
applications of Feynman diagrams, namely the theoretical description of a scattering or
decay process. An example for another possible game is a Scrabble-type game where valid
Feynman diagrams must be created from randomly emerging lines.

7As usual, the home directory can be abbreviated by the character “∼” on Linux-like systems.

24

Other future plans for FeynGame include the im- and exporting of Feynman diagrams to
text-based programs like TikZ-Feynman [16], and the possibility to include LATEX text.

FeynGame is published as open source under the GNU General Public License. It can be
downloaded from https://gitlab.com/feyngame/FeynGame, or as a gzipped tar ball from
https://web.physik.rwth-aachen.de/~harlander/software/feyngame.

Acknowledgments. We would like to thank Jonas Klappert, Fabian Lange, Magnus
Schaaf, Nils Schöneberg, and Małgorzata Worek for helpful comments.

References

[1] R.P. Feynman, The Theory of positrons, Phys. Rev. 76 (1949) 749.

[2] D. Kaiser, Drawing theories apart: The dispersion of Feynman diagrams in postwar
physics, University of Chicago Press, 1993.

[3] A. Wüthrich, The Genesis of Feynman Diagrams, Springer, 2010.

[4] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput.
Phys. Commun. 140 (2001) 418, hep-ph/0012260.

[5] J. Küblbeck, H. Eck, and R. Mertig, Computeralgebraic generation and calculation of
Feynman graphs using FeynArts and FeynCalc, Nucl. Phys. Proc. Suppl. 29A (1992)
204.

[6] P. Nogueira, Abusing qgraf, Nucl. Instrum. Meth. A559 (2006) 220.

[7] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, MadGraph 5 : Going
Beyond, JHEP 06 (2011) 128, arXiv:1106.0522 [hep-ph].

[8] M. Stöltzner, Feynman Diagrams: Modeling between Physics and Mathematics, Per-
spectives on Science 26 (2018) 482.

[9] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate
beta Functions in 4 Loops, Nucl. Phys. B192 (1981) 159.

[10] http://www.feyndiagram.com

[11] J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45. https://www.
nikhef.nl/~form/maindir/others/axodraw/axodraw.html

25

https://gitlab.com/feyngame/FeynGame
https://web.physik.rwth-aachen.de/~harlander/software/feyngame
https://dx.doi.org/10.1103/PhysRev.76.749
https://dx.doi.org/10.1016/S0010-4655(01)00290-9
https://dx.doi.org/10.1016/S0010-4655(01)00290-9
https://arXiv.org/abs/hep-ph/0012260
https://dx.doi.org/
https://dx.doi.org/
https://dx.doi.org/10.1016/j.nima.2005.11.151
https://dx.doi.org/10.1007/JHEP06(2011)128
https://arXiv.org/abs/1106.0522
https://dx.doi.org/doi.org/10.1162/posc_a_00284
https://dx.doi.org/doi.org/10.1162/posc_a_00284
https://dx.doi.org/10.1016/0550-3213(81)90199-1
http://www.feyndiagram.com
https://dx.doi.org/10.1016/0010-4655(94)90034-5
https://www.nikhef.nl/~form/maindir/others/axodraw/axodraw.html
https://www.nikhef.nl/~form/maindir/others/axodraw/axodraw.html

[12] T. Ohl, Drawing Feynman diagrams with Latex and Metafont, Comput. Phys. Com-
mun. 90 (1995) 340, hep-ph/9505351.https://ctan.org/pkg/feynmf

[13] http://osksn2.hep.sci.osaka-u.ac.jp/~taku/osx/feynmp.html

[14] J.C. Collins and J.A.M. Vermaseren, Axodraw Version 2,
arXiv:1606.01177 [cs.OH].https://ctan.org/pkg/axodraw2

[15] https://pyfeyn.hepforge.org

[16] J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun. 210
(2017) 103, arXiv:1601.05437 [hep-ph].

[17] http://www.luatex.org

[18] D. Binosi, J. Collins, C. Kaufhold, and L. Theussl, JaxoDraw: A Graphical user inter-
face for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Com-
mun. 180 (2009) 1709, arXiv:0811.4113 [hep-ph].http://jaxodraw.sourceforge.
net

[19] https://feynman.aivazis.com

[20] https://www.aidansean.com/feynman/

[21] T. Hahn and P. Lang, FeynEdit: A Tool for drawing Feynman diagrams, Comput.
Phys. Commun. 179 (2008) 931, arXiv:0711.1345 [hep-ph].

[22] http://www.robert-harlander.de/software/aximate

26

https://dx.doi.org/10.1016/0010-4655(95)90137-S
https://dx.doi.org/10.1016/0010-4655(95)90137-S
https://arXiv.org/abs/hep-ph/9505351
https://ctan.org/pkg/feynmf
http://osksn2.hep.sci.osaka-u.ac.jp/~taku/osx/feynmp.html
https://arXiv.org/abs/1606.01177
https://ctan.org/pkg/axodraw2
https://pyfeyn.hepforge.org
https://dx.doi.org/10.1016/j.cpc.2016.08.019
https://dx.doi.org/10.1016/j.cpc.2016.08.019
https://arXiv.org/abs/1601.05437
http://www.luatex.org
https://dx.doi.org/10.1016/j.cpc.2009.02.020
https://dx.doi.org/10.1016/j.cpc.2009.02.020
https://arXiv.org/abs/0811.4113
http://jaxodraw.sourceforge.net
http://jaxodraw.sourceforge.net
https://feynman.aivazis.com
https://www.aidansean.com/feynman/
https://dx.doi.org/10.1016/j.cpc.2008.08.005
https://dx.doi.org/10.1016/j.cpc.2008.08.005
https://arXiv.org/abs/0711.1345
http://www.robert-harlander.de/software/aximate

	1 Introduction
	2 Draw Mode
	2.1 The main window
	2.2 Single line
	2.3 Connecting lines
	2.4 Model file
	2.5 Vertices
	2.6 Vertex markers
	2.7 Labels
	2.8 Other features
	2.8.1 Grid
	2.8.2 Clipping
	2.8.3 Copy/Paste
	2.8.4 Text
	2.8.5 Images
	2.8.6 Circles and Tadpoles

	2.9 Saving and Exporting
	2.10 Misc

	3 Game mode
	3.1 Idea of the game
	3.2 Level file
	3.2.1 Directories and Files

	4 Conclusions and Outlook

