
ar
X

iv
:2

00
1.

04
01

6v
3

 [
he

p-
ex

]
 2

8
A

ug
 2

02
0

TopoAna: A generic tool for the event type analysis of

inclusive Monte-Carlo samples in high energy

physics experiments

Xingyu Zhoua,∗, Shuxian Dub, Gang Lic, Chengping Shend,∗

aSchool of Physics, Beihang University, Beijing 100191, China
bSchool of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450000, China

cInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
dKey Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan

University, Shanghai 200443, China

Abstract

Inclusive Monte-Carlo samples are indispensable for signal selection and background suppres-

sion in many high energy physics experiments. A clear knowledge of the physics processes

involved in the samples, including the types of processes and the number of processes in each

type, is a great help to investigating signals and backgrounds. To help analysts obtain the physics

process information from the truth information of the samples, we develop a physics process

analysis program, TopoAna, with C++, ROOT, and LaTeX. The program implements the func-

tionalities of component analysis and signal identification with many kinds of fine, customizable

classification and matching algorithms. It tags physics processes in individual events accurately

in the output root files, and exports the physics process information at the sample level clearly

to the output plain text, tex source, and pdf files. Independent of specific software frameworks,

the program is applicable to many experiments. At present, it has come into use in three e+e−

colliding experiments: the BESIII, Belle, and Belle II experiments. The use of the program in

other similar experiments is also prospective.

Keywords: event type; component analysis; signal identification; inclusive Monte-Carlo

samples; high energy physics experiments

PROGRAM SUMMARY

Program title: TopoAna

Licensing provisions: MIT

Programming language: C++

Operating system: Linux

Nature of problem: A clear knowledge of the physics processes involved in inclusive Monte-Carlo samples

is a great help to investigating signals and backgrounds in many high energy physics experiments. However,

the raw topology truth information of the samples is counter-intuitive, diverse, and overwhelming, which

makes it difficult for analysts to check the physics process information of the samples directly.

Solution method: Based on accurate pattern matching, many kinds of fine, customizable classification and

∗Corresponding author.

E-mail address: zhouxy@buaa.edu.cn, shencp@fudan.edu.cn

Preprint submitted to Computer Physics Communications September 1, 2020

http://arxiv.org/abs/2001.04016v3

matching algorithms are implemented in this program, in order to help analysts obtain the physics process

information of the samples from their raw truth information.

Unusual features: Besides the C++ Standard Template Library, this program makes use of ROOT [1], a

C++ based data analysis software universally used in modern high energy physics experiments. In addition,

the program employs the Linux command, pdflatex, to compile the tex source files into the pdf documents.

[1] ROOT User’s Guide, Available online: https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html.

1. Introduction

One of the most important tasks in the data analysis of high energy physics experiments is

to select signals, or in other words, to suppress backgrounds. As for the task, inclusive/generic

Monte-Carlo (MC) samples are extremely useful, in that they provide basic, though not per-

fect, descriptions of the signals and/or backgrounds involved. However, due to the similarities

between signals and some backgrounds, it usually takes efforts to establish a set of selection

criteria that retain a high signal efficiency and meanwhile keep a low background level. Further

optimization of preliminary criteria is often needed in the process. Under the circumstances, a

comprehensive understanding of the samples is required. In particular, a clear knowledge of the

physics processes, or event types, involved in the samples is quite helpful. To be specific, the

physics process information includes the types of processes and the number of processes in each

type, involved both in the entire samples and in the individual events. Here, the physics process

could be a complete production and decay process involved in an event, or merely a part of it,

such as the decay of an intermediate resonance. With the information, one can figure out the

main backgrounds (especially the peaking ones), and optimize the selection criteria further by

analyzing the differences between the main backgrounds and the signals. Even if it is difficult

to further suppress these backgrounds, the knowledge of their types is beneficial to estimate the

systematic uncertainties associated with them.

The analysis of the physics process information described above is a sort of component anal-

ysis. It is complex since it has to classify physics processes actively and finely. Another sort

of physics process analysis often required in practice is signal identification, which only aims

to search for certain processes of interests. It is relatively simple because its core technique is

merely pattern matching. Mostly, signal and background events coexist in inclusive MC samples.

It is useful to differentiate them in such cases. The identified signal events can be used to make

up a signal sample in the absence of specialized signal samples, or they can be removed to avoid

repetition in the presence of specialized signal samples. Occasionally, we have to pick out some

decay branches in order to re-weight them according to new theoretical predictions or updated

experimental measurements. Signal identification also plays a part in this occasion.

Processes in high energy physics can be visualized with topology diagrams. As an example,

Fig. 1 shows the topology diagrams of two typical physics processes occurring at e+e− colliders.

From the figure, the hierarchies of the processes and the relationships among the particles are

clearly illustrated with the diagrams. Though the complexities of topology diagrams vary with

physics processes, there is only one diagram corresponding to each process. For this reason, we

refer to the physics process information/analysis mentioned thereinbefore as topology informa-

tion/analysis hereinafter. The component analysis and signal identification introduced above are

exactly the two categories of topology analysis that will be discussed in this paper.

Since the raw topology truth information of inclusive MC samples is counter-intuitive, di-

verse, and overwhelming, it is difficult for analysts to check the topology information of the

2

https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html

e
+

e
-

J/�

�
+

�
-

�
0

�
+

γγ

a)

e
+

e
-

�(4S)

B
0

B
0

KS
0

J/� μ- D
*+

��

π+ π-
e
+

e
-

D
0 π+

π0 π+
K
-

γγ

b)

Figure 1: Topology diagrams of (a) e+e− → J/ψ, J/ψ → ρ+π−, ρ+ → π+π0, π0 → γγ and (b) e+e− → Υ(4S),

Υ(4S) → B0 B̄0, B0 → K0
S

J/ψ, B̄0 → µ−D∗+νµ, K0
S
→ π+π−, J/ψ → e+e−, D∗+ → D0π+, D0 → π0π+K−, π0 → γγ. As

if trees grow, the diagrams are plotted from bottom to top.

samples directly. To help them do the checks quickly and easily, a topology analysis program

called TopoAna is developed with C++, ROOT [1], and LaTeX. Here, C++ is the programming

language, ROOT is the C++ based data analysis software universally used in modern high energy

physics experiments, and LaTeX is used for generating pdf documents containing the obtained

topology information. The program implements the functionalities of component analysis and

signal identification based on accurate pattern matching. To meet a variety of practical require-

ments, many kinds of fine, customizable classification and matching algorithms are implemented

in the program. Generally, the program recognizes, categorizes, and counts physics processes in

each event in the samples, and tags them in the corresponding entry of the output root (TFile [2])

files. After processing the events, the program exports the obtained topology information at the

sample level to the output plain text, tex source, and pdf files.

The program is applicable to inclusive MC samples at any data analysis stage of associated

high energy physics experiments. In the overwhelming majority of situations, it is run over the

samples which have undergone some selections, in order to examine the signals and backgrounds

in the selected samples as well as the effect of the imposed selections. In such situations, the

results of topology analysis are usually used together with other quantities for physics analysis.

In spite of this, applying the program to the samples without undergoing any selection facilitates

us to validate the generators and decay cards that produce the samples and helps novices get

familiar with the topology information of the samples.

The program has a history of more than ten years. It has already gone through a series of

major upgrades. Prior to its development, analysts usually wrote some private codes to match

few signals and/or backgrounds for their own studies. The limited functions of these codes

do not satisfy the increasing demand for topology analysis. This motivates us to develop a

generic, powerful, and easy-to-use program. At first, the program was developed for the BESIII

experiment, an experiment in the τ-Charm energy region with abundant research topics under

study [3, 4]. Later, it was extended substantially for the Belle II experiment, which is primarily

dedicated to search for physics beyond the Standard Model in the flavor sector and has already

3

started data taking in the recent three years [5]. Besides, the program has also been tried and

used in the Belle experiment, the predecessor of the Belle II experiment, where some physics

studies are still ongoing [6]. Not relying on any specific software frameworks, the program now

applies to many high energy physics experiments.

This paper gives an essential description of TopoAna. It proceeds as follows: Section 2 intro-

duces the basics of the program; Sections 3 and 4 expatiate the two categories of functionalities

of the program — component analysis and signal identification, respectively; Section 5 presents

some common settings for the executing of the program; Section 6 summarizes the paper. It is

worth mentioning here that, aside from the essential description in the paper, a detailed descrip-

tion of the program can be found in the file “user guide v*.pdf” under the directory “share” of

the package.

2. Basics of the program

This section introduces the basics of the program, including the package, input, algorithm,

execution, performance, output, and validation of the program. The package implements the

program via a C++ class called “topoana” and a main function invoking the class. Compiling

the package creates the executable file of the program, that is, “topoana.exe”. To execute the

program, we have to first obtain the input data of the program, namely the raw topology truth

information of the inclusive MC samples, with some interfaces to the program in the software

systems of the corresponding experiments. Normally, the input data contain all the topology

information of the samples. With the data, all kinds of the topology analysis presented in the

paper can be performed.

To carry out the topology analysis desired in our work, we have to provide some neces-

sary input, functionality, and output information to the program. The information is required to

be filled in the setting items designed and implemented in the program, and the items have to

be put in a plain text file named with a suffix “.card”. With the card file, one can execute the

program with the command line: “topoana.exe cardFileName”, where the argument “cardFile-

Name” is optional and its default value is “topoana.card”. After the execution of the program,

we can examine the results of topology analysis in the output files and use them to analyze other

experimental quantities. The results help us gain a better understanding of the signals and back-

grounds and are conducive to carrying our work forward. Besides the package, input, execution,

and output of the program mentioned above, the algorithm, performance, and validation of the

program will also be discussed in this section, because they are also essential aspects of the pro-

gram. In the next seven subsections, we will present the package, input, algorithm, execution,

performance, output, and validation of the program in detail, with each part in one subsection.

2.1. Package of the program

The package consists of six directories — “include”, “src”, “bin”, “share”, “examples”,

and “utilities” — and five files — “LICENSE”, “README.md”, “Configure”, “Makefile”, and

“Setup”. While the directory “include” only includes one header file “topoana.h”, the directory

“src” contains sixty source files “*.cpp” as well as a script file “topoana.C”. At present, only

one class, namely “topoana”, is defined in the program for all of its functionalities. The class is

declared in “topoana.h”, implemented in “*.cpp” files, and invoked in “topoana.C”.

The file “template topoana.card” under the directory “share” saves all the items which are de-

veloped for users to specify information for the execution of the program. One can refer to the file

4

when filling in the cards for their own needs. Some plain text files “pid 3pchrg txtpnm texpnm

iccp.dat *” are also included in the directory “share”. They store the basic information of the

particles used in the program. The suffixes of their names indicate the experiments they apply

to. One of them will be copied to “pid 3pchrg txtpnm texpnm iccp.dat” when we set up the

program. Besides, the directory “share” also contains three LaTeX style files “ geometry.sty”,

“ifxetex.sty”, and “makecell.sty”, which are invoked by the program for generating pdf files.

The directory “examples” includes plenty of detailed examples. Particularly, all the examples in-

volved in this paper are under its sub-directory “in the paper”. The directory “utilities” contains

some useful bash scripts.

The program is released under MIT license [7]. The file “README.md” briefly introduces

how to install and use the program. To set up the program, one should first set the package path

with the command “./Configure”. Standard outputs of the command are the guidelines for man-

ually adding the absolute path of “topoana.exe” to the environment variable “PATH”, in order to

execute it without any path. The second step is executing the command “make”. This command

compiles the header, source, and script files into the executable file “topoana.exe” under the di-

rectory “bin”, according to the rules specified in the “Makefile”. The last step is specifying the

experiment name with the command line “./Setup experimentName”. Currently, the supported

experiment names are “BESIII”, “Belle”, and “Belle II”. Besides, “./Setup Example” is required

for the execution of the examples in the paper.

2.2. Input of the program

The input of the program is one or more root files including a TTree [2] object which has

some TBranch [2] objects containing the raw topology truth information of the inclusive MC

samples under study. To be specific, the information in each entry of the TTree object consists of

the following three ingredients associated with the particles produced in an event of the samples:

the number of particles, PDG [8] codes of particles, and mother indices of particles. Notably,

the particles do not include the initial state particles (e+ and e− in e+e− colliding experiments),

which are default and thus omitted. Besides, the indices of particles are integers starting from

zero (included) to the number of particles (excluded); they are obvious and hence not taken as an

input ingredient for topology analysis. Equation (1) shows an example of the input data.

Number of particles : 63

PDG codes of particles : 300553,

−511, 511, −433, 421, 211, 22, −413, 111, 111, 113,

211, −431, 22, −323, 213, −421, −211, 22, 22, 22,

22, 211, −211, 333, 11, −12, 22, −311, −211, 211,

111, 221, 331, 321, −321, 310, 22, 22, 111, 111,

111, 111, 111, 221, 111, 111, 22, 22, 22, 22,

22, 22, 22, 22, 22, 22, 22, 22, 22, 22,

22, 22

Mother indices of particles : −1,

0, 0, 1, 1, 1, 1, 2, 2, 2, 2,

2, 3, 3, 4, 4, 7, 7, 8, 8, 9,

9, 10, 10, 12, 12, 12, 12, 14, 14, 15,

15, 16, 16, 24, 24, 28, 31, 31, 32, 32,

32, 33, 33, 33, 36, 36, 39, 39, 40, 40,

41, 41, 42, 42, 43, 43, 44, 44, 45, 45,

46, 46

(1)

5

The complete physics process contained in the data is displayed as follows.

0 e+e− → Υ(4S) -1 9 ρ+ → π0π+ 6

1 Υ(4S)→ B0B̄0 0 10 K∗− → π−K̄0 6

2 B0 → π0π0ρ0π+D∗− 1 11 D−s → e−ν̄eφγ 7

3 B̄0 → π+D0D∗−s γ 1 12 η→ π0π0π0 8

4 ρ0 → π+π− 2 13 η′ → π0π0η 8

5 D∗− → π−D̄0 2 14 K̄0 → K0
S

10

6 D0 → ρ+K∗− 3 15 φ→ K+K− 11

7 D∗−s → D−s γ 3 16 η→ γγ 13

8 D̄0 → ηη′ 5 17 K0
S
→ π0π0 14

(2)

Here, the decay branches in the process are placed into two blocks in order to make full use of

the page space. In both blocks, the first, second, and third columns are the indices, symbolic

expressions, and mother indices of the decay branches. Notably, all the decay branches of π0 →

γγ are omitted in Eq. (2) in order to make the process look more concise. Since the topology

diagram of such a process looks like a tree, we refer to the complete processes as decay trees.

Obviously, the input data do not show the structure automatically. Thus, we need the program to

do the topology analysis work.

From the first branch in Eq. (2), only one particle Υ(4S) is produced after the e+e− annihila-

tion. Thus, Υ(4S) can be referred to as the root particle of the decay tree. Similarly, many other

resonances with the quantum numbers JPC = 1−−, such as J/ψ, can be solely produced at other

proper energy points. Besides the cases with only one root particle, the program can deal with

the cases with multiple root particles. For example, the program can recognize the following raw

topology truth information

Number of particles : 25

PDG codes of particles : 433,

−321, 223, 211, −413, 431, 111, 211, −211, 111, −411,

111, 321, 113, 22, 22, 22, 22, 321, −211, −211,

22, 22, 211, −211

Mother indices of particles : −1,

−1, −1, −1, −1, 0, 0, 2, 2, 2, 4,

4, 5, 5, 6, 6, 9, 9, 10, 10, 10,

11, 11, 13, 13

(3)

as the following process

0 e+e− → π+ωK−D∗−D∗+s −1 4 D− → π−π−K+ 2

1 ω→ π0π+π− 0 5 D+s → ρ0K+ 3

2 D∗− → π0D− 0 6 ρ0 → π+π− 5

3 D∗+s → π0D+s 0

(4)

Here, the particles π+ωK−D∗−D∗+s in the first branch arise from hadronization processes, in which

quark pairs produced from initial state particles turn into hadrons. The processes with hadroniza-

tion ignored have a tree structure and thus are easy to resolve. On the other hand, some hadroniza-

tion processes, particularly those in high energy regions, contain complicated loop structures that

are difficult to resolve without sophisticated algorithms. Resolving these intricate hadronization

processes is not involved in the program at present.

The input data are recommended to be saved in the TTree object together with other quantities

for physics analysis, in order to facilitate the examination of the distributions of these quantities

with the topology information. It is easy to get the input of the program within the software

6

framework of high energy physics experiments. To facilitate its use, we have developed the

interfaces of the program to the software systems of the BESIII, Belle, and Belle II experiments.

Similar interfaces for other experiments can also be implemented with ease. Beyond the scope

of the paper, we will not discuss the details of the interfaces here.

2.3. Algorithm of the program

The program resolves physics processes from the input data introduced above. Consider-

ing the diversity of the data, the program first sorts them before translating them into physics

processes. Here, the diversity means that the data representing a process may have multiple per-

mutations. For example, the data for the decay ρ0 → π+π− have the following two permutations.

Number of particles : 3

PDG codes of particles : 113, 211, −211 or 113, −211, 211

Mother indices of particles : −1, 0, 0

A decay tree can consist of many decay branches. As a consequence, the diversity issue is

complex. To avoid the different permutations of one group of data are identified as different pro-

cesses, the program first sorts the input data to adjust all the possible permutations to a unique

order, according to the PDG codes and electronic charges of the involved particles, and the num-

bers of their daughter particles in the case of identical particles present in the same decay branch.

For example, the two permutations above will be finally sorted into the first permutation (113,

211, −211) in the program. The sorting algorithm is implemented in the source file “sortPs.cpp”,

where some other settings are also involved. One can see the reference file “sortPs.cpp core” for

the core of the sorting algorithm. After the sorting, the program can get the decay tree from the

sorted data into a vector of the type “vector< list<int> >” with the function implemented in the

source file “getDcyTr.cpp”.

As mentioned in the previous section, the program has two categories of functionalities: sig-

nal identification and component analysis. In this subsection, we introduce the basic algorithms

for signal identification and component analysis by taking the cases of decay trees as examples.

Figures 2 and 3 show the flow charts of these algorithms in detail. Dozens of lines of code,

including some using the ROOT classes TChain, TFile, and TTree [2], are involved in the charts

in order to express the algorithms explicitly. The flow chart of the signal identification for decay

trees is depicted in Fig. 2. Firstly, the program reads in the signal decay trees specified in the

user card file. Then, for each entry of the input root file, the program obtains the decay tree from

the sorted input data, matches the decay tree to the signal decay trees, records the index of the

matched signal decay tree, and increases the number of the matched signal decay tree. At last,

the program outputs the statistics of the signal decay trees.

The flow chart of the component analysis over decay trees is illustrated in Fig. 3. Despite

the similarity in their frameworks, the flow chart has significant differences from that of the

signal identification for decay trees in Fig. 2. In the signal identification algorithm, the signal

decay trees to be identified are specified beforehand in the user card file. On the contrary, in

the component analysis algorithm, the program has to classify decay trees by itself from scratch.

In the signal identification algorithm, the decay trees are matched by directly comparing the

vectors storing them. Since the number of specified signal decay trees is fixed and usually small,

the processing rate of the program is high and usually in constant. However, in the component

analysis algorithm, the number of decay tree types found in a sample can be quite large and tends

to grow with the number of processed entries. On this occasion, if we still match the decay trees

by comparing the vectors storing them, the processing rate of the program will decrease with

7

the increase of the number of processed entries. To improve the processing rate, the unordered

map [9], a kind of container template introduced since the C++ 11 standard, is employed for the

fast matching of decay trees. Internally, the elements in the unordered maps are organized into

buckets depending on their hash values, to allow for fast access to individual elements directly

by their key values with a constant average time complexity [9]. This constant feature in average

time complexity will be examined in Section 2.5.

Figure 2: Basic flow chart of the signal identification for decay trees. The vectors “vSigDcyTr” and “vNSigDcyTr” are

used to store the signal decay trees specified in the user card file and the numbers of these decay trees found in the input

root file, respectively. The TBranch “iSigDcyTr” in the output root file is used to record the index of the signal decay

tree involved in each entry of the input root file.

8

Figure 3: Basic flow chart of the component analysis over decay trees. The TBranch “iDcyTr” in the output root file is

used to record the index of the decay tree involved in each entry of the input root file. The vectors “vDcyTr”, “vIDcyTr”,

and “vNDcyTr” are used to store the decay trees found in the input root file, their individual indices, and their individual

numbers, respectively. In addition, the unordered map “uomDcyTr” is used for the fast matching of decay trees. Its key

and value are the string “strDcyTr” and the index “iDcyTr”, respectively. Here, the string “strDcyTr” is constructed from

the vector “dcyTr”; there is a one-to-one correspondence between them.

9

2.4. Execution of the program

To execute the program, we have to first configure some necessary setting items in a card file,

and then run the program with the command line: “topoana.exe cardFileName”. This subsection

introduces the essential items for the input, basic functionality, and output of the program. More

items that can be set in the card file will be described in the following three sections. Sections 3

and 4 expatiate the available items for the functionalities of the program, and Section 5 presents

some optional items for the common settings to control the execution of the program.

An example of the card file containing the essential items is shown as follows.

The following five items set the input of the program.

% Names of input root files

{

../input/jpsi 1.root

../input/jpsi 2.root

}

% TTree name

{

evt

}

% TBranch name of the number of particles (Default: nMCGen)

{

Nmcps

}

% TBranch name of the PDG codes of particles (Default: MCGenPDG)

{

Pid

}

% TBranch name of the mother indices of particles (Default: MCGenMothIndex)

{

Midx

}

The following item sets the basic functionality of the program.

% Component analysis — decay trees

{

Y

}

The following item sets the output of the program.

% Common name of output files (Default: Name of the card file)

{

jpsi ta

}

In the card file, “#”, “%”, and the pair of “{” and “}”, are used for commenting, prompting, and

grouping, respectively. The first five, sixth, and last items are set for the input, basic functionality,

and output of the program, respectively.

10

The first item sets the names of the input root files. The names ought to be input one per

line without tailing characters, such as comma, semicolon, and period. In the names, both the

absolute and relative paths are allowed and wildcards “[]?*” are supported, just like those in the

root file names input to the method Add() of the class TChain [2]. The second item specifies the

TTree name. The following three items set the TBranch names of the three ingredients of the

raw topology truth information. Of the first five items, the former two are indispensable, whereas

the latter three can be removed or left empty if the input values are identical to the default values

indicated in their prompts.

The sixth item sets the basic functionality of the program, namely the component analysis

over decay trees. The item can be replaced or co-exist with other functionality items expatiated in

Sections 3 and 4. Here, we note that at least one functionality item has to be specified explicitly

in the card file, otherwise the program will terminate soon after its start because no topology

analysis to be performed is set up.

The last item specifies the common name of the output files. Though in different formats, the

files are denominated with the same name for the sake of uniformity. They will be introduced

in detail in the next subsection. This item is also optional, with the name of the card file as its

default input value. It is a good practice to first denominate the card file with the desired common

name of the output files and then remove this item or leave it empty.
To provide a complete description, we list and explain all the essential items in the paragraphs

above. However, in practical uses, we suggest removing the optional items if the input values are
identical to the default ones. In this way, the contents of the card file will become much more
concise, making the use of the program easier and quicker. For example, unless otherwise stated,
only the following two items are used to set the essential information in Sections 3, 4, and 5.

% Names of input root files

{

../input/mixed 1.root

../input/mixed 2.root

}

% TTree name

{

evt

}

2.5. Performance of the program

Besides the performance of the used computing systems, the processing rate of the program is

largely related to the characteristics of the samples, particularly the average number of generated

particles in each event. Figure 4 shows the performance study of the program with the J/ψ sample

used in the example of this section as well as the τ+τ−, dd̄, uū, ss̄, cc̄, B+B−, and B0B̄0 samples

generated at the peak energy of the Υ(4S) resonance. Each of the used samples consists of one

hundred thousand events. From the left plot in the figure, for all the samples, the number of

elapsed seconds grows linearly with the number of processed entries. This linear pattern is a nice

feature. It guarantees the program has a high rate even in the case of processing huge samples.

For example, the program can process one hundred thousand J/ψ events within five seconds.

Here, we note that the linear pattern is the result of fast searches with unordered maps [9], as

we discuss in Section 2.3. On the other hand, the processing rate of the program varies with

the processed samples. The right plot in Fig. 4 shows the relationship between the total number

of elapsed seconds over the whole sample and the average number of generated particles in an

event. Clearly, a linear pattern is also observed in the plot. To be specific, with the average

11

number of generated particles in an event increasing by one, the total number of elapsed seconds

over the whole sample increases by about 0.56.

20 40 60 80 100

310×

Number of processed entries

0

10

20

N
um

be
r

of
 e

la
ps

ed
 s

ec
on

ds

ψJ/ −τ+τ
dd uu
ss cc

−B+B
0

B0B

0 10 20 30 40 50

Number of particles

0

10

20

N
um

be
r

of
 e

la
ps

ed
 s

ec
on

ds

ψJ/ −τ+τ
dd uu
ss cc

−B+B
0

B0B

Figure 4: Performance study of the program with the J/ψ sample as well as the τ+τ− , dd̄, uū, ss̄, cc̄, B+B−, and B0B̄0

samples generated at the peak energy of the Υ(4S) resonance. The left plot demonstrates the changing trends of the

number of elapsed seconds with respect to the number of processed entries. The right plot illustrates the relationship

between the total number of elapsed seconds over the whole sample and the average number of generated particles in

an event. In both plots, the dots show the timing data from the standard output of the program, and the lines display the

results of fitting linear functions to the data.

2.6. Output of the program

The program gains the topology information from input data and saves it to output files. As

mentioned in Section 1, the information includes the types of physics processes and the number

of processes in each type, involved both in entire samples and in individual events. We refer to

the information at the sample level as topology maps. In the topology maps, we assign an integer

to each type of physics processes as its index. We term the indices of processes as well as the

numbers of processes involved in each type in the individual events as topology tags.

The program outputs topology maps to three different files: one plain text file, one tex source

file, and one pdf file, with the same name specified in the card file. For instance, the three files

are “jpsi ta.txt”, “jpsi ta.tex”, and “jpsi ta.pdf” in the example. Although in different formats,

the three files have the same information. The pdf file is the easiest to read. It is converted from

the tex source file with the command pdflatex. The tex source file is convenient to us if we want

to change the style of the pdf file to our taste and when we need to copy and paste (parts of)

the topology maps to our slides, papers, and so on. For example, all of the tables displaying

topology maps in this paper are taken from associated tex source files. The plain text file has its

own advantage, because the topology maps in it can be checked with text processing commands

as well as text editors, and can be used on some occasions as input to the functionality items (see

Sections 3 and 4 for details) of another card file.

In addition to the three files for topology maps, one or more root files are output to save

topology tags. The root files only include one TTree object, which is entirely the same as that in

the input root files, except for the topology tags inserted in all of its entries. The number of root

files depends on the size of output data. The program switches to one new root file whenever the

size of the TTree object in memory exceeds 3 GB. In the case of the size less than 3 GB, only

one root file is output. While the sole or first root file has the same name as the three files above,

more possible root files are denominated with the suffix “ n” (n=1, 2, 3, and so on) appended to

12

the name. In the example, the first root file is “jpsi ta.root”, and more possible root files would

be “jpsi ta 1.root”, “jpsi ta 2.root”, “jpsi ta 3.root”, and so on.

Table 1: Top ten decay trees and their respective final states.

rowNo decay tree decay final state iDcyTr nEtr nCEtr

1 J/ψ → µ+µ− µ+µ− 6 5269 5269

2 J/ψ → e+e− e+e− 4 4513 9782

3 J/ψ → π0π+π+π−π− π0π+π+π−π− 0 2850 12632

4 J/ψ → π0π+π+π+π−π−π− π0π+π+π+π−π−π− 2 1895 14527

5 J/ψ → π0π+π−K+K− π0π+π−K+K− 20 1698 16225

6
J/ψ → ρ+ρ−ω, ρ+ → π0π+,

ρ− → π0π−, ω→ π0π+π−
π0π0π0π+π+π−π− 19 1453 17678

7 J/ψ → e+e−γ f e+e−γ f 70 1222 18900

8 J/ψ → π0π0π+π+π−π− π0π0π+π+π−π− 127 1161 20061

9 J/ψ → π0π+π+π+π+π−π−π−π− π0π+π+π+π+π−π−π−π− 234 836 20897

10 J/ψ → π0π0π+π−γF π0π0π+π−γF 43 792 21689

In the example of the previous subsection, the program conducts its basic functionality,

namely the component analysis over decay trees. From the 100000 events of the input sample,

the program recognizes 17424 decay trees and outputs all of them to the plain text, tex source,

and pdf files. Table 1 only shows the top ten decay trees and their respective final states listed in

the output pdf file. With the help of the symbolic expressions, the components of the sample are

clearly displayed in the table, which brings great convenience to us in examining the signals and

backgrounds involved in the sample. In the table, “rowNo”, “iDcyTr”, “nEtr”, and “nCEtr” are

abbreviations for the row number, index of decay tree, number of entries of decay tree, and num-

ber of the cumulative entries from the first to the current decay trees, respectively. The values of

“iDcyTr” are assigned from small to large in the program but listed according to the values of

“nEtr” from large to small in the table. This is the reason why they are not in natural order like

the values of “rowNo”. Since J/ψ is the only root particle for the J/ψ sample, the production

branch e+e− → J/ψ is omitted to save page space. Similar rules also apply to other samples

with only one root particle. Considering π0 has a very large production rate and approximatively

99% of it decays to γγ, the program is designed to discard the decay π0 → γγ by default at the

early phase of processing the input data. As a result, π0 → γγ does not show itself in the table.

Besides, the superscripts “ f ” and “F” in γ f and γF indicate the final state radiation effect. Here,

we note that γ f is translated from a special input PDG code (−22 in this example), and γF owns

a normal PDG code 22 and meanwhile has at least one e±, µ±, π±, K±, p, or p̄ sister.

In the table, “iDcyTr” is the topology tag for decay trees. Thus, it is also saved in the TTree

objects of the output root file, together with other quantities for physics analysis. Therefore, it

can be used to pick out the entries of specific decay trees and then examine the distributions of

the other quantities over the decay trees. In the example, besides the raw topology truth informa-

tion, only a random variable following the standardized normal distribution, namely X, is stored

in the input root files and thus copied by default to the output root file. Though not a genuine

variable for physics analysis, X is quite good to illustrate the usage of the topology tag. Figure 5

shows the distribution of X accumulated over the top ten decay trees. The figure is drawn with

the root script

13

4− 2− 0 2 4 6 8

X

0

200

400

600

800

1000
ev

en
ts

 /
(0

.1
)

−µ +µ → ψJ/
− e+ e→ ψJ/

−π 2+π 20π → ψJ/
−π 3+π 30π → ψJ/

− K+ K−π +π 0π → ψJ/

, ...ω −ρ +ρ → ψJ/
fγ − e+ e→ ψJ/

−π 2+π 20π 2→ ψJ/
−π 4+π 40π → ψJ/
Fγ −π +π 0π → ψJ/

Figure 5: Distribution of X accumulated over the top ten decay trees. In the legend entry “J/ψ → ρ+ρ−ω, ...”, the dots

“...” represent the secondary decay branches: ρ+ → π0π+, ρ− → π0π−, ω→ π0π+π−.

examples/in the paper/ex for tb 01/draw X/v2/draw X.C,

where, for example, a statement equivalent to

chain–>Draw(“X >>h0”, “iDcyTr==6”)

is used to import X over the decay tree J/ψ → µ+µ− from the output root file to the histogram

named h0. With such a figure, we can clearly see the contribution of each decay tree. Particu-

larly, we can get to know whether a decay tree has a peak contribution or a contribution mainly

distributed in a different region. Based on these distributions, we can get a better understand-

ing of our signals and backgrounds, and thus optimize event selection criteria by applying new

requirements on the displayed quantities.

2.7. Validation of the program

The decay trees displayed in Table 1 are relatively simple, and we can check their correctness

by examining the input data directly. To validate the program generally, we need to do input and

output checks, where some arbitrary physics processes are generated as the input of the program.

The output has to be consistent with the input; otherwise, there must be some bugs in the program

and we have to fix them. A large number of such checks have been performed in the develop-

ment and application of the program, and some of them can be found under the sub-directory

“examples/validation” of the package. These checks are divided into two groups: standalone and

combined. In the standalone checks, forty exclusive J/ψ and Υ(4S) decays modeled with the

EvtGen [10] generator are used to test the functionality of resolving decay trees. In the com-

bined checks, randomly combined samples of these exclusive decays are used for verifying the

functionalities of counting and tagging decay trees. The output agrees with the input in all the

checks, which indicates the correctness of the program.

14

3. Component analysis

Component analysis is the primary functionality of the program. It is developed mainly for

the background analysis involved in our physics studies. We perform it over decay trees in the

previous example. Also, it can be carried out as follows: over decay initial-final states; with

specified particles to check their decay branches, cascade decay branches, and decay final states;

with specified inclusive decay branches to examine their exclusive components; and with spec-

ified intermediate-resonance-allowed (IRA) decay branches to investigate their inner structures.

In this paper, we only introduce the four representative kinds of component analysis, with each

in a subsection (for other kinds of component analysis, please see the user guide attached in the

package of the program). For each kind of component analysis, one item is designed and im-

plemented in the program to set related parameters. In each subsection, we take an example to

demonstrate the corresponding setting item and show the resulting topology map. For easy ex-

position, all of the essential topology tags involved in the four representative kinds of component

analysis functionalities are presented in another separate subsection, namely the last subsection.

Similar to the case over decay trees, to perform the component analysis over decay initial-

final states, we only need to input a positive option “Y” to the corresponding item. Different

from the former two kinds, to carry out the latter five kinds of component analysis, we have to

explicitly specify one or more desired particles, inclusive decay branches, or IRA decay branches

in the associated items. In the following examples, two particles or decay branches are set to

illustrate the use of these items, but only the topology map related to one of them is shown to

save space in the paper.

In addition to the indispensable parameters, two sorts of common optional parameters can be

set in the items. The first sort is designed for all the seven kinds of component analysis to restrict

the maximum number of components output to the plain text, tex source, and pdf files. Without

the optional parameters, all components will be output. This is fine if the number of components

is not massive. In cases of too many (around ten thousand or more) components, it takes a long

time for the program to output the components to the plain text and tex source files as well as

to get the pdf file from the tex source file. In such cases, it also takes up a large disk space to

save these components in the output files. Considering further that the posterior components are

generally unimportant and our time and energy to examine them are limited, it is better to set a

maximum to the number of output components. To save space in the paper, we set the maximum

number to five in the following examples.

The second sort of optional parameters are developed for the latter five kinds of component

analysis to assign meaningful aliases to the specified particles, inclusive decay branches, and IRA

decay branches. By default, the indices 0, 1, 2, and so on are used to tag the particles and decay

branches in the names of the TBranch objects appended in the TTree object of the output root

files. This is fine, but it is significative to replace the indices with meaningful aliases, particularly

in cases of many specified particles or decay branches.

3.1. Decay trees

Component analysis over decay trees is the basic kind of topology analysis. It is quite use-
ful to study the backgrounds involved in our research works where the signals are the complete
decay trees fully reconstructed from final state particles. It has already been widely performed
in the BESIII experiment, as illustrated in the previous section with the J/ψ example. This sub-
section introduces it further with the available optional settings using the Υ(4S) sample. The
following example shows the associated item with the maximum number of output components
set to five. In the item, a third parameter is also filled and set to “Y”. With the setting, the decay

15

final states in the output pdf file are put under their respective decay trees, rather than in a column
next to that for decay trees. It is recommended to use this optional parameter in cases there are
too many (about ten or more) particles in some final states. Here, we note that the symbol “−”
can be used as a placeholder for the maximum number of output components, if only the third
parameter is desired.

% Component analysis — decay trees

{

Y 5 Y

}

Component analysis over decay trees is one kind of the most time-consuming topology anal-

ysis tasks. To check further the efficiency of the program, the progress of running this example,

in addition to the example in Section 2.4, is illustrated in the plots of Fig. 4 as well. In these plots,

the timing data from this example are marked with the legend entry “B0B̄0”. Since the decay of

the Υ(4S) resonance is more complex than that of the J/ψ resonance, it takes more than twenty

seconds for the program to process one hundred thousand events in this example. Nonetheless,

the program still has a high processing rate.

Table 2 shows the decay trees. In the table, while the first five decay trees are listed exclu-

sively in the main part, the rest decay trees are only summarized inclusively at the bottom row.

Here, we note that the events are not densely populated over the first five decay trees because the

inclusive Υ(4S) sample used here is not selected beforehand with any requirements. In the sym-

bolic expressions of decay initial-final states, the dashed right arrow (99K) instead of the plain

right arrow (→) is used, in order to reflect that the initial states do not necessarily decay to the

final states in a direct way.

Table 2: Decay trees and their respective initial-final states.

rowNo
decay tree

(decay initial-final states)
iDcyTr nEtr nCEtr

1

Υ(4S)→ B0B̄0, B0 → e+νeD∗−γF , B̄0 → µ−ν̄µD∗+,D∗− → π−D̄0,

D∗+ → π+D0, D̄0 → π0π−K+,D0 → π0π+K−

(Υ(4S) 99K e+νeµ
−ν̄µπ

0π0π+π+π−π−K+K−γF)

20870 3 3

2

Υ(4S)→ B0B̄0, B0 → π0π+π+ρ−D−, B̄0 → µ−ν̄µD∗+, ρ− → π0π−,

D− → π−π−K+,D∗+ → π+D0,D0 → K0
L
π+π−

(Υ(4S) 99K µ−ν̄µπ
0π0K0

L
π+π+π+π+π−π−π−π−K+)

5295 2 5

3

Υ(4S)→ B0B̄0, B0 → µ+νµD∗−, B̄0 → e− ν̄eD+,D∗− → π−D̄0,

D+ → e+νeK̄∗, D̄0 → π0π+π−K0
S
, K̄∗ → π0K̄0, K0

S
→ π+π−, K̄0 → K0

L

(Υ(4S) 99K e+e−νeν̄eµ
+νµπ

0π0K0
L
π+π+π−π−π−)

11954 2 7

4

Υ(4S)→ B0B̄0, B0 → e+νeD∗−, B̄0 → π0π−ωD+,D∗− → π−D̄0,

ω→ π0π+π−,D+ → e+νeπ
+K−, D̄0 → π0π−K+

(Υ(4S) 99K e+e+νeνeπ
0π0π0π+π+π−π−π−π−K+K−)

14345 2 9

5

Υ(4S)→ B0B̄0, B0 → µ+νµD∗−, B̄0 → e− ν̄eD∗+γF ,D∗− → π−D̄0,

D∗+ → π0D+, D̄0 → π−K+,D+ → e+νeK̄∗, K̄∗ → π+K−

(Υ(4S) 99K e+e−νeν̄eµ
+νµπ

0π+π−π−K+K−γF)

15332 2 11

rest
Υ(4S)→ others (99980 in total)

(Υ(4S) 99K corresponding to others)
— 99989 100000

3.2. Decay initial-final states

On some occasions, we need to investigate the decay initial-final states of backgrounds for
some sophisticated physics analyses. Particularly, it is necessary to differentiate the following

16

two fundamental types of backgrounds: the one with the same initial-final states as the signal,
and the other with different initial-final states from the signal. While the latter type of back-
grounds needs to be suppressed as much as possible, the former type usually needs to be kept to
study more physical effects, for example, the interference effect. Besides, examining the decay
initial-final states of backgrounds sheds light on the misjudgment of final state particles at the
level of signal candidates. Below is an example demonstrating the related item with the maxi-
mum number of output components set to five.

% Component analysis — decay initial-final states

{

Y 5

}

The decay initial-final states are displayed in Table 3. The layout of the table is similar to that of

Table 2, which shows the decay trees.

Table 3: Decay initial-final states.

rowNo decay initial-final states iDcyIFSts nEtr nCEtr

1 Υ(4S) 99K µ+νµπ
0π0π0π+π+π+π−π−π−π−K+K− 41 18 18

2 Υ(4S) 99K π0π0π0π0π0π+π+π+π+π+π−π−π−π−π−K+K− 887 18 36

3 Υ(4S) 99K µ−ν̄µπ
0π0π0π0π+π+π+π+π+π−π−π−π−K+K− 3350 18 54

4 Υ(4S) 99K π0π0π0π0π0π0π+π+π+π+π+π+π−π−π−π−π−π−K+K− 1215 17 71

5 Υ(4S) 99K π0π0π0π0π0π0K0
L
π+π+π+π+π+π−π−π−π−K− 1207 17 88

rest Υ(4S) 99K others (78208 in total) — 99912 100000

3.3. Decay branches of particles

The invariant mass constraint is one of the most frequently used event selection requirements
in high energy physics experiments. With the requirement applied to certain particle, the main
backgrounds (especially the peaking ones) to its signal decay mode are very likely to be its other
decay modes. In this case, it is significant to examine the decay branches of the particle. The
following example shows the associated item with the two particles D∗+ and J/ψ set as research
objects. In the item, each row holds the information of a specified particle, and the first, sec-
ond and third columns are the textual expressions, aliases, and maximum numbers of output
components, respectively. As we introduce at the beginning part of this section, the aliases and
maximum numbers of output components are both optional. Here, we note that the symbol “−”
can also be used as a placeholder for an unassigned alias, if only the maximum number of output
components is desired.

% Component analysis — decay branches of particles

{

D*+ Dsp 5

J/psi Jpsi 5

}

Table 4 shows the decay branches of D∗+. From the table, only four decay branches of D∗+ are

found in the input inclusive MC sample. Since there is likely one or more cases of D∗+ decays in

one input entry, “nCase” and “nCCase”, instead of “nEtr” and “nCEtr”, are used in the table in

order to accurately indicate what we are counting are the numbers of D∗+ decays, rather than the

numbers of entries involving the D∗+ decays.

17

Table 4: Decay branches of D∗+.

rowNo decay branch of D∗+ iDcyBrP nCase nCCase

1 D∗+ → π+D0 0 31180 31180

2 D∗+ → π0D+ 1 13978 45158

3 D∗+ → D+γ 2 700 45858

4 D∗+ → π+D0γF 3 28 45886

It is worth mentioning here that, in addition to decay branches, production branches and

mothers of specified particles can also be examined with the program. One can make the program

execute the two functionalities by replacing “decay branches” in the prompt of the item with

“production branches” and “mothers”, respectively.

3.4. Inclusive decay branches

In some physics studies, we take inclusive decay branches as signals. In such cases, it is es-
sential to have a basic knowledge of the exclusive components of these inclusive decay branches.
Below is an example demonstrating the related item by investigating the exclusive components

of the two inclusive decay branches B̄0 → D∗+ + anything and B0 → K0
S
+ anything. In the

item, each row holds the information of an inclusive decay branch, and the first, second, and
third columns separated with the symbol “&” are the textual expressions, aliases, and maximum
numbers of output components, respectively. As we introduce at the beginning part of this sec-
tion, the aliases and maximum numbers of output components are both optional. Here, we note
that the symbol “−” can be used as a placeholder for an unassigned alias, if only the maximum
number of output components is desired.

% Component analysis — inclusive decay branches

{

B0 −−> D*+ & B2Dsp & 5

B0 −−> K S0 & B2Ks & 5

}

The exclusive components of B0 → K0
S
+ anything are displayed in Table 5. From the table,

ten exclusive components of the inclusive decay branch are found in the input sample, and the

particles denoted with anything are mainly the traditional charmonium states.

Table 5: Exclusive components of B0 → K0
S
+ anything.

rowNo exclusive component of B0 → K0
S
+ anything iDcyBrIncDcyBr nCase nCCase

1 B0 → K0
S

J/ψ 0 45 45

2 B0 → K0
S
ηc 1 40 85

3 B0 → K0
S
ψ′ 3 33 118

4 B0 → K0
S
χc1 2 20 138

5 B0 → K0
S
χc0 4 6 144

rest B0 → K0
S
+ others (5 in total) — 9 153

3.5. Essential topology tags

Table 6 lists and interprets all of the essential topology tags involved in the four kinds of

component analysis functionalities presented in this section. The topology tag for the component

analysis over decay initial-final states is iDcyIFSts. It has a similar interpretation as iDcyTr and

18

Table 6: Essential topology tags involved in each kind of component analysis.

Component type Topology tag Interpretation

Decay trees iDcyTr index of decay tree

Decay initial-final states iDcyIFSts index of decay initial-final states

Decay branches of particles nPDcyBr i number of particleis (or its decay branches)

iDcyBrP i j index of decay branch of the jth particlei

Inclusive decay branches nIncDcyBr i number of inclusive decay branchies

iDcyBrIncDcyBr i j index of decay branch of the jth inclusive decay branchi

is shown in the third column of Table 3. For the latter five kinds of component analysis, there are

two sorts of topology tags. The first sort, such as nPDcyBr i, records the number of instances

of the ith specified particle or decay branch found in each event. The second sort, for example,

iDcyBrP i j, keeps the associated index of the jth found instance of the ith specified particle or

decay branch. The indices and the decays they stand for can be found in Tables 4 and 5.

In the topology tags, “i” in “ i” is the default index of the specified particle or decay branch,

and it ranges from 0 (included) to the number of specified particles or decay branches (excluded).

If the alias of the particle or decay branch is also specified, the index “i” will be replaced with

the alias. For example, since “Dsp” and “Jpsi” are set as the aliases of D∗+ and J/ψ in the

component analysis over their decay branches, the specialized topology tags nPDcyBr Dsp and

nPDcyBr Jpsi, instead of the default ones nPDcyBr 0 and nPDcyBr 1, are used to store the

numbers of D∗+ and J/ψ found in each event.

Besides, “j” in “ j” is the default index of the found instance of certain particle or decay

branch in an event, and it ranges from 0 (included) to the sample-level maximum of the number

of instances found in each event (excluded). For example, the maximum of the number of D∗+

found in each event is two for the whole sample, and thus two topology tags iDcyBrP Dsp 0

and iDcyBrP Dsp 1 are employed to store the indices of D∗+ decay branches. These indices

range from 0 (included) to the number of the types of D∗+ decay branches found in the samples

(excluded). In the events with only one D∗+, iDcyBrP Dsp 1 is assigned with the default value

−1; in the events that have no D∗+, the default value −1 is assigned to both iDcyBrP Dsp 0 and

iDcyBrP Dsp 1.

4. Signal identification

Signal identification is the other functionality of the program. Though relatively simple, it

can help us identify the “signals” we desire directly, quickly, and easily. Here, the “signals” are

not confined to the authentic signals in our research works but can be any physics processes of

interests, particularly some important backgrounds we concern. At present, the seven basic kinds

of signals that can be identified with the program are as follows: (1) decay trees, (2) decay initial-

final states, (3) particles, (4) (regular) decay branches, (5) cascade decay branches, (6) inclusive

decay branches, and (7) IRA decay branches. For each kind of signals, one item is developed to

specify related parameters. In this paper, we only introduce the former four kinds of signal iden-

tification, with each in a subsection (for the latter three kinds of signal identification, please see

the user guide attached in the package of the program). In each subsection, we take an example

to demonstrate the related setting item and show the obtained topology map. For easy exposi-

tion, all of the essential topology tags involved in the former four kinds of signal identification

functionalities are presented in another separate subsection, that is, the last subsection.

19

Similar to the cases of the latter five kinds of component analysis, one or more signals can

be specified in each of the signal identification items, and two signals are set in the following

examples to illustrate the use of the items. Besides, meaning aliases can also be optionally

assigned to the specified signals so as to better tag them in the names of the TBranch objects

appended in the TTree object of the output root files.

4.1. Decay trees

Sometimes, we need to identify certain decay trees. The following example shows the asso-
ciated item with the first two decay trees listed in Table 2 set as signals. In the item, each row
holds a decay branch in the decay trees, and the first, second, and third columns separated with
the symbol “&” are the indices, textual expressions, and mother indices of the decay branches,
respectively. The decay branches with index 0 indicate the beginning of new decay trees, and
their mother indices are equal to −1, suggesting they have no mother branches because they are
the first decay branches of the decay trees. Besides, the name of each decay tree can be option-
ally filled in the fourth column of its first decay branch. Similar to the third parameter in the item
for the component analysis over decay trees (see Section 3.1), a “Y” can be optionally filled in
the fifth column of the first decay branch of the first decay tree, to adjust the positions of decay
final states in the output pdf file.

% Signal identification — decay trees

{

0 & Upsilon(4S) −−> B0 anti-B0 & −1 & 1stDcyTrInTb2 & Y

1 & B0 −−> e+ nu e D*− gamma & 0

2 & anti-B0 −−> mu− anti-nu mu D*+ & 0

3 & D*− −−> pi− anti-D0 & 1

4 & D*+ −−> pi+ D0 & 2

5 & anti-D0 −−> pi0 pi− K+ & 3

6 & D0 −−> pi0 pi+ K− & 4

0 & Upsilon(4S) −−> B0 anti-B0 & −1 & 2ndDcyTrInTb2

1 & B0 −−> pi0 pi+ pi− rho− D− & 0

2 & anti-B0 −−> mu− anti-nu mu D*+ & 0

3 & rho− −−> pi0 pi− & 1

4 & D− −−> pi− pi− K+ & 1

5 & D*+ −−> pi+ D0 & 2

6 & D0 −−> K L0 pi+ pi− & 5

}

Table 7 shows the resulting topology map. The results are the same as those displayed in the first

two rows of Table 2.

Table 7: Signal decay trees and their respective initial-final states.

rowNo
signal decay tree

(signal decay initial-final states)
iSigDcyTr nEtr nCEtr

1

Υ(4S)→ B0B̄0, B0 → e+νeD∗−γF , B̄0 → µ− ν̄µD∗+,D∗− → π−D̄0 ,

D∗+ → π+D0, D̄0 → π0π−K+ ,D0 → π0π+K−

(Υ(4S) 99K e+νeµ
− ν̄µπ

0π0π+π+π−π−K+K−γF)

0 3 3

2

Υ(4S)→ B0B̄0, B0 → π0π+π+ρ−D− , B̄0 → µ− ν̄µD∗+ , ρ− → π0π− ,

D− → π−π−K+ ,D∗+ → π+D0,D0 → K0
L
π+π−

(Υ(4S) 99K µ− ν̄µπ
0π0 K0

L
π+π+π+π+π−π−π−π−K+)

1 2 5

4.2. Decay initial-final states
In some cases, we have an interest in some decay initial-final states. Below is an example

demonstrating the related item by taking the first two decay initial-final states listed in Table 3

20

as signals. Similar to IRA decay branches, decay initial-final states look like inclusive decay
branches. Hence, except that only two columns are involved in the item, the format of the input
to the item for decay initial-final states is identical to that for the component analysis over inclu-
sive decay branches, which is introduced in Section 3.4. As we can see from the example, the
numbers of identical particles are supported to be written in front of their textual names in order
to simplify the textual expressions of the final states.

% Signal identification — decay initial-final states

{

Y(4S) −−> mu+ nu mu 3 pi0 3 pi+ 4 pi− K+ K− & 2ndDcyIFStsInTb3

Y(4S) −−> 5 pi0 5 pi+ 5 pi− K+ K− & 2ndDcyIFStsInTb3

}

The obtained topology map is displayed in Table 8. The results are identical to those shown in

the first two rows of Table 3.

Table 8: Signal decay initial-final states.

rowNo signal decay initial-final states iSigDcyIFSts2 nEtr nCEtr

1 Υ(4S) 99K µ+νµπ
0π0π0π+π+π+π−π−π−π−K+K− 0 18 18

2 Υ(4S) 99K π0π0π0π0π0π+π+π+π+π+π−π−π−π−π−K+K− 1 18 36

4.3. Particles

Occasionally, we may want to identify some particles. The following example shows the
associated item with the two particles D∗+ and J/ψ set as signals. Except that only two columns
are involved in the item, the format of the input to the item is identical to that for the component
analysis over decay branches of particles, which is introduced in Section 3.3.

% Signal identification — particles

{

D*+ Dsp

J/psi Jpsi

}

Table 9 shows the resulting topology map. As a cross-check, the number of D∗+s in the table

equals that in Table 4.

Table 9: Signal particles.

rowNo signal particle iSigP nCase nCCase

1 D∗+ 0 45886 45886

2 J/ψ 1 2654 48540

4.4. Decay branches

On some occasions, we have to identify certain regular decay branches. Below is an ex-

ample demonstrating the related item by taking the two decay branches B̄0 → µ−ν̄µD∗+ and

B0 → K0
S

J/ψ as signals. Since regular decay branches also look like inclusive decay branches,
except that only two columns are involved in the item, the format of the input to the item for reg-
ular decay branches is identical to that for the component analysis over inclusive decay branches,
which is introduced in Section 3.4.

% Signal identification — decay branches

21

{

B0 −−> mu− anti-nu mu D*+ & B2munuDsp

B0 −−> K S0 J/psi & B2KsJpsi

}

The obtained topology map is displayed Table 10. For cross-checks, we note that the number of

B0 → K0
S

J/ψ in the table is equal to that in the first row of Table 5.

Table 10: Signal decay branches.

rowNo signal decay branch iSigDcyBr nCase nCCase

1 B̄0 → µ−ν̄µD∗+ 0 4154 4154

2 B0 → K0
S

J/ψ 1 45 4199

4.5. Essential topology tags

Table 11 summarizes and explains all of the essential topology tags involved in the four

kinds of signal identification functionalities presented in this section. For signal decay trees

and signal decay initial-final states, there are two sorts of topology tags. The first sort of tags,

iSigDcyTr and iSigDcyIFSts, record the default indices of the specified signal decay trees and

signal decay initial-final states. They have similar interpretations as iDcyTr and iDcyIFSts, and

are shown in the third columns of Tables 7 and 8. The second sort of tags, nameSigDcyTr and

nameSigDcyIFSts, save the specified aliases of the signal decay trees and signal decay initial-

final states. In cases the aliases are not specified, empty strings will be stored.

For the latter five kinds of signal identification, there is only one sort of topology tags, which

records the number of instances of certain specified particle or decay branch found in each event.

Similar to the cases in the latter five kinds of component analysis, in the topology tags, “i” in

“ i” is the default index of the specified particle or decay branch, and it ranges from 0 (included)

to the number of specified particles or decay branches (excluded). If the alias of the particle or

decay branch is also specified, the index “i” will be replaced with the alias.

Table 11: Essential topology tags involved in each kind of signal identification.

Signal type Topology tag Interpretation

Decay trees iSigDcyTr index of signal decay tree

nameSigDcyTr name of signal decay tree

Decay initial-final states iSigDcyIFSts index of signal decay initial-final states

nameSigDcyIFSts name of signal decay initial-final states

Particles nSigP i number of signal particleis

Decay branches nSigDcyBr i number of signal decay branchies

5. Common settings

From Sections 3 and 4, the optional parameters of the functionality items give us more

choices and thus help us do our jobs quicker and better. In addition to these parameters, many

optional items are designed and implemented to control the execution of the program in order

to meet practical needs. Unlike the optional parameters, which only affect the individual func-

tionalities to which they belong, the optional items have an impact on all of the functionalities,

22

or at least most of the functionalities. The current version of the program contains two dozen

common setting items on its input, functionalities, and output. In this paper, we only introduce a

part of the items that are crucial to our physics studies (for other items, please see the user guide

attached in the package of the program).

5.1. Settings on input entries

The program normally processes all of the entries in the input samples, but sometimes only
a part of the entries are needed to be (first) processed. Running the program over a big sample
usually takes a long time. In such a case, it is a good habit to run the program first over a small
part of the sample to check possible exceptions, and then over the whole sample if no exceptions
are found or after the found exceptions are handled. Besides, a small number of entries is usually
sufficient to do tests in the development of the program. For these reasons, an item is developed
to set up the maximum number of entries to be processed. Below is an example showing the item
with the maximum number set at two thousand.

% Maximum number of entries to be processed

{

2000

}

On some occasions, especially in the course of optimizing selection criteria, we need to run
the program only over entries satisfying certain requirements. For this purpose, an item is devel-
oped to select entries. The following example shows the item with X set in the range (−1, 1).

% Cut to select entries

{

(X >−1) && (X <1)

}

Notably, only a single-line selection requirement is supported in the item, like the cases in the

methods Draw() [2] and GetEntries() [2] of the class TTree. In spite of this, such a requirement

is able to express any requirement with the help of the parentheses “()” as well as the logical

symbols “&&”, “||”, and “!”.

5.2. Setting on input decay branches

Normally, the program deals with all of the decay branches in every decay tree. However,
examining all the branches is not always required in practice. Sometimes, we only concern the
first n hierarchies of the branches. Here, the hierarchy reflects the rank of a decay branch in a

decay tree. For example, in the decay tree Υ(4S) → B0B̄0, B0 → e+νeD∗−γF , B̄0 → µ−ν̄µD∗+,

D∗− → π−D̄0, D∗+ → π+D0, D̄0 → π0π−K+, D0 → π0π+K−, the hierarchies of the seven indi-
vidual branches are 1, 2, 2, 3, 3, 4, and 4, respectively. The program provides an item to set the
maximum hierarchy. Below is an example showing the item with the maximum hierarchy set at
one.

% Maximum hierarchy of heading decay branches to be processed in each event

{

1

}

With the setting, the decay branches with hierarchy larger than one will be ignored by the pro-

gram. For the component analysis over the decay trees of the Υ(4S) sample, only the first hierar-

chy of Υ(4S) decay branches are analyzed, and the result is shown in Table 12. From the table,

23

not only Υ(4S)→ B0B̄0 but also Υ(4S)→ B0B0 and Υ(4S) → B̄0B̄0 are seen because of B0-B̄0

mixing.

Table 12: Decay trees and their respective initial-final states.

rowNo
decay tree

(decay initial-final states)
iDcyTr nEtr nCEtr

1
Υ(4S)→ B0B̄0

(Υ(4S) 99K B0B̄0)
0 81057 81057

2
Υ(4S)→ B0B0

(Υ(4S) 99K B0B0)
1 9487 90544

3
Υ(4S)→ B̄0B̄0

(Υ(4S) 99K B̄0B̄0)
2 9456 100000

Similarly, in the case of the maximum hierarchy set at two, we could get the result of the com-

ponent analysis over the first two hierarchies of Υ(4S) decay branches, as displayed in Table

13.

Table 13: Decay trees and their respective initial-final states.

rowNo
decay tree

(decay initial-final states)
iDcyTr nEtr nCEtr

1
Υ(4S)→ B0B̄0, B0 → µ+νµD∗−, B̄0 → µ−ν̄µD∗+

(Υ(4S) 99K µ+µ−νµν̄µD∗+D∗−)
936 136 136

2
Υ(4S)→ B0B̄0, B0 → e+νeD∗−, B̄0 → µ−ν̄µD∗+

(Υ(4S) 99K e+νeµ
−ν̄µD∗+D∗−)

1188 112 248

3
Υ(4S)→ B0B̄0, B0 → µ+νµD∗−, B̄0 → e−ν̄eD∗+

(Υ(4S) 99K e− ν̄eµ
+νµD∗+D∗−)

268 110 358

4
Υ(4S)→ B0B̄0, B0 → D∗−D∗+s , B̄0 → µ−ν̄µD∗+

(Υ(4S) 99K µ−ν̄µD∗+D∗−D∗+s)
2063 72 430

5
Υ(4S)→ B0B̄0, B0 → e+νeD∗−, B̄0 → e−ν̄eD∗+

(Υ(4S) 99K e+e−νeν̄eD∗+D∗−)
95 71 501

rest
Υ(4S)→ others (81609 in total)

(Υ(4S) 99K corresponding to others)
— 99499 100000

5.3. Setting on charge conjugation

Charge conjugation is an important concept in high energy physics. By default, charge con-
jugate objects (particles and decays) are processed separately in the program. However, we need
to handle them together in many physics studies because of the sameness between them. One
can have the program process them together with the item below set to “Y”.

% Process charge conjugate objects together (Two options: Y and N. Default: N)

{

Y

}

Performing topology analysis with this setting inserts new topology tags in the output root files

and adds new counters to topology maps in the output plain text, tex source, and pdf files. Tables

14 and 15 list and interpret all of the topology tags related to charge conjugation involved in the

component analysis and signal identification functionalities, respectively.

24

As an example, we carry out the component analysis over the decay branches of D∗+ and J/ψ

with the charge conjugation setting. The resulting topology map of D∗+ is displayed in Table

16. Besides the columns in Table 4, two additional columns with the headers “nCcCase” and

“nAllCase” are inserted in the table. Here, “nCcCase” represents the number of cases involving

the charge conjugate particle (D∗− in this table), and “nAllCase” is the sum of “nCase” and

“nCcCase”.

Table 14: Topology tags related to charge conjugation involved in each kind of component analysis. For the latter five

kinds of component analysis, the topology tags in the (1) and (2) groups are only designed for the self-charge-conjugate

and non-self-charge-conjugate particles and decay branches, respectively. The acronyms “cc” and indexcc are short for

“charge conjugate” and “charge conjugate index”, respectively. For self-charge-conjugate objects (particles or decays),

the charge conjugate indices have the value 0; for non-self-charge-conjugate objects, they have the value 1 or −1: while

1 tags the objects presented in the topology maps, −1 indicates their charge conjugate objects.

Component type Topology tag Interpretation

Decay trees iCcDcyTr indexcc of decay tree

Decay initial-final states iCcDcyIFSts indexcc of decay initial-final states

iCcPDcyBr i indexcc of particlei

(1) iCcDcyBrP i j indexcc of decay branch of the jth particlei

Decay branches (2) nCcPDcyBr i number of cc particlei s (decay branches)

of particles (2) iDcyBrCcP i j index of decay branch of the jth cc particlei

(2) nAllPDcyBr i number of all particleis (decay branches)

Inclusive decay branches

iCcIncDcyBr i indexcc of inclusive decay branchi

(1) iCcDcyBrIncDcyBr i j indexcc of decay branch of the jth inclusive decay branchi

(2) nCcIncDcyBr i number of cc inclusive decay branchies

(2) iDcyBrCcIncDcyBr i j index of decay branch of the jth cc inclusive decay branchi

(2) nAllIncDcyBr i number of all inclusive decay branchies

In the example, besides the essential topology tags “nPDcyBr i” and “iDcyBrP i j”, the fol-

lowing three groups of topology tags related to charge conjugation are also inserted in the output

root files: (1) “iCcPDcyBr i” for all specified particles; (2) “iCcDcyBrP i j” only for self-charge-

conjugate particles, such as J/ψ; (3) “nCcPDcyBr i”, “iDcyBrCcP i j”, and “nAllPDcyBr i”

only for non-self-charge-conjugate particles, such as D∗+. Here, “iCcPDcyBr i” tags whether

the ith particle is self-charge-conjugate. For self-charge-conjugate particles, it has the value 0;

for non-self-charge-conjugate particles, it has the value 1.

The topology tag “iCcDcyBrP i j” records the charge conjugation property of the decay

branch of the jth instance of the ith particle. For self-charge-conjugate decay branches, it has

the value 0; for non-self-charge-conjugate decay branches, it has the value 1 or −1: while 1

tags the decay branches listed in the topology maps, −1 indicates their charge conjugate decay

branches. Whereas the equal values of “iDcyBrP i j” for each decay branch and its charge con-

jugate decay branch indicate their sameness, the opposite values of “iCcDcyBrP i j” for them

reflect their difference.

The topology tag “iDcyBrCcP i j” is designed for the charge conjugate particle of the ith par-

ticle (for D∗− in this example). It has a similar meaning as “iDcyBrP i j”. Particularly, the values

of “iDcyBrP i j” and “iDcyBrCcP i j” tagging charge conjugate decay branches are equal to each

other. The topology tag “nCcPDcyBr i” stands for the number of instances (or decay branches)

of the charge conjugate particle of the ith particle found in each event, and “nAllPDcyBr i” is the

sum of “nPDcyBr i” and “nCcPDcyBr i”.

25

Table 15: Topology tags related to charge conjugation involved in each kind of signal identification. For the latter five

kinds of signal identification, the topology tags in the (*) groups are only designed for the non-self-charge-conjugate

particles and decay branches. The acronyms “cc” and indexcc are short for “charge conjugate” and “charge conjugate

index”, respectively. For self-charge-conjugate objects (particles or decays), the charge conjugate indices have the value

0; for non-self-charge-conjugate objects, they have the value 1 or −1: while 1 tags the objects presented in the topology

maps, −1 indicates their charge conjugate objects.

Signal type Topology tag Interpretation

Decay trees iCcSigDcyTr indexcc of signal decay tree

Decay initial-final states iCcSigDcyIFSts indexcc of signal decay initial-final states

Particles

iCcSigP i indexcc of signal particlei

(*) nCcSigP i number of cc signal particleis

(*) nAllSigP i number of all signal particleis

Decay branches

iCcSigDcyBr i indexcc of signal decay branchi

(*) nCcSigDcyBr i number of cc signal decay branchies

(*) nAllSigDcyBr i number of all signal decay branchies

Table 16: Decay branches of D∗+ (with the charge conjugation setting).

rowNo decay branch of D∗+ iDcyBrP nCase nCcCase nAllCase nCCase

1 D∗+ → π+D0 0 31180 31291 62471 62471

2 D∗+ → π0D+ 1 13978 14166 28144 90615

3 D∗+ → D+γ 2 700 721 1421 92036

4 D∗+ → π+D0γF 3 28 36 64 92100

5 D∗+ → π0D+γ 4 0 1 1 92101

5.4. Setting on initial state particles

In all of the previous examples, the program is applied to the inclusive MC samples in e+e−

colliding experiments. Besides, the program can also be used in other types of high energy ex-
periments, for example, the PANDA experiment [11], a pp̄ annihilation experiment under con-
struction at Darmstadt, Germany. On these occasions, we have to specify the right initial state
particles with the following item to obtain the proper topology maps.

% Initial state particles (Default: e− e+)

{

anti-p− p+

}

With the setting, the default initial state e+e− is replaced by pp̄, as shown in Table 17, which

displays the results of a component analysis over decay trees of a small pp̄ annihilation sample.

Table 17: Decay trees and their respective final states (pp̄ annihilation).

rowNo decay tree decay final state iDcyTr nEtr nCEtr

1 pp̄→ pp̄ pp̄ 1 232 232

2 pp̄→ π+π−pp̄ π+π−pp̄ 24 53 285

3 pp̄→ π0 pp̄ π0 pp̄ 5 35 320

4 pp̄→ π0π+π−pp̄ π0π+π−pp̄ 0 33 353

5 pp̄→ π0π0π0π+π+π−π− π0π0π0π+π+π−π− 39 31 384

rest pp̄→ others (184 in total) corresponding to others — 616 1000

26

6. Summary

We develop a program, namely TopoAna, with C++, ROOT, and LaTeX for the event type

analysis of inclusive MC samples in high energy physics experiments. The program has rich

functionalities and aims to solve all kinds of event type analysis tasks. Meanwhile, it is easy to

use and has a high processing rate. These features make the program a powerful tool to analyze

the backgrounds involved in our research works and to identify the physics processes of interests

from the inclusive MC samples.

Since it does not rely on any specific software frameworks, the program applies to many high

energy physics experiments. Up to now, it has been put into use in three experiments at e+e−

colliders: the BESIII, Belle, and Belle II experiments. Besides these experiments, it can also be

used in other types of experiments, such as the PANDA experiment, a pp̄ annihilation experi-

ment. Also, the program is applicable to the future e+e− colliding experiments under research

and development, such as the circular electron-positron collider (CEPC) [12, 13] experiment in

China, the super Charm-τ factory (SCTF) experiment [14] in Russia, and the super τ-Charm fac-

tory (STCF) experiment [15] in China. These experiments offer wide space for the application

of the program.

On the other hand, we note that the application of the program to some other experiments is

limited. For example, thousands of particles can be produced from dozens of pp collisions in

an event of the ATLAS [16] and CMS [17] experiments at the LHC [18]; in such cases, there

is little point in performing the event type analysis of corresponding MC samples. Nonetheless,

the application scope of the program is still broad. In particular, it applies to the e+e− colliding

experiments where at most tens of particles are produced from the annihilation of a pair of e+e−

in an event. With more user needs coming out in the future, we will further extend and perfect it

to make it more powerful and well-rounded.

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant num-

bers 11575017, 11661141008, 11761141009, 11875262, 11975076] and the CAS Center for

Excellence in Particle Physics (CCEPP). In addition, we would like to thank all of the people

who have helped us in the development of the program. We first thank Prof. Changzheng Yuan,

Bo Xin, and Haixuan Chen for their help at the early stage of developing the program. We are

particularly grateful to Prof. Xingtao Huang for his comments on the principles and styles of the

program, to Remco de Boer for his suggestions on the tex output and the use of GitHub, and to

Xi Chen for his discussions on the core algorithms. We are especially indebted to Prof. Xiqing

Hao, Longke Li, Xiaoping Qin, Ilya Komarov, Yubo Li, Guanda Gong, Suxian Li, Junhao Yin,

Prof. Xiaolong Wang, and Yeqi Chen for their advice in extending and perfecting the program.

Also, we thank Xi’an Xiong, Runqiu Ma, Wencheng Yan, Sen Jia, Lu Cao, Dong Liu, Hongpeng

Wang, Jiawei Zhang, Hongrong Qi, Jiajun Liu, Maoqiang Jing, Yi Zhang, Wei Shan, and Yadi

Wang for their efforts in helping us test the program.

References

References

[1] ROOT User’s Guide, Available online: https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html.

27

https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html

[2] ROOT Reference Documentation, Available online: https://root.cern/root/html534/ClassIndex.html.

[3] K.T. Chao, Y.F. Wang, et al., Int. J. Mod. Phys. A 24 (2009) S1-794.

[4] M. Ablikim, et al. (BESIII Collaboration), Chin. Phys. C 44 (2020) 040001.

[5] E. Kou, et al., Prog. Theor. Exp. Phys. 2019 (2019) 123C01.

[6] J. Brodzicka, T. Browder, P. Chang, et al., Prog. Theor. Exp. Phys. 2012 (2012) 04D001.

[7] Text of MIT license, Available online: https://mit-license.org/ .

[8] M. Tanabashi, et al. (Particle Data Group), Phys. Rev. D 98 (2018) 030001.

[9] Reference of unordered maps, Available online: http://www.cplusplus.com/reference/unordered map/unordered map/.

[10] D. J. Lange, Nucl. Instrum. Meth. A 462 (2001) 152.

[11] W. Erni, et al. (PANDA Collaboration), Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons, arXiv:0903.3905.

[12] CEPC CDR Volume 1 (Accelerator), Available online: http://cepc.ihep.ac.cn/CEPC CDR Vol1 Accelerator.pdf.

[13] CEPC CDR Volume 2 (Physics & Detector), Available online: http://cepc.ihep.ac.cn/CEPC CDR Vol2 Physics-Detector.pdf.

[14] A.E. Bondar, et al. (Charm-Tau Factory Collaboration), Phys. Atom. Nucl. 76 (2013) 1072.

[15] Q. Luo, D. Xu, “Progress on Preliminary Conceptual Study of HIEPA, a Super Tau-Charm Factory in China”, in Proc. 9th International Particle Accelerator Conf. (IPAC2018), Vancouver, BC, Canada, 422.

[16] G. Aad, et al. (ATLAS Collaboration), JINST 3 (2008) S08003.

[17] S. Chatrchyan, et al. (CMS Collaboration), JINST 3 (2008) S08004.

[18] L. Evans (ed.), P. Bryant (ed.), JINST 3 (2008) S08001.

28

https://root.cern/root/html534/ClassIndex.html
https://arxiv.org/pdf/0809.1869.pdf
https://iopscience.iop.org/article/10.1088/1674-1137/44/4/040001
https://academic.oup.com/ptep/article/2019/12/123C01/5685006
https://academic.oup.com/ptep/article/2012/1/04D001/1575434
https://mit-license.org/
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.98.030001
http://www.cplusplus.com/reference/unordered_map/unordered_map/
https://www.sciencedirect.com/science/article/pii/S0168900201000894?via%3Dihub
https://arxiv.org/abs/0903.3905
http://cepc.ihep.ac.cn/CEPC_CDR_Vol1_Accelerator.pdf
http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf
https://link.springer.com/article/10.1134%2FS1063778813090032
http://accelconf.web.cern.ch/AccelConf/ipac2018/doi/JACoW-IPAC2018-MOPML013.html
http://cds.cern.ch/record/1129811/files/jinst8_08_s08003.pdf
http://cds.cern.ch/record/1129810/files/jinst8_08_s08004.pdf
http://cds.cern.ch/record/1129806/files/jinst8_08_s08001.pdf

	1 Introduction
	2 Basics of the program
	2.1 Package of the program
	2.2 Input of the program
	2.3 Algorithm of the program
	2.4 Execution of the program
	2.5 Performance of the program
	2.6 Output of the program
	2.7 Validation of the program

	3 Component analysis
	3.1 Decay trees
	3.2 Decay initial-final states
	3.3 Decay branches of particles
	3.4 Inclusive decay branches
	3.5 Essential topology tags

	4 Signal identification
	4.1 Decay trees
	4.2 Decay initial-final states
	4.3 Particles
	4.4 Decay branches
	4.5 Essential topology tags

	5 Common settings
	5.1 Settings on input entries
	5.2 Setting on input decay branches
	5.3 Setting on charge conjugation
	5.4 Setting on initial state particles

	6 Summary

