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Abstract

Eigenvalues of the Hermitian Wilson-Dirac operator are of special in-
terest in several lattice QCD simulations, e.g., for noise reduction when
evaluating all-to-all propagators. In this paper we present a Davidson-type
eigensolver that utilizes the structural properties of the Hermitian Wilson-
Dirac operator Q to compute eigenpairs of this operator corresponding to
small eigenvalues. The main idea is to exploit a synergy between the
(outer) eigensolver and its (inner) iterative scheme which solves shifted
linear systems. This is achieved by adapting the multigrid DD-αAMG
algorithm to a solver for shifted systems involving the Hermitian Wilson-
Dirac operator. We demonstrate that updating the coarse grid operator
using eigenvector information obtained in the course of the generalized
Davidson method is crucial to achieve good performance when calculat-
ing many eigenpairs, as our study of the local coherence shows. We com-
pare our method with the commonly used software-packages PARPACK
and PRIMME in numerical tests, where we are able to achieve significant
improvements, with speed-ups of up to one order of magnitude and a near-
linear scaling with respect to the number of eigenvalues. For illustration
we compare the distribution of the small eigenvalues of Q on a 64 × 323

lattice with what is predicted by the Banks-Casher relation in the infinite
volume limit.

1 Introduction

In lattice Quantum Chromodynamics (QCD) the Wilson-Dirac operator de-
scribes the interaction between quarks and gluons in the framework of quantum
field theory. Results of lattice QCD simulations represent essential input to
several of the current and planned experiments in elementary particle physics
(e.g., BELLE II, LHCb, EIC, PANDA, BES III).

Obtaining eigenpairs (eigenvalues and -vectors) of the Wilson-Dirac operator
is an important computational task. For example, eigenpairs can be used to
directly compute physical observables [5, 12, 15, 16, 21, 29] or as a tool for
noise reduction in stochastically estimated quantities like disconnected fermion
loops [2]. In most circumstances we are interested in a small to moderate amount
of eigenvectors corresponding to the eigenvalues closest to zero, especially for
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the Hermitian Wilson-Dirac operator. As the Hermitian Wilson-Dirac operator
is indefinite, these eigenvalues lie in the interior of the spectrum.

Typically, computing interior eigenvalues is particularly expensive, which is
why in this paper we develop efficient computational methods for the special
case of the Hermitian Wilson-Dirac operator. The most prominent methods for
obtaining interior eigenvalues are shift-and-invert algorithms which extend the
basic inverse iteration approach; cf. [34]. This includes methods ranging from
the classical Rayleigh quotient iteration (RQI) [34] to the generalized Davidson
(GD) methods [34] and its numerous variations like GD+k [39], Jacobi-Davidson
(JD) [36] or JDCG/JDQMR [30, 39]. The generalized Davidson methods can,
alternatively, also be regarded as a generalization of Arnoldi’s method [28]1 with
improved search directions.

Most Davidson-type methods share an inner-outer-scheme, where the outer
iteration finds approximations to the sought eigenpairs, while the inner itera-
tions generates new search directions by approximately solving shifted linear
systems

(A− τI)x = b, (1.1)

where τ is an approximation to a target eigenvalue. In fact, these inversions
make up the bulk of the computational work, and it is thus mandatory to find
particularly efficient methods for this task. In lattice QCD, adaptive algebraic
multigrid methods have established themselves as the most efficient methods for
solving linear systems with the Wilson-Dirac operator [1, 6, 18, 19, 31]. They
demonstrate significant speed-ups compared to conventional Krylov subspace
methods, achieving orders of magnitudes faster convergence and an insensitiv-
ity to conditioning. In this work, we use the adaptive domain decomposition
algebraic multigrid method DD-αAMG [18, 19], but we expect the results for
DD-αAMG to carry over to the other aggregation-based multigrid implemen-
tations as well. Originally DD-αAMG is composed of an adaptive aggregation
based multigrid construction and a red-black multiplicative Schwarz smoother
(traditionally termed “SAP” for Schwarz alternating procedure in lattice QCD),
but we also have the option to use other smoothers like GMRES in the DD-
αAMG framework.

So far, multigrid solvers have been limited to the unshifted Wilson-Dirac
operator2. This is due to the algebraic construction of the interpolation opera-
tor, which is built from approximations of eigenvectors corresponding to small
eigenvalues, which is necessary for an effective overall error reduction in the
unshifted case, cf. [18, 19].

During the progress of the eigensolver—when the shift τ in (1.1) becomes
larger—the interpolation operator no longer approximates the space spanned
by eigenvectors corresponding to small eigenvalues of the shifted operator, thus
invalidating the coarse grid correction step and significantly slowing down con-

1In [28] the authors relate generalized Davidson with the Lanczos method, but the state-
ment also holds for non-Hermitian matrices.

2The original solver can manage small shifts, but quickly deteriorates for increasing shifts
as will be demonstrated later.
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inner iteration

• uses eigenvectors to improve
the multigrid preconditioner

outer iteration

• uses better search direction
to improve the search space

provides improved search direction

provides new eigenpairs and shift τ

Figure 1: Interleaving eigenpair extraction and construction of the multigrid
preconditioner for the inner iteration

vergence. The main idea of this paper is that in order to overcome this problem
we dynamically update the interpolation operator of the multigrid solver during
the outer iteration. This idea is sketched in Figure 1. It illustrates how we are
interleaving the eigenpair extraction with the construction of an efficient solver
for (1.1). While the outer iteration extracts eigenpairs, its eigenvectors are used
to improve the multigrid preconditioner. In turn the multigrid method is an
efficient preconditioner for (1.1), which produces improved search directions for
the outer iteration.

As an additional topic, we investigate several approaches for the most suit-
able smoothing method of the multigrid method for the Hermitian Wilson-Dirac
operator in presence of large shifts. Altogether, we obtain a method which scales
close to linearly with the number of eigenpairs to be computed.

The remainder of this paper is organized as follows. We give a brief intro-
duction into lattice QCD and algebraic multigrid methods in Section 2. We put
particular emphasis on showing and theoretically justifying how the algebraic
multigrid approach, which has originally been developed for the non-Hermitian
Wilson-Dirac operator, can be applied to the Hermitian Wilson-Dirac operator.
In Section 3 we proceed by introducing the generalized Davidson method and
present our adaptations for the specific case of the Hermitian Wilson-Dirac op-
erator, including the interleaving of the eigensolver and the construction of the
multigrid solver used in the inner iteration. Numerical tests and comparisons
with commonly used and state-of-the-art software are presented in Section 4.
As a simple example of the use of our method in physics, Section 5 discusses
lattice artifacts observed for the spectral gap. Finally, a summary of our results
is given in Section 6.
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2 Algebraic Multigrid Methods in Lattice QCD

The Dirac equation
Dψ +m · ψ = η (2.1)

describes the dynamics of quarks and the interaction of quarks and gluons.
Here, ψ = ψ(x) and η = η(x) represent quark fields. They depend on x, the
points in space-time, x = (x0, x1, x2, x3). The gluons are represented in the
Dirac operator D, and m is a scalar mass parameter that is independent of x
and sets the mass of the quarks in the QCD theory.

More precisely, D is given as

D =

3∑
µ=0

γµ ⊗ (∂µ +Aµ) , (2.2)

where ∂µ = ∂/∂xµ and A is the gluon (background) gauge field with the anti-
Hermitian traceless matrices Aµ(x) being elements of su(3), the Lie algebra of
the special unitary group SU(3). The (Hermitian) γ-matrices γ0, γ1, γ2, γ3 ∈
C4×4 represent generators of the Clifford algebra with

γµγν + γνγµ = 2δµνI4 for µ, ν = 0, 1, 2, 3, (2.3)

with I4 the identity on C4. Consequently, at each point x in space-time, the
spinor ψ(x), i.e., the quark field ψ at a given point x, is a twelve component
column vector, each component corresponding to one of three colors (acted upon
by Aµ(x)) and four spins (acted upon by γµ). For future use we remark that
γ5 = γ0γ1γ2γ3 satisfies

γ5γµ = −γµγ5, µ = 0, 1, 2, 3, (2.4)

independently from the chosen representation.
The only known way to obtain predictions in QCD from first principles

and non-perturbatively, is to discretize and then simulate on a computer. The
discretization is typically formulated on an equispaced periodic Nt×N3

s lattice
L with uniform lattice spacing a, Ns denoting the number of lattice points for
each of the three spatial dimensions and Nt the number of lattice points in the
time dimension. A quark field ψ is now represented by its values at each lattice
point, i.e., it is a spinor valued function ψ : x ∈ L → ψ(x) ∈ C12.

The Wilson-Dirac discretization is one of the most commonly used discretiza-
tions in lattice QCD simulations. It is obtained from the continuum equation by
replacing the covariant derivatives by centralized covariant finite differences on
the lattice. It contains an additional, second order finite difference stabilization
term, as otherwise the discretization would suffer from ‘red-black’ instability,
cf. [37]. The Wilson-Dirac discretization yields a local operator D in the sense
that it represents a nearest neighbor coupling on the lattice L.

Introducing shift vectors µ̂ = (µ̂0, µ̂1, µ̂2, µ̂3)T ∈ R4 in dimension µ on L,
i.e.,

µ̂ν =

{
a µ = ν

0 else
,

4



the action of D on a discrete quark field ψ is given as

(Dψ)(x) = (m0 +
4

a
)ψ(x) − 1

2a

3∑
µ=0

((I4 − γµ)⊗ Uµ(x))ψ(x+ µ̂)

− 1

2a

3∑
µ=0

(
(I4 + γµ)⊗ UHµ (x− µ̂)

)
ψ(x− µ̂). (2.5)

Here, the gauge-links Uµ(x) are now matrices from the Lie group SU(3), and
the lattice indices x± µ̂ are to be understood periodically. The mass parameter
m0 sets the quark mass (for further details, see [27]), and we will write D(m0)
whenever the dependence on m0 is important.

To explicitly describe D we fix a representation for the γ-matrices in which
γ5 =

(
I2 0
0 −I2

)
.

From (2.5) we obtain the couplings of the lattice sites x and x± µ̂ as

(D)x,x+µ̂ = −1
2a (I4− γµ)⊗Uµ(x), (D)x,x−µ̂ = −1

2a (I4 + γµ)⊗UHµ (x− µ̂), (2.6)

which shows (D)x+µ̂,x = −1
2a (I4+γµ)⊗UHµ (x). Thus, the commutativity relations

(2.4) imply the symmetry

(γ5 ⊗ I3)
(
D
)
x,x+µ̂

=
(
(γ5 ⊗ I3)

(
D
)
x+µ̂,x

)H
.

With Γ5 = InL ⊗ γ5 ⊗ I3, nL the number of lattice sites, this symmetry can be
described on the level of the entire Wilson-Dirac operator as

Γ5D = (Γ5D)H . (2.7)

The matrix Γ5 is Hermitian and unitary, and the Γ5-symmetry (2.7) is a non-
trivial, fundamental symmetry that the discrete Wilson-Dirac operator inherits
from a corresponding symmetry of the continuum Dirac operator (2.2).

The Wilson-Dirac operator and its clover-improved variant (where a term
which is diagonal in space and time is added to reduce the local discretization
error from O(a) to O(a2)) is an adequate discretization for the numerical com-
putation of many physical observables. For further details on discretization,
its properties and the clover-improved variant, we refer the interested reader
to [11, 20, 35]. In this paper we focus on the Hermitian or symmetrized Wilson-
Dirac operator

Q := Γ5D .

Algebraic multigrid methods. The state-of-the-art approaches for solving
linear systems involving the (non-Hermitian) Wilson-Dirac operator D are vari-
ants of aggregation-based adaptive algebraic multigrid methods, see [1, 6, 19, 31].
Typically, these multigrid solvers are used as a (non-stationary) preconditioner
within a flexible Krylov subspace method like FGMRES [33] or GCR [14]; see
also [25, 26].
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The error propagator for the two-level version of all these multigrid ap-
proaches is

E2g = (I −MD)ν(I − PD−1c RD)(I −MD)µ, (2.8)

where M denotes the smoother—which, in the case of DD-αAMG, is given by
the Schwarz alternating procedure (SAP)—and µ and ν denote the number of
pre- and post-smoothing iterations, respectively. The operator I −PD−1c RD is
the coarse grid correction, where P is the adaptively constructed aggregation
based interpolation [1, 6, 19, 31], obtained in a “setup” phase, R = PH is the
corresponding restriction and Dc the Galerkin projected coarse grid operator
Dc = PHDP .

As is discussed in [7, 31], this algebraic multigrid approach for D can be
transferred to one for Q if the interpolation P preserves spin structure in the
sense that on the coarse grid we can partition the degrees of freedom per grid
point into two groups corresponding to different spins and that we have Γ5P =
PΓc5, where Γc5 is diagonal with values ±1, depending on the spin on the coarse
grid. Putting Qc = Γc5Dc we then have

I − PQ−1c PHQ = I − PD−1c Γc5P
HΓ5D = I − PD−1c PHD , (2.9)

showing that the coarse grid error propagator for D is identical to the coarse
grid error propagator for Q if we take the same P . Note that the construction
of P in [1, 19, 31] is indeed spin structure preserving, while this is not the case
for the “little Dirac” construction found in [26].

As a matter of fact the SAP smoothing used in DD-αAMG is identical for D
and Q, as well, which can be shown by the following argument. Mathematically,
one step of SAP is a product of block projections, i.e., the error propagator is
given by

ESAP :=

b∏
i=1

(I − ILiQ
−1
i IHLi︸ ︷︷ ︸

:=MQi

Q), (2.10)

where b is the number of subdomains, Li is the i-th subdomain of the lattice L,
ILi

the trivial injection from Li into L, and Qi := IHLi
QILi

the block restriction
of Q on Li.

Note that algorithmically, the calculations corresponding to ILiQ
−1
i IHLi

Q
can be performed in parallel for all blocks i of the same color if we introduce a
red-back ordering on the blocks.

With this we get the following proposition, in which we define MDi
and Di

analogously to MQi
.

Proposition 1. The error propagator ESAP(Q) :=
∏b
i=1(I −MQi

Q) is equiv-

alent to ESAP(D) :=
∏b
i=1(I −MDi

D).

Proof. We first note that Γ5 is just a local positive or negative identity, so its
block restriction Γi5 := IHLi

Γ5ILi on Li not only satisfies IHLiΓ5 = Γi5I
H
Li

but also
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(Γi5)−1 = Γi5. To prove the proposition we only need to show that the error
propagators are identical for any given subdomain i:

I −MQi
Q = I − (ILi

Q−1i IHLi
)Q

= I − (ILi
(IHLi

Γ5DILi
)−1IHLi

)Γ5D

= I − (ILi(Γ
i
5Di)

−1IHLi
)Γ5D

= I − (ILi
D−1i Γi5I

H
Li

)Γ5D

= I − (ILi
D−1i IHLi

Γ5)Γ5D = I −MDi
D.

(2.11)

The proposition states that SAP for Q is equivalent to SAP for D if the
block inversions for the block systems Qi are performed exactly, which together
with (2.9) implies that the DD-αAMG method has the same error propagator,
irrespective of whether it is applied to Q or to D. As observed in [19] SAP
smoothing works well for the standard Wilson-Dirac operator D thus it also
works well for the Hermitian Wilson-Dirac operator Q. However, if we perform
only approximate block inversions in SAP—and this is what one typically does—
this situation becomes less clear; see Section 4.

Alternatively, instead of SAP one can use (restarted) GMRES as a smoother
for Q. For the non-Hermitian Wilson-Dirac operator D this is used in the multi-
grid methods from [1, 6, 31], and since GMRES is also one of the most numeri-
cally stable Krylov subspace methods for indefinite systems, it is to be expected
to work well as a smoother in a multigrid method for Q as well. Interestingly,
for GMRES smoothing a connection between Q and D similar to what has just
been exposed for SAP smoothing does not hold. We compare the above options
for the smoothing method experimentally in Section 4.

3 Eigensolver

The generalized Davidson (GD) method [10, 28, 34] is an eigensolver framework
which can be seen as a generalization of Arnoldi’s method. Its advantage is that
it does not rely on a Krylov subspace structure and thus offers a more flexible
way of steering the search space Vm into a desired direction. The method
successively generates a set of orthogonal vectors v1, v2, . . . , vm, which span the
search space Vm. An approximate eigenpair (u, θ) with u ∈ Vm is chosen such
that the Ritz-Galerkin condition

Au− θu ⊥ Vm (3.1)

holds, which amounts to solving the (small and dense) m×m eigenvalue problem(
V Hm AVm

)
s− θs = 0, where Vm = [v1 | · · · | vm], (3.2)

and then taking u = Vms with s the eigenvector from (3.2) whose eigenvalue
θ is closest to the target eigenvalue. The search space is then extended by a
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new vector t which is obtained as a function of the matrix A, the approximate
eigenvalue θ, and the eigenvector residual r := Au− θu. The new vector vm+1

is then retrieved after orthogonalizing t against v1, . . . , vm and normalizing it.
For our work we focus on obtaining t as an (approximate) solution of the

correction equation
(A− τI)t = r, (3.3)

where τ is an estimate for the target eigenvalue. The choice of τ steers the
expansion of the search space, and with it the Ritz values, towards the desired
eigenvalue regions, e.g., eigenvalues with smallest absolute value or with largest
imaginary part.

For the (Hermitian) Wilson-Dirac operator, Davidson-type methods are to
be preferred over Arnoldi’s method due to the fact that Arnoldi’s method would
require exact solves of the correction equation to maintain its constitutive or-
thogonality relations, whereas Davidson-type methods are tailored to accom-
modate approximate solutions, and these can be computed efficiently via some
steps of multigrid preconditioned flexible GMRES.

A description of the generalized Davidson method to obtain one eigenpair is
given in Algorithm 1. Techniques for computing several eigenpairs and restart-
ing will be reviewed in the subsequent section.

Algorithm 1: Generalized Davidson (basic)

input: initial guess t, desired accuracy ε
output: eigenpair (λ, x)

1 V = ∅
2 for m = 1, 2, . . .
3 t = (I − V V H)t
4 vm = t/||t||2
5 V = [V | vm]

6 H = V HAV
7 get target eigenpair (θ, s) of H
8 u = V s
9 r = Au− θu

10 if ||r||2 ≤ ε
11 λ = θ, x = u
12 return

13 compute t as a function of A, r and θ

3.1 GD-λAMG

The method we propose for the Hermitian Wilson-Dirac operator is based on
Algorithm 1 but incorporates several adaptations for the Hermitian Wilson-
Dirac operator and the underlying DD-αAMG multigrid solver.
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A first challenge is that we are confronted with a “maximally indefinite”
interior eigenvalue problem, seeking the eigenvalues closest to zero, while the
operator has a nearly equal amount of positive and negative eigenvalues. The
basic generalized Davidson method uses the Rayleigh Ritz procedure to deter-
mine the Ritz approximation by solving the standard eigenvalue problem (3.2)
for H = V Hm AVm. Ritz values approximate outer eigenvalues better and faster
than the interior ones [34], which is why we use harmonic Ritz values [32] in-
stead.

Definition 1 (Harmonic Ritz Values). A value θ ∈ C is called a harmonic Ritz
value of A with respect to a linear subspace V if θ−1 is a Ritz value of A−1 with
respect to V.

As the exterior eigenvalues of A−1 are the inverses of the eigenvalues of A of
small modulus, harmonic Ritz values tend to approximate small eigenvalues well.
Inverting A to obtain harmonic Ritz values can be avoided with an appropriate
choice for V as stated in the following theorem; cf. [36].

Theorem 1. Let V be some m-dimensional subspace with basis v1, . . . , vm. A
value θ ∈ C is a harmonic Ritz value of A with respect to the subspaceW := AV,
if and only if

Aum − θum ⊥ AV for some um ∈ V, um 6= 0. (3.4)

With

Vm := [v1| . . . |vm], Wm := AVm and Hm := (WH
m Vm)−1WH

mAVm,

(3.4) is equivalent to

Hms = θs for some s ∈ Cm, s 6= 0 and um = Vms.

Due to Theorem 1, we can obtain harmonic Ritz values by solving the gen-
eralized eigenvalue problem

WH
mAVmu = θWH

m Vmu. (3.5)

The computational overhead compared to the standard Ritz procedure is
dominated by m2 additional inner products to build WH

mAVm. In our numerical
tests, we have observed that this is compensated by a faster convergence of the
generalized Davidson method, cf. Section 4.

Although the multigrid approach is viable for the Hermitian Wilson-Dirac
operator Q, it is, in practice, slower than for D. For exact solves of the subdo-
main systems in the SAP smoother, the discussion in Section 2 and Proposition 1
implies that the convergence speeds for Q and for D are comparable as the er-
ror propagation operators are identical. Though in computational practice, it is
more efficient to do only approximate solves for the subdomain systems, using
a small number of GMRES steps, for example. In this scenario the multigrid
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method becomes significantly slower when used for Q rather than D, see Fig-
ure 6 in Chapter 4. This slowdown can be countered by left-preconditioning the
correction equation with Γ5. This means that instead of solving (1.1) with Q,
we can transform it equivalently according to

(Q− τI)t = r (3.6)

⇐⇒ Γ5(Q− τI)t = Γ5r

⇐⇒ (D − τΓ5)t = Γ5r. (3.7)

The spectrum of the resulting operator Γ5Q(τ) := D − τΓ5 has similarities
to that of D with some eigenvalues collapsing on the real axis. As we will
see in Chapter 4, this simple transformation speeds up the multigrid method
significantly. Figure 2 shows full spectra of D, Q and Γ5Q(τ) for a configuration
on a small 44 lattice.
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Figure 2: Full Spectra of D, Q and Γ5Q(τ) for configuration 5 (see Table 1). The
shaded area of spec(Q) highlights the eigenvalues we are particularly interested
in.

Restarting and locking. As the search space grows in every outer iteration,
the storage and orthogonalization costs of the outer iteration in a generalized
Davidson method eventually become prohibitively large. The following tech-
niques reduce these costs in order to achieve a near-linear scaling in the number
of computed eigenpairs. The first technique is thick restarting [36]. When the
search space reaches a size of mmax , we perform a restart by discarding the
current search space. At the same time we keep the first mmin smallest non-
converged harmonic Ritz vectors and use them to span the search space at the
beginning of the next restart cycle. We tuned the parameters mmin and mmax

such that we have reason to assume that we keep both positive and negative
harmonic Ritz values within the new search space. This way the eigensolver ob-
tains a (nearly) equal amount of positive and negative eigenpairs in a uniform
way.

In order to avoid re-targeting converged eigenpairs, we employ the concept
of locking converged eigenpairs [40] as a second technique. Locking keeps the
search space V orthogonal to the space of already converged eigenvectors X .
In this manner, it is not required to keep converged eigenvectors in the search
space which has the effect that the search space dimension becomes bounded
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independently of the number of eigenpairs sought. This in turn bounds the cost
for computing the harmonic Ritz pairs. The new search direction still has to be
orthogonalized against all previous eigenvectors, which leads to costs of order
O(nk2), since it consists of k − 1 inner products for each of the k eigenpairs.
This is responsible for the fact that, in principle, the cost of our method scales
superlinearly with k, and this becomes visible when k becomes sufficiently large.

Local coherence and its effect on the correction equation. The strength
of algebraic multigrid methods relies on an effective coarse grid correction step
and thus on the construction of the interpolation operator P . The methods in
use for the Wilson-Dirac operator are all adaptive: They require a setup phase
which computes “test vectors” wi, i = 1, . . . , ntv which are collected as columns
in the matrix W = [w1 | . . . | wntv

]. The test vectors are approximations to
eigenvectors corresponding to small eigenvalues of the unshifted Wilson-Dirac
operator D. The matrix W is then used to build an aggregation based, “block
diagonal” interpolation operator P , where each diagonal block constitutes an
aggregate, i.e., a block Ai of W corresponding to the degrees of freedom of a
block of the lattice L; see Figure 3 and [19, 31].

(w1, . . . , wntv) = =
A2

A1

As

→ P =

A1

A2

As

Figure 3: Matrix view of the construction of the aggregation based interpolation
operator P .

By construction, the range of an aggregation based interpolation P contains
at least the range spanned by the test vectors it is being built from. In [26] it has
been observed that eigenvectors belonging to small eigenvalues of the Wilson-
Dirac operator D are locally coherent in the sense that these eigenvectors are
locally similar, i.e., they are similar on the individual aggregates. This is the
reason why the span of an aggregation based interpolation P contains good
approximations to small eigenpairs far beyond those which are explicitly used for
its construction. This in turn explains the efficiency of such P in the multigrid
method.

We can study local coherence using the local coherence measure lc of a vector
v defined as

lc(v) = ‖Πv‖/‖v‖,

where Π denotes the orthogonal projection on the range of P . If lc(v) is close
to 1, there is a good approximation to v in the range of P , implying that the
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multigrid coarse grid correction reduces error components in the direction of v
almost to zero.
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Figure 4: Local coherence for D (left) and Q (right) for a 44 configuration, cf.
Table 1.

Figure 4 gives values for lc(v) for the Wilson-Dirac operator D and the
corresponding Hermitian Wilson-Dirac operator Q on a 44 lattice. Since this
lattice is so small, we can compute the full spectrum (12 · 44 = 3072 eigenpairs)
of both D and Q. For each matrix we then consider a partitioning of the
eigenvectors into 128 sets, each set consisting of 24 consecutive eigenpairs. Here,
“consecutive” refers to an ordering based on the modulus and the sign of the real
part; see the next paragraph for details. For each of these “interpolation sets”,
the corresponding row displays the color coded value of lc(v) when projecting
an eigenvector v with the projection Π corresponding to the aggregation-based
interpolation P built with the eigenvectors from that interpolation set as test
vectors. The aggregates used were based on a decomposition of the 44 lattice
into 16 sub-lattices of size 24. Due to the spin structure preserving approach,
we have two aggregates per sub-lattice, each built from the corresponding spin
components of the 24 test vectors3. Of course lc(v) = 1 (dark red) if v is from
the respective interpolation set.

The numbering of the eigenvalues used in these plots is as follows: The plot
for D has its eigenvalues with negative imaginary part in its left half, ordered by
descending modulus and enumerated by increasing, negative indices including
zero, −1 535, . . . , 0. The eigenvalues with positive imaginary part are located in
the right half, ordered by ascending modulus and enumerated with increasing
positive indices 1, . . . , 1536. For Q we just order the real eigenvalues by the
natural ordering on the reals, using again negative and positive indices. Thus,
for D as for Q, eigenvalues small in modulus are in the center and their indices
are small in modulus, while eigenvalues with large modulus appear at the left

3The projection Π therefore projects onto a subspace of dimension 24 ·2 ·16 = 768. If there
were no local coherence at all, the expected value of lc is thus 768/(12 · 44) = 0.25.
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and right ends and their indices are large in modulus.
Although one must be careful when drawing conclusions from extremely

small configurations, Figure 4 illustrates two important phenomena. Firstly,
local coherence appears for both D and Q, but it is more pronounced for the
non-Hermitian Wilson-Dirac matrix. This especially holds directly next to the
interpolation sets (the diagonal in the plots). Secondly, local coherence is par-
ticularly strong and far-reaching when projecting on the interpolation sets cor-
responding to the smallest and largest eigenpairs in absolute values. In the
center of both plots, we observe a star-shaped area with particularly high local
coherence. This area corresponds to around 10% of the smallest eigenvalues. To
a lesser extent, local coherence is also noticeable for the other parts of the spec-
trum, as we consistently observe higher values for lc(v) for eigenvectors close to
the respective interpolation set.

The right part of Figure 5 reports similar information for the Hermitian
Wilson-Dirac operator Q coming from a larger, realistic configuration on a 64×
323 lattice. For lattices of this size we cannot compute the full spectrum, thus we
show the values for the 984 smallest eigenpairs, subdivided in 41 interpolation
sets, each consisting of 24 consecutive eigenpairs. The aggregates were this time
obtained from 44 sublattices. For comparison, the left part of the figure shows a
zoomed-in part of the local coherence plot for Q for the 44-lattice from Figure 4.
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Figure 5: Local coherence for Q for different lattices, focusing on the eigenpairs
closest to zero. Left: 432 eigenpairs of a 44 lattice. Right: 984 eigenpairs of a
64× 323 lattice.

First note that the colors encode different values in the left and right part of
Figure 5. Local coherence does not drop below 0.9 for the large configuration,
while for the small configuration it goes down to 0.6. On the other hand, 984
eigenvalues only correspond to a minuscule fraction of roughly 4 · 10−3% of the
total of 12 ·323 ·64 = 25 165 824 eigenvalues, which is much less than the roughly
10% depicted for the small configuration. For the interpolation operator of the
large configuration we used aggregates corresponding to 44 sub-lattices, which
give a total of 2 × 213 = 16 384 aggregates. In relative terms, this is several
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orders of magnitude finer as for the 44 lattice. This finer aggregation leads to
interpolation operators with increased faculties to recombine information, which
explains the resulting higher local coherence.

Both parts of Figure 5 show that local coherence drops off for eigenvectors
farther away from the interpolation set. For the large configuration, we see, for
example, that local coherence of the vectors from the last interpolation set with
the second-to-last interpolation set is very high as indicated by the deep red
color in the top right corner of the plot. The local coherence of these vectors
with respect to the central interpolation set (which contains the eigenpairs with
eigenvalues closest to 0) is significantly smaller, indicated by the yellow color
at the middle of the right-hand boundary of the plot. In the scenario where we
choose the shift τ in the correction equation (3.7) farther away from zero—as
we are targeting eigenpairs close to τ—a coarse grid operator constructed using
the eigenpairs closest to zero thus becomes increasingly less effective, reducing
the overall convergence speed of the multigrid method significantly. To remedy
this, we propose a dynamical interpolation updating approach, resulting in a
coarse grid operator that remains effective on the span of the eigenvectors with
eigenvalues close to the value of τ set in the outer iteration of the generalized
Davidson method. In the course of the outer iteration, once enough eigenpairs
are available, we therefore rebuild the interpolation, and with it the coarse
grid operator, using the already converged eigenvectors which are closest to the
currently targeted harmonic Ritz value. Once a harmonic Ritz value converged
to an eigenvalue and we choose a new target value τ that has the same sign as
the previous target, we replace one eigenvector from the interpolation set—the
one farthest away from τ—with the newly converged eigenvector, and update
the multigrid hierarchy. If the new τ has its sign opposite to the previous one we
replace the full interpolation set with converged eigenvectors closest to the new
τ , and again update the multigrid hierarchy. The updates of the interpolation
and coarse grid operators involve some data movement and local operations, but
their cost is minor compared to the cost of the other parts of the computation.

With this approach, the coarse grid is always able to treat the eigenspace
closest to our current harmonic Ritz approximation efficiently and makes op-
timal use of the existing local coherence. This results in a significantly faster
multigrid solver when larger shifts are used, i.e., when a large number of small
eigenpairs has to be computed. Since the solution of these shifted systems
accounts for most of the work in the eigensolver this approach improves the
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eigenvalue scaling to a nearly linear complexity, as seen in Section 4.

Algorithm 2: GD-λAMG

input: Hermitian Dirac operator Q, no. of eigenvalues n, no. of test
vectors ntv, min. and max. subspace size mmin and mmax, initial
guess [v1, . . . , vntv

, t] =: [V |t], desired accuracy εouter
output: set of n eigenpairs (Λ, X)

1 Λ = ∅, X = ∅
2 for m = ntv + 1, ntv + 2, . . .
3 t = (I − V V H)t, t = (I −XXH)t
4 vm = t/||t||2
5 V = [V |vm]

6 get all (θi, si) with (QV )H(QV )si = θi(QV )HV si
7 find smallest (in modulus) θi /∈ Λ
8 u = V si, r = Qu− θiu
9 if ||r||2 ≤ εouter

// current eigenpair has converged

10 Λ = [Λ, θi], X = [X,u]
11 update smallest (in modulus) θi /∈ Λ
12 u = V si, r = Qu− θiu
13 rebuild interpolation using the ntv eigenvectors xj with eigenvalue

λj closest to θi and update multigrid hierarchy

// solve correction equation

14 t = DD-αAMG((D − θiΓ5),Γ5r)
// restart

15 if m ≥ mmax

16 get (Θ, S) as all eigenpairs (θi, si) of (QV )H(QV )si = θ(QV )HV si
17 sort (Θ, S) by ascending modulus of Θ
18 for i = 1, . . . ,mmin

19 Vi = V si
20 (QV )i = (QV )si

21 retain first mmin vectors of V and QV

A summary of our eigensolver, termed GD-λAMG, a generalized Davidson
method with algebraic multigrid acceleration, is given as Algorithm 2.

4 Numerical Tests

In this section we present a variety of numerical tests to analyze the efficiency
of the GD-λAMG eigensolver.

Table 1 contains information on the gauge configurations we use in our tests.
The two small configurations on a 44 and a 84 lattice were generated using our
own heat-bath algorithm. The configurations on the larger lattices (configura-
tions 1 to 4) were provided by our partners at the University of Regensburg
within the Collaborative Research Centre SFB-TRR55; see [3]. For these con-
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ID lattice size hopping parameter mass parameter clover term CPU
Nt ×N3

s κ a ·m0 csw cores

1 48× 243 0.13620 −0.3289 1.9192 648
2 64× 323 0.13632 −0.3322 1.9192 1,024
3 64× 403 0.13632 −0.3322 1.9192 2,000
4 64× 643 0.13632 −0.3322 1.9192 4,096
5 4× 43 – −0.7867 0 –
6 8× 83 – −0.7972 0 –

Table 1: Configurations used for numerical tests. Configurations 1–4 are config-
urations from the ensembles II and IV–VI from [3]. Configurations 5 and 6 were
generated locally and are mainly used for small scale MATLAB experiments.

parameter symbol default

DD-αAMG setup number of test vectors ntv 24
setup iterations 6
(post-)smoothing steps 4

DD-αAMG solve relative residual εinner 10−1

maximum iterations 5
coarse grid tolerance 5 · 10−1

eigensolver method relative eigenvector residual εouter 10−8

number of eigenpairs 100
minimum subspace size mmin 30
maximum subspace size mmax 50

Table 2: List of algorithmic default parameters.

figurations, we actually use clover improved (see [35]) Wilson-Dirac operators
D and Q, where a block diagonal term with 6 × 6 diagonal blocks is added to
improve the lattice discretization error from O(a) to O(a2). The resulting mod-
ified D is still Γ5-Hermitian. The mass parameter m0 from (2.5) is chosen such
that a ·m0 = 1

2κ − 4 for computations with configurations 1 to 4. For the small
configurations we chose m0 such that we obtain a comparable conditioning of
the matrix. A second table, Table 2, shows the default algorithmic parameter
settings we used within GD-λAMG. For a more detailed explanation of these
parameters we refer to [19].

The numerical results involving configurations 1–4 were obtained on the JU-
RECA and JUWELS clusters at the Jülich Supercomputing Centre [23, 24],
while results involving the other lattices were obtained on a smaller worksta-
tion. We will compare our results with the state-of-the-art library PRIMME and
with PARPACK, and we start by outlining their underlying basic algorithms.
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PRIMME (PReconditioned Iterative MultiMethod Eigensolver) [41, 43]
implements a broad framework for different Davidson-type eigensolvers. Its
performance is best if it is given an efficient routine to solve linear systems with
the matrix A, and we do so by providing the Γ5-preconditioned DD-αAMG
solver. There are two key differences compared to GD-λAMG:

• The interpolation cannot be updated efficiently within the PRIMME frame-
work (at least not without expert knowledge on the underlying data struc-
tures), hence we do not update it for this method.

• PRIMME uses a Rayleigh Ritz instead of a harmonic Ritz approach to
extract eigenvalue approximations.

PRIMME has a fairly fine-tuned default parameter set, e.g., for subspace size
or restart values, and is able to dynamically change the eigensolver method. We
keep the default settings and provide the same multigrid solver to PRIMME as
we do for GD-λAMG.

PARPACK (Parallel ARnoldi PACKage) [38] is a somewhat older but
widely used software for the computation of eigenvalues of large sparse ma-
trices. It is based on an implicitly restarted Arnoldi method, which is originally
designed to find extremal eigenvalues. It is possible to transform an interior
problem into an exterior one using a filter polynomial, i.e., a polynomial which
is large on the k interior eigenvalues we are looking for and small on the re-
maining ones. To construct such a polynomial, for example as a Chebyshev
polynomial, we need information on the eigenvalue λmax which is largest in
modulus and the (k + 1)st smallest in modulus, λk+1. While λmax = 8 is a
sufficiently good estimate for the Hermitian Wilson-Dirac matrix Q, no a-priori
guess for λk+1 is available in realistic scenarios. For our tests, we run one of
the other methods to compute the first k eigenvalues and then use a slightly
larger value as a guess for λk+1. While this approach obviously costs a lot of
additional work and actually makes the subsequent Arnoldi method obsolete, it
is a good reference for a near-optimally polynomially filtered Arnoldi method.
Since this approach does not require inversions of the matrix Q, the parameter
set for this method is rather small. We use a degree ten Chebyshev polynomial
as the filter polynomial and set the maximum subspace size to be twice the
number of sought eigenpairs. The required eigenvector residual is set to 10−8,
as with the other methods.

4.1 Algorithmic tuning

Solving the correction equation. Each step of Algorithm 2 uses DD-αAMG
in line 14 to solve the Γ5-preconditioned correction equation (D− τΓ5)t = Γ5r.
More precisely, as indicated by the parameters given in the middle of Table 2,
we stop the outer (FGMRES) iteration of DD-αAMG once the initial residual
norm is reduced by a factor of 0.1 or a maximum of 5 iterations is achieved.
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Within each DD-αAMG iteration we require a reduction of the residual by a
factor of 0.5 when solving the system on the coarsest level. Table 3 shows that
the Γ5-preconditioning yields indeed significant gains in compute time.

correction equation iterations Time
outer inner in core-h.

Eq. (3.6): (Q− τI)t = r 565 10,349 83.0
Eq. (3.7): (D − τΓ5)t = Γ5r 511 3,045 41.3

Table 3: Impact of Γ5-preconditioning for the computation of 100 eigenpairs of
configuration 1 (see Table 1).

A variant of generalized Davidson methods solves, instead of the correction
equation (3.3), the Jacobi-Davidson projected [36] system (I−uuH)(A−θI)(I−
uuH), where u is the last (harmonic) Ritz vector approximation. This will avoid
stagnation in the case that the correction equation is solved too exactly. There
are theoretically justified approaches which adaptively determine how accurately
the projected system should be solved in each iteration. Since we solve the
correction equation to quite low relative precision (10−1 only), we could not see
a benefit from using the Jacobi-Davidson projected system. Indeed, even with
the adaptive stopping criterion, this approach increased the compute time by
approximately 15%.

Impact of the smoother The original DD-αAMG method uses SAP as a
smoother and we have shown in Chapter 2 that SAP is also applicable for
the Hermitian Wilson-Dirac operator Q, yielding the same error propagation
operator as long as the individual block systems are solved exactly. We now
compare a cost-efficient, approximate SAP and GMRES as smoothers within
the multigrid methods constructed for the matrices D−τI, Q−τI and D−τΓ5,
where τ ranges from 0 to 0.5 for configuration 6. Note that D−τI is not relevant
for this work, since it would arise when computing eigenpairs for D. We still
include the results here to be able to compare the performance of DD-αAMG
for Q− τI and D − τΓ5 with the performance of DD-αAMG for D − τI.

Figure 6 shows a scaling plot with respect to the target shift τ for configu-
ration 6. For this plot, we used a two-level DD-αAMG method with six steps
of the adaptive setup procedure to generate the coarse grid system. The GM-
RES smoother requires a reduction of the residual by a factor of 10−1 or after a
maximum of ten iterations have been performed. Similarly, the SAP smoother
performs three sweeps of SAP, where each block solve is performed using GM-
RES until a reduction of the residual by a factor of 10−1 was achieved for the
individual block of after a maximum of ten iterations have been performed. This
way the computational work for both smoothers is roughly comparable.

Figure 6 verifies what was stated in Section 3.1, namely that DD-αAMG con-
verges more slowly for Q compared to D. It also shows that Γ5-preconditioning

18



Figure 6: Comparison of iteration counts of the DD-αAMG method using either
SAP or GMRES smoothing for configuration 6 and increasing target shifts τ .
The black diamonds at the bottom depict the eigenvalue distribution of Q.

is beneficial in the case of GMRES smoothing whereas in the case of SAP
smoothing, it loses efficiency compared to Q, although only by a small margin.
Comparing the two smoothing methods for D− τΓ5, we see that both methods
perform nearly identical up to larger shifts, where SAP starts to be slightly
more favorable. We do not expect this to be relevant for larger configurations,
though, since there the spectrum is much more dense. Even when aiming for a
large number of small eigenvalues, we certainly do not expect to end up with
τ -values as large as 0.2 already. Since the focus of this paper is on finding an
efficient coarse grid operator, and not on optimizing the smoother, we stick to
GMRES smoothing here. Implementing SAP instead of GMRES for D − τΓ5

within the DD-αAMG framework would require a more substantial remodeling
of the DD-αAMG code.

Impact of the coarse grid correction For an assessment of the impact
of the coarse grid correction step we compute 100 eigenvalues for configura-
tion 1, once using DD-αAMG with GMRES smoothing to solve the correction
equation, and once with a modification where we turned-off the coarse grid cor-
rection. This yields a generalized Davidson method where the Γ5-preconditioned
correction equation (3.7) is solved using FGMRES with the GMRES-steps of
the smoother as a non-stationary preconditioner, i.e., GMRESR, the recursive
GMRES method [42]. Note that we do not yet include updating the multigrid
hierarchy as the outer iterations proceeds.

The left part of Figure 7 shows the FGMRES iterations spent on the correc-
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Figure 7: Left: Computation of 100 eigenvalues for configuration 1 with GM-
RESR and FGMRES + AMG. Right: Comparing eigenvalue scaling for con-
figuration 2 depending on whether eigenvalue information is provided for the
interpolation operator.

tion equation for computing 100 eigenvalues for the two variants. We see that
right from the beginning, including the coarse grid correction, i.e., using the
multigrid method, reduces the iteration count by one order of magnitude com-
pared to the “pure” GMRESR-Krylov subspace method. The required number
of FGMRES iterations per eigenvalue stays constant at ≈ 30 for the multigrid
method, whereas GMRESR starts at ≈ 300 and increases to ≈ 1, 200 for the last
eigenvalues. This is also reflected in CPU time, where on JUWELS multigrid
preconditioning results in 30 core-h for the entire computation, whereas 217
core-h were necessary when using GMRESR. Thus multigrid gains one order of
magnitude and, in addition, shows an improved scaling behaviour, despite the
loss of local coherence for the larger eigenvalues.

The right part of Figure 7 now illustrates the additional benefits that we get
from turning on the updating of the multigrid hierarchy, i.e., when performing
full GD-λAMG as described in Algorithm 2. Both approaches perform similarly
as long as a small amount of eigenvalues is sought. This changes substantially
for already a moderate amount of eigenvalues to a point where interpolation
updates save roughly a factor of two in both, number of iterations (dashed lines)
and consumed core-h (solid lines). In terms of iterations it is also noteworthy
that interpolation updates lead to a nearly linear scaling with respect to the
eigenvalue count, whereas in the other case the scaling is closer to quadratic.

4.2 Scaling results

Scaling with the lattice size. We now compare GD-λAMG, PRIMME and
PARPACK in terms of scaling with respect to the lattice size. For this, we report
the total core-h consumed for computing 100 eigenpairs on configurations 1 to
4.

Figure 8 shows that PRIMME and GD-λAMG scale similarly with increas-

20



102

103

104

48×243 64×323 64×403 64×643

co
re

-h

lattice size Nt ×N3
s

PARPACK
PRIMME + AMG

GD-λAMG

101

102

103

48×243 64×323 64×403 64×643

100

200

300

400

500

co
re

-h
(s

ol
id

li
n
e)

it
er

a
ti

o
n
s

(d
as

h
ed

li
n
e)

lattice size Nt ×N3
s

Rayleigh-Ritz
Harmonic Ritz

Figure 8: Left: Computation of 100 eigenvalues for 48× 243 to 64× 643 lattices
for different methods. Right: Comparison of Ritz and harmonic Ritz eigenpair
extraction for different lattice sizes.

ing lattice size. GD-λAMG shows some improvement in core-h compared to
PRIMME, and this improvement tends to get larger when increasing the lat-
tice size. The right part of Figure 8 shows, that this improvement might be
partially attributed to the fact that we use a harmonic Ritz extraction. Here,
we compare GD-λAMG with its default harmonic Ritz extraction to a variant
where we use the standard Rayleigh-Ritz extraction as is done in PRIMME. The
Figure shows that harmonic Ritz extractions result in substantially less inner
iterations. This also yields savings in computational time, which are smaller,
due to the additional cost for the inner products. Note that for larger lattices
eigenvalues become more clustered. The harmonic Ritz extraction is then more
favorable compared to the Rayleigh-Ritz approach, since it is able to better sep-
arate the target eigenvalue from the neighboring ones. PARPACK scales worse
than the other methods, even when we use an unrealistic “near optimal” filter
polynomial as we did here. In practice, i.e., when no guess for |λk+1| is available,
PARPACK’s performance would fall even further behind. Applying PARPACK
to Q−1 to make use of the efficient multigrid solver is way too costly, due to the
necessity of very exact solves to maintain the Krylov structure.

Scaling with the number of eigenvalues. Figure 9 reports results of a
scaling study obtained for configuration 2. We just compare GD-λAMG and
PRIMME, since PARPACK is not competitive.

The figure shows that GD-λAMG has an advantage over PRIMME when
larger numbers of eigenvalues are sought. GD-λAMG needs up to one order of
magnitude less iterations, which translates to a speed-up of 1.5 for 50 eigen-
values to up to more than three for 1 000 eigenvalues. This shows that the ad-
ditional effort due to the adaptive construction of the multigrid hierarchy and
the harmonic Ritz extraction is beneficial with respect to the overall perfor-
mance. GD-λAMG and PRIMME both scale nearly linearly with respect to the
number of eigenvalues sought, up to at least 300 eigenvalues. Then PRIMME’s
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Figure 9: Eigenvalue scaling in the range of 50 to 1000 eigenpairs on configura-
tion 2 with a lattice size of 64× 323.

performance starts to decrease more significantly compared to GD-λAMG. We
see that the increase in the overall computing time in PRIMME scales more
than linearly with the number of iterations to be performed. This indicates
that the non-adaptive multigrid solver used in PRIMME is getting increasingly
less efficient, a situation that is remedied with the update strategy realized in
GD-λAMG.

5 Spectral gap

This paper has a clear focus on algorithmic development to compute small
eigenmodes. Fur purposes of illustration, we now include an example which
relates our computed eigenvalues to the general approach of lattice QCD.

The spectral gap is the relevant quantity for the stability of Monte Carlo
simulations of lattice QCD [13]. It is defined as the smallest eigenvalue in
magnitude of the Hermitian Wilson-Dirac operator Q. If chiral symmetry was
preserved, the spectral gap would be bounded from below by the bare current-
quark mass m. Since the Wilson-Dirac operator breaks chiral symmetry it is
possible that the gap is smaller than m. In the following we adopt the notation
of [13] and denote the eigenvalues of Q2 by αi.

Figure 10 shows the number of eigenvalues
√
αi per bin and fm4 (blue line)

at the low end of the spectrum computed on configuration 2 with a lattice size of
64×323 and Nf = 2 mass-degenerate non-perturbatively O(a) improved quarks,
cf. Table 1. The lattice spacing is a = 0.071 fm from [3] and the bin size is set
to 1 MeV.

It is interesting to compare these computational results to what we know
analytically in the continuum theory in the infinite volume limit. The spectral
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Figure 10: Number of eigenvalues
√
αi of |Q| per bin and fm4 at the low end of

the spectrum on configuration 2 with a lattice size of 64× 323. For comparison
the same quantity in the continuum theory is also shown, cf. Eq. (5.1), taking
m = 8.22 MeV and Σ = (250 MeV)3.

density can be computed from the Banks–Casher relation [4, 13] asymptotically

ρ̃(
√
α)

α>m2

= 2
√
α

[
Σ

π
√
α−m2

+ O(1)

]
, (5.1)

which goes to infinity for
√
α→ m and is not defined for

√
α < m, resulting in

no eigenvalues smaller than m for the continuum case. Note that the Banks-
Casher relation can be used to determine the chiral condensate Σ from the
non-zero density of eigenmodes at the origin in infinite volume; cf. [22]. In
order to compare to our lattice results for configuration 2 we compute the bare
current-quark mass m using [17, Eq. (E.1)]. The spectral gap (black vertical
line in figure 10) is given by

√
ᾱ = ZAm [13], which we evaluate using the

axial-current renormalization constant ZA from [9]. The resulting distribution
of eigenvalues

√
α per bin and fm4 for the continuum operator (red line) is

also plotted in Figure 10. The comparison to the lattice data shows that on
configuration 2 there is a significant amount of eigenvalues smaller than

√
ᾱ,

and the distribution close to the gap deviates from Equation (5.1). The figure
thus illustrates quantitatively the deviations due to lattice artifacts which are
not unexpected for the given lattice sizes.

6 Conclusion

In this paper we introduced an eigensolver built around the multigrid method
DD-αAMG for efficient shifted inversions within a generalized Davidson method.
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Several adaptations were included in order to improve eigenvalue scaling by at
least a factor of three for a moderate to large amount of eigenvalues compared
to current general purpose eigensolver software. This was accomplished by im-
plementing a synergy between the generalized Davidson method and the AMG
solver. Additionally, we incorporated several state-of-the-art techniques like
locking, thick restarting and harmonic Ritz extraction to achieve a nearly lin-
ear eigenvalue scaling. We included a variety of numerical tests to verify the
efficiency of our proposed adaptations.

We can now use the new algorithm to compute relatively many small eigen-
modes of large configurations. This allows to advance deflation approaches
for stochastic trace estimation as required in the computation of disconnected
fermion loops. We plan to explore this further in cooperation with the European
twisted mass collaboration. Note that the eigenpairs of the symmetrized Wilson
and twisted mass operators differ by an imaginary shift in the eigenvalues only.

With the algorithm presented in this work it is now also possible to perform a
systematic study of the spectral gap and the spectral density varying the lattice
volume, the lattice spacing, and the quark mass. We plan to extend the work
of [13] to the Nf = 2 + 1 O(a) improved theory, cf. [8] in the future.
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