
Computer Physics Communications 258 (2021) 107619

d
a
t
s
t

i
f
p
d
a
p
a
S
(
8
s

C

r

h
0

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Efficient discrete-event based particle tracking simulation for high
energy physics✩

Lucio Santi a,b,∗, Lucas Rossi a, Rodrigo Castro a,b

a Departamento de Computación, FCEyN - UBA, Ciudad Universitaria, Pabellón 1, C1428EGA, Buenos Aires, Argentina
b ICC-CONICET, Argentina

a r t i c l e i n f o

Article history:
Received 29 December 2019
Received in revised form 7 September 2020
Accepted 10 September 2020
Available online 15 September 2020

Keywords:
Particle tracking
Quantized State System
Geant4
QSS Solver
High energy physics
Discrete event simulation

a b s t r a c t

This work presents novel discrete event-based simulation algorithms based on the Quantized State
System (QSS) numerical methods. QSS provides attractive features for particle transportation processes,
in particular a very efficient handling of discontinuities in the simulation of continuous systems. We
focus on High Energy Physics (HEP) particle tracking applications that typically rely on discrete time-
based methods, and study the advantages of adopting a discrete event-based numerical approach
that resolves efficiently the crossing of geometry boundaries by a traveling particle. For this purpose
we follow two complementary strategies. First, a new co-simulation technique connects the Geant4
simulation toolkit with a standalone QSS solver. Second, a new native QSS numerical stepper is
embedded into Geant4. We compare both approaches against the latest Geant4 default steppers in
different HEP setups, including a complex realistic scenario (the CMS particle detector at CERN). Our
techniques achieve relevant simulation speedups in a wide range of scenarios, particularly when the
intensity of discrete-event handling dominates performance in the solving of the continuous laws of
particle motion.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Particle tracking simulations in the High Energy Physics (HEP)
omain deal with reproducing trajectories of subatomic particles
ffected by physics processes within complex detector geome-
ries, typically composed by adjacent 3D volumes of different
hapes and materials. Modern HEP experiments usually rely upon
he Geant4 simulation toolkit [1,2] to carry out these simulations.

One of the most important applications of HEP simulations
s to drive the design and optimization of particle detectors
or best physics performance. In this scenario, different detector
arameters are varied in the simulation phase and the actual
esign is chosen following a trade-off between monetary cost
nd detector performance. In the last decades, this simulation
hase has become a strong requirement for HEP experiments to
pply for funding. One of such experiments is the Compact Muon
olenoid (CMS) particle detector [3] at the Large Hadron Collider
LHC) [4] at CERN, for which simulation has taken approximately
5% of the total CPU time utilized by the experiment since the
tart-up in 2009 through May 2016, with a total of about 40% for

✩ The review of this paper was arranged by Prof. N.S. Scott.
∗ Corresponding author at: Departamento de Computación, FCEyN - UBA,
iudad Universitaria, Pabellón 1, C1428EGA, Buenos Aires, Argentina.

E-mail addresses: lsanti@dc.uba.ar (L. Santi), lrossi@dc.uba.ar (L. Rossi),
castro@dc.uba.ar (R. Castro).
ttps://doi.org/10.1016/j.cpc.2020.107619
010-4655/© 2020 Elsevier B.V. All rights reserved.
the Geant4 module [5]. Assuming a cost of 0.9 US dollar cents per
CPU core hour, the annual simulation cost of the CMS experiment
is in the range of 3.5 to 6.2 million US dollars.

As the needs of more precision and more varied experiments
grow, it becomes a necessity to find ways of improving the
efficiency of simulations, where even small percentages of im-
provement can yield considerable impacts in terms of savings,
and therefore in the palette of simulations affordable within
given budget and time constraints. In this work, we approach
the problem from the perspective of the underlying numerical
algorithms that solve the ordinary differential equations (ODEs)
that govern the movement of particles.

Standard particle tracking algorithms in Geant4 rely exclu-
sively on classical numerical methods, i.e. those that are based
on some form of time discretization [6]. In particular, variations of
the Runge–Kutta (RK) family of solvers [7] are the most used ones.
Yet, as we shall see later in detail, particle tracking within geome-
tries is a peculiar problem that deals with frequent discontinuities
caused by the recurrent crossing of boundaries by the particle,
from one volume to the next. Classical numerical methods are not
naturally prepared to deal efficiently with such situations. They
must interrupt the standard integration procedure and invoke
(usually costly) iterative procedures to detect the time and values
of state variables at the instant of each discontinuity.

On the other hand, Quantized State System (QSS) is a family

of methods that discretize the state variables instead of slicing

https://doi.org/10.1016/j.cpc.2020.107619
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107619&domain=pdf
mailto:lsanti@dc.uba.ar
mailto:lrossi@dc.uba.ar
mailto:rcastro@dc.uba.ar
https://doi.org/10.1016/j.cpc.2020.107619

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

t
t
b
d
f
s
v
t
z
f

1

d
Q
e
e
i
h
i
t
w

p
t
s
a

T

ime, and solve ODEs using discrete-event (rather than discrete-
ime) approximations of continuous models [6,8]. QSS are hy-
rid numerical methods that combine continuous dynamics with
iscrete-event dynamics to approximate continuous systems. A
eature of QSS that stands as very attractive in the context of HEP
imulations is that the methods handle discontinuities (such as
olume crossings) very efficiently [9] by means of a computa-
ionally cheap procedure. Discontinuities are solved using simple
ero-crossing polynomials, which are treated as discrete-events
or which the methods are prepared by definition.

.1. Methodological approach

Our research is mainly driven by the question of whether
iscrete-event numerical integration methods (in particular, the
SS family) can be correctly and soundly used to simulate HEP
xperiments. As explained above, due to the nature of these
xperiments, their simulations face challenges that match some
nherent features of discrete-event solvers — primarily, efficient
andling of discontinuities. As such, we are also interested in
nvestigating whether HEP simulations can profit from these fea-
ures, and to what extent. In order to accomplish these goals, this
ork is structured as follows:

• The starting point is to address the feasibility of QSS in
the HEP domain by means of a simple tracking experiment
taken as baseline. This is achieved by comparing the state-
of-the-art implementation of QSS methods, QSS Solver [10],
and Geant4, the most representative HEP simulation toolkit,
in the simulation of a simple 2D-oscillating charged particle
in a uniform magnetic field.

• The next step is to interface the two simulation engines so
that Geant4 can rely upon QSS Solver to compute particle
trajectories. This would enable not only more direct and fair
comparisons but also the possibility of studying QSS in more
realistic HEP setups (i.e. with complex detector geometries
and physics interactions). For this purpose, we introduce a
Geant4-to-QSS Solver Link (GQLink), a co-simulation tech-
nique where QSS Solver takes over the particle propagation
responsibilities typically handled by native Geant4 steppers
and integration drivers. This approach also aims to demon-
strate that a smooth coupling between Geant4 and QSS can
be achieved.

• We then move on to develop optimized QSS steppers
implemented as extensions to Geant4, eliminating the in-
terconnection layer required by GQLink and its potential
performance penalties. The goal is to assess, and eventu-
ally reduce, the overhead introduced by the co-simulation
interface.

• Both QSS approaches (co-simulation and native stepper) are
analyzed by studying their performance against the most
common Geant4 steppers in two complementary scenarios:
a 3D extension of the simple 2D oscillating particle exper-
iment taken as baseline, and a very complex and realistic
standalone Geant4 application modeling the CMS particle
detector. The main goal is to verify that QSS can indeed offer
performance gains in scenarios with heavy volume crossing
activity, but we also seek to provide a more general charac-
terization of both strategies that could eventually serve as a
guideline for the Geant4 community to identify other setups
in which these solutions could be efficiently applied.

The rest of the paper is organized as follows: in Section 2 we
resent an overview of relevant fundamental concepts, including
he numerical solution of continuous systems by means of clas-
ical, discrete-time methods as well as discrete-event methods,
n introduction to the chosen simulation toolkits and a summary
2

of related work in the field. We continue by describing the two
complementary case studies that will be used as performance
benchmarks in Section 3. Then, Section 4 reviews the initial
proof-of-concept performance comparison between QSS Solver
and Geant4 in a basic HEP setup that provided the foundations
for the upcoming development efforts. Next, Sections 5 and 6
introduce our two alternative implementations of QSS methods in
Geant4: GQLink, a generic co-simulation technique that connects
Geant4 with QSS Solver, and a native Geant4 stepper that builds
upon GQLink’s core algorithms in order to boost its performance.
Each Section includes detailed performance comparisons against
the two most relevant Geant4 steppers. Finally, Section 7 provides
a summary, conclusions and comments on our work in progress.

2. Background

In this section we present the essential concepts used along
the article. We first discuss the numerical solution of continuous
systems focusing on the fundamental differences between clas-
sical, discrete-time methods and discrete-event based methods
such as the Quantized State System family. We continue with a
brief summary of QSS Solver, a simulation toolkit that provides
state-of-the-art implementations of the QSS numerical methods,
and Geant4, the most widely used simulation toolkit in HEP
experiments. Finally, we summarize relevant related work in the
field.

2.1. Numerical solution of continuous systems

A dynamic continuous system is made up of state variables
that change continuously over time. They are typically described
by differential equations, involving either ordinary (ODEs) or
partial (PDEs) derivatives. Since it is generally not possible to find
closed-form, analytic solutions to these systems, it is important
to simulate them numerically by means of numerical integration
methods.

In what follows, we will consider a system of ODEs in the form
of Eq. (1), where x(t) is the state vector and u(t) is the input vector
representing independent variables for which no derivatives are
present in the system.

ẋ(t) = f (x(t),u(t)) (1)

he component xi(t) of the state vector represents the ith state
trajectory as function of time, which will be continuous as long
as there are no discontinuities in fi(x,u). Such discontinuities, in
case they are present, must be handled carefully and efficiently
during the simulation in order to preserve the accuracy of the
results.

2.1.1. Classical discrete time methods
Traditional discrete-time methods solve continuous systems

such as the one in the form of Eq. (1) making use of time slicing:
given the current and past values of state variables and their
derivatives, the solver estimates the next state value one ‘‘time
step’’ ∆t in the future (i.e., at tk+1 = tk + ∆t), where ∆t applies
to all state variables and represents the means to control the
approximation accuracy. This is achieved by evaluating the Taylor
expansion of xi around tk:

xi(tk+1) = xi(tk) + ẋi(tk) · ∆t + ẍi(tk) ·
∆t2

2!
+ · · · (2)

Integration algorithms differ in how they compute the higher-
order derivatives of the state variable and how they approximate
(truncate) the infinite Taylor series (which gives rise to the ac-
curacy order of the method). Runge–Kutta (RK) [7] is a widely
adopted family of numerical solvers that compute the derivatives

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

t
t
K
D
r
f

i
m
c
p
i
h

a
t
a
c

2

e
t
m
t

d
d

hrough a series of stages, each one performing an evaluation of
he right-hand side of Eq. (1). The fourth-order accurate Runge–
utta (RK4) is one of the most popular of such methods. The
ormand–Prince (DOPRI) method [11] is another RK-based algo-
ithm involving six function evaluations to calculate fourth- and
ifth-order accurate solutions.

In order to achieve certain accuracy constraints with min-
mum computational effort, these methods are usually imple-
ented with some sort of adaptive step size control. In the
ontext of Geant4, for example, the original RK4 method is sup-
lemented with step doubling [12]. With this technique, each step
s taken twice: once as a full step and then, independently, as two
alf-steps.
When faced with discontinuous systems, these methods usu-

lly introduce ad-hoc solutions to properly locate and handle
he discontinuities, which is essential to avoid integrating past
discontinuity since this may lead to incorrect results. These

ustom, iterative algorithms can be computationally expensive.

.1.2. Discrete-event methods and Quantized State System (QSS)
As opposed to discrete-time integration methods, discrete-

vent methods discretize the state variables rather than slicing
ime. The most salient family of discrete-event based numerical
ethods is QSS, which operates by means of state space quantiza-

ion: QSS calculates the smallest time step h in the future at which
the state variable differs from its current value by one ‘‘quantum
level’’ ∆Q, i.e., when xtk+h = xtk ± ∆Q. The system described
by Eq. (1) is thus approximated by the quantized system shown
in Eq. (3), where q(t) is the quantized state vector resulting from
the quantization of the state variables xi(t).

ẋ(t) = f (q(t),u(t)) (3)

In the first-order QSS method (QSS1) each qi(t) follows a piece-
wise constant trajectory that is updated by a (hysteretic) quan-
tization function when the difference between qi(t) and xi(t)
reaches the quantum ∆Qi = max (∆QRel · |xi|, ∆QMin) derived
from the precision demanded by the user by means of a relative
and a minimum quanta, ∆QRel and ∆QMin. In QSS1, q(t) follows
piecewise constant trajectories, which implies that x(t) follow
piecewise linear trajectories. Along the same principle, higher-
order QSS methods generalize this behavior: in QSSn, x(t) follow
piecewise nth degree polynomial trajectories and q(t) follow
piecewise (n − 1)-th degree polynomial trajectories [8].

These concepts can be visualized in Fig. 1, which presents a
QSS2 simulation of the position in the x̂ axis of a charged particle
in a constant magnetic field (the model in use is the ODE system
in Eq. (4), which will be revisited in Section 4.2). Fig. 1a shows the
solution state variable x(t) and its corresponding quantized state
variable q(t), which follow piecewise quadratic and linear trajec-
tories, respectively. Each dot in the curve marks the ending and
the commencements of adjacent sections. Sections are limited
either by reacting to an update originated from another state vari-
able (e.g. 1) or by reaching the quantum ∆Q, i.e. the maximum
eviation allowed between q(t) and x(t) (e.g. 2). Indeed, the
ifference between q(t) and x(t) is the error e(t) incurred by the

method and is shown in Fig. 1b. It gets determined by the user-
supplied accuracy-related parameters ∆QRel and ∆QMin, also
shown in Fig. 1c. If we consider for example the section starting
at time tk, we can see that both q(t) and x(t) evolve until the
difference between them reaches ∆Q. At that time, q(t) is updated
by quantizing x(t), giving rise to a new section in the plot. This
change is propagated to the ODE system by evaluating those state
variables whose right-hand side depends on this variable. The
coefficients of the polynomial approximations of q(t) and x(t) are
presented in Figs. 1d, 1e and 1f.

QSS methods can simulate any ODE system in the form of
Eq. (1) offering, among others, the following properties [8]:
3

• They are intrinsically asynchronous: each state variable up-
dates its value independently at self clocked time instants
dictated by its own dynamics and the accuracy ∆Q (cf.
time slicing methods where all state variables are scanned
synchronously at each ∆t).

• They provide dense output by means of the piecewise poly-
nomial approximations of the state variables.

• They are very efficient at simulating systems with fre-
quent discontinuities. A discontinuity is modeled by a zero-
crossing function expressed in terms of the QSS polynomials.
Thus, detecting a discontinuity calls only for finding the
roots of a polynomial, which is computationally inexpensive
for at most third-order QSS methods.

• They satisfy strong stability and error bound theoretical
properties.

Quantized State Systems cannot be formalized with the classi-
cal languages of differential nor difference equations. Rather, QSS
can be exactly modeled and simulated by the Discrete Event Sys-
tem Specification (DEVS) [8], a formalism for modeling and sim-
ulation of generalized discrete event systems [13]. Generalizing,
we can say that QSS is a particular class of DEVS systems.

2.1.3. QSS performance overview
QSS was extensively studied in several application domains by

establishing a performance comparison against different discrete-
time solvers. As an example, [14] compares QSS3 with the Runge–
Kutta–Fehlberg and Bulirsch–Stoer methods (both enhanced with
discontinuity handling routines) in the simulation of networks of
spiking neurons. The authors found that QSS can offer significant
performance improvements due to the efficient discontinuity
handling and the activity-driven features. On the other hand,
[15] studies the simulation performance of one-dimensional
advection–diffusion–reaction models comparing QSS against three
classic time discretization algorithms (one of them being DOPRI).
It is shown that, in advection—reaction-dominated situations, the
second-order linearly implicit QSS method (LIQSS2) [16] can yield
performance improvements of at least one order of magnitude.
LIQSS methods were also studied in the simulation of switched
mode power supplies [17] and in the field of building perfor-
mance simulation [18]. Models in these scenarios are typically
stiff and present frequent discontinuities. In the former, the
authors showed that LIQSS methods can be 3–200 times faster
than the DASSL solver [19]. As for the latter, LIQSS2 was compared
against different classic numerical solvers (including DASSL and
DOPRI), achieving simulation speedups of at least one order of
magnitude.

2.2. Simulation toolkits

2.2.1. QSS solver
Traditionally, most implementations of QSS methods were

provided by general-purpose discrete event simulation engines
such as PowerDEVS [20]. This generality usually brings about
unnecessary CPU overheads (due to the underlying message-
passing and/or event scheduling mechanisms) when the systems
to be simulated are primarily continuous. QSS Solver, on the
other hand, is an open-source standalone software that offers
optimized implementations of the whole family of QSS methods,
improving in more than one order of magnitude the computation
times of previous discrete event implementations [10]. It is com-
posed by a set of modules implemented in the C programming
language. One of these modules is a modeling front-end that
allows the user to express the models using µ-Modelica [21],
a subset of the more general Modelica modeling language [22].

QSS Solver automatically generates C simulation code for any

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

µ
t
d

i
d
m
M
s

2

o
t
o

w
A
p
q
s

Fig. 1. Illustrative example of a QSS2-based simulation and its main underlying QSS concepts.
-Modelica model. A simple graphical user interface integrates
he solver engine with the modeling front-end and plotting and
ebug ancillary tools.
Modelica is a high-level, object-oriented language for model-

ng of complex systems. Models in Modelica are mathematically
escribed by differential, algebraic and discrete equations. Sub-
odels can be inter-connected to create more complex models.
odel composition can be done in a graphical way through
everal software tools.

.2.2. Geant4
Geant4 is a software toolkit for the simulation of the passage

f particles through matter that has been adopted as the simula-
ion engine of choice for modern HEP experiments. It is composed
f several class categories or software components, each one rep-

resenting a cohesive set of classes with specific functionalities.
Among them we highlight the Geometry component, which de-
scribes a geometrical structure (and the propagation of particles
within it), and the Processes component, in charge of implement-
ing the models of physical interactions. This is shown in Fig. 2,
which presents a simplified, high-level block diagram of Geant4.
For further details please refer to the Geant4 documentation [23]
(Section Class Categories and Domains).

A Geant4 simulation is typically encompassed within a run,
hich consists of a series of events, the basic unit of simulation.
n event is composed of one or more tracks, a snapshot of a
article at a particular point along its path, containing physical
uantities such as energy and momentum. When a new event

tarts, primary tracks are generated and pushed into a simulation

4

Fig. 2. High-level structure of Geant4.

stack. Tracks are then popped up one at a time and simulated.
Physical interactions might generate new, secondary tracks, which
are also pushed into the stack and simulated serially (particles do
not interact with each other). An event finishes when the stack
becomes empty.

The trajectories of charged particles are computed through a
complex algorithm detailed in the Geant4 documentation [23]
(Section An Overview of Propagation in a Field). This algorithm
involves several accuracy parameters that can be supplied by
the user: ε (controlling the relative error in the position and
momentum), δ (the maximum allowed distance of linear
chord

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

v

Fig. 3. Main components of a Geant4 simulation.

chord segments to the curved trajectory path) and δint (which im-
poses accuracy constraints to the calculation of volume boundary
crossings). The Magnetic Field Propagator object orchestrates the
propagation of charged particles in a magnetic field by means of
this algorithm. A trajectory is made up of steps that advance the
particle a given distance (which can be limited to a maximum
fixed size by the user through the these steps are computed by
the steppers, which provide custom implementations of Runge–
Kutta-based numerical integration algorithms to solve the un-
derlying equations of motion. The Magnetic Field Propagator,
however, does not interact directly with the steppers but with
an Integration Driver that exposes a common integration interface
for different kinds of numerical methods.

A step might end before covering its length due to reaching a
volume boundary. When Geant4 detects a boundary crossing, it
executes an iterative algorithm to compute the intersection point
within certain accuracy constraints. This is implemented by the
Intersection Locator object.

The task of propagating charged particles can be thus decom-
posed into a trajectory calculation part and a boundary crossing
detection part [1]. This is shown in Fig. 3. Our research is focused
on this particle propagation component of complete, end-to-end
Geant4 simulations, leaving out of scope other aspects such as
physics evaluation.

Since version 10.4, released in December 2017, the default
stepper in Geant4 is the fifth/fourth-order accurate Dormand–
Prince adaptive method (DOPRI). Previous versions used the clas-
sical fourth-order Runge–Kutta (RK4) as default.

2.3. Related work

There are several other particle simulators used by the HEP
community aside from Geant4. For example, MARS15 [24] is
a set of Monte Carlo programs for the simulation of hadronic
and electromagnetic cascades in 3D geometries. MCNP [25] is
another Monte Carlo-based software for simulating nuclear pro-
cesses, whereas FLUKA [26] is a general-purpose Fortran simula-
tion package for particle transport and interactions with matter.
Closely related to Geant4 is the GeantV project [27]. This proto-
type (recently discontinued) aimed at re-engineering Geant4 to
run on modern, parallel computing architectures. Among these
alternatives, we based our research on Geant4 as it is currently
the simulation engine of choice for most HEP experiments [5].

As for related co-simulation techniques, the modern Func-
tional Mockup Interface (FMI) [28] allows for the concurrent
simulation of subsystems with certain synchronization points
where data is exchanged. The FMI standard is considered the
most promising standard for continuous time, discrete event and
hybrid co-simulation, as discussed in a recent empirical survey
on co-simulation [29]. The co-simulation software MpCCI [30]
provides algorithms and interfaces to couple different tools so as
to solve collaboratively the simulation of disjoint models. Another
5

strategy parallel by design is Complex Control Systems Simulation
(CCSS) [31], which is a distributed discrete event co-simulation
technique with application to the automotive industry.

We studied the performance of QSS Solver against Geant4 for
the simulation of a baseline HEP setup [32] (a charged particle in a
uniform magnetic field describing a circular 2D motion crossing
parallel planes) which for the sake of context will be reviewed
in Section 4. This work was continued by designing and imple-
menting a proof-of-concept version of GQLink [33], conceived as
an abstract interface that allows connecting Geant4 to arbitrary
external integrators, in particular the QSS family as implemented
by QSS Solver. Finally, in [34] we formalized the underlying co-
simulation concepts and developed several algorithmic and low-
level optimizations to improve GQLink’s simulation performance.
In this work we perform additional and more comprehensive
performance studies in the context of a new Geant4 version,
including the new de-facto Geant4 stepper in the comparisons.

3. Motivating case studies

We start by describing the two main HEP setups that will
be used throughout our work to establish the aforementioned
performance comparisons.

3.1. Oscillating particle under a constant magnetic field

Our first scenario serves as an introductory baseline test case
engineered to shed light on the core aspects of a given integrator:
its error control capabilities, its step computation performance
and its efficiency to detect boundary crossings. In order to fulfill
this purpose, the most relevant features of this case study are the
following:

• It offers a closed-form analytic solution which makes the
error analysis accurate and straightforward.

• Particle–matter interactions are explicitly turned off so that
there is no CPU overhead involved in physics computation.

• The number of boundary crossings can be easily controlled
by the user through a set of runtime parameters.

We introduce two variants which are loosely based on the
basic example B2 that is shipped along with the Geant4 source
code [35]. This example focuses on the most typical use-cases of
a Geant4 application.

2D setup: B2c. Its most simple implementation consists in a
single positron under a uniform, static magnetic field along the
ẑ plane, i.e., B⃗ = (0, 0, B) = Bẑ with initial velocity v⃗ = vx̂,
where v = 0.999 c and c = 299.792458mm/ns is the speed of
light. Thus, the particle describes a circular trajectory in the (x̂, ŷ)
plane. The magnetic field density B, measured in teslas, can be
supplied as a model parameter. Boundary crossings are modeled
by inserting equidistant parallel planes along the trajectory of
the particle. This is shown in Fig. 4(a). The user can control the
number of boundary crossings by specifying how many planes
should be inserted.

3D extension: B2h. We also developed a 3D extension of this
setup in which the particle follows a helical trajectory with a lin-
ear increase in ẑ with respect to time. This is achieved by gener-
alizing the initial velocity, which is now v⃗ = (w ·vx̂, 0,

√
1 − w2 ·

ẑ). The coefficient w ∈ [0, 1] is a model parameter that controls
the initial speed in x̂. In this extension, the geometry is a 3D
cube mesh where the cube edge length can be supplied by the
user. Thus, as the cube size decreases, the number of boundary
crossings along the trajectory of the particle increases. Note that
this scenario enables boundary crossings in each of the three

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619
Fig. 4. Baseline case study sketches.
dimensions and to different angles, as opposed to its 2D coun-
terpart. Fig. 4(b) shows a 3D mesh of cubes, each of which with
a cube edge length of 20 mm. Four trajectories produced with
different values of w appear inside it (the magnetic field density
B is set to 1 T).

3.2. A real-world particle detector: CMS

The primary goal of this case study is to analyze how our
particle propagation strategies perform in a realistic HEP setup
featuring a complex magnetic field, a large geometry composed of
different types of volumes and with physics interactions enabled.
In this sense, this case study complements the baseline tracking
experiment introduced in Section 3.1.

To that end we simulate the Compact Muon Solenoid (CMS)
particle detector. The CMS experiment is a general-purpose par-
ticle detector on the Large Hadron Collider (LHC) at CERN. It
was designed to study a broad range of physics, spanning the
exploration of physics at high energies, searching for evidence of
extra dimensions and testing proposed theories of dark matter.

We adopted cmsExp, a third-party standalone Geant4 appli-
cation proposed in [36]. It was originally conceived as a bench-
marking asset for Geant4 aimed at measuring its performance in a
typical, complex HEP detector. The application uses the detector’s
full Run 1 geometry (i.e., from the LHC first operational run,
which took place between 2009 and 2013) and a volume-based
magnetic field taken from CMS Offline Software (https://github.
com/cms-sw/cmssw). Essentially, given a point in space, the value
of the magnetic field is obtained by interpolation from a regular
grid of values [37]. As for the physics, we use the recommended
reference physics list FTFP_BERT [38].

It is important to note that, as opposed to case study 3.1, there
is no closed-form analytical solution for CMS simulations. Never-
theless, we validate our simulations by checking their consistency
by means of statistical tests (further explained in Section 6.4.2).

A CMS simulation starts with a primary particle being injected
into the detector through a particle gun, which is configured by
the user to shoot a given particle with an initial kinetic en-
ergy and momentum direction. As the primary particle interacts
with matter along its trajectory, several secondary particles are
generated and eventually simulated, which in turn can lead to
6

Fig. 5. A section of the CMS geometry with 20 particle trajectories.

additional secondaries being simulated. Over all, in the typical
CMS simulations we ran, there are more than 62,000 secondary
particles per event.

Fig. 5 shows a zoomed-in section of the CMS geometry along
with the first 20 trajectories (primary particle in blue) extracted
from a single simulation.

4. Feasibility study of QSS for HEP applications

Toward the goal of determining whether HEP applications can
profit from discrete-event numerical solvers, a first essential step
is to study their performance in a controlled, yet representative
scenario that can properly stress their most fundamental features.
We then designed a performance comparison between QSS Solver
and Geant4 in a tracking-intensive setup. The focus is made on ac-
curacy and integration efficiency, the most relevant performance
capabilities of the solvers at hand. In this Section we will sum-
marize the main results achieved by this study, which enables us
to provide a reference framework to properly contextualize and
motivate our further developments.

https://github.com/cms-sw/cmssw
https://github.com/cms-sw/cmssw
https://github.com/cms-sw/cmssw

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

4

w
a
t
e
m
c
c
a
a
o

4

w
a
c
o
i
4
u
f
d

0
d
l
i
t
u
a
m
p
e
P

4

w
p
(
r
i
e
t
a
W

a
w
i
b
n
i
b
o

Q

.1. Scenario description

The proposed test scenario is case study B2c (Section 3.1),
here a positron describes a circular, 2D trajectory due to the
ction of a uniform magnetic field in ẑ (Fig. 4(a)). Parallel equidis-
ant planes can be injected on demand in the geometry to
xercise the boundary crossing resolution capabilities of the nu-
erical solver. This key feature enables to test whether QSS
an leverage its efficient discontinuity handling properties in the
ontext of a typical HEP setup. Moreover, a deterministic, rigorous
ccuracy comparison can be carried out due to the existence of
closed-form analytical solution, which is in turn a consequence
f the intended simplicity of the model.

.2. Implementation

For Geant4, we developed a standalone tracking application
ith physics interactions disabled. The geometry is constructed
fter a user-configurable parameter that specifies the number of
rossing planes. The chosen stepper is the vastly used fourth-
rder Runge–Kutta (RK4), the default stepper for Geant4 until
t was replaced in release 10.4 of December 2017 (see Section
of the Geant4 10.4 release notes [39] for further details). The
nderlying equations of motion are the usual Lorentz equations
or charged particles in a magnetic field (Eq. (4)), provided by
efault in Geant4. There, q andm stand for the charge and mass of

the particle, respectively; c is the speed of light; γ is the Lorentz
factor and B⃗ is the magnetic field.⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = vx v̇x =

q c2
m γ

· (vy Bz − vz By),

ẏ = vy v̇y =
q c2
m γ

· (vz Bx − vx Bz),

ż = vz v̇z =
q c2
m γ

· (vx By − vy Bx)

(4)

As for QSS Solver, we formulated a µ-Modelica model that
provides an implementation of the Lorentz equations. In this
model, crossing planes are coded in the form of discrete events,
generated whenever the particle trajectory passes through the
predetermined coordinates of each plane. Fig. 6 shows the com-
plete model with 10 crossing planes. We chose third-order QSS
(QSS3) as the integrator to perform the experimentations.

Accuracy parameters δchord and δint in Geant4 were set to
.25 mm and 10−5 mm, respectively. We set the magnetic field
ensity B to 1 tesla and defined a track length of 1 km. This very
ong track length allows for stressing the error control capabil-
ties of the underlying numerical methods, an essential goal of
his study. The error in the propagation of charged particles in
niform magnetic fields (using standard numerical methods such
s RK4) can be very small for typical distances (in the order of
illimeters or centimeters) of HEP detector simulations. For the
roposed track length of 1 km, we found a maximum absolute
rror of about 3 mm for RK4, i.e., a 0.0003% of the track length.
lease refer to [32] for further details about this study.

.3. Performance comparison

Our first analysis studied the performance of both toolkits
hen there are no crossing planes in the geometry. For this pur-
ose, we experimented with three values of stepMax in Geant4
0.2 mm, 2 mm and 20 mm) and we swept a range of values for
elative accuracy (ε parameter in Geant4; ∆QRel in QSS Solver)
n order to compare the numerical error and the performance of
ach simulation. The error, termed max_x_err , was calculated as
he maximum absolute difference observed with respect to the
nalytic solution along the x coordinate of the particle’s position.
e measured the end-to-end simulation time t_sim to establish
7

performance comparison. Results are shown in Fig. 7(a). First,
e can see that stepMax does not seem to have a perceivable

mpact on the error, as the respective dashed lines appear to
e on top of each other. Moreover, the Geant4 application does
ot seem to improve the error when the relative precision is
ncreased (i.e., when ε is decreased). This may be due to a com-
ination of the higher order of the chosen stepper (RK4) with
ther accuracy parameters (in particular, δchord), which remained

fixed for every point in the curves. On the other hand, as indi-
cated by 1 , QSS3’s error decreases approximately by an order
of magnitude for each extra order of magnitude of ∆QRel. We
also note that lower values of stepMax yield higher simulation
times in Geant4, which is expected since they demand a higher
number of steps to cover the same track length. For QSS3, we
observe that the simulation time increases with the cubic root of
∆QRel, which confirms a theoretical property of the method [40].
When stepMax = 0.2 mm, between points 1 and 2 , QSS3
outperforms Geant4 achieving both smaller error bounds and
lower simulation times.

Both methods were also studied in the context of and in-
creasing number of crossing planes along the trajectory of the
particle, using a fixed relative accuracy of 10−5. This study is
depicted in Fig. 7(b). We found that QSS Solver’s QSS3 simulation
time scales better than Geant4’s RK4 as the number of plane
increases, observing performance improvements of at most 6x for
200 planes. The smooth growth in QSS3’s simulation time is a di-
rect consequence of the key QSS feature of efficient discontinuity
handling. Finally, we observed that the error is not significantly
affected by the number of boundary crossings in both toolkits.
QSS Solver achieved better error bounds than Geant4.

This analysis suggests that QSS Solver can offer performance
improvements for HEP simulations featuring intense volume
crossing activity. Yet, there are salient differences between the
simulation toolkits impeding direct and fair comparisons. More-
over, QSS Solver alone cannot simulate complex HEP setups.
However, the outcome provides a solid foundation that justi-
fies the efforts toward an integration of QSS with the Geant4
transportation engine. We will accomplish this progressively, in
two steps built upon each other: a co-simulation strategy that
connects the QSS Solver simulation engine with Geant4, and a
new embedded QSS stepper developed natively for the Geant4
particle transportation ecosystem.

5. First approach: A co-simulation strategy

In this approach we connect the engine of QSS Solver with
Geant4 in such a way that the responsibilities of step computation
can be transparently delegated. This interconnection serves mul-
tiple purposes. First, it enables to test whether Geant4 and QSS
can be smoothly and correctly coupled. Besides, it leverages the
vast domain-specific knowledge on physics interaction already
available in Geant4. Also leveraged is the optimized state-of-the-
art implementation of QSS methods in the QSS Solver engine. In
turn, the development overhead is minimized, as it is not needed
to engineer and design a QSS implementation specially tailored
for Geant4. In fact, this approach demands at most devising a
clean and sound method for connecting the toolkits. Finally, by
delegating the particle propagation responsibilities to QSS Solver,
other geometry navigation algorithms can be tested and explored.
One such example is based on approximating the geometry vol-
umes by faceted polyhedrons. Thus, intersection points can be
computed more efficiently by solving a polynomial equation in-
volving these facets and the QSS polynomials that approximate
the particle trajectory.

With these goals in mind we developed GQLink (Geant4-to-
SS Solver Link), a collaborative co-simulation strategy where

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

G
t
e
f
q
d

5

t
F
F
w
G
G
e

Fig. 6. µ-Modelica model for case study B2c.
Fig. 7. Performance comparison between QSS Solver and Geant4.
eant4 drives the simulation and delegates particle transport
o QSS Solver. Thus, the former is in charge of defining and
valuating the physics processes, whereas the latter is responsible
or integrating the equations of motion and transporting particles,
uerying the geometry navigation routines provided by Geant4 to
etect volume crossings.

.1. High-level architecture

Fig. 8 shows a high-level architecture where GQLink takes over
he particle tracking actions typically in control of the Magnetic
ield-related objects in the Geometry software component (cf.
ig. 2). As such, the Magnetic Field Propagator no longer interacts
ith the standard Geant4 integration drivers and steppers when
QLink is enabled. In order to complete an integration step,
QLink relies upon QSS Solver, the chosen underlying integration
ngine, to solve the equations of motion. However, one of the
8

design goals of GQLink is to stand for an abstract, transparent
particle propagation interface that can be eventually used to
connect Geant4 with other external solvers.

While a step is being computed, GQLink periodically queries
the geometry navigation objects of Geant4 to properly detect vol-
ume boundary crossings. These are bidirectional interactions, as
the intersection finding algorithm sends a query back to GQLink
on each iteration in order to improve its estimation of the inter-
section point. This will be further elaborated in Section 5.3.

5.2. Model definition

While Geant4 gets initialized, before running a simulation, a
set of user-supplied parameters is used to choose the GQLink
model to simulate. So far, we tested standard equations of mo-
tion of charged particles in a magnetic field (Eq. (4)), which are
available in a set of µ-Modelica models that are pre-compiled

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

i
d
o
i
b

c
p
t
f
µ

T
c

5

G
t
C

a
g
i
s
i
t
f
a
c
m
T
i
E
b
v

l
t
b
s
a
p
c
i
t

Fig. 8. High-level structure of Geant4 with GQLink.
m
nto shared libraries. Each of these shared libraries correspond to
ifferent QSS methods (e.g., QSS1 to QSS4). Thus, Geant4 picks the
ne satisfying the user requirements, dynamically links to it and
nitializes a GQLink Model object. This object exposes an API used
y the Magnetic Field Propagator to interact with QSS Solver.
Further models (e.g., involving electric fields or particle spin)

an be added by expressing the equations in µ-Modelica and
utting the resulting file into the GQLink folder. A new rule added
o the Geant4 build system compiles in two steps the files in this
older to produce the aforementioned shared libraries. First, the
-Modelica compiler generates C code from the model sources.
his code is later compiled into a shared object by the usual C/C++
ompiler.

.3. Co-simulation interactions

Fig. 9 illustrates the main co-simulation interactions between
eant4 and QSS Solver through GQLink during a step computa-
ion, whose entry point is the G4PropagatorInField::
omputeStep method implemented by the Magnetic Field Prop-

agator. GQLink is invoked after calling the new method
G4PropagatorInField ::GQLink_ComputeStep, which inter-
cts with the GQLink Model object and instructs it to advance a
iven length. Once a data structure is initialized with assorted
nformation relevant for the step (e.g., particle properties and
tep length), the advance request is relayed to the QSS Solver
ntegration engine. It first resets the internal simulator state using
he particle charge, velocity and position and current magnetic
ield value. This reinitialization is essential to ensure correctness,
s the post-step physics processes evaluated by Geant4 might
hange some particle properties (e.g. its direction). Next, the
ain integration routine of the QSS engine takes over control.
his routine will iterate as long as the requested step length
s covered, or otherwise until a volume boundary is crossed.
ach iteration gives rise to a so-called QSS substep, which can
e understood as a tuple ⟨t, v, l, x⟩, where t is its start time,
the velocity of the particle along the substep, l the traversed

ength upon completing the substep and x the vector func-
ion that approximates the particle trajectory along the substep
y means of polynomial functions. Substeps are packed into a
ubstep block with a user-configurable size n. Once n substeps
re packed, the integration routine is suspended by a check-
oint where Geant4 is queried via GQLink for possible boundary
rossings. This process follows the same routine call pattern
mplemented by Geant4’s transportation engine: after locating
he starting point of the substep block in the geometry (via
9

ethod G4Navigator::LocateGlobalPointWithinVolume),
a linear segment connecting the endpoints of the block is tested
for volume intersections (via method G4MultiLevelLocator::
IntersectChord). If a volume crossing is detected, the intersec-
tion point found is taken as an initial estimation of the actual
boundary crossing point, which is computed by the method
G4MultiLevelLocator::EstimateIntersectionPoint. This
method keeps refining the successive approximations until the
intersection accuracy constraints are met. On each iteration, QSS
Solver is queried back to advance a certain length constrained
to the current substep block. This is efficiently computed by
finding first the appropriate substep and finally evaluating the
corresponding QSS polynomials that approximate the particle
trajectory. For a more comprehensive explanation of the particle
propagation interactions and the intersection finding algorithm,
please refer to [34].

5.4. Changes made to Geant4

We leveraged Geant4’s cohesive object-oriented design to
implement GQLink with a very limited number of changes intro-
duced to the source code. We summarize them below:

• The Magnetic Field Propagator (G4PropagatorInField
class) was extended with a pointer to the GQLink Model
object and two new methods: one for initializing GQLink
(following the actions detailed in Section 5.2) and the other
for computing a step (GQLink_ComputeStep, explained in
Section 5.3).

• The Intersection Locator (G4MultiLevelLocator class)
also holds a pointer to GQLink’s Model. It is used to query
QSS Solver on each iteration of EstimateIntersection-
Point, as explained in Section 5.3. Actually, this is
done inside the method ApproxCurvePointV of class
G4ChordFinder (the Model object is passed as an argu-
ment).

• Geant4’s cmake-based build system was extended with a
new rule to produce the shared libraries from the
µ-Modelica model sources, as described in Section 5.2. Also,
upon building Geant4, new libraries for GQLink and the QSS
Solver engine are compiled. The former is a new dependency
for the Geometry component.

• We also included a new cmake option to enable or disable
GQLink code upon compilation (GEANT4_USE_GQLINK).

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

5

t
t
a
d
c

M
m
c
a
i
w
G
o
t

V
p
1
t
m
p
o
i
d
e

E
r
t
m

Fig. 9. Co-simulation interactions in GQLink.
s
d
5
t

p

S

P
G
c
D
I
c
g
a
i
a

.5. Simulation experiments and discussion

In this Section we will study how GQLink performs against the
wo most relevant Geant4 steppers (RK4 and DOPRI) in the con-
ext of case study B2h (introduced in Section 3.1). The hardware
nd software platform used throughout the experimentation is
escribed in Appendix A. The underlying dataset for this analysis
an be found in [41].

odel instantiation and simulation parameters. For this experi-
entation, we set the magnetic field density B to 1 tesla and the
oefficient w to 0.01. Thus, the particle trajectory has a radius of
bout 0.38 mm and completes 417 revolutions in 100 m (which
s the default track length we chose). The maximum step length
as set to 20 mm (stepMax parameter). We selected QSS2 as
QLink’s integration method (we verified that the computational
verhead of QSS3 due to its higher order significantly degrades
he performance for this scenario).

alidation. Geant4 simulations were configured with a relative
recision ε = 10−6 and setting δchord and δint to 0.25 mm and
0−5 mm, respectively. For this configuration, we then found
hat setting ∆QRel = 5.1 × 10−5 and ∆QMin = 5.1 × 10−5

m in GQLink yields a maximum absolute error in the particle
osition that is always (i.e., for every cube size) lower than that
f Geant4 (for any of the two selected steppers), with an average
mprovement of about 4x. This error is measured as the Euclidean
istance between the simulated and the theoretical position at
ach given time.

xperimental setup. We swept 190 equidistant cube sizes in the
ange [0.01, 1.9] mm for side length and, for each size, we charac-
erized the performance of the three methods using the following
etrics (cf. Fig. 3):
10
• The end-to-end speedup against a reference Geant4 stepper,
for which we chose DOPRI as it became recently the default
stepper,

• The average trajectory calculation time, which indicates the
average CPU time per step taken by the trajectory calcula-
tion and the numerical integration routines. It excludes the
intersection-finding algorithms (i.e., it is the time taken by
ComputeStep subtracting the time taken by EstimateIn-
tersectionPoint), and

• The average boundary crossing detection time, which is the
average CPU time per volume boundary crossing consumed
by EstimateIntersectionPoint.

For each cube size and each metric we ran 20 independent
imulations and plotted the average values. The sample standard
eviation (vertical bars) remained below 11% (typically around
%). Appendix A.1 provides additional information regarding the
ime measurements involved in this experimentation.

For the sake of clarity, in what follows we measure speedups
referably in percentage units, according to Eq. (5).

peedup [times] = durationprev / durationnew

Speedup [%] = (Speedup [times] − 1) × 100 (5)

erformance comparison. Fig. 10a shows a clear rising trend in
QLink’s speedup (against both steppers) as the cube size de-
reases, reaching a maximum value of about 9% and 45% against
OPRI and RK4, respectively, when the cube edge is 0.01 mm.
nspecting the speedup curve, we can identify five ranges of
ube sizes for which GQLink performs increasingly better. This
rowth pattern can be explained by examining Fig. 10b. GQLink’s
verage trajectory calculation time within each range systemat-
cally drops about 20% each time, and this is a consequence of
decrease in the average number of QSS2 substeps required to

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

c
a
i
w
t
f
w
Q
c
h
a
G
f
S

s
p
6
p
t
e
i

r
a
w
(
∼

e

t
o

Fig. 10. Performance comparison between GQLink/QSS2 and Geant4 steppers in case study B2h (w = 0.01; B = 1 T; stepMax = 20 mm; 100 m of track length).
t
o
o
s
6
G
s
c
G

e
f
i
o

6

t
r
u
t
n
O
e
a
e
s
m
p

omplete a single step (annotated on the curve). These numbers
re very close to consecutive multiples of 3, which is not surpris-
ng since this is the default size of GQLink’s substep block. In other
ords, each range of cube sizes demands less checkpoints until
he volume boundary is found. This showcases a very important
eature of GQLink: the ability to interrupt prematurely a step
ithout wasting extra CPU resources in calculations of redundant
SS substeps (as we shall see later, our QSS Stepper needs to
ompute the full step upfront before boundary crossings are
andled). On the other hand, we see that both Geant4 steppers
chieve a nearly constant average trajectory calculation time:
eant4 requires the steppers to complete a full step before testing
or volume boundary crossings (this will be further elaborated in
ection 6.2).
As for the time spent resolving boundary crossings, we ob-

erve in Fig. 10c that GQLink clearly outperforms both step-
ers, achieving an average improvement over DOPRI between
.14x and 5.57x. This is a consequence of the dense output
roperty of QSS methods and the polynomial approximation of
rajectories, leveraged in GQLink_advance_constrained to
nable a very efficient computation of particle movements in the
ntersection-finding algorithms.

Every cube size evaluated in this experiment maximizes the
atio of boundary crossings per step (i.e., every step ends at
volume boundary). Yet, it is in the last range of cube sizes
here the average trajectory calculation time achieved by GQLink
about 2x higher than DOPRI) starts to be outweighed by the
6x improvement in finding intersection points. This ultimately
xplains the reported maximum end-to-end speedup of about 9%.
In this range we can also see that GQLink’s trajectory calcula-

ion time is slightly lower than RK4’s. We empirically found that,
n average, GQLink can compute one substep in about 13% of
11
he time taken by RK4 to compute a full step. In other words,
ne GQLink step composed on average of about 7.7 substeps and
ne RK4 step demand approximately the same CPU time in this
cenario. This is consistent with the reported average value of
.91 substeps for that range. As for DOPRI, we have that one
QLink substep represents a 25% of a full step, i.e., at most 4
ubsteps are needed in order to achieve competitive trajectory
alculation times. This motivates the need to improve further
QLink’s algorithms.
It is also possible to derive an analytical estimation of the

nd-to-end speedups between any two steppers leveraging in-
ormation collected during experimentation. In Appendix B we
ntroduce such a formula along with validations for a broad range
f scenarios.

. Second approach: an embedded QSS stepper

We just showed that QSS and Geant4 can interact gracefully
hrough GQLink. Our next goal is to embed QSS algorithms di-
ectly into the Geant4’s transportation engine, circumventing the
sage of a general purpose layer of interconnection with external
oolkits. We accomplish this by designing and implementing a
ative QSS stepper along with a dedicated QSS integration driver.
ur key motivation is to optimize further the particle propagation
fficiency by eliminating the overhead introduced by GQLink’s
bstractions. Thus, our new QSS Stepper sacrifices GQLink’s gen-
rality in favor of step computation performance. To this end, we
tripped and optimized GQLink’s core algorithms until achieving a
inimalist QSS implementation that can be wired into the Geant4
article transportation ecosystem.

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

g
t
F
o
G
n
a
a
S

t
c
A
s
p
i

s
a
a
i
p
t
a
S
s
g
o
t

o
m
m
Q
b
t

6

f
g
n
f
P

i
t
(
i
t
(
D
a
t
D
S
m
G
r

6

o
G

a

Fig. 11. High-level structure of Geant4 with the new QSS Abstract Stepper.

6.1. Stepper design

Fig. 11 shows the modified Geant4 software component dia-
ram after introducing the new embedded QSS particle propaga-
ion capabilities. As opposed to Fig. 8, we see that the Magnetic
ield Propagator no longer interacts with GQLink. The high-level
rganization is exactly that of Fig. 2, a consequence of providing a
eant4-compatible implementation of QSS algorithms. The Mag-
etic Field group now includes a QSS Integration Driver object,
new member of the general Integration Driver class hierarchy,
nd a QSS Abstract Stepper object (which is in turn part of the
tepper class hierarchy).
The QSS Driver leverages and reuses most of the behavior of

he standard Interpolation Driver, but it also overrides some spe-
ific methods, e.g. those that perform adaptive step-size control.
lso, it instructs the Stepper to reset the internal QSS integrator
tate upon starting a new step. This follows the same reasons
resented in Section 5.3 while discussing GQLink’s co-simulation
nteractions.

Regarding the Stepper, we call it abstract since it offers a
ingle, reusable structure that provides common behavior shared
cross different concrete algorithms. In spite of this generality, we
bide by our performance-driven goals by opting for a generic
mplementation via C++ templates, which offer negligible runtime
erformance penalties due to being instantiated at compilation
ime. As such, the abstract QSS Stepper is created by supplying
QSS Algorithm object as template argument. On runtime, the
tepper just delegates method-dependent work (e.g., right-hand
ide evaluation of the ODE system) to this object. These dele-
ations correspond to the object interface. Thus, any Algorithm
bject must implement this interface so that it can interact with
he abstract Stepper.

In this work we develop and test embedded implementations
f QSS2 and QSS3 methods. We apply them to solve the afore-
entioned standard equations of motion of charged particles in a
agnetic field (Eq. (4)). However, other potential members of the
SS family could be smoothly embedded into our framework just
y encapsulating the algorithm into an object that implements
he delegation interface of the abstract Stepper.

.2. Step computation

As shown in Fig. 12, when Geant4 computes a step, a Com-
puteStep call is issued to the Magnetic Field Propagator. It starts
by invoking the OnComputeStep method implemented by the
Integration Driver in order to perform custom step initialization
tasks. There, the QSS Driver issues a reset call to prepare the
12
Stepper for the upcoming computation. Basically, the integra-
tor’s internal data structures are reinitialized using the particle
properties (i.e., charge, mass, velocity and position). This process
is an essential part of the particle propagation algorithm since
even a single track can exhibit changes in the underlying particle
direction or position in-between consecutive steps (as discussed
in Section 5.3).

The particle propagation algorithm continues by locating the
starting point of the step in the geometry so that future geometry
queries can be properly addressed. Then, the step is actually
taken inside the AdvanceChordLimited routine, implemented
by the Integration Driver (the QSS Driver reuses the Interpolation
Driver’s default implementation, but skipping the adaptive step size
controls performed once the step is computed). It is interesting
to note that the core behavior of the QSS integration routine
(Stepper method) matches that of GQLink’s: each iteration de-
ines a new QSS substep that is stored for later use by the
eometry routines. The main difference with GQLink is that the
otion of checkpoint no longer exists: geometry boundaries are
ound once the whole step is taken, and it is the Magnetic Field
ropagator’s responsibility to do this.
However, the underlying intersection-finding algorithm

s essentially equivalent that of GQLink’s: it starts with a quick
est using a linear segment joining the step endpoints
IntersectChord), which gives an initial estimation of the
ntersection point, in case a volume boundary is crossed. This es-
imation is progressively improved by a more complex algorithm
EstimateIntersectionPoint) that queries the Integration
river on each of its iterations (AccurateAdvance) in order to
dvance a given length and then test which side of the boundary
he particle lies in. The QSS Driver, by means of the Interpolation
river’s custom behavior, issues an Interpolate call to the QSS
tepper. This call is handled very efficiently using the QSS polyno-
ials computed previously at each substep. Thus, we see that the
QLink_advance_constrained routine discussed in Section 5.3
eplaces Geant4’s AccurateAdvance.

.3. Changes made to Geant4

We engineered the QSS Stepper to demand the least number
f changes to Geant4’s source code. We extended the
4MagIntegratorStepper and G4VIntegrationDriver class

hierarchies in order to add new classes for our stepper
(QSS_Stepper) and integration driver (QSS_Driver). We also
dded a new argument to the OnComputeStep method of the
G4VIntegrationDriver class hierarchy in order to reset the
internal QSS integrator state before taking each step (as detailed
in Section 6.2). This argument is a pointer to a G4FieldTrack
object.

For convenience purposes, we also implemented a new helper
method in the G4MagIntegratorStepper class hierarchy. It
facilitates the generation of a proper integration driver for the
current stepper, and it is invoked during the construction of the
Chord Finder.

6.4. Simulation experiments and discussion

We will characterize the performance of the QSS Stepper in an
instance of case study B2h (Section 6.4.1) and in the context of the
case study that models the CMS particle detector (Section 6.4.2).
The hardware and software platform used throughout the experi-
mentation is described in Appendix A. The underlying dataset for
this analysis can be found in [41].

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

6
M
n

4
t
t
b

E
t
a
t
i
c

o
h
o
e
c

Fig. 12. Step computation in Geant4 through the QSS Stepper.
.4.1. Case study B2h
odel instantiation and simulation parameters. We set the mag-
etic field density B to 0.01 tesla and the coefficient w to 0.01,

which yields a trajectory radius of about 38 mm. The particle now
completes 4 revolutions in 100 m of track length. In this case,
stepMax was set to 0.7 mm, a reference value taken from the
average step length computed in realistic CMS simulations.

This parameterization yields particle trajectories that are step-
wise ‘‘smooth’’, in the sense that – on average – can be accurately
approximated by a small number of polynomial QSS substeps (per
Geant4 step). This relates directly with the noticeable decrease
in the number of revolutions with respect to the experiment
covered in Section 5.5.

Validation. As explained in Section 5.5, for a given stepper, we
measure the absolute error as the Euclidean distance between
the simulated and the theoretical position of the particle at each
time. In this opportunity, we ensured that the maximum of such
errors achieved by the QSS Stepper remains within a 2% of the
one produced by DOPRI (for every cube size). We accomplished
this by instantiating ε = 10−5, δchord = 0.25 mm and δint = 10−5

mm in Geant4 and setting ∆QRel = 4.69 × 10−5 and ∆QMin =

.69× 10−6 mm to control the QSS accuracy. In fact, the error in
he particle position for the QSS Stepper is at most 1.85% higher
han DOPRI in this setup. GQLink, on the other hand, achieved
etter error bounds (on average 5x lower than DOPRI).

xperiment setup. Aside from the three performance metrics in-
roduced in Section 5.5, in this experiment we also consider the
verage particle propagation time (cf. Fig. 3), which represents
he average CPU time per step taken by ComputeStep (i.e., tak-
ng into account trajectory calculation time as well as boundary
rossing detection time).
As discussed in Section 6.2, Geant4 finds boundary crossings

nce the whole step is taken, which makes the steppers be-
ave differently from GQLink. In this sense, this experiment is
rganized as follows. Cube sizes are grouped into cube buck-
ts where the ratio of boundary crossings remains essentially
onstant. Each bucket spans cube sizes in-between consecutive
13
multiples of stepMax. Given a cube with an edge length l such
that k · stepMax ≤ l < (k + 1) · stepMax, Geant4 demands
approximately k full steps inside this cube before detecting the
volume boundary and entering the neighboring cube. This yields
a 1/(k + 1) crossing ratio for the corresponding cube bucket.

We swept four consecutive buckets where the crossing ratios
increase from 25% to 100%, sampling 20 equidistant cube sizes
within each bucket.

As in the case of the experiment described in Section 5.5, for
each cube size and each performance metric we ran 20 indepen-
dent simulations and plotted their average values. The accompa-
nying error bars indicate the standard deviation for groups of 20
samples (which was again typically below 11%).

Performance comparison. Fig. 13a shows the end-to-end speedup
of each method against Geant4’s recent default stepper, DOPRI.
The horizontal green lines represent the average speedup of
each method within a given bucket. We can see that QSS2’s
speedup systematically increases as we move from bucket to
bucket, achieving a nearly equivalent performance in bucket 2
(33% of boundary crossings) and reaching a maximum value of
about 7% when the crossings ratio is maximized in bucket 4 (an
absolute maximum of 9% is reached within this bucket when the
cube edge is approximately of 0.65 mm). Comparing against RK4,
the maximum average bucket speedup is 15% with a absolute
maximum of 19%.

As shown in Fig. 13c, even though the QSS2 trajectory calcula-
tion time is consistently 12% above DOPRI values, the QSS Stepper
deals more efficiently with an increasing boundary crossing ratio.
In this scenario, both QSS strategies outperform DOPRI and RK4
by a factor of 2.2x and 2.5x, respectively, when computing inter-
section points (Fig. 13d). Not surprisingly, the curves for both QSS
methods in this Figure are hardly distinguishable to the naked
eye: the routines at the heart of the intersection finding algorithm
(GQLink_advance_constrained in GQLink; Interpolate in
the stepper) share a nearly equivalent implementation.

Particle propagation information is condensed in Fig. 13b,
which shows the average particle propagation time consumed by
each method. For each Geant4 stepper, there are no significant

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

f
T
G
i
a
f
n
t
p
w
b
s

e
t
i
t
c
d
r
t

Fig. 13. Performance comparison between QSS methods and Geant4 steppers in case study B2h (w = 0.01; B = 0.01 T; stepMax = 0.7 mm; 100 m of track length).
o
D
o
S
a

6

a
m

S
p
a

luctuations of the particle propagation time inside each bucket.
his is reasonable to expect: as we already discussed, a given
eant4 stepper will behave very similarly when computing steps
nside any cube belonging to the same bucket. However, there is
clear increase in the particle propagation time when jumping

rom bucket to bucket, which is due to an overall increase in the
umber of steps needed to cover the track length and complete
he simulation. When reaching the last bucket, QSS2’s particle
ropagation time is 14% lower than DOPRI’s. This is consistent
ith the reported average end-to-end speedup of 7% inside this
ucket, as particle propagation takes roughly the 55% of the whole
imulation and 14% × 55% = 7.7%.
As for GQLink, we can see a very similar rising trend in the

nd-to-end speedup as reported in Section 5.5, even inside any of
he four buckets. However, GQLink’s trajectory calculation time
n this scenario is considerably slower than DOPRI’s: the time
o compute one GQLink substep represents a 40% of the time to
ompute a complete DOPRI step, as opposed to the 25% previously
iscussed in Section 5.5. The sustained increase in the crossing
atio is now not enough to compensate this extra difference. On
he other hand, we found that the time to compute one substep
14
f the QSS2 stepper represents a 25% of the time to compute one
OPRI step, which shows a clear improvement in the efficiency
f the underlying QSS algorithms. In fact, in this scenario, the
tepper computes a QSS substep 60% faster than GQLink, on
verage.

.4.2. CMS detector application
In this Section we provide a complementary performance

nalysis of the QSS2 Stepper in the context of the case study that
odels the CMS particle detector (introduced in Section 3.2).

imulation parameters. We used a particle gun shooting a single
rimary π− particle per event with a kinetic energy of 10 GeV and
random direction within the η-φ space, with pseudorapidity η ∈

[− 1/2, 1/2] and azimuthal angle φ ∈ [−π, π]. Every simulation
consisted in 500 independent events.

Validation. Since there is no closed-form analytic solution avail-
able for CMS simulations, validation in this scenario was achieved
through statistical tests to ensure the statistical consistency of
QSS simulations against a reference Geant4 stepper (DOPRI). For
this purpose, we used the two-sample Kolmogorov–Smirnov test

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

s
p
i

o
9

G
d
a
t
m
s

P
t
D
g
s
p
u
t

(
i
o
g
D
l
s

t
t

s
b
u
o

7

m
i
t
w
v
t
v
t
m
b
Q
a
t
d
m

H
s
p

Fig. 14. Accuracy parameter sweeping for QSS in the CMS setup.

using a significance level α = 0.01 to test the number of steps
and tracks produced for all particles tracked in the application
(i.e., negative and positive pions, electrons, positrons, gamma
photons and a common type for every other particle that might
be generated).

We conducted a parameter sweeping for QSS accuracy in order
to find a suitable combination of ∆QRel and ∆QMin that enables
tatistical consistency while reducing as much as possible the
article propagation times. Thus, we swept 60 equidistant values
n the range [10−6, 10−4

] for both accuracy parameters (using a
fixed RNG seed) and extracted out the average number of QSS
substeps per Geant4 step. The results are presented in Fig. 14
(red dots indicate cases of failure in the statistical validation). We
used DOPRI with the same set of Geant4 accuracy parameters
as described in Section 6.4.1. The surface shows, as expected,
that the number of substeps increases as the requested relative
precision is more stringent, while there are no significant changes
when varying ∆QMin (for a fixed ∆QRel). The minimum number
f substeps (about 1.9) is achieved at ∆QRel = ∆QMin =

.8322 × 10−5 (marked with a pink triangle). We selected this
accuracy to carry out the performance comparison, as it passed
the statistical tests.

Experiment setup. We selected 100 random seeds to initialize
eant4’s RNG and, for each one of them, we ran 10 indepen-
ent simulations to measure the end-to-end simulation time
chieved by each stepper and other 10 independent simulations
o measure the average particle propagation times per step. These
etrics are summarized with average values for groups of 10
amples.

erformance comparison. In Figs. 15(a) and 15(b) we present
he performance comparison between the QSS2 Stepper and
OPRI and RK4, respectively, for 100 simulation runs. The upper
raph shows the relative end-to-end speedups between both
teppers, whereas the lower complements this information
roviding the corresponding particle propagation speedup. Sim-
lations are sorted with a decreasing absolute value of the end-
o-end speedup.

We found that 62 simulations favored QSS2 against DOPRI
positive blue bars in the upper graph of Fig. 15(a)). This number
ncreases to 77 when comparing against RK4. Notably, on the
ther hand, the QSS2 Stepper offered significant performance
ains regarding particle propagation times, outperforming both
OPRI and RK4 in every single simulation. The dashed brown
ines in the lower graphs show the average particle propagation
peedups: about 15% against DOPRI and roughly 23% against RK4.
In spite of this, the end-to-end speedups occasionally favor

he standard Geant4 steppers. This can be explained by a propor-
ionally small CPU demand for particle propagation procedures
15
in CMS compared to CPU demand for physics evaluation: particle
propagation takes about 7.5% of the end-to-end simulation time
for DOPRI and nearly 8% for RK4. In both situations, the physics
processes are the most CPU-intensive software components.

Another salient feature of the CMS scenario is its small ratio of
boundary crossings, which is typically between 8% and 9% of the
total number of steps. Although this is not a property that can be
leveraged by QSS methods, the favorable speedups observed can
be explained by two facts: first, the underlying trajectories tend
to be stepwise smooth, demanding less than 2 QSS substeps per
step, on average, as discussed in Section 6.4.2. Second, we found
that the time to compute one QSS2 substep represents on average
a 43% of a complete DOPRI step, and a 40% of an RK4 step. Thus,
particle propagation speedups against each stepper should be
expected for an average number of QSS substeps below 2.32 and
2.5, respectively. With an average particle propagation speedup
of 15% against DOPRI, and considering that particle propagation
takes 7.5% of the end-to-end simulation time, we would expect
an average end-to-end speedup of 15%×7.5% ≈ 1.1%. This figure
is close to the reported average end-to-end speedup of 0.97%
(dashed brown line in the upper graph of Fig. 15(a)). The same
reasoning yields an expected end-to-end speedup of 1.8% against
RK4. In this case, the empirical end-to-end average speedup was
1.58% (dashed brown line in the upper graph of Fig. 15(b)).

In order to put these figures into perspective, we claim that a
strict upper bound for the expected end-to-end speedup in the
CMS application should be between 7.5% and 8%, as these are
the average ratios of CPU resources taken by the two Geant4
steppers we analyzed. Bearing this in mind, the reported end-to-
end speedups of 0.97% and 1.58% represent a 13% and a 20% of
those upper bounds. In addition, as already discussed in Section 1,
a 1% reduction in CMS simulation times can yield very important
savings.

Finally, we found that the QSS2 Stepper computes a QSS sub-
step about 42% faster than GQLink, on average. In this case, the
time to compute a single substep represents a 37% of the time to
compute a full GQLink step.

As a final note, this performance comparison is solely based
on π− events. Other types of particles could give different re-
ults, as e.g. muons will traverse more volumes and cross more
oundaries. Thus, we stress the need of developing similar studies
sing simulated collision events of different types, which are part
f upcoming research efforts.

. Concluding remarks

We studied the applicability of state quantization-based nu-
erical solvers in the simulation of moving particles and their

nteraction with traversed matter. In particular, we focused in
he domain of High Energy Physics (HEP) experiments that deals
ith the behavior of subatomic particles. These problems in-
olve solving continuous equations of motion to track particle
rajectories within complex detector geometries made up of 3D
olumes. This suggests the appropriateness of numerical methods
hat deal efficiently with discontinuity handling in continuous
odels, a situation represented by the crossing of boundaries
etween adjacent volumes by a traveling particle. We adopted the
SS family of numerical solvers that are designed in the realm of
discrete-event simulation approach, making discontinuity de-

ection and handling a cheap procedure as compared to classical
iscrete-time oriented solvers (e.g. the Runge–Kutta family of
ethods).
We developed several tools and models to apply QSS for

EP experiments and analyzed their performance in varied case
tudies, from abstract simplified models to real-world complex
article detectors.

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

p
o
c
s
(
Q
b
p
u
i
r
t
o

t
i
s
m
p
a
s

n
Q
f
p
f
d
b
d

Fig. 15. Performance comparison for the CMS case study (500 single π− events for each run).
c
s
w
t
l
G
v
a

s
o
t

o
b
u
m

b
a
a
t
i
t
s
t

c
t
i

The first simple case is a basic HEP setup consisting of a single
ositron describing a circular 2D trajectory under the action
f an uniform magnetic field (B2c). Performance and accuracy
omparisons were made between Geant4 (the most widely used
imulation toolkit in modern HEP experiments) and QSS Solver
the state-of-the-art toolikt for QSS methods). We confirmed that
SS can substantially profit from scenarios where the number of
oundary crossings is high (modeled in this case as parallel planes
laced across the trajectory of the particle): QSS Solver performed
p to 6 times faster than Geant4 with better error bounds. Yet, it
s very difficult to apply directly QSS Solver to simulate complex
ealistic HEP problems, as it is a general purpose simulation
oolkit (e.g. simulating complex stochastic physics processes is
ut of its scope).
Therefore, we developed a co-simulation scheme, GQLink,

o combine the two simulation toolkits while preserving the
ndependence of their core engines. GQLink takes the respon-
ibility of particle tracking via ODE solving, while Geant4 re-
ains in charge of driving the simulation and solving stochastic
article–matter physics interactions. GQLink proved effective as
n abstract mechanism to connect Geant4 to arbitrary external
imulation toolkits.
Finally, we engineered a minimalist version of QSS methods

atively embedded into the Geant4 transportation engine: the
SS Stepper. It provides a common integration scheme suitable
or different kinds of QSS methods, with negligible performance
enalties. So far, we developed and tested two implementations
or QSS2 and QSS3. The know-how and lessons learned from the
eployment of GQLink proved to be essential to facilitate and
oost this development process, which can be leveraged for the
esign of future solvers.
 t

16
We analyzed both strategies, GQLink and QSS Stepper, in the
ontext of two complementary case studies: a synthetic repre-
entative setup where a positron describes a 3D helical trajectory
ithin a lattice of cubes (B2h), and a real-world scenario based on
he Compact Muon Solenoid (CMS) particle detector. We estab-
ished performance comparisons against the two most relevant
eant4 steppers, the RK4 and DOPRI discrete-time methods, re-
ealing that the end-to-end performance is scenario-dependent,
s each approach has its own, distinctive strengths.
In scenarios with heavy volume crossing activity, stepwise

mooth trajectories (i.e., each step being composed on average
f a small number of QSS substeps) are typically well suited for
he QSS Stepper.

We found an instantiation of the B2h case study where QSS2
utperforms the standard Geant4 steppers when the ratio of
oundary crossings is greater than 33%, achieving speedups of
p to 7% and 15% against DOPRI and RK4 when this ratio is
aximized.
On the other hand, non-stepwise smooth trajectories can be

est capitalized by GQLink, as its particle propagation capabilities
llow for prematurely interrupting the step computation as soon
s a boundary crossing is found. For example, in an alterna-
ive parameterization of the B2h case study featuring a more
ntense magnetic field, GQLink systematically improves its end-
o-end simulation performance as cube sizes decrease, achieving
peedups of up to 9% and 45% against DOPRI and RK4, respec-
ively.

In scenarios that feature a very small proportion of volume
rossings, QSS can still offer performance gains, as confirmed by
he CMS case study. Although the ratio of volume crossings to
ntegration steps is between 8% and 9%, we found that trajec-
ories in this setup tend to be stepwise smooth: their steps are

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

g
e
a
∼

t
t
b

o
o
d
e
p
s
C

t
i
m
T
p

D

c
t

A

K
L
s
v
m
o

S
U

A

w
p
L
k

o
m
Q
3

A

e
m
i
b

c
a

b
e

a

A

c
t
e
B
e
a

o

S

enerally composed of a number of QSS substeps that is small
nough to enable the QSS2 Stepper to outperform both DOPRI
nd RK4, achieving average end-to-end speedups of ∼1% and
1.5%, respectively. Since the particle propagation routines in

his scenario consume between 7.5% and 8% of the total CPU time,
hese performance improvements stand for 13−20% of the upper
ound theoretically achievable.
We are interested in testing our strategies in the context of

ther realistic HEP setups. To this end, we are currently devel-
ping a standalone Geant4 application that models the ATLAS
etector at CERN [42]. It would also be important to extend the
xperiments of the CMS case study considering other types of
articles beyond π−. This extended study may provide a more
olid and complete characterization of QSS for use in production
MS simulations.
We are also working on enhancing QSS Solver to perform par-

icle tracking in a broader range of application domains not lim-
ted to HEP, implementing efficient geometry control as particles
ove throughout 3D spaces composed of faceted polyhedrons.
hese applications include plasma simulation and transport of
ollutant particles affecting air quality in urban zones.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The authors want to greatly thank Dr. Soon Yung Jun, Dr.
rzysztof Genser, Dr. Daniel Elvira (Fermi National Accelerator
aboratory, Chicago, USA) and Prof. Ernesto Kofman (Univer-
idad Nacional de Rosario and CONICET, Argentina) for their
aluable comments and insights during the development of this
anuscript. This paper does not fall within the publication policy
f the Geant4 Collaboration.
This work was partially supported by the National Agency for

cience and Technology (ANPCYT, grant PICT-2015-3509) and the
niversity of Buenos Aires (UBACYT Ph.D. Fellowship Program).

ppendix A. Hardware and software platform

All simulations were run on the computer cluster TUPAC [43],
here each CPU node has 4 x AMD Opteron 6276 (hexadeca-core)
rocessors. The operating system in use is Red Hat Enterprise
inux ComputeNode release 6.7 (2.6.32--573.el6.x86_64
ernel).
We used Geant4 version 10.5 [35], the latest official release as

f the writing of this article, compiled with gcc 5.4.0 in release
ode (i.e., with optimization flags turned on). GQLink and the
SS Stepper were based upon the QSS Solver engine from version
.0. Each simulation was single-threaded.

.1. Time measurements

Three independent Geant4 release-mode builds were used to
xtract assorted statistics, including the different performance
etrics reported in the article. Each build was produced us-

ng a custom cmake option to enable time measurement and
ookkeeping code upon compilation:

• The NoStats build is the regular, unmodified build we used
to extract the end-to-end simulation times (which are in turn
used to compute the end-to-end speedups).
17
• The ComputeStepStats build enables code to measure the
time spent inside the ComputeStepmethod of the Magnetic
Field Propagator. This build is used to calculate the average
particle propagation times.

• The BoundaryCrossingStats build enables code to measure
the time spent inside EstimateIntersectionPoint. The
average boundary crossing detection times are calculated us-
ing this build.

As explained in Section 5.5, the trajectory calculation time is
omputed as the difference between the particle propagation time
nd the boundary crossing detection time.
Each Geant4 simulation was run once per each of these three

uilds. In turn, as detailed in Sections 5.5, 6.4.1 and 6.4.2, the
xperiments consisted in N independent repetitions of a single

simulation (N = 20 for case study B2h and N = 10 for the CMS
pplication).

ppendix B. Analytic estimation of speedups

Given two integration methods m1 and m2, we wish to cal-
ulate the expected end-to-end speedup of m1 (conceived as
he new, alternative method) over m2 (conceived as the refer-
nce baseline method) in the context of a certain scenario Σ .
y method we understand any Geant4 stepper or also GQLink
quipped with any of its underlying numerical solvers, whereas
scenario is a simulation setup such as the CMS application.
Our proposed speedup estimation formula is defined in terms

f four components, all of them under scenario Σ:

• The trajectory calculation speedup σ = σΣ (m1,m2) of m1
over m2, defined as the quotient between m2 and m1 tra-
jectory calculation times,

• The boundary crossing detection speedup γ = γΣ (m1,m2) of
m1 over m2, defined as the quotient between m2 and m1
boundary crossing detection times,

• The m2 particle propagation ratio c = cΣ (m2) which is the
proportion of CPU time consumed by the particle propaga-
tion routines of m2, and

• The m2 boundary crossing detection ratio s = sΣ (m2), which
is the ratio between the CPU time spent in m2 boundary
crossing detection routines and the CPU time of all m2
particle propagation routines.

The formula is presented in Eq. (B.1). Intuitively, the numer-
ator represents a complete m2 simulation as one unit, whereas
the denominator estimates the proportion of that unit that rep-
resents a complete m1 simulation. In turn, we decompose the m2
simulation unit into a trajectory calculation unit and a boundary
crossing detection unit and we compute for each one of them the
corresponding proportions that arise when switching to m1. If for
example m1 has a boundary crossing detection speedup over m2
of 4x, for a given intersection point we can think that the former
only consumes 25% of the time consumed by the latter. Thus, the
remaining 75% is spared and is accounted by multiplying it with
the proportion of the overall CPU time spent solving boundary
crossings (c · s).

peedupΣ (m1,m2)

=
1

1 − (1 − 1/σ) · ((1 − c) · s) − (1 − 1/γ) · c · s
(B.1)

Table B.1 shows a comparison between end-to-end speedups
found empirically and analytically via Eq. (B.1) for three different
scenarios: two instances of the B2h case study (B2h-a and B2h-
b) and the CMS application as studied in Section 6.4.2. B2h-a
corresponds to the fourth cube bucket introduced in Section 6.4.1
(i.e., 100% of boundary crossings), whereas B2h-b focuses on the

L. Santi, L. Rossi and R. Castro Computer Physics Communications 258 (2021) 107619

T
C

w

S

p
t
e
i

R

able B.1
omparison of empirical and analytical end-to-end speedups.

Scenario Speedup QSS2 vs. DOPRI Speedup DOPRI vs. RK4

Empirical Expected Error Empirical Expected Error

B2h-a 7.02% 7.94% 13.1% 8.01% 7.23% 9.87%
B2h-b −12.38% −11.92% 3.74% 7.28% 5.94% 18.31%
CMS 0.97% 1.02% 6.14% 0.64% 0.48% 25%

third cube bucket setting B = 1 tesla. For each scenario, the four
parameters required by the formula were computed taking as
input the particle propagation information found empirically.

We can see that the speedup formula yields practical orien-
tative predictions, with a worst case error of 25%, but typically
lower. In fact, for a broader range of scenarios and different
combinations of methods (more than 100 cases), we found that
the average error is 12% with a standard deviation of 7%.

Consider as an example the CMS application. In Section 6.4.2
we discussed that DOPRI-enabled simulations spend roughly a
7.5% of the time in particle propagation routines, i.e., s = 0.075.
We also found empirically that the boundary crossing detection
ratio c = 0.05, i.e., a 5% of the particle propagation time is de-
voted to detect intersection points. Also, the trajectory calculation
speedup σ of the QSS2 Stepper over DOPRI was found to be 1.13x,
whereas the boundary crossing detection speedup γ = 2x. Thus,
e have that

peedupCMS(QSS2,DOPRI) ≈ 1.01017 = 1.017%

Eq. (B.1) can have several interesting applications. For exam-
le, it can be used to drive the design of future steppers, setting
arget speedup values and testing whether the expected end-to-
nd speedup against a reference stepper in a case study of interest
s within an acceptable range.

eferences

[1] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, et
al., Nucl. Instrum. Methods Phys. Res. A 506 (3) (2003) 250–303, http:
//dx.doi.org/10.1016/S0168-9002(03)01368-8.

[2] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, et al., Nucl.
Instrum. Methods Phys. Res. A 835 (2016) 186–225, http://dx.doi.org/10.
1016/j.nima.2016.06.125.

[3] CMS Collaboration, S. Chatrchyan, G. Hmayakyan, V. Khachatryan, A.
Sirunyan, W. Adam, et al., J. Instrum. 3 (08) (2008) S08004, http://dx.doi.
org/10.1088/1748-0221/3/08/S08004.

[4] L. Evans, P. Bryant, J. Instrum. 3 (08) (2008) S08001, http://dx.doi.org/10.
1088/1748-0221/3/08/S08001.

[5] D. Elvira, Phys. Rep. 695 (2017) 1–54, http://dx.doi.org/10.1016/j.physrep.
2017.06.002.

[6] F. Cellier, E. Kofman, Continuous System Simulation, first ed., Springer-
Verlag, Berlin, 2006.

[7] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations:
Runge–Kutta and General Linear Methods, first ed., Wiley-Interscience,
New York, 1987.

[8] E. Kofman, S. Junco, Trans. SCS 18 (3) (2001) 123–132.
[9] E. Kofman, SIAM J. Sci. Comput. 25 (5) (2004) 1771–1797, http://dx.doi.

org/10.1137/S1064827502418379.
[10] J. Fernández, E. Kofman, Simul. 90 (7) (2014) 782–799, http://dx.doi.org/

10.1177/0037549714536255.
[11] J.R. Dormand, P.J. Prince, J. Comput. Appl. Math. 6 (1) (1980) 19–26,

http://dx.doi.org/10.1016/0771-050x(80)90013-3.
[12] W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes in C:

The Art of Scientific Computing, second ed., Cambridge University Press,
New York, 1992.

[13] B. Zeigler, Theory of Modelling and Simulation, first ed., Krieger Publishing
Co., Melbourne, 1984.

[14] G. Grinblat, H. Ahumada, E. Kofman, Simul. 88 (3) (2012) 299–313, http:
//dx.doi.org/10.1177/0037549711399935.
18
[15] F. Bergero, J. Fernández, E. Kofman, M. Portapila, Simul. 92 (1) (2016)
47–61, http://dx.doi.org/10.1177/0037549715616683.

[16] G. Migoni, M. Bortolotto, E. Kofman, F.E. Cellier, Simul. Model. Prac. Theory
35 (2013) 118–136, http://dx.doi.org/10.1016/j.simpat.2013.03.004.

[17] G. Migoni, E. Kofman, F. Bergero, J. Fernández, Simul. 91 (4) (2015)
320–336, http://dx.doi.org/10.1177/0037549715575197.

[18] F.M. Bergero, F. Casella, E. Kofman, J. Fernández, Build. Simul. 11 (2) (2018)
405–418, http://dx.doi.org/10.1007/s12273-017-0400-1.

[19] L. Petzold, Scientific Computing, North-Holland, Amsterdam, 1983,
pp. 65–68,

[20] F. Bergero, E. Kofman, Simul. 87 (1–2) (2011) 113–132, http://dx.doi.org/
10.1177/0037549710368029.

[21] F. Bergero, X. Floros, J. Fernández, E. Kofman, F.E. Cellier, Proceedings of the
9th International Modelica Conference, Modelica Assoc, 2012, pp. 237–246,
http://dx.doi.org/10.3384/ecp12076237.

[22] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 3.3: A Cyber-Physical Approach, second ed., Wiley, Hoboken,
2015.

[23] Geant4 Collaboration, Geant4 book for application developers,
2020, http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/
ForApplicationDeveloper/html/. (Accessed 5 September 2020).

[24] N.V. Mokhov, S.I. Striganov, AIP Conference Proceedings 896, AIP, 2007,
pp. 50–60, http://dx.doi.org/10.1063/1.2720456.

[25] T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, et al., Nucl.
Technol. 180 (3) (2012) 298–315, http://dx.doi.org/10.13182/nt11-135.

[26] T. Böhlen, F. Cerutti, M. Chin, A. Fasso, A. Ferrari, P. Ortega, et al., Nucl. Data
Sheets 120 (2014) 211–214, http://dx.doi.org/10.1016/j.nds.2014.07.049.

[27] G. Amadio, A. Ananya, J. Apostolakis, M. Bandieramonte, S. Banerjee, A.
Bhattacharyya, et al., GeantV: Results from the prototype of concurrent
vector particle transport simulation in HEP, 2020, arXiv e-prints arXiv:
2005.00949.

[28] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist, A. Junghanns,
et al., Proceedings of the 8th International Modelica Conference, Modelica
Assoc, 2011, pp. 105–114, http://dx.doi.org/10.3384/ecp11063105.

[29] G. Schweiger, C. Gomes, G. Engel, I. Hafner, J. Schoeggl, A. Posch, et al.,
Simul. Model. Pract. Theory 95 (2019) 148–163, http://dx.doi.org/10.1016/
j.simpat.2019.05.001.

[30] N. Wirth, P. Bayrasy, B. Landvogt, K. Wolf, F. Cecutti, T. Lewandowski,
Recent Progress in Flow Control for Practical Flows, Springer, Cham, 2017,
pp. 283–321,

[31] A. Munawar, T. Yoshizawa, T. Ishikawa, S. Shimizu, Proceedings of the
2013 Winter Simulation Conference, IEEE Press, 2013, pp. 2127–2138,
http://dx.doi.org/10.1109/WSC.2013.6721590.

[32] L. Santi, N. Ponieman, S.Y. Jun, K. Genser, D. Elvira, R. Castro, J. Phys.: Conf.
Ser. 898 (4) (2017) 042049, http://dx.doi.org/10.1088/1742-6596/898/4/
042049.

[33] L. Santi, F. Bergero, S.Y. Jun, K. Genser, D. Elvira, R. Castro, J. Phys.: Conf. Ser.
1085 (2018) 052015, http://dx.doi.org/10.1088/1742-6596/1085/5/052015.

[34] L. Santi, R. Castro, Proceedings of the 2018 Winter Simulation Con-
ference, IEEE Press, 2018, pp. 1322–1333, http://dx.doi.org/10.1109/WSC.
2018.8632200.

[35] Geant4 v10.05 source code, 2018, https://github.com/Geant4/geant4/tree/
v10.5.0. (Accessed 5 September 2020).

[36] A. Dotti, V.D. Elvira, G. Folger, K. Genser, S.Y. Jun, J.B. Kowalkowski, M.
Paterno, J. Phys.: Conf. Ser. 664 (6) (2015) 062021, http://dx.doi.org/10.
1088/1742-6596/664/6/062021.

[37] N.C. Amapane, V. Andreev, V. Drollinger, V. Karimaki, V. Klyukhin, T.
Todorov, Proceedings of Computing in High Energy Physics and Nuclear
Physics 2004, CERN, 2005, pp. 310–312, http://dx.doi.org/10.5170/CERN-
2005-002.310.

[38] A. Dotti, J. Apostolakis, G. Folger, V. Grichine, V. Ivanchenko, M. Kosov, et
al., J. Phys.: Conf. Ser. 293 (1) (2011) 012022, http://dx.doi.org/10.1088/
1742-6596/293/1/012022.

[39] Geant4 Collaboration, Geant4 10.4 release notes, 2017, http://geant4-data.
web.cern.ch/geant4-data/ReleaseNotes/ReleaseNotes4.10.4.html, (Accessed
5 September 2020).

[40] E. Kofman, Lat. Am. Appl. Res. 36 (2) (2006) 101–108.
[41] L. Santi, Discrete-event based numerical simulation in Geant4: a perfor-

mance comparison against its default steppers, mendeley data, v1, 2019,
http://dx.doi.org/10.17632/Py5jnzttr7.1.

[42] ATLAS Collaboration, G. Aad, E. Abat, J. Abdallah, A.A. Abdelalim, A.
Abdessela, et al., J. Instrum. 3 (2008) S08003, http://dx.doi.org/10.1088/
1748-0221/3/08/S08003.

[43] TUPAC computer cluster, 2018, http://www.tupac.gob.ar, (Accessed 5
September 2020).

http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/j.nima.2016.06.125
http://dx.doi.org/10.1016/j.nima.2016.06.125
http://dx.doi.org/10.1016/j.nima.2016.06.125
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1016/j.physrep.2017.06.002
http://dx.doi.org/10.1016/j.physrep.2017.06.002
http://dx.doi.org/10.1016/j.physrep.2017.06.002
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb6
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb6
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb6
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb7
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb7
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb7
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb7
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb7
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb8
http://dx.doi.org/10.1137/S1064827502418379
http://dx.doi.org/10.1137/S1064827502418379
http://dx.doi.org/10.1137/S1064827502418379
http://dx.doi.org/10.1177/0037549714536255
http://dx.doi.org/10.1177/0037549714536255
http://dx.doi.org/10.1177/0037549714536255
http://dx.doi.org/10.1016/0771-050x(80)90013-3
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb12
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb12
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb12
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb12
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb12
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb13
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb13
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb13
http://dx.doi.org/10.1177/0037549711399935
http://dx.doi.org/10.1177/0037549711399935
http://dx.doi.org/10.1177/0037549711399935
http://dx.doi.org/10.1177/0037549715616683
http://dx.doi.org/10.1016/j.simpat.2013.03.004
http://dx.doi.org/10.1177/0037549715575197
http://dx.doi.org/10.1007/s12273-017-0400-1
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb19
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb19
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb19
http://dx.doi.org/10.1177/0037549710368029
http://dx.doi.org/10.1177/0037549710368029
http://dx.doi.org/10.1177/0037549710368029
http://dx.doi.org/10.3384/ecp12076237
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb22
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb22
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb22
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb22
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb22
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/
http://dx.doi.org/10.1063/1.2720456
http://dx.doi.org/10.13182/nt11-135
http://dx.doi.org/10.1016/j.nds.2014.07.049
http://arxiv.org/abs/2005.00949
http://arxiv.org/abs/2005.00949
http://arxiv.org/abs/2005.00949
http://dx.doi.org/10.3384/ecp11063105
http://dx.doi.org/10.1016/j.simpat.2019.05.001
http://dx.doi.org/10.1016/j.simpat.2019.05.001
http://dx.doi.org/10.1016/j.simpat.2019.05.001
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb30
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb30
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb30
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb30
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb30
http://dx.doi.org/10.1109/WSC.2013.6721590
http://dx.doi.org/10.1088/1742-6596/898/4/042049
http://dx.doi.org/10.1088/1742-6596/898/4/042049
http://dx.doi.org/10.1088/1742-6596/898/4/042049
http://dx.doi.org/10.1088/1742-6596/1085/5/052015
http://dx.doi.org/10.1109/WSC.2018.8632200
http://dx.doi.org/10.1109/WSC.2018.8632200
http://dx.doi.org/10.1109/WSC.2018.8632200
https://github.com/Geant4/geant4/tree/v10.5.0
https://github.com/Geant4/geant4/tree/v10.5.0
https://github.com/Geant4/geant4/tree/v10.5.0
http://dx.doi.org/10.1088/1742-6596/664/6/062021
http://dx.doi.org/10.1088/1742-6596/664/6/062021
http://dx.doi.org/10.1088/1742-6596/664/6/062021
http://dx.doi.org/10.5170/CERN-2005-002.310
http://dx.doi.org/10.5170/CERN-2005-002.310
http://dx.doi.org/10.5170/CERN-2005-002.310
http://dx.doi.org/10.1088/1742-6596/293/1/012022
http://dx.doi.org/10.1088/1742-6596/293/1/012022
http://dx.doi.org/10.1088/1742-6596/293/1/012022
http://geant4-data.web.cern.ch/geant4-data/ReleaseNotes/ReleaseNotes4.10.4.html
http://geant4-data.web.cern.ch/geant4-data/ReleaseNotes/ReleaseNotes4.10.4.html
http://geant4-data.web.cern.ch/geant4-data/ReleaseNotes/ReleaseNotes4.10.4.html
http://refhub.elsevier.com/S0010-4655(20)30297-6/sb40
http://dx.doi.org/10.17632/Py5jnzttr7.1
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://www.tupac.gob.ar

	Efficient discrete-event based particle tracking simulation for high energy physics
	Introduction
	Methodological approach

	Background
	Numerical solution of continuous systems
	Classical discrete time methods
	Discrete-event methods and Quantized State System (QSS)
	QSS performance overview

	Simulation toolkits
	QSS solver
	Geant4

	Related work

	Motivating case studies
	Oscillating particle under a constant magnetic field
	A real-world particle detector: CMS

	Feasibility study of QSS for HEP applications
	Scenario description
	Implementation
	Performance comparison

	First approach: A co-simulation strategy
	High-level architecture
	Model definition
	Co-simulation interactions
	Changes made to Geant4
	Simulation experiments and discussion

	Second approach: an embedded QSS stepper
	Stepper design
	Step computation
	Changes made to Geant4
	Simulation experiments and discussion
	Case study B2h
	CMS detector application

	Concluding remarks
	Declaration of competing interest
	Acknowledgments
	Appendix A. Hardware and software platform
	Time measurements

	Appendix B. Analytic estimation of speedups
	References

