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Abstract

In this paper, we design a novel class of arbitrarily high-order structure-preserving numerical schemes
for the time-dependent Gross-Pitaevskii equation with angular momentum rotation in three dimensions.
Based on the idea of the scalar auxiliary variable approach which is proposed in the recent papers [J.
Comput. Phys., 416 (2018) 353-407 and SIAM Rev., 61(2019) 474-506] for developing energy stable
schemes for gradient flow systems, we firstly reformulate the Gross-Pitaevskii equation into an equiva-
lent system with a modified energy conservation law. The reformulated system is then discretized by
the Gauss collocation method in time and the standard Fourier pseudo-spectral method in space, respec-
tively. We show that the proposed schemes can preserve the discrete mass and modified energy exactly.
Numerical results are addressed to verify the efficiency and high-order accuracy of the proposed schemes.
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1 Introduction

The formation and dynamics of Bose-Einstein condensate (BEC) are usually modeled by the Gross-
Pitaevskii (GP) equation which is essentially a Schrödinger equation involving an additional nonlinear
term related to particle-particle interactions [28, 30]. To characterize a rotating BEC, it is common to
generalize the model by an angular momentum term. Let [0, T ] ⊂ R be a time interval and Rd (d =
2, 3) be spatial domain. We consider the dimensionless time-dependent GP equation, and seek the
complex-valued wave function ψ : Rd× [0, T ]→ C which characterizes the quantum state of the rotating
condensate. The targeted rotational GP equation can be written as follows

i∂tψ = −1

2
∆ψ + V ψ + iΩ · (x×∇)ψ + β|ψ|2ψ, x ∈ Rd, t > 0.

Here i =
√
−1, t is time variable, and x = (x, y)> ∈ R2 or (x, y, z)> ∈ R3 is the Cartesian coordinate

vector. Note that V (x) is a real-valued function with respect to the external trap potential and it is
experimentally chosen as a harmonic potential, i.e. a quadratic polynomial. The nonlinear term β|ψ|2ψ
describes the species of the bosons and how they interact (negative for attractive interaction and positive
for repulsive interaction) between particles in experiments. In particular, β depends on the number of
bosons, their individual mass, and scattering length. Moreover, the term iΩ ·(x×∇)ψ means the angular
rotation of the condensate, while Ω ∈ R3 characterizes the angular speed of the laser beam. In general,
the operator L = (Lx, Ly, Lz) := −i(x ×∇) = x × P denotes the angular momentum, where P = −i∇
means the momentum operator. For brevity, we assume that the rotation is around the z-axis, which
can deduce the simplification iΩ · (x×∇) = −ΩLz, where Lz = −i(x∂y− y∂x) is the z-component of the
angular momentum.
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In this paper, we focus numerically on the following three-dimensional case:

i∂tψ =

[
−1

2
∆ + V (x, y, z)− ΩLz + β|ψ|2

]
ψ, (x, y, z) ∈ D, 0 < t 6 T, (1.1)

subject to the (lx, ly, lz)-periodic boundary conditions

ψ(x, y, z, t) = ψ(x+ lx, y, z, t), ψ(x, y, z, t) = ψ(x, y + ly, z, t),

ψ(x, y, z, t) = ψ(x, y, z + lz, t), (x, y, z) ∈ D, 0 < t 6 T, (1.2)

and the initial condition

ψ(x, y, z, 0) = ψ0(x, y, z), (x, y, z) ∈ D, (1.3)

where D = [0, lx]×[0, ly]×[0, lz], and ψ0(x, y, z) is a given (lx, ly, lz)-periodic complex-valued function.
In fact, one can easily verify that the initial-boundary value problem (1.1)-(1.3) preserves the fol-

lowing mass and energy conservation laws

M(ψ(·, t)) :=

∫
D
|ψ(·, t)|2dx ≡M(ψ0), t > 0, (1.4)

and

E(ψ(·, t)) :=

∫
D

[
1

2
|∇ψ|2 + V (x)|ψ|2 − Ωψ̄Lzψ +

β

2
|ψ|4

]
dx ≡ E(ψ0), t > 0, (1.5)

where |∇ψ|2 = |ψx|2 + |ψy|2 + |ψz|2, and ψ̄ refers to the conjugate of ψ.
In the last decades, the model (1.1) has been studied a lot in both theoretical analyses and numerical

simulations. For the derivation, well-posedness and dynamical properties, readers are referred to [21,
27, 31]. The existing numerical methods for the GP equation include the finite difference methods [4],
finite element method [22], spectral collocation method [13], split-step and implicit corrected parallel
SPH method [24], time-splitting generalized-Laguerre-Fourier-Hermite pseudo-spectral method [6], Gauss
exponential Runge-Kutta (ERK) and exponential integrators (Lawson) methods [9], etc. A comparative
overview on different numerical methods for solving the nonlinear Schrödinger/GP equations can be found
in [1] and the references therein. However, to our best knowledge, there are few references mentioned
above considering energy-preserving schemes for the GP equation (1.1).

It is well-known that the energy conservation law plays an important role in the study of solutions
of mechanical systems (e.g., see [8]), and whether or not can preserve the energy of the original systems
is a criterion to judge the success of a numerical method for their solutions. In Ref. [4], Bao and Cai
developed a Crank-Nicolson finite difference scheme, which preserve the discrete mass and energy exactly,
for the rotational GP equation. In Ref. [36], Wang et al. showed that the classical Crank-Nicolson-type
schemes can preserve a modified mass and energy conservation law by introducing an energy function of
the grid functions using recursive relations. More recently, Cui et al. [16] developed an energy-preserving
linearly-implicit Fourier pseudo-spectral scheme for the GP equation. It is noteworthy that Bao et al. [5]
presented an efficient time-splitting method, which preserves the discrete energy for the non-rotational
case. Unfortunately, most existing energy-preserving works are at most second-order accuracy in time.
In general, the GP equation usually requires longtime computation to obtain a condensate ground state
for given iteration criteria, thus apart from the energy conservation law, higher-order accurate schemes
are always highly desired, which makes large marching steps practical while preserving the accuracy.
Until now, the literature on developing higher-order schemes for the rotational GP equation is rather
limited. Although the Gauss ERK and Lawson methods [9] have been proposed to achieve such goal,
both schemes failed to handle the energy conservation property.

Over the past decade, there have been many attempts to develop high-order energy-preserving
methods for solving conservative systems. In [32], Quispel and McLaren proposed third- and fourth-
order averaged vector flied (AVF) methods. Further analyses for the sixth-order AVF method can be
found in [25]. Subsequently, based on the discrete line integral methods, Brugnano et al. developed a
series of excellent high-order energy-preserving methods, named Hamiltonian boundary value methods
(HBVMs) (e.g., see [11, 10, 12]), for the Hamiltonian system with a polynomial energy function. In [19],
Hairer further introduced a variant of collocation methods, which can remove the limit of the HBVMs
to cover the non-polynomial case. The selected high-order methods can be easily extended to propose
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high-order energy-preserving schemes for the GP equation (1.1), which however cannot preserve the
energy and mass simultaneously (see Refs. [12, 17, 26] for the classical Schrödinger equation). In Ref.
[23], Jiang et al. proposed a new high-order energy-preserving method, based on the invariant energy
quadratization approach [18, 37, 38], for the Camassa-Holm equation. More recently, this idea has been
extended to solve nonlinear Schrödinger equations in one and two dimensions [29]. The proposed schemes
can preserve both the energy and the mass, but it is challenging for diagonally implicit Runge-Kutta
methods to achieve arbitrary high-order accuracy.

In this paper, we aim to develop a class of arbitrarily high-order schemes for numerically solving the
GP system (1.1), which can preserve both the mass and energy. Instead of traditional ideas in which ones
design special numerical schemes directly or extend energy-preserving schemes from low-order accuracy
to be high-order, we first recast the energy conservation law by introducing a new auxiliary variable and
then reformulate the original system into an equivalent system, which is inspired by the idea of the scalar
auxiliary variable (SAV) approach. Some classical high-order methods are finally applied to achieve the
goal. Specifically, for the GP equation (1.1), we firstly reformulate it into an equivalent system, which
conserves the original mass and a modified energy, by introducing an scalar auxiliary variable. The
classical Gauss collocation methods are then employed to discretize the reformulated system in time.
It is shown the resulting schemes can preserve both the mass and modified energy exactly. Different
from [29], the proposed schemes can reach arbitrarily high-order in time and the introduced auxiliary
variable is a scalar not a vector in the discrete level, which implies that our methods are more efficient.
Moreover, a fast solver is designed for numerical implementations, which can be directly extended to
solve the existing schemes [23, 29] efficiently. Through a set of numerical simulations, we demonstrate
the high accuracy and invariants-preserving of the proposed schemes thereafter.

The remainder of this paper is arranged as follows. In Section 2, based on the SAV approach, the
GP equation (1.1) is reformulated into an equivalent form. In Section 3, we derive a class of high-order
semi-discreted schemes in time by using the Gaussian collocation method, which are proven to be energy-
preserving and mass-preserving. In Section 4, the Fourier pseudo-spectral method is further applied for
spatial discretization to obtain a fully discrete structure-preserving scheme. A fast solver is designed
to implement the proposed schemes efficiently in Section 5. In Section 6, we present several numerical
examples. Finally, some concluding remarks are drawn in Section 7.

2 Model reformulation using the SAV approach

In this section, we utilize the SAV idea to transform the equation (1.1) into an equivalent system,
which possesses a modified energy function of the new variable. The reformulated system provides an
elegant platform for developing high-order structure-preserving schemes. We define the L2 inner product
and its norm as (f, g) =

∫
D fgdx and ‖f‖ =

√
(f, f), ∀f, g ∈ L2(D), respectively, and denote the linear

part of (1.1) as Lψ = − 1
2∆ψ + V ψ − ΩLzψ for simplicity.

The system (1.1) can be rewritten as

∂tψ = −i
δH
δψ̄

, (2.1)

where

H = (Lψ,ψ) +
β

2
(ψ2, ψ2), (2.2)

and δH
δψ̄

denotes the variational derivative of H with respect to ψ̄

δH
δψ̄

= Lψ + β|ψ|2ψ.

Then, by introducing a scalar auxiliary variable

q := q(t) =
√

(ψ2, ψ2) + C0,

the energy conservation law (1.5) can be rewritten as

E(ψ(·, t)) := (Lψ,ψ) +
β

2
q2 − β

2
C0, (2.3)
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where C0 is a constant large enough to make q well-defined for all ψ. According to the energy variational,
we further reformulate the form (2.1) to the following equivalent system

∂tψ = −i

(
Lψ +

β|ψ|2ψq√
(ψ2, ψ2) + C0

)
,

d

dt
q =

(∂tψ, |ψ|2ψ) + (|ψ|2ψ, ∂tψ)√
(ψ2, ψ2) + C0

,

(2.4)

with the consistent initial condition

ψ(x, 0) = ψ0(x), q(0) =
√(

ψ2
0(x), ψ2

0(x)) + C0, (2.5)

and the periodic boundary condition (1.2).

Theorem 2.1. The reformulated system (2.4) possesses the modified energy conservation law (2.3) and
the mass conservation law (1.4), respectively.

Proof. It is clear to see

dE

dt
=
(
∂tLψ,ψ

)
+ (Lψ, ∂tψ) + βq

d

dt
q

= (∂tψ,Lψ) + (Lψ, ∂tψ) +

(
∂tψ,

β|ψ|2ψq√
(ψ2, ψ2) + C0

)
+

(
β|ψ|2ψq√

(ψ2, ψ2) + C0

, ∂tψ

)
= 2Re

(
Lψ +

β|ψ|2ψq√
(ψ2, ψ2) + C0

, ∂tψ

)
= −2Im

(
Lψ +

β|ψ|2ψq√
(ψ2, ψ2) + C0

,Lψ +
β|ψ|2ψq√

(ψ2, ψ2) + C0

)
= 0,

where Re(·) and Im(·) represent the real and imaginary parts of ·, respectively, and the self-adjointness
of the linear operator L (i.e., (Lψ, φ) = (ψ,Lφ)) is used in the third equality.

Similarly, we can deduce

d

dt
M =

d

dt
(ψ,ψ) = (∂tψ,ψ) + (ψ, ∂tψ) = 2Re(∂tψ,ψ) = 2Im

(
Lψ +

β|ψ|2ψq√
(ψ2, ψ2) + C0

, ψ

)
= 0.

This completes the proof.

3 High-order structure-preserving discretization in time

In this section, we derive a class of high-order methods for the reformulated system (2.4) by utilizing
the collocation method. We show that the proposed schemes can exactly preserve the semi-discrete form
of the modified energy (2.3) and mass (1.4), simultaneously, when the Gauss collocation methods are
employed in time. We here focus on developing time-discrete methods, and denote tn = nτ, n =
0, 1, 2 · · · , N , where τ is the time step. The approximations of the function ψ(x, t) and q(t) at time tn
are denoted by ψn and qn, respectively.

Applying an s-stage collocation method to the system (2.4), we can obtain:

Scheme 3.1. Let c1, c2, · · · , cs be distinct real numbers (0 6 ci 6 1). For given (ψn, qn), the collocation
polynomials u(t) and v(t) are two polynomials of degree s satisfying

u(tn) = ψn, v(tn) = qn,

∂tu(tin) = −i

(
Lu(tin) +

β|u(tin)|2u(tin)v(tin)√(
u2(tin), u2(tin)

)
+ C0

)
,

d

dt
v(tin) =

(
∂tu(tin), |u(tin)|2u(tin)

)
+
(
|u(tin)|2u(tin), ∂tu(tin)

)
√(

u2(tin), u2(tin)
)

+ C0

,

where tin = tn + ciτ, i = 1, 2, · · · , s. Then the numerical solution is defined by ψn+1 = u(tn + τ) and
qn+1 = v(tn + τ), respectively.
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1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

Table 1: RK coefficients of Gaussian collocation methods of order 4 (left) and 6 (right).

As is shown by Theorem 1.4 in [20] that the collocation method could derive a special RK method.
Once the collocation points c1, c2, · · · , cs are chosen as Gaussian quadrature nodes, i.e., the zeros of the
s-th shifted Legendre polynomial ds

dxs

(
xs(x − 1)s

)
, the resulting Scheme 3.1 is the so-called Gaussian

collocation method. According to Ref. [20], the collocation method shares the same order 2s as the
underlying quadrature formula. In particular, the coefficients of fourth order and sixth order Gauss
collocation methods have been given explicitly in Ref. [20] (see Table 1 for more details).

Theorem 3.1. The s-stage Gaussian collocation Scheme 3.1 preserves the following semi-discrete
energy and mass conservation laws

En = E0, Mn = M0, n = 1, 2, · · · , N,

where

En = (Lψn, ψn) +
β

2
(qn)2 − β

2
C0, M

n = (ψn, ψn). (3.1)

Proof. It follows from ψn = u(tn), qn = v(tn) and ψn+1 = u(tn+1), qn+1 = v(tn+1) that

En+1 − En = (Lψn+1, ψn+1)− (Lψn, ψn) +
β

2

[
(qn+1)2 − (qn)2

]
=
(
Lu(tn+1), u(tn+1)

)
−
(
Lu(tn), u(tn)

)
+
β

2

[
(v(tn+1))2 − (v(tn))2

]
=

∫ tn+1

tn

[
d

dt

(
Lu(t), u(t)

)
+
β

2

d

dt
v2(t)

]
dt

=

∫ tn+1

tn

[(
u̇(t),Lu(t)

)
+
(
Lu(t), u̇(t)

)
+ βv(t)v̇(t)

]
dt.

The integrands (u̇(t),Lu(t)) + (Lu(t), u̇(t)) and v(t)v̇(t) are real polynomials of degree 2s − 1, which
can be integrated without error by the s-stage Gaussian quadrature formula. Thus it follows from the
collocation condition that∫ tn+1

tn

[(
u̇(t),Lu(t)

)
+
(
Lu(t), u̇(t)

)
+ βv(t)v̇(t)

]
dt

=τ

s∑
i=1

bi

[(
u̇(tin),Lu(tin)

)
+
(
Lu(tin), u̇(tin)

)
+ βv(tin)v̇(tin)

]
=2τRe

s∑
i=1

bi

(
Lu(tin) +

β|u(tin)|2u(tin)v(tin)√(
u2(tin), u2(tin)

)
+ C0

, u̇(tin)
)

=− 2τ Im

s∑
i=1

bi

(
Lu(tin) +

β|u(tin)|2u(tin)v(tin)√(
u2(tin), u2(tin)

)
+ C0

,Lu(tin) +
β|u(tin)|2u(tin)v(tin)√(
u2(tin), u2(tin)

)
+ C0

)

=0,
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which yields En+1 = En, n = 0, 1, · · · , N − 1. Similarly, we can obtain

Mn+1 −Mn =

∫ tn+1

tn

d

dt

(
u(t), u(t)

)
dt =

∫ tn+1

tn

[(u̇(t), u(t)) + (u(t), u̇(t))]dt

= 2τRe

s∑
i=1

bi(u̇(tin), u(tin))

= 2τ Im

s∑
i=1

bi

(
Lu(tin) +

β|u(tin)|2u(tin)v(tin)√(
u2(tin), u2(tin)

)
+ C0

, u(tin))

)
= 0,

which leads to Mn+1 = Mn, n = 0, 1, · · · , N − 1. This completes the proof.

Remark 3.1. It is remarked that any other symplectic Runge-Kutta method can preserve the quadratic
invariant [15, 33, 34], thus, other arbitrarily high-order schemes which preserve the modified energy and
the mass in (3.1) can be easily obtained.

4 Structure-preserving spatial discretization

As sated as above, the semi-discrete Scheme 3.1 can reach arbitrarily high-order in time, and ex-
actly preserve the semi-discrete modified energy and mass, respectively. In general, the numerical schemes
are called structure-preserving if they can preserve the corresponding physical/geometric properties ex-
actly after temporal and spatial full-discretizations. Thus, the structure-preserving spatial discretization
is a major concern. In this paper, the standard Fourier pseudo-spectral method is chosen for spatial
discretizations because of the high-order accuracy as well as the application of FFT technique [35]. We
show that the resulting fully-discrete schemes can preserve the energy and mass conservation laws in the
fully discrete level.

To make the remaining part self-explanatory, we briefly reintroduce the following notations (see [16]
for more details). For given even integers Nx, Ny and Nz, the spatial domain D = [0, lx]× [0, ly]× [0, lz]
is uniformly partitioned with step sizes hx = lx/Nx, hy = ly/Ny, hz = lz/Nz, and the spatial grid points
are denoted as follows:

Ωh = {(xj , yk, zl)|xj = jhx, yk = khy, zl = lhz, (j, k, l) ∈ Th},

where the index set Th is defined as

Th = {j := (j, k, l)|0 6 j 6 Nx − 1, 0 6 k 6 Ny − 1, 0 6 l 6 Nz − 1}.

Let

Vh = {U |U = (U0,0,0, U1,0,0, · · · , UNx−1,0,0, U0,1,0, U1,1,0, · · · , UNx−1,1,0,

U0,Ny−1,0, U1,Ny−1,0, · · · , UNx−1,Ny−1,0, U0,0,1, U1,0,1, · · · , UNx−1,0,1, · · · ,
U0,Ny−1,Nz−1, U1,Ny−1,Nz−1, · · · , UNx−1,Ny−1,Nz−1)>}

be a vector space of grid functions defined on Ωh. Note that the bold j ∈ Th refer to an index, while
j means the first component of j. For any two grid functions u, v ∈ Vh, we define the discrete inner
product and norm, respectively, as follows:

〈u, v〉h := h1h2h3

∑
j∈Th

uj v̄j , ‖v‖h =
√
〈v, v〉h, ‖v‖∞,h = max

j∈Th
|vj |, ‖v‖p,h = p

√
h1h2h3

∑
j∈Th

|vj |p,

where v̄j refers to the conjugate of vj . In addition, we denote ‘·’ as the componentwise product of the
vectors, that is,

u · v =
(
u0,0,0v0,0,0, · · · , uNx−1,0,0vNx−1,0,0, · · · , u0,Ny−1,Nz−1v0,Ny−1,Nz−1,

· · · , uNx−1,N2y−1,Nz−1vNx−1,Ny−1,Nz−1

)>
.

For brevity, we denote u · u as u2.
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Denote

SN = span{gj(x)gk(y)gl(z), (j, k, l) ∈ Th}

as the interpolation space, where gj(x), gk(y) and gl(z) are trigonometric polynomials of degreeNx/2, Ny/2
and Nz/2, given respectively by

gj(x) =
1

Nx

Nx/2∑
p=−Nx/2

1

ap
eipµx(x−xj), gk(y) =

1

Ny

Ny/2∑
q=−Ny/2

1

bq
eiqµy(y−yk),

gl(z) =
1

Nz

Nz/2∑
r=−Nz/2

1

cr
eirµz(z−zl),

where µw = 2π/lw, w = x, y, z and

ap =

{
1, |p| < Nx

2 ,

2, |p| = Nx
2 ,

bq =

{
1, |q| < Ny

2 ,

2, |q| = Ny
2 ,

cr =

{
1, |r| < Nz

2 ,

2, |r| = Nz
2 .

We define the interpolation operator IN : C(D)→ SN as follows [14]:

INψ(x, y, z) =

Nx−1∑
j=0

Ny−1∑
k=0

Nz−1∑
l=0

ψj,k,l gj(x)gk(y)gl(z), (4.1)

where ψj,k,l = ψ(xj , yk, zl), gj(xm) = δjm, gk(xn) = δkn, gl(xs) = δls.

To derive ∂s1x ∂
s2
y ∂

s3
z INψ(xj , yk, zl) at the collocation points (xj , yk, zl), one can differentiate (4.1) to

arrive that

∂s1x ∂
s2
y ∂

s3
z INψ(xj , yk, zl) =

Nx−1∑
m=0

Ny−1∑
n=0

Nz−1∑
s=0

ψm,n,s
ds1gm(xj)

dxs1
ds2gn(yk)

dys2
ds3gs(zl)

dzs3

=

((
Dz
s3 ⊗D

y
s2 ⊗D

x
s1

)
ψ

)
j

,

where ⊗ denotes the Kronecker product and Dx
s1 is an Nx ×Nx matrix, Dy

s2 is an Ny ×Ny matrix, and
Dz
s3 is an Nz ×Nz matrix, with elements given by

(Dx
s1)j,m =

ds1gm(xj)

dxs1
, (Dy

s2)k,n =
ds2gn(yk)

dys2
, (Dz

s3)l,s =
ds3gs(zl)

dzs3
.

Note that
(
(Dz

s3 ⊗D
y
s2 ⊗D

x
s1)ψ

)
j

refers to the (NxNy(l−1) +Nx(k−1) + j)-th component of the vector

(Dz
s3 ⊗D

y
s2 ⊗D

x
s1)ψ, ψ ∈ Vh. For brevity, we use similar notations hereafter.

In particular, for first and second derivatives, we obtain

∂xINψ(xj , yk, zl) =
(
(INz ⊗ INy ⊗Dx

1 )ψ
)
j
, ∂yINψ(xj , yk, zl) =

(
(INz ⊗D

y
1 ⊗ INx)ψ

)
j
,

∂2
xINψ(xj , yk, zl) =

(
(INz ⊗ INy ⊗Dx

2 )ψ
)
j
, ∂2

yINψ(xj , yk, zl) =
(
(INz ⊗D

y
2 ⊗ INx)ψ

)
j
,

∂2
zINψ(xj , yk, zl) =

(
(Dz

2 ⊗ INy ⊗ INx)ψ
)
j
,

where Dx
1 , D

y
1 are skew-symmetric matrices, Dx

2 , D
y
2 , D

z
2 are symmetric matrices, and we further have

[35] 
Dw

1 = FHN Λw1 FN , Λw1 = iµwdiag
(

0, 1, · · · , Nw
2
− 1, 0,−Nw

2
+ 1, · · · ,−1

)
,

Dw
2 = FHN Λw2 FN , Λw2 =

[
iµwdiag

(
0, 1, · · · , Nw

2
− 1,

Nw
2
,−Nw

2
+ 1, · · · ,−1

)]2
,

(4.2)

where FNw is the discrete Fourier transform matrix with elements (FNw)j,k = 1√
Nw

e−i
2π
Nw

jk, FHNw is the

conjugate transpose matrix of FNw , where w = x, y, z.
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For any u ∈ Vh, we introduce the following spectral operators in the vector form

∆hu = (INz ⊗ INy ⊗Dx
2 )u+ (INz ⊗D

y
2 ⊗ INx)u+ (Dz

2 ⊗ INy ⊗ INx)u,

Dx1u = (INz ⊗ INy ⊗Dx
1 )u, Dy1u = (INz ⊗D

y
1 ⊗ INx)u, Ixu =

(
INz ⊗ INy ⊗X

)
u,

Iyu =
(
INz ⊗ Y ⊗ INx

)
u, Lhzu = −i(IxDy1 − IyDx1)u, Lhu = −1

2
∆hu+ V · u− ΩLhzu,

where X = diag(x0, x1, · · · , xNx−1) and Y = diag(y0, y1, · · · , yNy−1). It follows from Lemma 2.2 in [16]
that

〈∆hu, v〉h = 〈u,∆hv〉h, 〈Lhzu, v〉h = 〈u, Lhzv〉h, u, v ∈ Vh,

which implies that

〈Lhu, v〉h = 〈u,Lhv〉h, 〈Lhu, u〉h ∈ R. (4.3)

Applying the Fourier pseudo-spectral method in space for Scheme 3.1, we then obtain the following
full discrete scheme.

Scheme 4.1. Let c1, · · · , cs be distinct real numbers (0 6 ci 6 1). For given Ψn ∈ Vh and qn ∈ R, we
assume that u(t) is a Nx ×Ny ×Nz dimensional vector polynomial of degree s and v(t) is a polynomial
of degree s satisfying

u(tn) = Ψn, v(tn) = qn,

u̇(tin) = −i

(
Lhu(tin) +

β|u(tin)|2u(tin)v(tin)√〈
u2(tin), u2(tin)

〉
h

+ C0

)
,

v̇(tin) =

〈
u̇(tin), |u(tin)|2u(tin)

〉
h

+
〈
|u(tin)|2u(tin), u̇(tin)

〉
h√〈

u2(tin), u2(tin)
〉
h

+ C0

,

where tin = tn + ciτ, i = 1, · · · , s. Then the numerical solution is defined by Ψn+1 = u(tn+1) and
qn+1 = v(tn+1).

Analogous to arguments in the semi-discrete scheme, we can derive the following result.

Theorem 4.1. The fully discrete Scheme 4.1 can preserve the fully-discrete modified energy and mass,
that is,

Enh = E0
h, M

n
h = M0

h , n = 1, · · · , N,

where

Mn
h = 〈Ψn,Ψn〉h, Enh = 〈LhΨn,Ψn〉h +

β

2
(qn)2 − β

2
C0. (4.4)

Proof. The proof is similar to the Theorem 3.1. For brevity, we omit the details.

Remark 4.1. If the standard Fourier pseudo-spectral method is applied to the system (2.1) for spatial
discretizations, the discrete Hamiltonian energy at time level tn is given by

Hn
h = 〈LhΨn,Ψn〉h +

β

2
‖Ψn‖44,h. (4.5)

However, we should note that the modified energy (2.3) is only equivalent to the Hamiltonian energy (1.5)
in the continuous sense, but not for the discrete sense. Thus, the proposed schemes cannot preserve such
discrete Hamiltonian energy exactly.

5 A fast solver for the proposed high-order schemes

In this section, we develop a fast solver to implement Scheme 4.1 efficiently. For brevity, we
take the 2-stage Gauss method (i.e., s = 2) for an example where the corresponding RK coefficients
aij , bj , i, j = 1, 2 are given in Table 1.
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For given ψn, qn, the 2-stage Gauss method can be rewritten as
Ψ1 = ψn + τa11k1 + τa12k2, Ψ2 = ψn + τa21k1 + τa22k2,

li = 2Re〈ki,Φi〉h, Φi =
|Ψi|2 ·Ψi√
‖Ψi‖44,h + C0

, i = 1, 2,

Q1 = qn + τa11l1 + τa12l2, Q2 = qn + τa21l1 + τa22l2,

(5.1)

and

k1 = −iLhψn − iτa11Lhk1 − iτa12Lhk2 − iβΦ1Q1, (5.2)

k2 = −iLhψn − iτa21Lhk1 − iτa22Lhk2 − iβΦ2Q2, (5.3)

where ψn+1 and qn+1 are updated by

ψn+1 = ψn + τ

2∑
i=1

biki, q
n+1 = qn + τ

2∑
i=1

bili. (5.4)

Recalling the linear operator Lhu := − 1
2∆hu+L2

hu, where L2
hu = V ·u−ΩLhzu, one can reformulate

the equations (5.2) and (5.3) respectively as

k1 −
iτa11

2
∆hk1 −

iτa12

2
∆hk2 = f1(ψn, qn, k1, k2),

k2 −
iτa21

2
∆hk1 −

iτa22

2
∆hk2 = f2(ψn, qn, k1, k2),

where

fi(ψ
n, qn, k1, k2) = −iLhψn − iτai1L2

hk1 − iτai2L2
hk2 − iβΦiQi, i = 1, 2.

Then, we apply the fixed-point iteration method to solve the nonlinear algebraic equations as above.
For iteration step s, we have

ks+1
1 − iτa11

2
∆hk

s+1
1 − iτa12

2
∆hk

s+1
2 = f1(ψn, qn, ks1, k

s
2), (5.5)

− iτa21

2
∆hk

s+1
1 + ks+1

2 − iτa22

2
∆hk

s+1
2 = f2(ψn, qn, ks1, k

s
2). (5.6)

For brevity, we denote

k̃i = (FNz ⊗ FNy ⊗ FNx)ki, f̃i = (FNz ⊗ FNy ⊗ FNx)fi, i = 1, 2,

∆̃h = Λz2 ⊗ INy ⊗ INx + INz ⊗ Λy2 ⊗ INx + INz ⊗ INy ⊗ Λx2 .

Multiplying both sides of (5.5) and (5.6) by the matrix FNz ⊗ FNy ⊗ FNx , respectively, we then obtain
from (4.2), together with the definitions of ∆h and ⊗, that

k̃s+1
1 − iτa11

2
∆̃hk̃

s+1
1 − iτa12

2
∆̃hk̃

s+1
2 = f̃1(ψn, qn, ks1, k

s
2),

− iτa21

2
∆̃hk̃1

s+1
+ k̃s+1

2 − iτa22

2
∆̃hk̃

s+1
2 = f̃2(ψn, qn, ks1, k

s
2),

which implies the following relation[
1− iτa11

2

(
λx2,j + λy2,k + λz2,l

)]
(k̃1)s+1

j − iτa12

2

(
λx2,j + λy2,k + λz2,l

)
(k̃2)s+1

j = (f̃1)j(ψn, qn, ks1, k
s
2),

− iτa21

2

(
λx2,i + λy2,j + λz2,k

)
(k̃1)s+1

j +
[
1− iτa22

2

(
λx2,j + λy2,k + λz2,l

)]
(k̃2)s+1

j = (f̃2)j(ψn, qn, ks1, k
s
2),

where j ∈ Th and λw2,j represents the j-th eigenvalues of the spectral differential matrix Dw
2 , w = x, y, z

(see (4.2)). For a given j ∈ T , the above equations derive a 2 × 2 linear system for the unknowns

((k̃1)s+1
j , (k̃2)s+1

j )T .
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Solving above linear system for all j ∈ T , we can obtain k̃s+1
1 and k̃s+1

2 , then the relation ks+1
i =(

FHNz ⊗ F
H
Ny
⊗ FHNx

)
k̃s+1
i further gives ks+1

i , i = 1, 2. In practical computation, the iteration terminates

if the infinity norm of the error between two adjacent iterative steps is less than 10−14, that is,

max
l6i62

{
‖ks+1
i − ksi ‖∞,h

}
< 10−14.

Subsequently, li, i = 1, 2 is calculated by (5.1). Finally, ψn+1 and qn+1 are updated from (5.4).

Remark 5.1. We should note the following facts: (i) the SAV approach needs to introduce an auxiliary
variable, but it can be eliminated in practical computation; (ii) the related data, in our practical compu-
tation, are stored in three-dimensional arrays instead of vectors, thus the fast Fourier transform (FFT)
algorithms can be employed to speed up the process; (iii) small modifications would allow us to efficiently
implement arbitrary stage RK methods.

6 Numerical examples

In this section, some numerical examples are carried to investigate the accuracy, CPU time and
invariants-preservation of the proposed schemes. As shown above, the newly proposed scheme 4.1, which
preserves the discrete mass and modified energy precisely, could reach arbitrarily high-order accuracy
in time. Next, we take for example the 4th- and 6th-order Gaussian collocation methods, denoted by
4th-order HSAV and 6th-order HSAV, respectively. The numerical results would be compared with the
Crank-Nicolson finite difference (CNFD) method [4], semi-implicit finite difference (SIFD) method [4],
and the linearly implicit Fourier pseudo-spectral (LIFP) method [16]. In addition, the convergent rate
is obtained by the following formula

Rate =
ln
(
error1/error2)

ln(δ1/δ2)
,

where δl, errorl (l = 1, 2) are step sizes and errors with step size δl, respectively.

Example 6.1 In this example, we mainly investigate the temporal accuracy and computational efficiency
of the proposed schemes in 3D, and take the initial condition ψ0 and the external trap potential V (x)
in (1.1)-(1.3) as

ψ0(x, y, z) =
(γxγyγz)

1/4

2π3/4
e−V (x,y,z),

V (x, y, z) = (γ2
xx

2 + γ2
yy

2 + γ2
zz

2)/2,

and choose D = [−8, 8]3,Ω = 0.7 and γx = γy = γz = 1.0. For comparison, the numerical “exact”
solution ψe is obtained by the 6th-order HSAV method with τ = 10−3 and h = 1/8. Let e(τ, h) be
the error of numerical solution with mesh size h and time step τ . We compute the discrete L∞ errors
between the numerical “exact” solution and the numerical solution by the 4th- and 6th-order HSAV
methods, respectively. Moreover, the mass error, Hamiltonian energy error and quadratic energy error
on time level tn will be calculated by the following formulas:

e(Mn) := |Mn
h −M0

h |, e(Hn) := |Hn
h −H0

h|, e(En) := |Enh − E0
h|, n = 1, 2, · · · , N,

respectively.
Numerical results are shown in Table 2 with different values of β. As is illustrated that the 4th- and

6th-order HSAV methods arrive at fourth-order and sixth-order convergence rates in time, respectively.
Moreover, for a given time step and mesh size, the numerical errors are observed to increase along with
the growth of β. In fact, the increase in β can cause more vortices, and the lattice will thereby becomes
much dense. In this case, the high-order numerical algorithms, such as the 6th-order HSAV, can show
their obvious advantages in practical computations to obtain a given high accuracy.
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Table 2: Temporal errors of the numerical solutions with t = 3, N = 32.

τ = 0.02 τ = 0.015 τ = 0.01 τ = 0.005
β = 20 ‖e‖∞ 6.0575e-007 1.9225e-007 3.8033e-008 2.3615e-009

Rate * 3.99 3.99 4.00
4th-order HSAV β = 50 ‖e‖∞ 2.6576e-006 8.4483e-007 1.6728e-007 1.0391e-008

Rate * 3.99 3.99 4.00
β = 100 ‖e‖∞ 1.0359e-005 3.3007e-006 6.5436e-007 4.0667e-008

Rate * 3.98 3.99 4.00
β = 20 ‖e‖∞ 5.8626e-010 1.0460e-010 9.2088e-012 1.4132e-013

Rate * 5.99 5.99 6.02
6th-order HSAV β = 50 ‖e‖∞ 3.4924e-009 6.2332e-010 5.4876e-011 8.5756e-013

Rate * 5.99 5.99 6.00
β=100 ‖e‖∞ 1.6989e-008 3.0331e-009 2.6685e-010 4.1656e-012

Rate * 5.99 5.99 6.00

Subsequently, some comparisons are made with other algorithms in the literature. In Figure 1 (a),
we present the L∞-norm solution error versus the execution time for different schemes. As is shown that
the high-order HSAV methods are more effective than other second-order ones. Furthermore, Figure 1
(b)-(d) investigate the errors of invariants of different methods in the long-time behaviour, where we
choose τ = 0.01, T = 20. As demonstrated in Figure 1 (b) that all the numerical methods can preserve
the discrete mass exactly except the SIFD method. Subsequently, we study the conservation of discrete
energy during the evolution, and it can be observed from Figure 1 (c) that the HSAV schemes preserve
the Hamiltonian energy much better than the SIFD and LIFP methods except the CNFD method, which
possess the precise energy conservation law. In particular, Figure 1 (d) demonstrates that the proposed
schemes preserve the quadratic energy exactly, which conforms the preceding theoretical analysis.
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Figure 1: Comparisons of different numerical schemes

Example 6.2 In this example, we further consider the dynamics of the 2D GP equation starting from
a quantized vortex lattice for rotating BECs [7], i.e. we here choose Ω = 0.9, β = 1000, V (x, y) =
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1
2 (x2 + y2) and the spatial domain D = [−16, 16]2 with mesh size h = 32/128. The ground state is
computed numerically by the backward Euler pseudo-spectral (BESP) method, provided in the GPELab
program [2], with the same parameter values and γx = 1, γy = 1.

Then, the dynamics of the vortex lattice is investigated numerically by perturbing the harmonic
potential V (x, y) = 1

2 (γ2
xx

2 + γ2
yy

2) with different parameters: (i) case I: γx = γy = 1.4, (ii) case II:
γx = 1.1, and γy = 0.9, respectively. For brevity, we only present the contour plots of the density
function |ψ|2 for the dynamics of vortex lattices computed by 4th-order HSAV method, and that of
6th-order counterpart is similar apparently. From Figure 2, we can observe massive quantized vortices
in the ground state at t = 0. During the time evolution, the lattice structures are all conserved due to
the high accuracy and efficiency of the proposed methods, and the lattice shrinks or expands on account
of the changing of the trapping frequencies. Meanwhile, the vortex lattice is clearly observed to rotate
clockwise around the center. On the other hand, because of the increase and decrease of γx and γy in case
II, the condensate in Figure 3 is observed to contract and expand in x- and y-directions, respectively.

Moreover, we inspect the long-time behaviour by carrying out a large time period. As shown in
Figure 4 that the proposed schemes can preserve the discrete mass and quadratic energy precisely, and
6th-order HSAV scheme performs more accurate than 4th-order counterpart in terms of the Hamiltonian
energy, which conforms the preceding theoretical analysis again.

Figure 2: Contour plots of the density function |ψ|2 for the dynamics of vortex lattices in a 2D rotating BEC at different
times t = 0, 1, 2.2, 3.2, 4.4, 5.6, 6.6, 10 with γx = γy = 1.4 (in order from left to right and from top to bottom).

Figure 3: Contour plots of the density function |ψ|2 for the dynamics of vortex lattices in a 2D rotating BEC at different
times t = 0, 1, 1.8, 2.6, 3.4, 4.2, 5, 6 with γx = 1.1 and γy = 0.9 (in order from left to right and from top to bottom).
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(b) 6th-order HSAV for case I
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(c) 4th-order HSAV for case II
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(d) 6th-order HSAV for case II

Figure 4: Evolution of discrete mass and energy with τ = 0.001, β = 1000 and Ω = 0.9.

Example 6.3 In this example, we further simulate dynamics of vortex lines in a 3D rotating BEC, and
then choose the ground state computed by the BESP method [2]. For the GP equation (1.1), we take

β = 400,Ω = 0.8, V = x2 + y2 + z2

2 , and the spatial domain D = [−10, 10]3 with mesh size h = 20/64.
From Figure 5, we can clearly observe the initial stationary vortex profiles from different angles, as

well as the phase of the ground state in the (x, y)-plane. In the subsequent simulations, we only show the
contour plots of the density function |ψ|2 for the dynamics of vortex lines computed by 4th-order HSAV
method, and 6th-order counterpart performs similarly. Figures 6 and 7 illustrate the contour plots from
the angle of Figure 5 (a) for the dynamics at different time levels. It is demonstrated that the proposed
methods can resolve the 3D GP problem very well because of their high accuracy and efficiency, and
the vortex structure is also conserved during the dynamics. It is interesting to find from Figure 6 that
the lattice shrinks or expands periodically in the vertical direction. In particular, eight vortex lines of
the lattice shown in Figure 7 are clearly observed to rotate counterclockwise around the z-axis from
above. Moreover, we study the long-time behaviour by carrying out a large time period T = 20. As is
shown in Figure 8 that the discrete mass and quadratic energy are conserved precisely. What’s more,
the quadratic energy of the 6th-order HSAV method is preserved up to machine accuracy, as Figure 8
(b) demonstrates.
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(a) Side view image (b) Side view image

(c) Vertical view image
(d) Slice in the (x, y)-plane of the phase

Figure 5: Condensate ground state in a 3D rotating BEC with β = 400, and Ω = 0.8.

Figure 6: Contour plots of the density function |ψ|2 for the dynamics of vortex lines in a 3D rotating BEC with
β = 400,Ω = 0.8 at different times t = 1.0, 1.3, 2.7, 3.3, 4.2, 5.2 (in order from left to right and from top to bottom).
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Figure 7: Contour plots of the density function |ψ|2 for the dynamics of vortex lines in a 3D rotating BEC with
β = 400,Ω = 0.8 at different times t = 7.0, 8.5, 10, 14, 15, 20 (in order from left to right and from top to bottom).
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(b) 6th-order HSAV

Figure 8: Evolution of discrete mass and energy with τ = 0.005, β = 400 and Ω = 0.8.

7 Conclusions

In this paper, we combine the SAV idea with the classcial structure-preserving discretization strategy
to develop a novel class of high-order methods for the rotational GP equation in three dimensions. The
proposed schemes can reach arbitrarily high-order accuracy in time and preserve exactly both the discrete
mass and modified energy of the reformulated system. Three numerical examples are addressed to
illustrate the efficiency and accuracy of our new method. Compared with low-order structure-preserving
schemes, the proposed schemes, which produce more accurate numerical solutions, are more suitable for
longtime dynamic simulations with larger time steps. Last but not least, as far as we know, there are
some works (e.g., see [3, 4, 16, 36]) on optimal error estimates of second-order energy-preserving schemes
for the GP equation (1.1), but the error estimate of high-order ones are still not available. Thus, how
to establish optimal error estimates for high-order energy-preserving schemes will be an interesting topic
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for future studies.
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