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Abstract

No area of computing is hungrier for performance than High Perfor-
mance Computing (HPC), the demands of which continue to be a major
driver for processor performance and adoption of accelerators, and also ad-
vances in memory, storage, and networking technologies. A key feature of
the Intel processor domination of the past decade has been the extensive
adoption of GPUs as coprocessors, whilst more recent developments have
seen the increased availability of a number of CPU processors, including the
novel ARM-based chips. This paper analyses the performance and scala-
bility of a state-of-the-art Computational Fluid Dynamics (CFD) code on
three HPC cluster systems equipped with AMD EPYC-Rome (EPYC, 4096
cores), ARM-based Marvell ThunderX2 (TX2, 8192 cores) and Intel Sky-
lake (SKL, 8000 cores) processors. Three benchmark cases are designed with
increasing computation-to-communication ratio and numerical complexity,
namely lid-driven cavity flow, Taylor-Green vortex and a travelling solitary
wave using the level-set method, adopted with 4th-order central-differences
or a 5th-order WENO scheme. Our results show that the EPYC cluster de-
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livers the best code performance for all the setups under consideration. In
the first two benchmarks, the SKL cluster demonstrates faster computing
times than the TX2 system, whilst in the solitary wave simulations, the TX2
cluster achieves good scalability and similar performance to the EPYC sys-
tem, both improving on that obtained with the SKL cluster. These results
suggest that while the Intel SKL cores deliver the best strong scalability, the
associated cluster performance is lower compared to the EPYC system. The
TX2 cluster performance is promising considering its recent addition to the
HPC portfolio.

Keywords: HPC, CFD, ARM ThunderX2, AMD EPYC-Rome, Intel
Skylake, Performance Evaluation, Massively parallel implementation

1. Introduction

The ability to perform large-scale simulations of turbulent flows has of-
ten been restricted by the available capacity of High-Performance Comput-
ing (HPC) facilities and the inherent limitations in the performance of the
associated processors. HPC-driven turbulence research has enabled new in-
sights into fundamental theory [1], and enabled engineers to build digital
environments as virtual representations of physical processes in fields such
as hydraulics, environmental turbulent flows, or offshore renewable energy
[2, 3, 4].

For almost two decades, processor clock frequencies have been increasing
at very modest rates, favouring the adoption of multi-core CPUs with in-
creasingly complex memory hierarchies. Even if this approach has delivered
double, four, eight or more times the attainable Flop/s in a chip, rarely is this
accompanied by a similar improvement in memory bandwidth, in practice the
main bottleneck for Computational Fluid Dynamics (CFD) codes given their
memory bound characteristics. This was already foreseen in 2003, when the
rate of increase in CPU performance still followed Moore’s law, by Jiménez
[5] who pointed out that for CFD, memory bandwidth is as limiting a re-
source as computing power. Following the widespread adoption of GPUs as
compute platforms over the past decade, an increasing variety of chip ar-
chitectures are now available for developers to improve the performance of
massively parallel codes [6]. However, improvements in code performance
will of course depend on the end-user application, e.g. a classical molecular
dynamics code may be compute-bound [7] whilst CFD codes are typically
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memory-bound [8]. This calls for heterogeneous HPC systems that comprise
a variety of chip architectures, allowing users to maximise the performance
of their specific computing applications Gray et al. [9].

A new player has recently emerged in the HPC arena: ARM-based CPUs.
The latter have dominated the embedded and mobile market due to its low-
power oriented design, but manufacturers have now presented desktop and
server level CPUs based on this processor architecture [10]. Examples include
Marvell with its Thunder series of processors and Fujitsu with the A64FX.

The Mont-Blanc project, led by the Barcelona Supercomputing Centre
(BSC), pioneered the deployment of ARM chips in HPC environments with
a focus on studying energy efficiency. The first prototype in 2014 [11], Tibid-
abo, comprised 128 nodes with dual-core ARM Cortex-A9 CPU, succeeded
in 2018 by the 960 node system with ARM Cortex-A15 CPUs [12]. An
increasing number of HPC facilities are now building supercomputers with
ARM-based nodes. The most notable is Fugaku1, a supercomputer hosted
in the RIKEN Center for Computational Science, Japan, which hosts 7.3
million ARM-based Fujitsu A64FX cores. In the most recent Top500 list at
the time of writing, June 20202, Fugaku entered at #1 by running Linpack
with 415.5 PFlop/s of performance and operating at 28.3 MW. In the HPCG
list of the same month3, Fugaku also entered at #1 by running the HPCG
benchmark at 13.3 PFlop/s. This outstanding performance evidences the
potential of ARM chips for HPC.

The widespread increase in available computational resources has enabled
major, well documented advancements in the application of CFD to many en-
gineering fields, notably in hydraulics, atmospheric or environmental turbu-
lent flows. In 2015, Sotiropoulos [13] reviewed how supercomputers enabled
progress at the frontiers of hydraulics, including problems related to sedi-
ment transport, free-surface flows, or renewable energy, all benefiting from
having high-resolution grids that appropriately resolve the turbulent scales
using Direct-Numerical Simulation (DNS) or Large-Eddy Simulation (LES)
[2, 4].

At present, DNS is restricted to relatively moderate Reynolds numbers
(Re) for classical homogeneous isotropic turbulence or wall-bounded chan-

1Fugaku Supercomputer - https://www.r-ccs.riken.jp/en/fugaku
2Top500 list - https://www.top500.org
3HPCG list - https://www.top500.org/lists/hpcg
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nel flows [1], as the computing demand depends on the required number of

degrees of freedom, in the order of Re
11/4
λ [14]. However, its use for engi-

neering applications remains impractical given the inhomogeneous boundary
conditions and high Reynolds numbers. For instance, Mazzuoli et al. [15]
performed a DNS study with over 2 × 109 grid cells and 250,000 spherical
particles at a cost of 107 CPU hours, running for approx. 480 days on 64
Intel Ivy Bridge nodes. This makes it unfeasible to increase the flow regime
or at least it requires excessive computational power [15].

Alternatively, LES enables the resolution of complex multi-phase flows or
simulations in large numerical domains at a moderate-to-high computational
cost. Indeed, one of the most complex challenges in hydraulics and envi-
ronmental turbulent flows, the multi-phase flow simulation using interface-
capturing schemes, is amenable to study by LES [16, 17, 18]. In free-surface
open-channel flows, adopting the Level-Set Method (LSM) to represent the
air-water interface can provide more accurate results than using the classic
frictionless rigid-lid boundary condition, but the former comes at five times
higher computational expense (Krosronejad et al. [19]).

This paper studies the performance and scalability of an in-house CFD
code on three clusters featuring distinctive node architectures, namely dual-
processor AMD EPYC-Rome, ARMv8.1 ThunderX2, and Intel Skylake nodes,
denoted hereafter as EPYC, TX2 and SKL respectively. These have distinc-
tive core-per-node counts, underlying architecture and memory bandwidth,
each impacting on the performance of CFD codes. Initially, two well-known
numerical benchmarks are adopted for the computation of the incompressible
Navier-Stokes equation: the lid-driven cavity flow and Taylor-Green vortex.
These tests are designed to investigate code performance when using 4th-order
central differences or 5th-order WENO schemes, in application to problems
of increasing sizes ranging from four million to a billion grid cells, thereby
enabling performance analysis when increasing the computing workload and
communication-to-computation ratio. A third case involves the propagation
of a solitary wave using the level-set method as representative of a complex
multi-phase flow engineering application.

The structure of the paper is as follows: Section 2 introduces the in-house
code Hydro3D, numerical schemes to compute the fluxes, and the level-set
method. The cluster systems are described in Section 3, while the test cases
used in the evaluation are outlined in Section 4. Performance and scalability
results are presented and discussed in Section 5, with the main conclusions
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drawn in Section 6.

2. Hydro3D: an open-source CFD code

The software used in this research is Hydro3D [20, 21], an in-house open-
source code [22] for incompressible, viscous turbulent flows written in FORTRAN

and fully parallelised with MPI. Hydro3D allows the simulation of moving
bodies using the immersed boundary method [23, 24, 25, 26, 27], multi-phase
flows with the Eulerian-Eulerian approach of the level-set method [17, 28, 29]
and Eulerian-Lagrangian framework of Lagrangian particle tracking [30], and
a local-mesh refinement method [20]. A hybrid MPI/OpenMP version to
compute the Immersed Boundary Method (IBM) module (Ouro et al. [21])
showed that the MPI/OpenMP scheme can outperform pure MPI compu-
tations when using IBM kernels with large stencils. An efficient multi-grid
solver is used to compute the Poisson pressure equation, whose details are
presented in Cevheri et al. [20].

Hydro3D is based on the Large-Eddy Simulation (LES) approach in which
the most energetic and largest flow structures are explicitly resolved, whilst
a sub-grid scale method is responsible for modelling the smallest flow scales
considered as those smaller than the filter size, in this case the grid resolution
∆xi [2]. The governing equations are the spatially filtered Navier-Stokes
equations for incompressible viscous flows, that read

∂ũi
∂xi

= 0 (1)

∂ũi
∂t

= −1

ρ

∂p

∂xi
− ũj

∂ũi
∂xj

+ (ν + νt)
∂2ũi
∂x2j

+ Si (2)

Here ũi = (u, v, w)T is the spatially-filtered velocity vector (for conve-
nience the (̃·) symbol is omitted hereafter), the coordinates vector is xi =
(x, y, z)T , ρ denotes the fluid density, p is the relative pressure, ν is the kine-
matic viscosity of the fluid, and Si is a source term. The eddy-viscosity νt is
calculated using the Wall-Adapting Local Eddy-viscosity (WALE) sub-grid
scale model from Nicoud and Ducros [31] as,

νt = (Cw∆xi)
2

(
SdijS

d
ij

)3/2(
SijSij

)5/2
+
(
SdijS

d
ij

)5/4 (3)
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with Cw being a constant equal to 0.46, Sdij is the traceless symmetric part

of the square of the velocity gradient tensor, and Sij = 0.5(∂jui+∂iuj) is the
strain-rate tensor of velocities.

The strategy for domain decomposition and MPI communication are de-
scribed below in Section 2.1, whilst the computation of fluxes is presented in
Section 2.2. Section 2.3 presents the LSM, while the temporal advancement
with the fractional-step method is described in Section 2.4.

2.1. Domain partitioning and communication

Hydro3D adopts Cartesian meshes to discretise the computational domain.
Figure 1 presents the mesh distribution with uniform grid spacing in every
spatial direction with pressure computed on the cell centres and velocities
stored in a staggered fashion, i.e. on the cell faces. The grid spacing is
∆xi = xi+1 − xi, and φij represents the LSM function that is equal to zero
at the two-phase fluid interface, as described later in Section 2.3.

xj

p,ui uj

Δxj

Δxi

pi,j ui,j

vi,j

i,j=0

Figure 1: Representation of the Cartesian grid and staggered velocity arrangement.

Structured rectangular grids avoid the need for building and communicat-
ing connectivity matrices required to identify the neighbours of every cell in
order to compute the fluxes. For instance, velocity derivative at a cell i using
2nd- or 4th-order centred finite differences use velocity values at {i− 1, i+ 1}
or {i− 2, i− 1, i+ 1, i+ 2}, respectively. These schemes allow the adoption
of a balanced domain decomposition of the numerical domain with an even
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number of grid cells per sub-domain, in which ni×nj×nk = nt sub-domains
are mapped onto np processing units.

The communication protocol between sub-domains is performed using
MPI in which a number of halo or ghost cells, ng are used to exchange the
required information, such as velocities or pressure values, between adjacent,
overlapping sub-domains. The value of ng is set according to the stencil of
the discretisation scheme to calculate the fluxes, being equal to the number of
cells per direction plus one, i.e. ng = 2 and 3 for the 2nd- or 4th-order centred
finite differences and 4 when using the 5th-order Weighted Essentially Non-
Oscillatory (WENO) scheme.

The communication overhead when exchanging information by overlap-
ping sub-domains is proportional to the number of ghost cells and sub-domain
divisions over the considered ij direction, i.e. nGC = ng × nxi × nxj , as seen
in Figure 2 which depicts the process of data transfer between two adjacent
sub-domains. Hence, in cases with a reduced sub-domain division, there is a
small number of large-size messages to be communicated. In contrast, when
using a large number of sub-domains, communication is performed by a large
number of small-sized messages. In this version of Hydro3D, point-to-point
communications are achieved using a sequence of non-blocking MPI IRECV

and blocking MPI SEND and MPI WAIT primitives.

Figure 2: Communication between sub-domains using MPI.
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2.2. Computation of fluxes

The computation of the convective fluxes is the most important com-
ponent in the discretisation of the numerical solution (Breuer [32]). The
non-linear convective flux, C = uj∂xjui, in the r.h.s of Eq. 2 can be ap-
proximated in Hydro3D using 4th-order Central Differences (CD) or 5th-order
WENO schemes. Whilst CD schemes compute the fluxes from a single, cen-
tred stencil, 5th-order WENO schemes perform a number of operations to find
the optimum stencils which, in turn, increase the computational expense of
the simulations. CD schemes are non-dissipative but can lead to instabilities
in the simulations, as in the case of shock-waves. WENO schemes introduce
numerical dissipation to provide a more stable solution that needs to be con-
trolled to avoid excessive damping. Due to the inherent advantages of each
scheme, hybrid CD-WENO schemes can be developed for simulations with
shock-turbulence interaction [33, 34], but these are not in the scope of this
paper.

In highly-accurate CD schemes a p-order in spatial accuracy is obtained
by approximating velocity derivatives using kernels of, at least, p+ 1 cells in
every spatial direction. Consequently, an increase in scheme accuracy leads
to larger computing times, which can be cumbersome in DNS or LES, and
thus a motivation to study the performance of Hydro3D when using each of
these.

In a 2nd-order CD scheme, the velocity gradient at a given cell results from
the linear interpolation of velocities from the immediately adjacent cells, as

fi =
∂ui
∂xi

=
ui+1 − ui−1

2∆xi
(4)

The velocity derivative computed with 4th-order CD fits at the i-cell a
third-order polynomial through the adjacent four cells, which reads:

fi =
−ui+2 + 9ui+1 − 9ui−1 + ui−2

16∆xi
(5)

WENO schemes are appropriate to deal with sharp gradients in the ve-
locity fields by introducing artificial dissipation as an upwind scheme [35].
This results in a more suitable approach for the computation of free-surface
flows using LSM [28] as small discontinuities can appear at the interface. The

8



basis of the 5th-order WENO scheme is to build a high-order reconstruction
of the derivative of the flux at a grid cell xi, which requires a flux splitting to
compute the positive and negative interface fluxes on the xi-direction, fi±1/2,
at the cell interfaces, i.e. ∆xi±1/2, from three candidate stencils. In the cal-
culation of the velocity derivative fi with WENO, the optimal weights are:
c1 = 1/10, c2 = 3/10 and c3 = 6/10. The smoothness indicators, βk, serve
to scale the optimal weights and are calculated as:

β1 =
13

12
(fi−2 − 2fi−1 + fi)

2 +
1

4
(fi−2 − 4fi−1 + 3fi)

2 (6)

β2 =
13

12
(fi−1 − 2fi + fi+1)

2 +
1

4
(fi−1 + fi+1)

2 (7)

β3 =
13

12
(fi − 2fi+1 + fi+2)

2 +
1

4
(3fi − 4fi+1 + fi+2)

2 (8)

αk =
ck

(βk + ε1)m
k = 1, 2, 3 (9)

Here ε1 is added to avoid division by zero and set to a value equal to
10−6, m is set to 2, and weights αk are normalised to guarantee convexity.
Thereafter, the non-linear weights ωk are obtained as,

ωk =
αk∑
k αk

k = 1, 2, 3 (10)

Finally, the velocity derivative at the cell i is computed as:

fi =
1

3
ω1fi−2 +

1

6
(7ω1 + ω2)fi−1 +

1

6
(11ω1 + 5ω2 + 2ω3)fi

+
1

6
(2ω2 + 5ω3)fi+1 −

1

6
ω3fi+2

(11)

Note that the latter flux reconstruction process is performed in the three
spatial directions, i.e. fi±1/2,j,k, fi,j±1/2,k fi,j,k±1/2, for each of the quantities
considered, e.g. ui.

In Hydro3D, the linear diffusive or viscous, fluxes, D = ∂2jui, are com-
puted with a 4th-order CD scheme independently to the scheme used for the
convective terms as these are of elliptic nature, which in its one-dimensional
version is
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Di =ν∆t

(
−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2

12∆x2i

)
(12)

2.3. Level-set method

Hydro3D adopts the Level-Set Method (LSM) to resolve Eulerian-Eulerian
multi-phase flows defining a continuous level-set function, φ, to determine the
fluid density and viscosity fields across the computational domain, which was
validated in Kara et al. [17], Chua et al. [29] and McSherry et al. [28]. The
level-set function assigns positive or negative values depending on which fluid
occupies every grid cell. In the present study, values of φ ≥ 0 denote water
whilst φ ≤ 0 is air, with the air-water interface being defined by φ = 0
[17] (see Figure 1), and a Heaviside function H(φ) is used to smooth the
transition of the density (ρ(φ)) and dynamic viscosity (µ(φ)) fields across a
layer of thickness ε = 1.5∆xi, as:

ρ(φ) = ρa + (ρw − ρa)H(φ) (13)

µ(φ) = µa + (µw − µa)H(φ) (14)

Here, sub-indices a and w denote values corresponding to the air and
water, respectively. The Heaviside function H(φ) defined as:

H(φ) =


0, φ < −ε
1
2

[
1 + φ

ε
+ 1

π
sin
(
πφ
ε

)]
, |φ| < ε

1, φ > ε

Free-surface flows resolved with LSM pose an additional computational
overhead in comparison to the standard rigid-lid approach in which the air-
water interface is fixed as the vertical upper boundary condition. LSM re-
quires resolving a non-linear hyperbolic advection equation in addition to the
mass and momentum conservation equations, to account for the transport of
φ:

∂φ

∂t
+ ui

∂φ

∂xi
= 0 (15)
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This equation is resolved computing the derivatives with the 5th-order
WENO scheme and advanced in time using a third-order Total-Variation
Diminishing Runge-Kutta (TVD-RK3) scheme, which is

φk = φ(xi, t) (16)

φk+1 = φk −∆t

(
ui
∂φk

∂xi

)
(17)

φk+2 =
3

4
φk +

1

2
φk+1 − 1

4
∆t

(
ui
∂φk+1

∂xi

)
(18)

φk+3 =
1

3
φk +

2

3
φk+1 − 2

3
∆t

(
ui
∂φk+2

∂xi

)
(19)

Note that flux splitting is applied to compute each gradient of φk, φk+1

and φk+2 at ∆xi±1/2, which implies that for Eq. 17 six WENO fluxes for
φk are calculated, i.e. fi±1/2,j,k, fi,j±1/2,k fi,j,k±1/2, which is then repeated for
φk+1 and φk+2.

Due to the intrinsic nature of the φ-advection equation, mass conserva-
tion is not guaranteed [36] as the required numerical stability requirement of
|∇φ| = 1 is not automatically fulfilled. This implies that a re-initialisation
technique is computed after Eq. 15 [36], which requires resolving another
advection equation, Eq. 20, for the signed-distance function, d0, solved with
the TVD-RK3 scheme (Eq. 17 – 19) according to an ”artificial time step”
τ = CFLLSM·MAX(∆xi). The smoothed signed function, s(d0), in Eq. 20 is
the calculated according to Eq. 21 adopting the initial condition d0(xi, 0) =
φ(xi, t).

∂d0
∂τ

= s(d0)(1− |∇d0|) (20)

s(d0) =
d0(

d20 + (|∇d0|εr)2
)0.5 (21)

This re-initialisation process is iteratively solved until the condition of
|∇φ| = 1 is partially satisfied up to a residual εLS set to 5 · 10−3. Additionally,
a maximum of 15 iterations is set, since the free-surface layer in turbulent
flows will experience small high-frequency oscillations due to the turbulent
structures [28, 16]. These challenge fast numerical convergence. Identically

11



to the φ-equation resolution, 18 stencil reconstructions are required at every
re-initialisation step in addition to the calculation of Eq. 20. This can
notably increase the computational cost if the number of iterations required
during the re-initialisation is large.

Alg. 1 presents the procedure to resolve the LSM, with TLS and TLS ωk

labelling the time spent on solving the whole LSM and that only for the
WENO weights in LSM, respectively.

Algorithm 1 Pseudocode for advection of φ function in LSM

1: φt = φ(xi, t) . TLS=MPI WTIME

2: for k = 1, 3 do
3: WENO stencil for φt . TLS ωk

4: Compute φt+k with Eqs. 17 - 19

5: end for
6: Re-initialisation process

7: for m = 1, 15 do
8: d0 = φt+1

9: while |∇d0| − 1>εLS and m ≥ 2 do
10: for k = 1, 3 do
11: WENO stencil for dk0 . TLS ωk

12: Compute |∇dk0|
13: Compute s(dk0)
14: Compute dk with Eqs. 17 - 18

15: end for
16: call MPI ALLREDUCE(|∇d0|)
17: end while
18: end for
19: φt+1 = dk0
20: Heaviside function: H(φt+1)
21: Update ρ(φt+1) and µ(φt+1) fields . TLS=TLS-MPI WTIME

Note that the computational expense of using LSM in turbulent flows is
intrinsically high due to the fine grid resolution needed to capture the insta-
bilities at the air-water interface. Too coarse a grid resolution will challenge
numerical stability. For this reason, WENO is used to compute both the
LSM advection equations and convective fluxes in the momentum equation.
New insights into the computational cost of using LSM for free-surface flows
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is of special relevance for the engineering research community, defining how
different HPC chip architectures impact on the performance of computing
LSM.

2.4. Temporal advancement

The standard fractional-step method [37] is used to advance the equations
in time, as its step-wise nature allows the development of highly-scalable
parallelised codes. The adopted fractional-step method is fully explicit and
divides the computing sequence at each time step into three main stages as
depicted from Alg. 2. First, the predicted non-divergence-free velocity field,
u∗i , is calculated from the pressure and velocities obtained at the previous
time step, pt and uti, accomplished using an explicit time advancement with a
three-stage Runge-Kutta method. The second step comprises the resolution
of the Poisson pressure equation. This is iteratively solved using a multi-grid
method in order to correct the predicted velocity field until the divergence-
free condition, i.e. ∇ · u∗i , is below a given residual ε equal to 10−6. In the
final step the velocity and pressure are updated. If the LSM method is used,
this is computed before the velocity fluxes.

Hydro3D has an internal profiler to track the time spent in the main
subroutines at every time step, obtained with the master processor and using
the MPI WTIME command. These are highlighted in Alg. 2 and account for:

• TTT: Total time per time step or mean runtime.

• TLS: Level-Set Method.

• TCD: Convective and viscous fluxes computed over the three-step Runge-
Kutta (RK) to obtain the non-divergence free velocity.

• TP: Resolution of the Poisson pressure equation.

• Tup: Update of the velocity and pressure fields.

Note that subroutines consuming a reduced part of the overall computing
time per time step, e.g. less than 1.0%, are normally excluded from the
analysis, e.g. sub-grid scale model or time step calculation based on the CFL
condition, and thus not presented in the results.

In terms of collective communications, two main MPI ALLREDUCE calls are
performed to determine velocity maxima that condition the time advance-
ment of the simulation. First, the maximum velocity from the previous time
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step, uti, is fetched to determine the time step ∆t according to the adopted
CFL value. Then the divergence free condition in the Poisson pressure solver
is checked with the non-solenoidal velocity u∗i after every iteration of the
solver (lines 17–19 in Alg. 2), with the code needing to retrieve MAX(∇ · u∗i )
from every sub-domain, at every pressure solver iteration.

Algorithm 2 Fractional-step method adopted in Hydro3D

1: Variable allocation and initialisation

2: for t = t0, tend do . TTT=MPI WTIME

3: Store uti = ut−1
i

4: if Level-Set Method then . TLS=MPI WTIME

5: Alg. 1

6: end if . TLS=TLS-MPI WTIME

7: for tRK = 1, 3 do . TCD=MPI WTIME

Convective fluxes, C :
8: if 2nd-order CD then
9: Eq. 4

10: else if 4th-order CD then
11: Eq. 5

12: else WENO

13: Eqs. 6 - 11

14: end if
Viscous fluxes, D: Eq. 12

15: end for . TCD=TD-MPI WTIME

Non-divergence free velocity:

16: ui
∗ = ui

t + ∆t (D (ui
t) + C (ui

t) + ∇pt + Si)
Solve Poisson pressure equation: . TP=MPI WTIME

17: while ∇ · u∗i>ε do
18: ∇2p̂ = (∇ · u∗i )/∆t
19: end while . TP=TP-MPI WTIME

Update velocity and pressure fields: . Tup=MPI WTIME

20: ut+1 = u∗i + ∆t∇p̂
21: pt+1 = pt + p̂− ν∆t∆p̂/2 . Tup=Tup-MPI WTIME

. TTT=TTT-MPI WTIME

Time averaging and write output files

22: end for
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3. Cluster architectures

In this work, three HPC systems are used, each equipped with distinctive
dual-processor computing nodes. Again, for convenience, these systems are
codenamed as EPYC, SKL and TX2, which use AMD EPYC Rome, Intel
Skylake and ARM Marvell ThunderX2 processors respectively. Full system
descriptions are provided in Table 1.

Table 1: Description of the three HPC systems.

System name ThunderX2 Skylake EPYC-Rome
Computing Service GW4 Isambard Supercomputing Supercomputing

Wales (Hawk) Wales (Hawk)
Number of nodes 128 201 64
Core count/node 2 CPUs×32 = 64 2 CPUs×20 = 40 2 CPUs×32 = 64
Memory 256 GB DDR4 192 GB DDR4 256 GB DDR4
per node @2400MHz @2666MHz @2500MHz
Interconnect Cray Aries Infiniband EDR Infiniband EDR
CPU spec:
Architecture ARM v8.1 Intel Skylake Rome (Zen 2)
Model Marvell ThunderX2 Intel Xeon 6148 Gold EPYC-Rome 7502
Clock 2.10 GHz 2.40 GHz 2.50 GHz
Memory channels 8 6 8
TDP 175 W 150 W 180 W

The TX2 system is the full ARM partition of Isambard, the first large-
scale ARM-based production level HPC system in the UK managed by the
GW4 Alliance, comprising the Universities of Bristol, Bath, Cardiff and Ex-
eter, together with Cray and hosted at the UK Met Office. Isambard is a
Cray XC50 system containing over 10,000 ARM cores and a full Cray software
stack. More information about the system, including the full specification,
is available at 4.

The SKL and EPYC systems are partitions of Hawk, an HPC system
hosted by Supercomputing Wales (SCW) at Cardiff University. SCW is a
pan-Wales UK project featuring the Universities of Cardiff, Swansea, Bangor
and Aberystwyth. At the time of writing, the SKL partition comprises 201
dual processor nodes, totalling 8,040 cores and 46 TByte of memory, whilst
the 64 node EPYC partition comprises 4096 EPYC-Rome 7502 cores with

4GW4 Isambard - https://gw4.ac.uk/isambard
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50 TByte of memory. More information about the system and the project is
available at 5.

4. Benchmarks description

This section describes the three benchmarks selected to analyse the per-
formance of Hydro3D, designed to deliver a range of configurations that pro-
vide a varying balance of compute- and memory-bound simulations.

4.1. 3D lid-driven cavity flow

The first benchmark comprises a three-dimensional (3D) lid-driven cavity
flow simulated using 4th-order CD to compute the convective fluxes, which
is the fastest compute discretisation scheme using Cartesian grids. This
minimises the overhead in computing convective and diffusive fluxes. In order
to analyse the code performance, six problem sizes with increasing number
of grid cells are adopted.

The computational domain is a cube with dimensions [0,1]×[0,1]×[0,1]
and an inlet velocity of U0(xi) = (0.0,0.0,1.0) set at the top boundary, i.e. at
z = 1, as a slip condition. No-slip conditions are used at x = 0 and 1 and at
the cube bottom, z = 0, whilst periodic conditions are set at the transverse
faces at y = 0 and 1. The mesh resolution is uniform in the three spatial
directions and variable time step is set with a CFL condition equal to 0.8.
The Reynolds number is set to 400 as adopted in previous scalability studies
performed by Ouro et al. [21], who previously validated the velocity field
with Hydro3D.

4.2. Taylor-Green vortex

The second benchmark comprises the simulation of the incompressible
Taylor-Green Vortex (TGV) adopting the 5th-order WENO scheme for the
calculation of the convective terms. This case is often selected to evaluate
the numerical properties of high-order discretisation schemes, e.g. scheme
dissipation rate [38, 39], such as the 5th-order WENO. The case simulated
has a Re= LU0/ν = 1,600 with U0 equal to 1.0 and characteristic spatial scale
L = 1 as the cube’s edge length. The spatial domain extends 0 < x, y, z < L
with periodic boundary conditions on the three spatial directions. A variable

5Supercomputing Wales - https://www.supercomputing.wales
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Figure 3: Iso-surfaces of z-vorticity at non-dimensional times t = 0 and 12.

time step was set with a CFL condition of 0.3. The initial flow field is defined
according to the following velocity distribution:

u(x, y, z) = U0 sin
(x
L

)
cos

( y
L

)
cos

( z
L

)
(22)

v(x, y, z) = −U0 cos
(x
L

)
sin

( y
L

)
cos

( z
L

)
(23)

w(x, y, z) = 0 (24)

Figure 3 presents iso-surfaces of z-vorticity (ωz = ∂xv− ∂yu) obtained at
non-dimensional times t = 0 and 12 using a computational mesh with 32.8
million elements. These depict how the initial large-scale vortices transition
to smaller scale structures as the simulation advances in time.

4.3. Solitary wave

In the third benchmark, a solitary wave propagating across a numerical
wave tank is simulated, which represents one of the current modelling chal-
lenges in computational hydraulics [3]. The air-water interface is resolved
using the LSM which implies a higher computational load than the previous
benchmarks, as indicated in Section 2.3. The numerical wave tank measures
12.8 m × 0.4m × 0.4m and is presented in Figure 4, with a water depth d
set to 0.2 m and solitary wave amplitude H of 0.02 m. The density of the
water is 1,000 kg m−3 and that of air 1.25 kg m−3, with viscosity values of
1·10−6 m2 s−1 and 1.8·10−5 m2 s−1, respectively. A constant time step is set
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to ∆t = 0.001 s, whilst for the advection equation the pseudo-time step (∆τ)
is variable with a CFL = 0.10 to guarantee numerical stability [16, 40].

d = 0.2m

0.4 m

0.4m

η

x

y
z

Figure 4: Schematic of the solitary wave benchmark case.

The solitary wave is generated using Boussinesq theory [41] with Eq. 25
defining the wave elevation, η, and Eqs. 26 and 27 denoting wavenumber,
kw, and wave celerity, c, respectively.

η(t) = Hcosh−2(kw(x− ct)) (25)

kw =
√

3h/4d3 (26)

c =
√
g(H + d) (27)

Here g represents gravity acceleration equal to 9.81 m s−2 and t is time. At
the start of the simulations, velocities are set to zero across the computational
domain. Thereafter, considering the wave elevation is normalised as ηh =
η/H and ε = H/d, the velocities at the inflow condition (xin = (0, y, z)) are
prescribed according to:

u(xin, t) = ε
√
gd

[
ηh −

εη2h
4

+
d2

3c2

(
1− 3z2

2d2

)
∂2ηh
∂t2

∣∣∣∣
t=0

]
(28)

v(xin, t) = 0 (29)

w(xin, t) = z
ε

c

√
gd

[(
1− εηh

2

) ∂ηh
∂t

+
d2

3c2

(
1− z2

2d2

)
∂3ηh
∂t3

∣∣∣∣
t=0

]
(30)

5. Results

This section presents the performance results of Hydro3D based on an
analysis of strong scaling behaviour with increasing problem size. The com-
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parison between the three HPC systems is reported on a node-to-node basis,
with each configuration designed to populate each node with a single MPI
process per core. Table 2 lists the configurations adopted in terms of node
count and sub-domain divisions which are equal to the number of cores used.
Note that the TX2 and EPYC nodes have 64 cores per node, whilst the
SKL nodes have 40. Given resource availability, the simulations with SKL
and EPYC nodes on the Hawk cluster are run on a maximum of 64 nodes,
i.e. 2,560 and 4,096 cores respectively, whilst those with TX2 nodes on the
Isambard cluster used up to 125 nodes, i.e., 8,000 cores.

Table 2: Configurations of the simulations carried out on the ThunderX2 (TX2), Skylake
(SKL) and EPYC-Rome (EPYC) systems for the three benchmark cases, including the
number of nodes used (N) and sub-domains (nt = nx × ny × nz) that is equal to the
number of cores.

Benchmark 1: Cavity flow Benchmark 2: TGV Benchmark 3: solitary wave
TX2 SKL EPYC TX2 SKL EPYC TX2 SKL EPYC

N nt N nt N nt N nt N nt N nt N nt N nt N nt

1 64 1 40 1 64 1 64 1 40 1 64 1 64 1 40 1 64
2 128 2 80 2 128 2 128 2 80 2 128 2 128 2 80 2 128
4 256 4 160 4 256 4 256 4 160 4 256 4 256 4 160 4 256
8 512 8 320 8 512 8 512 8 320 8 512 8 512 8 320 8 512
10 640 10 400 10 640 16 1000 16 640 16 1000 16 1024 16 640 16 1024
20 1280 16 640 16 1024 25 1600 25 1000 25 1600 32 2048 32 1280 32 2048
25 1600 25 1000 20 1280 32 2000 32 1280 32 2000 40 2560 64 2560 40 2560
32 2000 32 1280 25 1600 63 4000 63 2500 63 4000 64 4096 64 4096
63 4000 52 2048 32 2000
1258000 64 2560 63 4000

The code was compiled with Intel Compiler v2017.4 using the -O2 flag
for the EPYC and SKL platforms, and executed using the Intel MPI Library
v2017.4. On the Isambard platform, the code was compiled using the Cray
Compiling Environment (CCE) v9.1.3 with the -O2 flag and executed with
the Cray MPI library using the ALPS system v6.6.

All benchmark simulations are run for 50 time steps, with mean comput-
ing times calculated based on the MPI WTIME command averaged over the last
40 time steps, over which the standard deviation of the computing times is
lower than 0.1%. Note that during the domain partitioning, the sub-domains
size is kept uniform for all cases so as to avoid load imbalance between parallel
processes.

The runtime values presented from the internal code profiler includes both
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computing and MPI operations. The breakdown of the main computing
subroutines are calculated using the profilers CrayPat on Isambard (TX2)
and TAU v2.27 [42] on Supercomputing Wales (SKL and EPYC), of value in
characterising how systems distribute the computing workload for the same
setup. The breakdown of MPI directives is obtained on Hawk using the IPM
profiler.

5.1. Node characterisation

In order to gain a sense of the raw computing power of the HPC clus-
ters, a set of stress benchmarks on individual nodes of each system were un-
dertaken, including Firestarter v1.7.4 to stress CPU cores and gather their
peak performance, and STREAM to measure memory bandwidth. These two
benchmarks are described in [43] and [44], respectively.

The Firestarter binary available in its official repository was used, while
STREAM was compiled with the Intel Compiler v2018.4 for the EPYC and
SKL systems. The STREAM array size was 225, with the reported values
corresponding to the TRIAD test. The performance figures for TX2 are those
reported in Deakin et al. [45], as Firestarter did not run on the system due
to an incompatibility with ARMv8.

Table 3: Measured peak performance and memory bandwidth for individual nodes. Results
from Firestarter and STREAM benchmarks.

ThunderX2 Skylake EPYC-Rome
TFLOP/s 1.28 2.06 1.99
GB/s 288.00 180.36 264.90

Results are shown in Table 3 for the three systems. SKL and EPYC clus-
ters deliver a similar level of TFLOP/s performance(∼3% difference between
them) whilst the EPYC system achieves 46.8% greater memory bandwidth.
TX2 shows the lowest TFLOP/s performance figure but delivers the greatest
memory bandwidth amongst the three chips, i.e. 8.7% and 59.7% more than
EPYC and SKL processors, respectively.

5.2. Lid-driven cavity flow

Six grid resolutions are adopted for the first benchmark in order to per-
form a set of tests that gradually evolve from a computing-bound scenario
at low node count to a communication-bound scenario at higher node count.
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Details of the computational grids are provided in Table 4 with spatial reso-
lution (∆xi), number of elements per spatial direction (nxi) and total number
of elements comprising the entire problem (Ne = n3

xi
) in millions.

Table 4: Numerical details of the lid-driven cavity flow cases simulated.

∆xi nxi Ne (·106)
0.00625 160 4.1
0.00500 200 8.0
0.003125 320 32.8
0.00250 400 64.0
0.00125 800 512.0
0.00100 1,000 1,000.0

Figure 5 depicts the mean runtime, i.e. averaged total time per time step,
(TTT from Alg. 2) in log-log scale obtained with the three HPC systems for
the six problem sizes. The runtime on the SKL and EPYC systems follows
a linear decay for problem sizes Ne ≥ 64 million cells suggesting Hydro3D

scales well on these architectures. Conversely, when using a large number
of nodes for the three smallest problem sizes, i.e. Ne ≤ 32.8, the average
runtime plateaus as communication overheads start to increase compared to
a relatively lower computing demand given the small number of grid cells
per core. This is more noticeable in the TX2 system as, for instance, with
Ne = 8.0 the percentage of communications using two nodes is approx. 11%,
increasing to almost 90% for the highest node count.

For most problem sizes on the TX2 cluster, there is a steady decrease in
runtime with increasing number of processors although this follows a smaller
reduction rate than on the other systems, indicating that the TX2 processors
demonstrate less effective strong scaling in this case compared to the x86
processors. It is worth noting that for Ne ≤ 8, TX2 fails to achieve any
reduction in the computation time when increasing the number of nodes
beyond 8 due to communication overheads. For instance, for Ne = 4.1 using
2, 8 or 25 nodes, the proportion of runtime spent on MPI communications
grows from 10%, to 48%, and 83% respectively, whilst for Ne = 64 these
figures are 16%, 16% and 45%. Nevertheless, for relatively large problem
sizes, i.e. Ne = 512 and 1,000, the performance and scalability of the TX2
cluster improves featuring a linear decay in runtime similar to that found on
the SKL and EPYC systems. Overall, the results of Figure 5 show that the
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Figure 5: Lid-driven Cavity flow: Results of averaged time per time step values in seconds
for the three HPC architectures and six grid sizes analysed.

EPYC cluster provides the fastest computations for all the lid-driven cavity
flow simulations.

Strong scaling results are presented in Figure 6 in terms of speed up
Sn = T1/Tn, with Tn denoting the averaged runtime per time step when
using n processors, in log-log scale. It is observed that the speed up on
TX2 for small problem sizes does not increase linearly when the number of
nodes is over 8, again a consequence of the large communication overhead.
Conversely, increasing Ne improves the speed up on TX2 up to 125 nodes,
achieving comparable strong scalability to that found on the SKL and EPYC
systems. For these small size problems, scalability on EPYC is inferior to
that found on SKL as a result of the latter spending a lower percentage of
time in communications, as shown later in Figure 9.

Further insight into the code’s strong scalability is provided in terms of
parallel efficiency E = PTp

QTq
, with Tp and Tq the time per time step when

using P and Q nodes, respectively. Ideal scalability is achieved when the
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Figure 6: Lid-driven Cavity flow: Results of speed up for the three HPC architectures and
six grid sizes analysed. Ideal linear speedup is represented with a straight black line.

parallel efficiency is 1.0, i.e. the decrease in runtime should be directly pro-
portional to the increase in number of processors. However, the time spent on
communication and computational processes, e.g. solving the Poisson equa-
tion with multi-grid [21], or even caching effects, could lead to non-linear E
growth when increasing the number of nodes.

Figure 7 presents on a semi-log scale the values of E for the lid-driven
cavity flow simulations. There is a good parallel efficiency on SKL with
increasing number of nodes for those problem sizes with Ne ≥ 32.8, whilst
for the two smallest problem sizes using a larger number of nodes impacts
negatively on the code’s scalability as E ≤ 1. TX2 and EPYC results show
inferior parallel efficiency in problem sizes with Ne ≥ 64, but exhibit improved
performance when Ne ≤ 64 with values of E near unity.

In order to better understand the performance results of Hydro3D, a
breakdown of the compute timestep is presented in Figure 8 when using two
nodes and problem sizes Ne = 8 and 64. In all cases, solving the iterative
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Figure 7: Lid-driven Cavity flow: Results of parallel efficiency for the three HPC archi-
tectures and six grid sizes analysed.

Poisson pressure equation (TP) takes most of the computing time, even out-
weighing all other subroutines combined for both SKL and EPYC systems.
On TX2, the time spent on convection (TC) is similar to TP and larger than
that obtained on the other two systems. Note that increasing the problem
size has little effect on the distribution of computing times.

To complement the performance breakdown, Figure 9 (top) presents the
percentage of the total runtime spent in communication for the three cluster
systems, for all six problem sizes using 2, 8 and 25 nodes. For the smaller
node counts, communication accounts for less than 20% of the simulation
time in all cases, this being slightly higher on TX2. With 8 nodes, the Ne

= 4.1 problem size shows an increased time in communication especially
for TX2, which decreases when increasing Ne as the computing workload
increases. However, with 25 nodes the relative time spent in communication
with the x86 systems stays in the range of 20–25% while it reaches up to 70%
for Ne ≤ 32.8 on TX2.
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Figure 8: Distribution of the main computing functions for the lid-driven cavity flow
benchmark when two nodes are used. Comparison between TX2 (left), SKL (centre) and
EPYC (right) for meshes Ne = 8 (a) and 64 (b). TP = Poisson pressure solver, TD =
diffusion, TC = convection, Tup = velocity update.

Figure 9 (bottom) provides a more detailed communication profile from
simulations on SKL and EPYC with the breakdown of the MPI time spent
into synchronisation with MPI WAIT and MPI BARRIER, collective communi-
cation MPI ALLREDUCE, and point-to-point communication MPI SEND. These
data were not collected for TX2 as the IPM compiler used for this analy-
sis was not available. Synchronisation with MPI WAIT arises as the major
communication overhead except for Ne ≥ 512 in which MPI SEND increases
considerably as a result of communications involving many small messages
distributed across a large number of cores. The switch from MPI WAIT to
MPI SEND consuming most of the MPI communication overhead depends on
the problem size and number of nodes, and also varies slightly between EPYC
and SKL systems. For this benchmark case, collective communications have
a reduced impact in the overall communication time.

The results for this lid-driven cavity flow benchmark, in which 4th-order
CD is used to compute the convective fluxes, indicate that the EPYC system
delivers the best computational performance whilst the SKL cluster exhibits
the best strong scalability.
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Figure 9: Comparison for the lid-driven cavity flow benchmark of the percentage of runtime
spent on communication (top) when running on 2, 8 and 25 nodes with the three core
architectures; and distribution of MPI directives for the cases with SKL (red line) and
EPYC (green line).

5.3. Taylor-Green vortex

For the Taylor-Green Vortex (TGV) benchmark, the computing overhead
from the convective fluxes increases from using a 5th-order WENO scheme
compared to CD schemes, as the former requires the computation of optimal
weights [46]. Analogous to the previous case, four mesh sizes are adopted with
details provided in Table 5 regarding mesh size (∆xi), number of elements
per spatial direction (nxi) and total number of grid cells in millions (Ne).
Note that this range of grid resolutions is similar to those available in the
literature [38].

Results of the mean runtime per time step in seconds, speed up (Sn) and
parallel efficiency (E) are presented in Figure 10. For the smallest problem
size, EPYC and SKL systems achieve lower runtimes than TX2 for all core
counts, being up to 10× faster when 63 nodes are used. As with the lid-driven
cavity flow benchmark, the runtime achieved with TX2 for Ne = 8 plateaus
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Table 5: Numerical details of the meshes cases used for the TGV simulations.

∆xi nxi Ne (·106)
0.005 200 8.0
0.003125 320 32.8
0.0015625 640 262.1
0.00100 1,000 1,000

when running on 16 or more nodes due to communication overheads. This
is also observed in the Sn and E plots, pointing to the need to improve the
strong scalability of Hydro3D on TX2 for relatively small problem sizes, even
though this is superior to that obtained for the lid-driven cavity flow.

With Ne = 32.8, Hydro3D achieves an almost linear Sn increase for each
system. Taking a closer look at the relative performance between processors
for large problem sizes, for Ne = 262.1 SKL is on average approx. 1.4× faster
than TX2 whilst EPYC is 2× and 2.6× faster than SKL and TX2, respec-
tively. Based on node-to-node comparison, with Ne = 1,000, SKL provides a
1.1× performance enhancement compared to TX2, whose improved perfor-
mance in large problem sizes is due to increased memory bandwidth. On the
other hand, EPYC is again the fastest system being 2.0× faster than SKL
and 2.3× faster than TX2. Compared to the lid-driven cavity flow case, the
linearity observed in the SKL Sn and E curves is less apparent, resulting
perhaps from the WENO weights becoming the most expensive subroutine
over the Poisson pressure solver.

Figure 11 shows the breakdown of the runtime spent on the main com-
puting subroutines, namely Poisson pressure solver (Tp), diffusion (TD), con-
vection (Tc), velocity update (Tup) and WENO weights (Tωk

), for Ne = 8 and
262.1 and using two nodes. The computing workload is similarly distributed
across systems with the multi-grid pressure solver and WENO weights taking
approx. 18–20% and 41–47% of the computing time, except on TX2 with Ne

= 8. This is attributed to the lower computing capability of TX2, as seen in
Section 5.1, increasing the time required for iteratively solving the pressure
equation. Although not included here for sake of brevity, results for the other
two meshes and larger node count present a similar distribution, pointing to
the codes’ subroutines scaling well.

The communication profiles are presented in Figure 12, showing that for
2 nodes the simulations spend little time in communications. For 8 and 25
nodes, the relative weight of data exchange increases, especially for small
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Figure 10: Results of runtime (top), speed up (Sn) (middle), and parallel efficiency (E)
(bottom) for the Taylor-Green vortex case.

problem sizes on TX2, with the percentage of communication notably in-
creasing. In relation to the MPI directives, MPI WAIT and MPI WAIT consume
most of the communication time with a balance similar to that observed in
the lid-driven cavity flow results when increasing the number of nodes.

5.4. Solitary wave simulation with level-set method

The third benchmark presents the solitary wave simulation using LSM.
The previous TGV benchmark showcased the computing overhead from the
5th-order WENO scheme, which is now expected to increase given the com-
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Figure 11: Breakdown of the main computing functions for the TGV benchmark when
two nodes are used. Comparison between TX2 (left), SKL (centre) and EPYC (right) for
meshes Ne = 8.0 (a) and 262.1 (b).

putation of both convective fluxes and LSM advection and reinitialisation
equations. In this benchmark, the travelling wave is simulated using three
grid resolutions with the details of mesh resolution (∆xi) that is uniform
across the domain, the number of divisions per spatial directions (nxi) and
the total number of grid cells (Ne, in millions) presented in Table 6.

Table 6: Numerical details of the meshes used for the solitary wave benchmark.

∆xi nx ny nz Ne (·106)
0.0100 1,280 40 30 1.5
0.0050 2,560 80 60 12.3
0.0025 5,120 160 120 98.3

The mean time per time step obtained for the three problem sizes on
each HPC system is shown in Figure 13 (top) using a log-log scale. All sys-
tems show an almost linear decrease in runtime values with increasing node
count. Unlike the former benchmarks, the percentage of communication in
the solitary wave simulation is less than 20% of the total runtime for con-
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Figure 12: Comparison of the percentage of runtime spent on communication (top) when
running on 2, 8 and 25 nodes for the TGV benchmark; and distribution of MPI directives
for the cases with Skylake (red line) and EPYC-Rome (green line).

figurations running on the maximum number of nodes. Hydro3D achieves its
best performance on the EPYC cluster for all cases, although it is noticeable
that simulation times obtained with TX2 outperform those from SKL by ap-
prox. 1.4–1.6×, especially in the highest resolution case, in which TX2 and
EPYC systems achieve similar runtimes. In this benchmark, both systems
spend a relatively lower percentage of time in communications than does
SKL, thereby enhancing inter-node communications and proving advanta-
geous when using LSM as MPI ALLREDUCE is called several times triggering
the time in data exchange.

The resulting speed up (Sn) and parallel efficiency (E) for the solitary
wave case are shown in Figure 13 (mid and bottom). For Ne = 1.5, Hydro3D
features less than optimal strong scalability with Sn being below the ideal
linear performance increase and values of E steadily decreasing with increas-
ing node count for all systems. The communication-to-computation ratio
grows almost linearly from 7% to 19% when increasing from 1 to 64 nodes
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Figure 13: Results of averaged runtime per time step values in seconds (top), speed up
(mid) and parallel efficiency (bottom) for the three HPC architectures and three grid sizes
analysed in the solitary wave benchmark.

irrespective of the problem size, indicating that communications are not the
major overhead. Instead, resolving the LSM with the present grid resolutions
requires 15 iterations in the φ re-initialisation which triggers the overhead
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from computing WENO reconstructions [46], as observed in Figure 14.
Increasing the resolution up to Ne = 12.3 provides an improvement in

scalability, as shown by the speed up curve, and results for Ne = 98.3 show
that SKL follows a linear increase in Sn, attaining values of E above one. TX2
and EPYC feature an almost linear Sn increase below the ideal threshold and
steadily decrease in parallel efficiency with increasing node count. Overall,
these results suggest that Hydro3D demonstrates good scalability depending
on the overhead from the LSM re-initialisation that appears as the most
computationally demanding task in the solitary wave benchmark.

The breakdown of the computing time (again excluding communications)
is presented in Figure 14 for the smaller and larger problem sizes using two
nodes, including time spent on the LSM advection equations (TLS) with the
time spent on computing the WENO weights for φ accounted separately
as TLS ωk

(see Alg. 1). For the small problem size, Figure 14(a), TLS ωk

represents between 62–77% of the total computing time, with the rest of the
LSM workload, i.e. TLS, in the range of 11–16%. For Ne = 98.3, the relative
contribution from the pressure solver (TP) increases to 17–26% of the total
cost, in turn decreasing the percentage attributed to computing LSM. These
results outline the high additional computational cost of LSM for multi-phase
flows, which normally requires very fine grid resolutions and time steps to
guarantee numerical stability. Considering the workload distribution, the
code spends a similar proportion of time in the various subroutines when
running on the SKL and EPYC systems, whilst on TX2 the overall time
spent in convection, diffusion, velocity update and WENO weights for the
convection scheme are much reduced.

Profiles of communication overhead over the total runtime and MPI func-
tions for this benchmark are presented in Figure 15 for simulations with 2,
8 and 25 nodes and the three Ne adopted. The overall contribution of the
communication operations in the simulation is small for 2 and 8 nodes and
slightly higher for 25 nodes. Only for Ne = 1.5 does the code on TX2 ex-
perience an increase in communication overheads analogous to the results
obtained for the other benchmark cases. The MPI directive consuming most
of the communication time is the collective MPI ALLREDUCE required during
the LSM, as indicated in Alg. 1. The synchronisation primitive MPI WAIT is
the second MPI function consuming most communication time, which rep-
resents approx 2–6% of the total runtime for each case i.e., Hydro3D spends
very little time constrained by communication in this benchmark.
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Figure 14: Breakdown of the main computing components for the solitary wave benchmark
case when running on two nodes. Comparison between TX2 (left), SKL (centre) and EPYC
(right) for meshes Ne = 1.5 (a) and 98.3 (b). TP = Poisson pressure solver, Tωk

= WENO
weights, TD = diffusion, TC = convection, Tup = velocity update, TLS = LSM, and TLS ωk

WENO weights in LSM.

6. Conclusions

This paper compares the performance of three cluster systems charac-
terised by distinctive node architectures, namely Intel Skylake (SKL), ARMv8.1
ThunderX2 (TX2) and AMD EPYC-Rome (EPYC), in applications based
on a state-of-the-art, in-house Computational Fluid Dynamics (CFD) code,
Hydro3D. This study investigated the code’s multi-node performance and
scalability in three benchmarks comprising several problem sizes and using
up to 8,000 cores. The benchmark cases considered were the lid-driven cav-
ity flow, the Taylor-Green vortex and the propagation of a solitary wave in
a numerical tank, designed to perform computations of increasing difficulty
and expense. The computing workload is varied changing the computation of
the convective fluxes with 4th-order central differences and 5th-order WENO
schemes for the first two cases respectively, whilst in the wave simulation
the level-set method equations are computed, also with the 5th-order WENO
scheme.

The EPYC-based system provides the fastest computing times for all
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Figure 15: Comparison of the percentage of runtime spent on communication (top) when
running on 2, 8 and 25 nodes of the three systems; and distribution of MPI functions for
the cases with SKL (red line) and EPYC (green line)systems. Solitary Wave benchmark
case.

benchmark cases irrespective of the problem size, attributed to the 64 cores
per node in comparison to the 40-core SKL nodes and larger clock frequency
than the TX2 processors. TX2 performance for small problem sizes features
sub-optimal strong scalability as the communications overhead notably in-
creases. However, increasing the number of grid cells leads to reduced differ-
ences between TX2 and SKL with both demonstrating similar runtime values,
although these were greater than those obtained with EPYC processors. For
the solitary wave case, TX2 achieves better computational performance than
SKL processors for all problem sizes. Nonetheless, a notable feature in most
cases is that Hydro3D needs to improve its strong scalability on the TX2,
especially when the number of grid cells is relatively small, resulting from an
overhead in blocking MPI communications.

This study suggests that the major drawback when adopting high-order
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WENO schemes is their larger computing overhead compared to central dif-
ferences. Results show that in simulations with the WENO scheme the code’s
performance on TX2 is similar to that on SKL processors. This suggests that
CFD codes using finite volumes or finite elements in unstructured grids rely-
ing on mesh connectivity can demonstrate good performance when running
on TX2 processors, as such schemes are computationally more demanding
than central differences.

Results shown here are of interest to the HPC and CFD communities,
both for those working on direct-numerical and large-eddy simulation appli-
cations whose computational cost is extremely high, as well as those doing
engineering-oriented simulations. The present study is based on the perfor-
mance of a structured-grid CFD code, using central differences as widely used
numerical schemes to compute the viscous and convective fluxes in LES and
DNS.

Considering the maturity of the ARM ecosystem for HPC, we note that
Hydro3D required no modification of the codebase to either compile or run
on the TX2 system. The Cray compilers and other performance tools used
in these tests e.g., profilers and debuggers, show a production-level maturity.
From the user perspective, they offer a similar interface to other commercial
HPC tools and produced no issue or error during their use.

Future work will develop in two directions: first, a study of the energy
usage of these systems. The present study has centred on raw computing
times, but energy efficiency is of increasing concern in the field of HPC and
this will be explored with the balance between FLOP/s and Watts. Second,
an increased focus on single-node performance. The current work has con-
centrated on the scalability and bottlenecks at the cluster/multi-node level
and the next step will be to explore in greater detail the performance of the
code at the node level.
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rianâ€“Lagrangian approach to predict the dynamics of bubble plumes,
Ocean Modelling 97 (2016) 27–36.

[31] F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square
of the velocity gradient tensor, Flow, Turbulence and Combustion 62
(1999) 183–200.

[32] M. Breuer, Large eddy simulation of the subcritical flow past a circular
cylinder: Numerical and modeling aspects, International Journal for
Numerical Methods in Fluids 28 (1998) 1281–1302.

38



[33] B. Costa, W. Don, High order Hybrid central—WENO finite difference
scheme for conservation laws, Journal of Computational and Applied
Mathematics 204 (2007) 209–218.

[34] J. Fernández-Fidalgo, X. Nogueira, L. Ramı́rez, I. Colominas, Ana pos-
teriori, efficient, high-spectral resolution hybridfinite-difference method
for compressible flows, Computer Methods in Applied Mechanics and
Engineering 335 (2018) 91–127.

[35] C.-W. Shu, S. Osher, Efficient implementation of essentially non-
oscillatory shock-capturing schemes, II, Journal of Computational
Physics 83 (1989) 32–78.

[36] M. Sussman, A level set approach for computing solutions to incompress-
ible two-phase flow, Journal of Computational Physics (1994) 146–159.

[37] A. Chorin, Numerical solution of the Navier-Stokes equations, Math
Comput 22 (1968) 745–762.

[38] N. Fehn, W. Wall, M. Kronbichler, Efficiency of high-performance dis-
continuous Galerkin spectral element methods for under-resolved turbu-
lent incompressible flows, Int J Numer Meth Fluids. 88 (2018) 32–54.

[39] J. Fernández-Fidalgo, S. Clain, L. Ramı́rez, I. Colominas, X. Nogueira,
Very high-order method on immersed curved domains for finite difference
schemes with regular Cartesian grids, Computer Methods in Applied
Mechanics and Engineering 360 (2020) 112782.

[40] A. Calderer, S. Kang, F. Sotiropoulos, Level set immersed boundary
method for coupled simulation of air/water interaction with complex
floating structures, Journal of Computational Physics 277 (2014) 201–
227.

[41] J. Lee, J. Skjelbreia, F. Raichlen, Measurements of velocities in solitary
waves, Journal of the Waterway, Port, Coastal and Ocean Division 108
(1982) 200–218.

[42] S. S. Shende, A. D. Malony, The tau parallel performance system, The
International Journal of High Performance Computing Applications 20
(2006) 287–311.

39



[43] D. Hackenberg, R. Oldenburg, D. Molka, R. Schöne, Introducing
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