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Abstract

Radiation damage to the steel material of reactor pressure vessels is a major
threat to the nuclear reactor safety. It is caused by the metal atom cascade
collision, initialized when the atoms are struck by a high-energy neutron. The
paper presents MISA-MD, a new implementation of molecular dynamics, to
simulate such cascade collision with EAM potential. MISA-MD realizes (1) a
hash-based data structure to efficiently store an atom and find its neighbors,
and (2) several acceleration and optimization strategies based on SW26010
processor of Sunway Taihulight supercomputer, including an efficient poten-
tial table storage and interpolation method, a coloring method to avoid write
conflicts, and double-buffer and data reuse strategies. The experimental re-
sults demonstrated that MISA-MD has good accuracy and scalability, and
obtains a parallel efficiency of over 79% in an 655-billion-atom system. Com-
pared with a state-of-the-art MD program LAMMPS, MISA-MD requires
less memory usage and achieves better computational performance.
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MARY
Program Title: MISA-MD
CPC Library link to program files: (to be added by Technical Editor)
Developer’s repository link: (if available)
Code Ocean capsule: 10.24433/CO.4041607.v1
Licensing provisions(please choose one): BSD 3-clause
Programming language: C and C++
Supplementary material:
Journal reference of previous version: *
Does the new version supersede the previous version?:*
Reasons for the new version:*
Summary of revisions:*
Nature of problem(approx. 50-250 words):
Molecular dynamics(MD) is a significant method to simulate the cascade collision
progress of the key material in nuclear reactors. However, there are many difficul-
ties for existing MD programs to perform large scale cascade collision simulations.
Thus, it is especially essential to develop a new MD software to extend cascade
collision simulations to larger spatial scale and longer temporal scale.
Solution method(approx. 50-250 words):
To achieve accuracy and effective MD cascade collision simulation, the EAM po-
tential is selected to calculate interactional force between atoms in the simulation
system. To extend MD simulation to larger scale, we proposed a hash-based data
structure/algorithm to efficiently store an atom and find its neighbors, and several
acceleration and optimization strategies based on SW26010 processor of Sunway
Taihulight supercomputer.
Additional comments including restrictions and unusual features (approx. 50-250
words):

* Items marked with an asterisk are only required for new versions of programs

previously published in the CPC Program Library.

1. Introduction

As a sustainable, clean and renewable energy source, nuclear energy is
a promising solution to global energy crisis and environmental pollution.
Nevertheless, how to ensure the safety of the nuclear reactor is a crucial issue.
Many components of a reactor are exposed to a radiation environment that
is of high temperature and high pressure, and is full of high-energy neutrons.
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Particularly, reactor pressure vessel (RPV), a unique and non-replaceable
part, is the last protection of the fission reactor core. Its integrity directly
determines the service time of the whole reactor.

Radiation damage to the key material of RPV is a major threat to the
integrity of RPV. Existing research revealed that the damage is initiated
when a given lattice atom, namely, primary knock-on atom (PKA), is struck
by a high-energy neutron [1, 2, 3, 4]. Then, PKA will continue to perform
a sequence of collisions with other atoms. Afterwards, the system will gen-
erate the secondary, the third, and the subsequent higher-order knock-ons
until all the energy initially imported to the PKA has been dissipated [1, 2].
This process, called cascade collision, usually stops within tens of picosec-
ond (1ps = 10−12 s) approximately. It is almost impossible to observe in
experiment.

To study material evolution behavior at atomic scale, molecular dynam-
ics (MD) [5, 6] can be applied to the simulation of the cascade collision.
Due to the high computational cost required by the simulation on large spa-
tial scale and long temporal scale, parallel molecular dynamics simulation
is especially essential. There have been a number of parallel molecular dy-
namics programs [7, 8, 9]. Nevertheless, existing programs are limited in the
functionality (e.g. direct defect analyzing, adaptive timestep length, batch
execution of simulations) and the execution efficiency. Consequently, they
are not applicable to the large-scale cascade collision simulation.

This paper proposes MISA-MD, a new parallel MD implementation, to
achieve the efficient and accurate cascade collision simulation on large spa-
tial scale and long temporal scale. There are various potential functions
used in MD simulation under diffrent fields, such as Tersoff potential [10]
and Lennard-Jones (L-J) potential [11], for calculating the interaction among
atoms. To improve the simulation accuracy, MISA-MD adopted Embedded
Atom Method (EAM) potential [12], a complex but pretty accurate potential
function, which can provide an effective interatomic description for metallic
system. To improve the runtime performance, MISA-MD designed and re-
alized a new hash based data structure for efficient atom storage and quick
neighbor atom indexing. Several acceleration and optimization strategies
were also applied to ensure that MISA-MD can make full use of SW26010
processors on Sunway Taihulight supercomputer.

The key contributions of this paper are summarized as follows:

1. A new hash based data structure for storing and indexing lattice-based
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atoms;
2. A new method of EAM potential tables storage and interpolation on

SW26010 processor;
3. A new coloring method to avoid the write conflicts on computing pro-

cessing elements (CPEs) of SW26010 processor.
4. New double-buffer DMA and data reuse strategies to reduce the over-

head of data transmission from main memory to local device memory
(LDM) of CPEs.

The remainder of this paper is organized as follows. Section 2 presents the
background knowledge on MD and Sunway Taihulight supercomputer, and
discusses the related work. Section 3 introduces the new atom storage and
neighbors indexing data structure. Section 4 discusses the implementation on
Sunway TaihuLight supercomputer and the optimization strategies. Section 5
presents a performance analysis and validation of MISA-MD. The last section
summarizes the conclusion and the future work.

2. Background

2.1. Molecular Dynamics Method and Challenges

Molecular dynamics is a classic method for simulating particle systems. It
has been widely used in many domains, such as material science, chemistry,
and biomolecular science [13]. A generic MD workflow is shown in Fig. 1.
In MD, an atom/molecule is treated as a particle. For initialization, each
particle is created with an initial coordinate and a velocity. Then, the com-
putation falls into a loop of time steps to solve Newton’s equations of motion.
In each time step, the computation updates every particle as follows. First,
calculate the force applied to each particle to solve its acceleration a. The
force can be calculated by interactional potential functions (e.g. Lennard-
Jones potential and EAM potential) in a particular system. We will discuss
the potential function in Section 2.2 in details. Second, update the particle
velocity via the integral of acceleration in a short ∆t, where ∆t is the length
of a time step. Third, update the particle coordinate using the integral of
velocity in ∆t. Finally, the corresponding ensemble, such as NVT or NPT
ensemble, is applied, and some physical quantities may also be calculated
before the loop moves into the next time step.

The interaction forces to be computed among particles can typically fall
into two categories: long-range and short-range [14]. Long-range force calcu-
lation requires interactions of each particle contributed by the global system.
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Start

Give atoms initial ~ri and ~vi ac-
cording to input, set ~ai = 0.0,
t = 0.0, n = 0, choose short ∆t.

Get force of each atom: ~Fi =
−~∇riU (~r1, ~r2, . . . , ~rN) and ~ai = ~Fi/mi

Apply newton’s law of motion at short ∆t:
Update velocities: ~ri = ~ri +

~vi∆t + 1
2
~ai∆t

2+ more accurate terms;
Update coordinate: ~ai = ~ai +
~ai∆t+ more accurate terms.

Apply boundary conditions, temperature and ensemble(e.g. NTP,NVE) conditions.

Calculate and output physical quantities of interest.

Move time and iteration step forward: t = t+ ∆t, n = n+ 1.

Finish

Otherwise

Reach the given time steps or conditions

Figure 1: A standard workflow of MD applications. In the time step loop, it will repeat
to calculate force, update velocities and position and perform constraint condition as they
need.

While in short-range force calculation, for any particle p, only its neighbor
particles that are located within a cut-off radius is considered to contribute to
the force that applied to p. In fact, short-range force calculation is adopted
by most particle systems in MD simulation, including particle interaction
modeled by EAM or L-J potential.

Although most MD implementations are parallel, it is still challenging
to realize the simulation of large spatial scale and long temporal scale. For
spatial scale, the simulation is mainly restricted by memory storage. Given a
fixed memory capacity, the more particles can be stored (i.e, the less memory
is required by a single particle), the larger spatial scale MD simulation can
reach. For temporal scale, the faster the computation of each time step is,
the more time steps can be computed within the same time limitation. For
MD simulation with computation of short-range interaction forces, the time
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cost of each time step is mainly affected by neighbor particle indexing and the
force calculation. To reduce the time cost of each time step, we must manage
the particle data and index neighbor particles as efficiently as possible.

2.2. EAM Potential

Different from pair potentials (e.g. Lennard-Jones and Morse), embedded-
atom method potential is able to provide a better interatomic description for
metallic system. In EAM, the energy of an atom i is determined by two
aspects [12]: (1) the embedded energy of the atom embed in electron cloud
which represents the many-body effects in the interaction, and (2) the pair-
wise potential of atomic interaction. EAM potential can be more complex
compared with pair potentials. In Eq. (1), Ei denotes the energy of atom
i, and rij represents the distance between atom i and its neighbor atom j.
Three kinds of functions are presented in Eq. (1):

1. ρβ(r): It describes the contribution to the electronic density at the site
with distance of r from atom j whose type is β.

2. Fα(ρ): The embedding energy function F returns the energy associated
with placing an atom of type α in the electron environment described
by ρ.

3. φαβ(rij): φαβ is pair-wise potential function, which describes the pair
potential between two atoms i of type α and j of type β. And rij
denotes the distance of atom i and j.

Ei = Fα

(∑
j 6=i

ρβ(rij)

)
+

1

2

∑
i 6=j

φαβ(rij) (1)

The total force ~Fi applied to atom i can be expressed by the negative
gradient of potential energy of the simulation system, as descripted in [15, 16].
Then, we can calculate the force that is applied to atom i from neighbor atom
j using Eq. (2), where: Fi(ρ) and ρi(r) denote the embedding energy function
and electronic density function associated with type of atom i respectively;
φij(r) denotes the pairwise potential function associated with types of atom
i and j; ~ri and ~rj represent the position vector of atom i and j, respectively,
and rij is the distance of atom i and j; ρ̄i denotes the electronic density
contributed by all neighbor atoms of atom i.

In a system with n atom types, n×(n+ 1) /2+n+n+n functions should
be determined, including n×(n+ 1) /2 partial derivative of pairwise potential

7



~Fij = −

[
∂Fi(ρ)

∂ρ

∣∣∣∣
ρ=ρ̄i

∂ρj(r)

∂r

∣∣∣∣
r=rij

+
∂Fj(ρ)

∂ρ

∣∣∣∣
ρ=ρ̄j

∂ρi(r)

∂r

∣∣∣∣
r=rij

+
∂φij(r)

∂r

∣∣∣∣
r=rij

]
~ri − ~rj
rij

(2)

functions, n partial derivative of embedding energy functions, n electronic
density functions and n partial derivative of electronic density functions. For
example, a system with two different atom types (i.e., α and β), we have

to calculate following 9 functions: ρα(r), ρβ(r),
∂φαα(r)

∂r
,
∂φαβ(r)

∂r
,
∂φββ(r)

∂r
,

∂Fα(ρ)

∂ρ
,
∂Fβ(ρ)

∂ρ
,
∂ρα(r)

∂r
,
∂ρβ(r)

∂r
.

To calculate the force of each atom using EAM potential according to
Eq. (2), the following steps must be performed:

1. Calculate electronic density contribution from neighbor atoms for each
atom i: ρ̄i =

∑
k 6=i ρk (rik);

2. Calculate value of partial derivative of embedding energy function for

each atom i at ρ̄i:
∂Fi(ρ)
∂ρ

∣∣∣
ρ=ρ̄i

;

3. Calculate value of partial derivative of pairwise potential function for

every two atoms i and j in cut-off radius:
∂φij(r)

∂r

∣∣∣
r=rij

;

4. For every two atoms i and j in cut-off radius, calculate each other’s
contribution value of partial derivative of electronic density function

via: ∂ρi(r)
∂r

∣∣∣
r=rij

and
∂ρj(r)

∂r

∣∣∣
r=rij

;

5. Here, all terms in Eq. (2) are avaiable, then we can calculate force ~Fij
of two atoms i and j in cut-off radius via Eq. (2). For each atom i,
traverse all its neighbor atoms j, add force contributed by j to atom i.
Then we can obtain the total force for each atom.

2.3. Sunway TaihuLight and SW26010 Many-Core Processor

Sunway TaihuLight [17, 18] is a supercomputer with a peak performance
of 125.3 PFlops and a sustained Linpack performance of 93 PFlops. It was
manufactured by National Research Center of Parallel Computer Engineering
and Technology (NRCPC), and is hosted at National Supercomputing Center
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in Wuxi. It comprises 40960 homegrown SW26010 many-core processors [18]
which are connected by a 2-level fat-tree topology network.

The SW26010 processor uses on-chip heterogeneous many-core architec-
ture. A SW26010 consists of four core groups (CGs) that are connected via
the network on chip (NoC) and a system interface (SI) [19]. A CG consists of
a management processing element (MPE), a computing processing element
(CPE) cluster, and a memory controller (MC). Every CG has its own mem-
ory space, and the main memory is connected to the MPE and CPE cluster
through the MC. Each CPE cluster contains 64 CPEs that are arranged in
an 8×8 grid. The SI is used to connect the processor itself and other devices
outside.

The MPE and CPE are both 64-bit reduced instruction set computer
(RISC) cores. CPE is simpler than MPE and can only run in user mode.
Moreover, CPE is a core with only 64 KiB user-controlled local device mem-
ory (LDM), while MPE is connected with a 8 GB DDR3 memory via MC.
For memory accessing, CPE can access main memory directly by global
load/store instructions (gld/gst), or by direct memory access (DMA) which
can be much faster than gls/gst. At CPE cluster level, each CPE has 8 col-
umn communication buses and 8 row communication buses to provide fast
register communication across the 8 × 8 CPE grid, which is a significant
capability to share data inside CPE cluster.

2.4. Related Work

Many molecular dynamics programs were developed by numerous research
teams. Sandia National Labs developed LAMMPS [7] for classical molecular
dynamics simulation. However, the overhead of maintaining the neighbor
list is very high during a large-scale simulation (e.g. 1010 particles). Duan
et al.[8] adapted LAMMPS for Sunway many-core architecture. The new
program achieved over 2.43 PFlops performance for a Tersoff simulation us-
ing 16,384 nodes. However it only supports L-J potential and Tersoff po-
tential, rather than the EAM potential that is more suitable for metallic
systems. GROMACS[20] is a widely-used molecular dynamic program in
chemical and biomolecular. SW GROMACS[21] accelerated GROMACS on
Sunway TaihuLight supercomputer. Besides GROMACS, another significant
MD software package for biomolecular simulation is NAMD [22], it is writ-
ten using the Charm++ parallel programming model [23] and is the recipient
of Gordon Bell award in 2002. ls1 Mardyn[9] is another massively parallel
molecular dynamics program using L-J potential[11] to solve the interaction
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among particles. Its main target is the simulation of thermodynamics and
nanofluidics. It achieved a 2.1 × 1013-particle simulation on Hazel Hen su-
percomputer by using 172,032 CPU cores[24]. However, both GROMACS
and ls1 Mardyn cannot simulate the metallic systems with EAM potential.
Crystal MD[25, 26] is a parallel MD program for metal with BCC structure.
It carried out a four-trillion-atom simulation on Sunway TaihuLight super-
computer. SPaSM [27] is a MD implementations and can achieve simulation
of more than 100 billions on BlueGeneL. But there is a lack of functionality
of cascade collision simulation for both CrystalMD and SPaSM.

To support indexing of neighbor atoms within a cut-off radius, several
classical data structures were proposed, such as the neighbor list (or verlet
lists)[28] used in LAMMPS , NAMD and GROMACS, and link cell [29, 9]
used in ls1 Mardyn and SPaSM. In the neighbor list, each atom will create
and maintain a reference to its neighbor atoms and store them in a list. The
neighbor list requires a lot of memory. Link cell splits the simulation box
into a number of cells. In force computation step, for any atom a in cell c,
link cell must traverse all atoms in cell c and all atoms in neighbor cells of c.
which may index many unnecessary atoms out of cut-off radius. Thus new
design of data structure for efficient atoms storing and quick neighbor atoms
indexing is essential.

3. Hash Based Data Structure

To support efficient atom storing and quick indexing of neighbor atoms,
a new hash-based data structure is designed for MISA-MD. The hash-based
data structure consists of two parts. The first one is Lattice List used to ef-
ficiently store atoms, and the second one is Neighbor Offset Index targeting
quick neighbor atom indexing. In lattice list, a lattice array will be estab-
lished as a hash array, and a red-black tree will also be setup for storing
elements with hash collision. The hash function maps each atom to its near-
est lattice in cartesian coordinate system. Fig. 2 illustrates this idea in a
2d simulation box. For neighbor offset index, the offset value of lattice id is
pre-calculated for later neighbor atoms indexing. To traverse neighbor atoms
of a atom, the id of nearest lattice of the atom will be calculated first, then
we can obtain neighbor lattices by adding the nearest lattice id and offset
lattice id. Fig. 3 shows the lattice offset for calculating neighbor atoms.

The complete process of MD calculation based on BCC structure using
lattice list and neighbor offset index data structure is list as following.
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Figure 2: Atoms data structure and indexing method
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Figure 3: Lattice Offset Index for calculating neighbor atoms for BCC structure in 2d
domain. The number in brackets under each lattice size is the coordinate of the corre-
sponding lattice site
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Hash Initialization. At the beginning, a hash array for lattice will be al-
located. In our cascade collision simulation, body centered cubic (BCC)
structure lattice is constructed for iron-based or tungsten-based material, in
which there is an additional lattice site located in the center of each cube
unit. Each element in hash array corresponds to a BCC lattice site. For ex-
ample, in the 2d simulation domain1, the coordinate of each lattice site can
be recorded, as shown in Fig. 3, and the coordinate can then be converted
to hash array index by:

index = 2× boxx × y + x

where boxx and boxy are the lattice size of simulation box of current MPI
process at x and y dimension, respectively. and x and y are the corresponding
lattice coordinates at each dimension. In Fig. 3, boxx and boxy are both equal
to 5, a lattice with coordinate (3, 4) is mapped to the 43rd (2×4×5+3 = 43)
element in hash array. And in 3d simulation domain, the index can be
calculated by:

index = 2× boxx × boxy × z + 2× boxx × y + x (3)

The advantage of this BCC lattice to index mapping method is that we can
store all lattice associated atoms in a compact memory mode. We call the
calculated index of hash array as lattice id. Meanwhile, the lattice id can
also be converted to lattice coordinate easily.

The hash function can calculate lattice coordinate of the nearest lattice
site of a atom and return lattice id of the nearest lattice site. Hash clash
occurs when two distinct atom coordinates passed into the hash function
produce identical lattice id outputs. A empty red-black tree will be created
for storing hash clash atoms and indexed by lattice id. In this case, one
of these atoms is stored in hash array and the left ones are stored in the
red-black tree when hash clash occurs.

Atoms are organized by this hash table. In system initialization step of
simulation, all atoms are placed at the corresponding lattice site. In other
words, there is no hash clash. It is because that any two atoms must corre-
spond to different lattice sites. Therefore, all atoms data are stored in hash
array at initialization step.

1In fact, it is a 3d domain in practice.
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Neighbor Offset Index Initialization. Under this regular lattice structure, list
of offset lattice ids for indexing neighbor lattices in cut-off radius can be
pre-calculated.

Iterate Neighbor Atoms. We can calculate force or other interactions of each
atoms in simulation domain via lattice list and neighbor offset index. Al-
gorithm 1 show the algorithm of iterating all atoms and neighbor atoms to
calculate force.

Note that, for obtaining interaction contributions of neighbor atoms from
neighbor MPI processes conveniently, ghost region is involved. The atoms in
ghost region is also indexed by lattice list together with local atoms located
in real simulation domain.

In the algorithm, the calculation consists of three parts: interactions of
atoms from both hash array, interactions of atoms from hash array and hash
clash, and interactions of atoms from both hash clash. In the first part of
interactions computation, just iterate over the hash array and traverse neigh-
bor lattices of each lattice to obtain interaction contribution from neighbor
atoms that are stored in hash array. In interactions calculation of atoms from
hash array and hash clash, iterate atoms in hash clash, if the atom is not
in ghost area, find its nearest lattice via hash function, then we can traverse
neighbor atoms in hash array by the nearest lattice as center lattice. At last,
it falls into the interactions of atoms in hash clash. It iterate the atoms that
are not in ghost region. For each atom a in iteration, we can find the nearest
lattice of this atom via hash function. Then we can calculate ids of neighbor
lattices by id of the nearest lattice and precalculated offset lattice ids, and
select atoms in hash clash with the neighbor lattice ids, and add interactions
contribution of these ones to atom a.

Hash Update. After finishing each simulation step, the atoms coordinate can
get changed, thus updating of hash index is necessary. Algorithm 2 presents
the steps of hash updating. The hash updating can be divided into two steps:
1) Traverse all elements (or atoms) in hash array. For each valid element,
re-calculate its lattice id via hash function. If array index of the current
element in hash array does not equal to the new calculated lattice id, just
copy this element to hash clash and tag this element as invalid. 2) Traverse
all of atoms in hash clash. For each atom in hash clash that is not located in
ghost region, we can calculate its lattice id via hash function. If the element
in hash array indexed by the re-calculated lattice id is invalid, then copy the
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atom data to hash array, set the element in hash array as valid, and remove
this atom from hash clash.

These two steps above in Algorithm 2 can make sure: 1) If two or more
than two atoms have the identical hash value, only one of them is stored in
hash array, and the left ones are stored to hash clash. 2) If there is a lattice
id (index value in hash array) but no atom in simulation domain corresponds
to this lattice id, the element indexed by the lattice id in hash array must be
invalid. 3) For each non-ghost atom in hash clash, if there is a invalid element
in hash array that is indexed by the hash value of this atom, the algorithm
can remove the atom from hash clash and add it back to hash array.

The advantage of the hashed-based approach is that it can support quick
neighbor searching and efficient atom storing, which use less memory com-
pared than neighbor list method. Denote M as the number of neighbor in
cut-off radius and N as the number of atoms in simulation system. The
memory occupation can be divided as two parts: system atoms and neigh-
bor indexing. For system atoms, both the new hash-based approach and the
neighbor list method need O (N) memory to save system atoms. But for
neighbor indexing, the memory cost of the new hash-based approach will be
O (M), and memory cost of the neighbor list method will be O(MN). How-
ever, the disadvantage is also obvious. The hash-based approach is specific
to solids and would not work well for the system where the atoms are not on
a regular lattice, such as liquids. Because it will cost expensive computation
to handle hash claims when the atoms are not on a regular lattice.

4. Sunway Acceleration and Optimizations

To achieve efficient MD simulation on large-scale clusters and make full
use of the computation ability of SW26010 processor, accelerating computa-
tion of MISA-MD is essential. Results from profile tools show that the EAM
potential computation in MISA-MD, consume more than 80% computation
time. In SW26010 processor, 256 CPEs in 4 core group contribute more than
90% peak performance of the overall processor[30]. Therefore, the code for
accelerating EAM interaction computation on sunway CPEs is implemented.
In current version of MISA-MD, we only consider the acceleration for inter-
action of atoms from hash array due to the fact of low rate of hash clash.

Moreover, it is of great significance to accelerate EAM computation on
SW26010. Because it is another significant approach to extend MD simula-
tion to longer temporal scale besides quick neighbor atoms indexing.
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4.1. Potential Tables Storage and Interpolation

In EAM computation, the n×(n+ 1) /2+n+n+n functions for n different
atom types are determined by spline interpolation from a table with dispersed
values called “potential table”.

For each to be determined function as well as its partial derivative, N
equidistant dispersed points are presented in potential table. For instance,
to determine electronic density function of atom type β, point set Pβ =
{(r1, ρ1), (r2, ρ2), (r3, ρ3), · · · , (rN , ρN)} is given in table, where ri is distance
and ρi is value of electronic density under distance ri, i = 1, 2, · · · , N . We are
expected to find a electronic density function ρβ(r) and its partial derivative

function
∂ρβ(r)

∂r
for r ∈ [r1, rN ].

To perform interpolation on a point set P = {(x1, y1), (x2, y2), (x3, y3), · · · , (xn, yN)}
with condition of x1 < x2 < · · · < xN and x2 − x1 = x3 − x2 = · · · =
xN − xN−1 = h, a cubic polynomial function Si(x) = ai(x − xi)

3 + bi(x −
xi)

2 + ci(x − xi) + di is selected for each segment specified by two adja-
cent point to approximate the undetermined function in spline interpolation.
Then we can calculate the coefficients ai, bi, ci, and di of Si(x) on each
segment, as well as coefficients ei, fi and gi for partial derivative of Si(x):
S ′i(x) = ei(x − xi)

2 + fi(x − xi) + gi. After each functions is determined,
then these seven coefficients on each segment can be stored for later EAM
computation.

In our cases, to simulate cascade collision of a pure Fe system using MISA-
MD, a potential table file from [31] is provided, which contains 3 potential
tables (one pair-wise potential table for Fe-Fe, one for embedding energy for
Fe and one for electronic density for Fe). Each potential table above contains
5000 dispersed data values used for interpolation to determine correspond-
ing potential function and it partial derivative function. This means that,
we need at least 820 KiB memory to store the interpolation coefficients for
single-atom-type system (3 potential tables × 7 coefficients × 5000 segments
× 8 bytes per double precision floating point value), which is much large
than 64 KiB LDM of CPE. Further, if the target system is an alloy system
containing multiple types of atoms, the storage of coefficients can be much
larger. Thus, the interpolation coefficients can not be loaded into the LDM
of CPE at one time.

To overcome the small LDM of CPE, we copy the origin values of one
table to LDM of CPE before using it, whose size is only 39 KiB. This thought
is inspired by [32]. Then, all the coefficients of Si(x) and S ′i(x) can be cal-
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culated on the fly using the origin data and interpolation method. But the
shortcoming of this method is obvious. It can only calculate single-atom-type
system, because for alloy system, the LDM of CPE cannot hold all necessary
origin data.

To deeply optimize the memory storage of origin potential table data,
we exchange order of offset list iteration and atoms iteration in Algorithm 1
(move the offset list iteration to the outermost loop and move atoms itera-
tion of x,y,z dimension to inner loop). Because the origin potential table is
associated with atoms distance r, in each offset list iteration, we can obtain
the minimum and maximum distance of neighbor atoms in atoms iteration
firstly, and then we can only load part of the origin potential data that is in
this distance range, rather than the whole origin data. With partial potential
data loading in each offset list iteration, we can free up more memory space
that can be used for atoms storage. But the number of potential data copies
from main memory to LDM can increase due to the partial potential data
loading.

To overcome the large overlap of potential data copies, we divide the
origin data of potential tables into some blocks and each CPE pre-load a block
of origin potential tables at initialization step. Then the origin potential
tables are stored on CPEs distributedly. And in latter offset list iteration,
the partial potential data is loaded from some specific CPEs via fast register
communication, instead of main memory.

4.2. Tasks Assignment on CPEs

In fact, Newton’s third law can be applied for force calculation. As de-
scribed at the end of Section 2.2, thanks to Newton’s third law, the amount of
calculation of atoms’ electronic density contribution at step 1) and and force
contribution at step 5) as well as pair-wise potential at step 3) and deriva-
tive of electronic density at step 4) can halve. But the problem of threads’
write conflict on sunway CPEs must be solved before involving this trick.
When we assign computation tasks of one MPI processor to 64 CPE threads
(In sunway native programming, one CPE can launch a light-weight work-
ing thread using Athread library [33].), spatial decomposition of simulation
domain is achieved. We may split the domain owned by the MPI processor
into 64 blocks, and each CPE thread would carry out the EAM calculation of
one block of them. But the write conflict will occur when writing calculated
results back to main memory on MPE if there is common neighbor atom for
two adjacent CPE threads, as shown in Fig. 4.
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To overcome this difficulty, we proposed a coloring method for sunway
CPE threads, which is inspired by SDC (Spatial Decomposition Colouring)
method[34, 35] used in OpenMP program model on multi-core platforms.
Fig. 5 shows an example of the coloring result. In coloring method, we split
the domain space into 128 blocks in z dimension, where 128 is twice of the
number of CPEs, and each block is colored as red or blue and make sure there
is no adjacent blocks with the same color. Then the calculation is divided
into two steps to avoid write conflict. In the first step, each CPE thread
is assigned a block with red color, and the next step, each CPE thread is
assigned a block with blue color. With these two steps, all blocks can be
calculated without write conflict.
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4.3. Double-Buffer DMA and Data Reuse Strategies

Naturally, the domain block assigned to a CPE may contain a large num-
ber of atoms which can not be transmitted to CPE at one time due to the
restriction of 64 KiB LDM. Thus, the domain block is split into numbers of
small data block for CPE computation. In traditional method, CPE would
request a memory block of atoms data from main memory, then it start
computation once the atoms data transmission finish. After computation
completes, atoms data will put back to main memory and then prepare to
access next data block for next round computation repeatedly until all data
blocks assigned to this CPE is completed. We found that the repeatedly
DMA data accessing has a high overhead, which may leading a poor per-
formance. Therefore, a double-buffer DMA strategy is taken to overlap the
DMA data transmission and EAM potential computation, as shown in Fig. 6.
In double-buffer DMA strategy, the LDM is divided into three blocks, one is
for origin potential data, the second and the third ones are both buffer mem-
ory for each other. Expect for the initial DMA getting and the last DMA
putting operation, when performing computation of current round, the DMA
putting operation of previous round or the DMA getting operation of next
round can be performed simultaneously. By overlaping DMA data transmis-
sion and EAM potential computation, the computation efficiency on CPEs
is greatly improved.

Double buffer strategy can overlap DMA and computation effectively. To
reduce the overhead of DMA further, another optimization, called data reuse,
is applied. Considering atoms data block of current calculation round, a part
of them can be actually the ghost atoms data of next calculation round, and
its ghost data can also be the ‘real’ atom data of next round. Thus, we can
keep the these two part of data in the LDM of CPE for usage of next round
calculation, which can reduces the amount of data transferred to LDM in
each DMA operation.
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Figure 7: Evolution of number of displacement cascades’ defects for different PKA energy
at 600K temperatures

5. Evaluation

This section presents the evaluation on single core group performance,
scalability, and accuracy of cascade collision simulations. As a comparison,
we also compared memory usage and performance with LAMMPS on Sunway
and Intel platforms.

5.1. Accuracy and Case Study

In order to validate the accuracy of MISA-MD, we have performed sev-
eral cascade collision simulations of different PKA energies and directions. In
our cases, the PKA energy settings are 1.0 keV, 5.0 keV, 10.0 keV, 15.0 keV,
20.0 keV, 25.0 keV and 30.0 keV, and PKA directions includes 〈1, 2, 2〉, 〈1, 3, 5〉
and 〈2, 3, 5〉. In each simulation instance, a 80a0×80a0×80a0 (where a0 is lat-
tice constant) simulation box containing 1 024 000 Fe atoms is involved, and
the primary knock-on atom is placed at position of (40a0, 40a0, 40a0) (center
of simulation box) with a corresponding velocity associated with PKA en-
ergy. For each PKA energy and each PKA, simulations are performed three
times to obtain the average results and analyze the number of frenkel pairs
in simulating box over evolution time. As shown in Fig. 7a. Besides, we
also tested on LAMMPS using EAM potential with the same input parame-
ters. Fig. 7b shows the evolution of frenkel pairs numbers for different PKA
energies at 600K temperatures from simulation results of LAMMPS.
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(a) system configuration
after 0.1 ps of PKA gener-
ation within 424 Frenkel
pairs.

(b) system configuration
after 0.8 ps of PKA gener-
ation within 3307 Frenkel
pairs.

(c) system configuration
after 5.5 ps of PKA gener-
ation within 190 Frenkel
pairs.

(d) system configuration
after 26.0 ps of PKA gen-
eration within 26 Frenkel
pairs.

Figure 8: MISA-MD visualization of system evolution at different time under PKA energy
of 15kev and direction of 〈1, 3, 5〉.

Comparing Fig. 7a and Fig. 7b, their evolution curves of frenkel pairs
number analyzed from simulation results have the same trend under varies
of PKA energies. The number of frenkel pairs of MISA-MD and LAMMPS
both grow to a peak rapidly after a short time of PKA generation and then
quench from peak value to stable value. As a case of this process, Fig. 8
visualizes process of cascade collision simulated by MISA-MD, in which the
spatial distributions of frenkel pairs at different evolution stages under PKA
energy of 15kev and incidence direction of 〈1, 3, 5〉 are presented. Moreover,
with a large PKA energy, the peak would appear later with a larger peak, and
a higher value of frenkel pairs survives at stable stage. By comparing peak
time, peak value, stable time and stable value of MISA-MD and LAMMPS
quantitatively, they are all similar and within acceptable tolerances. And
the number of survived frenkel pairs pairs also meet the classical NRT model
established by Norget [36].

5.2. Single Core Group Evaluation

To test the computational efficiency of code accelerated by 8 × 8 CPEs,
we performed performance test on single core group with and without CPEs
acceleration. In this test case, a 200a0 × 200a0 × 256a0 (where a0 is lattice
constant) simulation box was involved and simulations of 10 time steps was
performed. Table 1 shows the execution time and speedup of case with MPE
only and case with MPE plus 64 CPEs, which indicates our MISA-MD code
obtains approximate 56 acceleration speedup with computation on CPEs.
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5.3. Comparison with LAMMPS

In this subsection, we compare the memory usage and computational
performance of MISA-MD and LAMMPS on Sunway and Intel platforms.
For LAMMPS, the current latest version, stable 3Mar2020, is selected to
be compared. As the EAM computation of LAMMPS does not supported
Sunway CPEs architecture, thus, we perform performance tests of LAMMPS
and MISA-MD using MPEs only on Sunway platform.

5.3.1. Memory usage

The memory usage of MISA-MD and LAMMPS is compared at runtime
to demonstrate the superiority of our hash based data structure. We first
apply the same scale of BCC box to MISA-MD and LAMMPS, and monitor
the average memory usage of both programs. In case 1 and case 2 in Table 2,
simulation box of 600 × 600 × 600 containing 4.32 × 108 atoms is applied,
and 120 MPI processors is involved for both MISA-MD and LAMMPS. The
results of case 1 and case 2 show that the memory usage of LAMMPS is 2.7
times larger than MISA-MD. In the second test case set, as shown in case
3 and case 4 in Table 2, we use the full node memory for both MISA-MD
and LAMMPS simulation, and record the maximum simulation box they can
reach. The results show that, given the same memory resource, MISA-MD
can simulate much larger scale than LAMMPS. In more detail, the number
of atoms MISA-MD can simulate is 4.39 times than LAMMPS can reach.

For computing efficiency, LAMMPS uses neighbor lists (Verlet lists) to
keep track of nearby particles. In the above test cases, the average number
of each atom’s neighbor is 56 in LAMMPS. Thus, it would takes 56×4 = 224
bytes to index neighbor atoms for each atom, in which each neighbor index
takes 4 bytes. In test case 4 in Table 2, the neighbor index memory occupies
38.86% of the total memory. While in MISA-MD, each atom only occupy 104
bytes for storing basic atoms information (such as velocity, electron charge
density), and neighbor atoms is indexed by index offsets which only consume
several KiB memory. Therefore, the new hash based data structure in MISA-
MD can efficiently reduce the memory usage and can expand MD simulation
to larger scale.

5.3.2. Computational Performance

The execution time is another impact to expand the scale of MD simula-
tion. We expect simulation program can execute as fast as it could, thus it
can simulate more time steps in the same spatial scale or finish as soon as
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Figure 9: Computational performance comparison of MISA-MD and LAMMPS on Sunway
Taihulight and Intel platforms with x axis logarithmic scaled. Simulation time values are
annotated on the top of bars.
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possible in the same temporal and spatial scale under the given computing
resources.

To compare the performance between MISA-MD and LAMMPS, test
cases with fixed number of atoms are designed for both MISA-MD and
LAMMPS simulation. We start our tests for MISA-MD and LAMMPS on
Sunway-Taihulight and TianHe-2 supercomputer. On Sunway-TaihuLight,
both MISA-MD and LAMMPS were compiled using “-O2” optimization flag
by sw5gcc/sw5g++(a customized C/C++ compiler based on gcc version
5.3.0). It is worth noting that, CPEs acceleration of MISA-MD is disabled
for principle of fairness because of the lack of EAM calculation acceleration
on CPEs of LAMMPS. On TianHe-2, both the programs were also compiled
using “-O2” optimization flag by the same compiler(gcc 5.3.0).

By giving varies of atoms number and involving 64, 128, 256, 512 and 1024
CPU cores respectively for both MISA-MD and LAMMPS, and recording
execution time of both programs, the results of computational performance
are obtained. The test cases on Tianhe-2 supercomputer use a 512×512×512
box containing 2.68×108 atoms for varies of CPU cores. While for test cases
on Sunway-Taihulight, simulation box of 256×256×256 containing 3.36×107

atoms is introduced.
The performance results for both MISA-MD code and LAMMPS code

on Intel and sunway platform are shown in Fig. 9. On Sunway platform,
compared with LAMMPS package, computational performance of MISA-MD
is increased by 19.02% to 132.56% on Sunway-Taihulight. On Intel platform
of TianHe 2, the performance increment of MISA-MD is from 10.46% to
22.67% compared with LAMMPS packages. Results indicate that, MISA-
MD has a better performance than LAMMPS for all performance
test cases above.

In LAMMPS, the neighbor list is updated every few timesteps and its
cost can be quite expensive. While in MISA-MD, hash index can be updated
in each timestep, but the time consuming of hash index updating is much
less than neighbor list updating in LAMMPS if the system does not change
very frequently. In cascade collision simulation of metal materials, position
of most atoms does not change very frequently. Thus, in hash index updating
stage, most atoms’ hash index does not need to be updated, which can lead a
better performance of MISA-MD than LAMMPS. We should also point out
that simulation of other types of crystal material can also be realistic and
operable, and can achieve a quite respectable performance.
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5.4. Scalability

In this subsection, we will discuss our study on the scalability of our
MISA-MD code on Sunway TaihuLight supercomputer. We use cascade col-
lision cases of pure α−Fe system at temperature of 600 K as the case for the
scalability tests.

For the strong scalability, a simulation box with 655 billion (6.55× 1011)
atoms is presented and take the performance of 520 000 cores (8000 core
groups) as baseline. Fig. 10a shows the parallel efficiency of this case for
strong scalability when the number of cores(including CPE cores) varies from
520 000 to 8 320 000. We can found that when the number of atoms per core
group drops to 1/16 of the number, the parallel efficiency drops from 100%
to 79.55%, which is quite great for the parallel efficiency.

The weak scalability performance is shown in Fig. 10b. In the weak
scalability tests, we initialize the simulation system with 8.39 × 106 atoms
per core group (MPI process) and take the performance of 1040 cores (16
core groups) as baseline. It can be seen that there is almost no performance
loss as the scale increase. The parallel efficiency only goes down to 98.97%
when the number of cores is increased to 512 times of the baseline.

Results from both strong scalability and weak scalability indicate that
our MISA-MD code have the ability to expand MD simulation to larger scale
with large scale parallelism. Moreover, we also achieve 3.02 × 1013 atoms
cascade collision simulation at 131 072 core groups on Sunway TaihuLight
supercomputer. To our best knowledge, it holds the world record of the
largest molecular dynamics simulation currently.

6. Conclusion

In this work, a new molecular dynamics code, MISA-MD, is developed
for simulating material evolution in cascade collision. As a basic innova-
tion, a new hash based data structure is proposed for efficient atoms storage
and quick neighbor indexing. To fully utilize the performance of SW26010
processor, the EAM potential interaction computation is also implementa-
tion on Sunway TaihuLight with some efficient acceleration and optimization
strategies, including a coloring method for avoiding writing conflict on sun-
way CPEs, double-buffer DMA and data reuse strategies etc. With the new
data structure and accelerating of EAM interaction computation on SW26010
processor, we can extend MD simulation to larger temporal scale and longer
spatial scales. It is worth noting that, many of our strategies are general
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Figure 10: Results of strong scalability and weak scalability performance tests.
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and could also be implemented in other multi-core processors and heteroge-
neous platforms. For example, the coloring method for sunway CPEs can
be easily migrated to OpenMP multiple threads program model or CUDA
platforms. With these methods above, performance of 79.5% parallel effi-
ciency is obtained in strong scaling simulation on Sunway TaihuLight system,
and simulation of more than thirty-trillion atoms is performed using 131 072
sunway core groups. Moreover, experiments show that MISA-MD provides
high accuracy of cascade collision simulation and has less memory overhead
and higher performance compared with classical molecular dynamics code
LAMMPS.

Moreover, MISA-MD is designed to couple its simulation result with ki-
netic Monte Carlo (kMC) method[37] and Cluster Dynamics (CD) method[38]
for further multisale evolution simulation [39, 40, 41, 42] of cluster and defects
in long temporal scale(seconds to years).
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Algorithm 1: Iterate neighbor atoms to calculate force

Input: arr atoms - instance of hash array of lattice list.
Input: clash atoms - instance of hash clash of lattice list.
Input: (xstart, ystart, zstart) , (xend, yend, zend) - start and end lattice

coordinate of the region for local atoms.
Input: offset list - precalculated lattice id offset list

1 for x← xstart, xend; y ← ystart, yend; z ← zstart, zend do
2 id← 2× boxx × boxy × z + 2× boxx × y + x ;
3 atom← arr atoms[id] ;
4 if atom is valid then
5 for every offset ∈ offset list do
6 atom nei← arr atoms[id+ offset];
7 if atom nei is valid then
8 f ← Force(atom, atom nei) ;
9 atom.f ← atom.f + f ;

10 for every atom ∈ clash atoms do
11 id← Hash(atom.x, atom.y, atom.z) ;
12 if id specified lattice is not in ghost area then
13 atom near ← arr atoms[id] ;
14 f ← Force(atom, atom near) ;
15 atom.f ← atom.f + f ;
16 for every offset ∈ offset list do
17 atom nei← arr atoms[id+ offset] ;
18 if atom nei is valid then
19 f ← Force(atom, atom nei) ;
20 atom.f ← atom.f + f ;

21 for every atom ∈ clash atoms do
22 id← Hash(atom.x, atom.y, atom.z) ;
23 if id specified lattice is not in ghost area then
24 for every atoms cla ∈ clash atoms(id) do
25 if atom cla 6= atom then
26 f ← Force(atom, atom cla) ;
27 atom.f ← atom.f + f ;

28 for every offset ∈ offset list do
29 id nei← id+ offset ;
30 for every atom cl ∈ clash atoms(id nei) do
31 f ← Force(atom, atom cl) ;
32 atom.f ← atom.f + f ;
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Algorithm 2: Hash updating

Input: arr atoms - instance of hash array of lattice list.
Input: clash atoms - instance of hash clash of lattice list.
Input: (xstart, ystart, zstart) , (xend, yend, zend) - start and end lattice

coordinate of the region for local atoms.
1 for x← xstart, xend do
2 for y ← ystart, yend do
3 for z ← zstart, zend do
4 id← 2× boxx × boxy × z + 2× boxx × y + x
5 atom← arr atoms[id]
6 if atom is invalid then
7 continue

8 id real← Hash(atom.x,atom.y,atom.z)
9 if id 6= id real then

10 inset atom into clash atoms
11 set flag of arr atoms[id] as invalid

12 for every atom ∈ clash atoms do
13 id← Hash(atom.x,atom.y,atom.z)
14 if id specified lattice is not in ghost region then
15 if arr atoms[id] is invalid then
16 set flag of element arr atoms[id] as valid
17 arr atoms[id]← atom
18 remove atom from clash atoms

Table 1: Speedup of MISA-MD on single core group with and without CPEs.

MPE only MPE+64CPEs
Execution time (seconds) 1192.33 21.2939
Speedup 1 55.99
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Table 2: Memory Usage of MISA-MD Compared with LAMMPS on TianHe-2

No. Program Cores Box Mem usage Mem per atom
(GiB/core) (Bytes/atom)

1 MISA-MD 120 6003 0.64 191.2
2 LAMMPS 120 6003 1.77 527.2
3 MISA-MD 120 10943 2.66 130.9
4 LAMMPS 120 6683 2.66 574.9
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