CMInject: Python framework for the numerical simulation of nanoparticle injection pipelines

Simon Welker, ${ }^{1}$ Muhamed Amin, ${ }^{1,2,3}$ and Jochen Küpper ${ }^{1,4,5, *}$
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
${ }^{2}$ Department of Sciences, University College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, Netherlands
${ }^{3}$ Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
${ }^{4}$ Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
${ }^{5}$ Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

(Dated: 2021-07-09)
CMInject simulates nanoparticle injection experiments of particles with diameters in the micrometer to nanometer-regime, e.g., for single-particle-imaging experiments. Particle-particle interactions and particle-induced changes in the surrounding fields are disregarded, due to low nanoparticle concentration in these experiments. CMInject's focus lies on the correct modeling of different forces on such particles, such as fluid-dynamics or light-induced interactions, to allow for simulations that further the scientific development of nanoparticle injection pipelines. To provide a usable basis for this framework and allow for a variety of experiments to be simulated, we implemented first specific force models: fluid drag forces, Brownian motion, and photophoretic forces. For verification, we benchmarked a drag-force-based simulation against a nanoparticle focusing experiment. We envision its use and further development by experimentalists, theorists, and software developers.
Keywords: Nanoparticles, Injection, Numerical simulation, Single-particle imaging, X-ray imaging, Framework

PROGRAM SUMMARY

Program Title: CMInject

CPC Library link to program files: (to be added by Technical Editor)
Developer's repository link: https://github.com/cfel-cmi/cminject
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: GPLv3
Programming language: Python 3
Supplementary material: Code to reproduce and analyze simulation results, example input and output data, video files of trajectory movies
Nature of problem: Well-defined, reproducible, and interchangeable simulation setups of experimental injection pipelines for biological and artificial nanoparticles, in particular such pipelines that aim to advance the field of single-particle imaging.
Solution method: The definition and implementation of an extensible Python 3 framework to model and execute such simulation setups based on object-oriented software design, making use of parallelization facilities and modern numerical integration routines.
Additional comments including restrictions and unusual features: Supplementary executable scripts for quantitative and visual analyses of result data are also part of the framework.

1. INTRODUCTION

Single-particle imaging (SPI) with x-ray beams is a relatively new technique [1, 2) for the imaging of small particles down to the size of single macromolecules, promising to image nanometer-sized particles without the need for crystallization. In this context a "particle" can be anything from a small molecule to an entire protein or an artificial nanoparticle. In SPI, a beam of x-rays illuminates single particles in flight, with each particle hit by the x-ray pulse producing a diffraction pattern. From a collection of such

* Email: jochen.kuepper@cfel.de, website: https://www.controlled-molecule-imaging.org
${ }_{23}$ patterns gathered from many identical particles, the par24 ticle 3D structure can be approximated. Substantial advances were made on the capabilities of x-ray free-electron lasers (XFELs) in recent years [3, 4, offering brilliant and collimated ultra-short pulsed x-ray beams that can outrun radiation damage to the sample [1, 5] and allow for time-resolved imaging on femtosecond timescales [6, 7].

There are multiple factors to consider for collecting and ${ }_{1}$ reconstructing electron densities and molecular structures with high resolution: Incident x-ray intensity, experimental repetition rate, and particle density in the interaction region. They all affect the quality of the reconstructed ${ }_{5}$ structure: increasing the incident intensity results in more signal in each diffraction pattern, and increasing the rep${ }_{7}$ etition rate or particle density results in more diffraction
patterns being collected in the same timespan. It was suggested that incident laser intensity is not the limiting factor [8], which was corroborated by showing that the level of signal contained in collected patterns can be reduced drastically while maintaining good reconstruction quality [9]. However, a large number of good hits, i. e., diffraction patterns of single particles inside the focus of the x-ray pulse, need to be collected in any case. It was previously noted in the literature that "different injection strategies to extend XFEL imaging to smaller targets, such as single proteins" are needed [10, and that "improvements could be made through optimized focusing for the targeted size distribution or cryogenic injection systems that additionally allow conformational selection" [11. Therefore, there is an urgent need for novel optimized particle injection systems.

To recover the 3D structure of the imaged particles from their 2D diffraction patterns, sophisticated computer algorithms are used [9, 11-13]. These algorithms use diffraction patterns from structurally identical particles. Thus, it is important to understand how the variation in particles' sizes/shapes and structural conformations will affect their trajectories in the injection system. These trajectories are also dependent on several experimental parameters, e. g., the geometry of the injection system, the temperature and pressure of the guiding aerosols, and the initial phase space distribution of the injected particles [14, 15]. Accordingly, selecting specific particle species, e. g., through the use of inhomogeneous electric fields [16], are an advanced topic for creating a highquality particle beam.
A simulation framework provides a quick and efficient tool for searching the experimental parameters' space and to produce optimized molecular/nanoparticle beams. Furthermore, the feedback loop between simulation and experiment offers a road to progress in both theoretical and experimental physics. Simulations are repeatedly used as a basis, supplementary, guiding, or verification method in SPI research. Examples for this are (1) optimization of experimentally verified aerodynamical injector designs for a variety of specific particle sizes and materials [15, 17] 21], (2) exploration of the effects of experimental injection parameters [22] and types of injectors [23] on diffraction patterns, and (3) control of shock frozen isolated particles of both biological and artificial origin [14]. Progress in all of these areas was the foundation of recent significant improvements of the amount of data that can be collected in a given timeframe in SPI experiments [11]. We therefore propose that providing a problem-tailored yet extensible simulation framework, as previously done by our research group and collaborators [16, 24, 25], will further help progress in the field of nanoparticle injection.
Here, we introduce and describe CMInject, a computational framework that aims to be an extensible basis for such simulations Figure 1 depicts examples of simulation results, indicating that recent developments, as well as future ideas, are supported by our framework.

FIG. 1. Example trajectory plots of experiments simulated with CMInject: (a) 2D trajectories from a simulated focusing experiment using an axisymmetric aerodynamic lens stack (ALS) to focus $d=27 \mathrm{~nm}$ gold nanoparticles 21]. The simulations include (black) or disregard (pink) Brownian motion. The background shows the fluid's velocity in x direction. (b) 3D trajectories of a focusing experiment [14, where a cooled buffer gas cell (BGC) focuses $d=490 \mathrm{~nm}$ polystyrene nanoparticles by a flowing carrier gas at a cryogenic temperature (4K). The used force model is a new theoretical development for particles moving in the molecular flow regime and at low temperatures [26], see Section 3.3.4 Trajectory colors indicate different starting positions for otherwise identical particles. (c) Qualitative reproduction of an optical trapping and levitation experiment [27], showing the interplay of photophoretic forces 28], gravity, and air resistance. Particles with different masses - indicated by the trajectory colors: heaviest in green, lightest in purple - settle into different equilibrium positions over time.

2. PROBLEM DESCRIPTION

Creating high-quality nanoparticle beams poses diverse technical and scientific challenges [14, 15, 23, 29]. The development of improved or sample-adjusted injection pipelines [15] needs to be supported by a flexible and extensible simulation package, which enables quantitative predictions of arbitrary nanoparticle injection pipelines. Possibilities to easily implement additional virtual detectors, particle types, and force fields are crucial for the usability in a wider scientific context. Capabilities for the subsequent visualization and analysis of simulation results, on their own or in comparison with experimental data, are also important.

Reasonable assumptions within the set of possible simulated experiments were made when designing the initial computational framework presented here: (1) particles do not interact with each other nor do they affect the surrounding environment. (2) the particles' overall motion is predominantly in the direction of a designated spatial axis, which we refer to as z. Assumption (1) is appropriate

3. FRAMEWORK DESCRIPTION

CMInject enables theorists and experimentalists to work together toward inventing or optimizing nanoparticle injection pipelines [40]. CMInject is written in Python 3 and its design follows an object-oriented paradigm. Most objects in this framework represent real-world counterparts that are present in actual experiments. For example, a user might create a Setup instance, passing along one or more Source instances that generate particles, and one or more Device instances that affect particles throughout their simulated trajectories by simulating physical forces. 197 The user can run() a concrete Experiment constructed by the Setup and observe the returned results: a list ${ }^{19}$ of Particle instances that have been updated and, if 19 desired, tracked along each particle's trajectory. 200
CMInject does not impose many explicit constraints ${ }^{201}$ on how specific objects need to behave, it only requires that all parts of an Experiment work with each other in a well-defined way. For example, while all currently implemented sub-types of Particle are spherical objects, CMInject is in principle agnostic to the particle shape. If someone wished to, for example, simulate elliptical articles in a fluid flow, they could do so by (i) defining a Particle subclass EllipticalParticle with additional shape parameters, e. g., r_{x}, r_{y}, r_{z} for an ellipsoid and (ii) deriving an implementation of the FluidFlowField class to be able to handle these new particles by an appropriate force model.
Going further, one could even implement the manipu- 211 lation of molecules by electric fields using the quantum- 212 mechanical Stark effect [16, 25], something we are fore- ${ }^{213}$ are the separation of species, e.g., by quantum state, conformation, or enantiomer [16, 31, 32], the alignment 174 or orientation in space [33-37], or the preservation of ${ }_{175}$ native biological structures [14, 38, 39]. These are not ${ }_{176}$ yet implemented in CMInject and will not be discussed 177 further in this paper, but we designed our framework foreseeing corresponding as well as unforeseen extensions. 178
Furthermore, the framework must be usable by theo- 179 rists and experimentalists alike in order to evaluate and ${ }^{180}$ exchange ideas and experiments for nanoparticle injection. The framework should strike a balance between expressiveness and processing requirements: a long procedural script, written with optimized functions, might run simuations very quickly, but is likely incomprehensible to most potential developers and users. A very general framework, while intuitively usable by users and developers, might in turn require so much dynamicism in its implementation that simulations become unsuitably slow.

- ResultStorage: Stores experiment results to disk and offers convenience methods to read them back into memory later.
- Setup: Akin to a laboratory experimental setup 265 a specified setup, passing along mandatory and opwith changeable pieces and parameters. Exposes a 266 tional parameters and providing documentation for set of parameters that can be changed by the user, 267 them if needed, and writes the results to a speciand constructs an Experiment instance from them 268 fied output (HDF5) file. cminject_visualize and that can then be simulated.

cminject. experiment:

- Experiment: Akin to a real-world experiment which has a fixed set of sources, devices, detectors, and experimental parameters. Contains one or more instances of all of the classes from cminject.base listed above (except for Setup, which constructs Experiment instances). Constitutes the entry point for simulation, and returns the results.

3.1.2. Numerical and technical implementation

To numerically solve the particle trajectories for any virtual experiment, we used the numerical integration ${ }^{28}$ routine LSODA 42 as offered by the scipy.ode mod- ${ }^{28}$ ule 43]. This routine was chosen for its automatic method ${ }^{28}$ switching for stiff and non-stiff problems 42, which is ${ }^{28}$ very useful in our generic multiphysics framework where ${ }^{28}$ various forces make up an ODE system that can exhibit 28 different degrees of stiffness at different positions in space of the same experiment.
For storing trajectories the integrator is instructed to piecewise integrate from the current time t up until $t+\mathrm{d} t$ with a chosen macro-timestep $\mathrm{d} t$. Note that the integrator may automatically choose to calculate many smaller timesteps in each macro-timestep, which does happen by default and thus $\mathrm{d} t$ does not negatively affect the accuracy of the integration. However, the size of $\mathrm{d} t$ determines how often additional actions, e. g., Brownian motion updates, detectors, or termination checks, are executed as these actions occur for every trajectory point, see Section 3.2 for further details. We picked a default macro-timestep $\mathrm{d} t=10 \mu \mathrm{~s}$, which we found appropriate for our simulations. The user can adjust this value in a tradeoff between the required resolution of the trajectories and the duration of calculations.

These integration calculations are, as well as most other calculations in CMInject, heavily based on NumPy arrays 44. We wrote a parallel implementation based on the multiprocessing module offered by the Python 3 core library, letting simulated particles be processed in parallel by a pool of $\omega \in \mathbb{N}$ worker processes, where by default ω is the number of available CPU cores. We use the automatic optimization library Numba [45] as well as the compiled language Cython [46, for automatic and manual optimization of the calculation functions, respectively.

3.1.3. Executable scripts

CMInject is supported by a collection of executable 264 scripts. The main program, cminject, simulates

3.2. Program flow of simulation runs

To provide a foundation for further discussion of the generality and possible improvements, we provide a description of the general program flow of a CMInject simulation. A listing of the steps involved in the current implementation is given in Algorithm 1. To clarify the short descriptions given there, we note the following: A particle is considered "done" if it is outside of all Boundary objects, or if its current time is outside of the simulation timewindow. Whether integration is successful is determined by the integrator. When a Detector detects a given particle, it stores a detection event on the Particle, so this event is stored in the result list. Actions can change a particle's phase space position, and if this happens, it is taken into account for the integration routine by resetting the integrator accordingly.

```
Algorithm 1 Program flow of a CMInject simulation.
    1. Get particles from all Sources, merge into one list
    2. Initialize an empty result list
    3. For each particle, parallelized via multiprocessing.Pool:
    (a) Initialize integrator: \(t=t_{0}, x=x_{0}\)
    (b) If particle "not done" and integration successful:
        - Update particle phase space position from integrator
        - Update done-ness of particle using every Boundary
        - Let each Action update the particle
        - If particle position changed, reset the integrator
        - Let each Detector try to detect the particle
        - Update \(t\), by incrementing it by the time step \(\mathrm{d} t\)
        - Run the integrator until \(t\). At each evaluated point:
            - Consult each Device's applicable Fields
            - Sum all accelerations
            - Go to (b)
(c) Store fully simulated particle in the result list
4. Store the result list as an HDF5 file
```

290
Figure 2 simplifies the description given in the step-by291 step listing, Algorithm 1 to a higher-level form and omits 22 implementation details in favor of general concept. We 293 anticipate that the community will discuss and optimize, or even replace, the concrete implementation further, 295 while keeping the conceptual program flow as illustrated

296 297 CMInject.

3.3. Physics models

This first release of CMInject provides several physical ${ }_{300}$ models that are briefly described in the following.

301

3.3.1. Newton's equations of motion

302

We treat particle trajectories as a collection of incre${ }_{303}$ mental numerical solutions to the initial value problem:

$$
\begin{align*}
\phi^{\prime}(t) & =f(t, \phi(t)) \\
\phi(t) & :=\left(x, y, z, v_{x}, v_{y}, v_{z}\right)^{T}(t) \\
\phi(0) & :=\phi_{0}=\left(x_{0}, y_{0}, z_{0}, v_{x, 0}, v_{y, 0}, v_{z, 0}\right)^{T} \tag{1}\\
f(t, \phi(t)) & :=\left(v_{x}, v_{y}, v_{z}, a_{x}, a_{y}, a_{z}\right)^{T}(t)
\end{align*}
$$

FIG. 2. Conceptual program flow of a particle simulation with CMInject, following a single particle through a collection of objects instantiated from the classes provided by the framework. Solid arrows follow the particle's path; their grey annotations show the effect each object can have on the particle. The shaded background indicates the integration loop, which is repeated until the particle's simulation is considered "done". Classes displayed as a stack of layered rectangles, like Source, 3 imply that a simulation can contain more than one object of such a class. The stack simply labeled "A" and the dashed arrow to the Action stack indicate that each Device can contain Actions, which only affect particles inside that Device.
${ }^{308} \vec{a}=\vec{F} / m_{p}$, with the total force \vec{F} exerted on a particle
309 having mass m_{p}.

322 Sc
323 t
311

$$
312 \mathrm{~S}
$$

313 V
an 315 lated in terms of the fluid dynamic viscosity μ, particle 316 radius r, particle mass m, difference in velocity between ${ }_{317}$ fluid and particle Δv, and a Cunningham slip-correction ${ }_{318}$ factor C_{c} [48]. For room-temperature ALS simulations 319 we used an empirical slip-correction-factor model valid for 320 high Knudsen numbers 49]. For cryogenic temperatures, e. g., 4 K , we used a temperature-dependent model [50] scaled by an experimentally determined factor of 4 , detailed further in previous work [14]:

$$
\begin{equation*}
\vec{F}_{\text {Stokes }}=\frac{6 \pi \mu r \overrightarrow{\Delta v}}{C_{c}} \tag{2}
\end{equation*}
$$

324

3.3.3. Brownian motion

Since we model nanoparticle injection, Brownian motion becomes non-negligible, especially for smaller nanoparticles. The model for Brownian motion used is that of a Gaussian white-noise random process with a spectral intensity S_{0} taken from Li and Ahmadi 51.

$$
\begin{align*}
\vec{a}_{\text {Brown }} & =\overrightarrow{\mathcal{N}}(0,1, k) \sqrt{\frac{\pi S_{0}}{\Delta t}} \tag{3}\\
S_{0} & =\frac{216 \mu k_{B} T}{\pi^{2}(2 r)^{5} \rho^{2} C_{c}}
\end{align*}
$$

${ }_{25} \overrightarrow{\mathcal{N}}(0,1, k)$ denotes a vector of k entries, each being inde326 pendently and randomly drawn from a zero mean unit 327 variance normal distribution. Δt is the duration of the 328 time-interval over the force should be calculated, which is 329 the time increment of each integration step. r, m, μ and ${ }_{\text {ззо }} C_{c}$ are the same quantities as defined in Section 3.3.2. k_{B} ${ }_{331}$ is the Boltzmann constant, T is the temperature of the 332 fluid, and ρ is the density of the particle material.
310

We use Stokes' model for the drag force of an isolated spherical particle embedded in a flowing medium 47] for very small Reynolds numbers $\operatorname{Re} \ll 1$, which is essential to our simulations of aerodynamical focusing. It is formu-

3.3.4. Microscopic drag force

For the simulation of nanoparticles moving through fluids with a wide range of pressures, velocities, and temperatures, Stokes' drag force is often not well applicable. Thus, a new drag force model based on the kinetic theory of gases was developed [26]. The original formulation 52] of this model was extended to broad sets of conditions encountered in novel nanoparticle injection experiments, for instance, temperatures as low as 4 K [14]. This force
s defined as a combination of 10% specular reflections and 90% diffuse reflections and takes into account the time-dependent temperature difference between the injected particles and the fluid. An accompanying model for Brownian motion was also provided [26].

3.3.5. Photophoretic force

Furthermore, a model of the photophoretic force, i. e., the force of the surrounding gas exerted on an anisotropically radiatively-heated particle. This has found various applications in the physical and biological sciences 53 and has also been exploited for controlling and focusing particle beams [27, 54 57]. A full theoretical description is not available [28] and we have implemented an approximate force model described and benchmarked before 28 . It assumes a Laguerre-Gaussian laser beam of order 1, and uses a phenomenological constant κ to model the axial and transverse components separately. A description of how we implemented this model, which closely follows the publication by Desyatnikov, is given in the supplementary information.

4. SIMULATION RESULTS AND COMPARISON WITH EXPERIMENT

To verify baseline correctness of our framework, we 4 benchmarked it against particle distributions from ex- 4 periment [21]. There, $d=27 \mathrm{~nm}$ gold spheres were injected into vacuum in an electrospray-ionization setup, 4 passed through a differential pumping stage to remove ${ }^{40}$ background gas, and then guided into an optimized aero- 40 dynamic lens stack (ALS) [15, 21]. The 1D position 406 distributions, an arbitrary cross-section of the true 2D 40 distribution assuming axisymmetry around the z axis, 4 was measured at various distances from the exit of the ALS along the propagation axis z.
To simulate this experiment we used the models for the drag force and Brownian motion described in Section 3.3 . We modeled the ALS using its known geometry and experimentally recorded pressures at fixed points in the system. Details about the setup and these measurements were ${ }^{4}$ provided elsewhere [21]. We then solved for a laminar flow ${ }^{4}$ through this geometry using a finite-element solver 58 and exported a regular grid of the quantities flow velocity ${ }^{41}$ \vec{v} and gas pressure p throughout the ALS. We defined ${ }^{41}$ one FluidFlowDevice and nine SimpleZDetectors at the ${ }^{420}$ distances from the ALS exit where the experimental mea- ${ }^{42}$ surements were made. Then we let CMInject read in the flow field and run a simulation for 10^{5} gold spheres with $d=27 \mathrm{~nm}$. We chose a macro-timestep of $10 \mu \mathrm{~s}$. ${ }^{422}$ The code to reproduce these results is provided in the supplementary materials.
To get a comparable measure for the quality of the particle beam's focus that does not depend on fitting 425 any particular beam shape, we calculated the distance ${ }_{426}$

FIG. 3. Focus curves determined by experiment (orange) and simulation (blue) for 27 nm gold particles, moving through an ALS [21]. We measure the x positions of all particles relative to the origin, and take the 70% quantile of these positions as our measure of focus size. The results agree well on the minimum focus size and position, i.e., a $38 \mu \mathrm{~m}$ focus at $z=3 \mathrm{~mm}$ after the ALS exit, and also agree on the defocusing behavior after this minimum. for an injection pipeline used for single-particle X-ray imaging, which our simulations model very well.
To better understand the focusing and defocusing behavior, we visually examined the results. For instance, Figure 4 shows 2D histograms of useful quantity pairs at different z positions in the experiment described above. This allows for a visual, somewhat intuitive, disentangling of the evolving ensemble of particles. Such plots can be generated with the provided cminject_visualize tool using the -H option. Alternatively, a qualitative visual analysis can be obtained by plotting and inspecting particle trajectories as lines, using the -T option, as shown for this and other experiments in Figure 1. Less congested visualizations are obtained by animated trajectory evolutions, using the -M option, where time-dependent snapshots of the trajectories provide a visualization of the particles positions and velocities. Examples are provided as video files in the supplementary materials.

5. PROGRAM PERFORMANCE

The achievable simulation performance was benchmarked on modern multicore computers, specifically nodes of the Maxwell compute cluster at DESY. The nodes we used are equipped with "Intel(R) Xeon(R) CPU E5-2698

Particle count

FIG. 4. Phase-space histograms of 10^{5} simulated particles at four detectors in an ALS. Two detectors are positioned in the first chamber at the beginning and just before the first aerodynamic lens (a-d). Two further detectors are positioned after the last lens ($\mathbf{e}-\mathbf{h}$). The detectors' z positions increase downward. The left column shows the evolving t / x distribution and the right one the v_{x} / x distribution. From the t / x distributions one sees that particles with a larger initial x deviation take longer to arrive at the lens, with slowest particles traveling more than 30 ms longer than the fastest ones (c). The v_{x} / x distribution is initially Gaussian with a large deviation in x (b). One can see strong focusing just before the first lens (d) and slight defocusing just after the last lens (f). The distribution finally turns into a more focused, collimated particle beam (h).
${ }_{427}$ v3" or "Intel(R) Xeon(R) E5-2640" CPUs, offering 32/64 and $16 / 32$ cores/hyperthreads, respectively.

FIG. 5. Scaling behavior of clock time and memory usage for the simulation described in Section 5 " "32" and " 16 " refer to a Intel Xeon E5-2698 (32 cores) and a Intel Xeon E5-2640 CPU (16 cores), respectively. " B " indicates that Brownian motion was enabled, whereas it wasn't otherwise. Note that the variance in memory usage is very low for a fixed number of particles and all curves look like one. Besides initial setup overhead, linear scaling of both clock time and memory is clearly visible.
${ }_{433}$ scribed in Section 4, involving only Stokes' drag force and ${ }_{434}$ Brownian motion at a macro-timestep of $10 \mu \mathrm{~s}$ and an ${ }_{435}$ experiment length of $\sim 13 \mathrm{~cm}$.
${ }_{46} \quad$ Figure 5 shows runtime and memory requirements for ${ }_{437}$ this simulation when varying the number of particles, and ${ }_{38}$ demonstrates that both scale linearly with the number of ${ }_{439}$ particles - as expected from a Monte Carlo simulation 440 with no particle-particle interactions, which is trivially 441 parallel.
In Figure 6, we analyze multiple performance metrics 43 as functions of the number of parallel computation pro${ }_{44}$ cesses. The optimal runtime is reached when we use 445 exactly as many processes as there are physical CPU 446 cores. When we use more processes, runtime performance degrades significantly, together with several other perfor${ }_{448}$ mance metrics. This is observed even though the CPU

FIG. 6. Performance measurements made on an Intel Xeon E5-2698 CPU with 32 physical cores for the same simulation with different numbers of threads. The maximum value for each measurement is set to be 100%, and the other values displayed in relation to it. "Vol."/"Invol." are shorthand for "voluntary"/"involuntary", and "ctx. sw." is shorthand for "context switches".
offers up to 64 available hyperthreads, which points to 50 our current implementation not being well-suited to gain ${ }_{50}$ performance from hyperthreading. In line with previous 505 literature on this topic, we assume the reason to be that 50 hyperthreading increases competition for resources in the memory hierarchy [59]. If this is indeed the reason, it could mean that our current implementation performs a significant number of memory accesses that under-utilize caches.
Graphics-processing units (GPUs) are particularly wellsuited to trivially parallelizable calculations that largely 5 consist of repeated, similar floating-point operations. They offer much higher internal bandwidths in their mem- 5 ory hierarchy than the bandwidths between CPU and main memory [60, and as such should have less trouble maintaining reasonable performance even when faced with many cache misses. Therefore, they should exhibit significantly better runtime-performance scaling at a much larger number of parallel threads. We had also discussed other reasons why GPUs could offer significant speedups for our calculations [40, ch. 7]. With recent developments in the automatic optimization library Numba 45] making ${ }^{522}$ GPU calculations in Python more accessible, GPUs could be effectively utilized in future versions of our objectoriented framework.

6. SUMMARY AND OUTLOOK

We introduced, described, and benchmarked a new ${ }^{527}$ Python framework for the simulation of nanoparticleinjection pipelines. We hope that it will not only improve $\mathbf{5 2 8}^{28}$ the sample delivery in single-particle x-ray imaging [11, 52 but also other isolated-nanoparticle experiments 61, 62 .

526
527 The force models already implemented in CMInject enable simulation-based development and exchange of 53 improved and novel injector designs, help to understand 53 the effects of Brownian motion and how to control it 53 better, and facilitate scientific development for injecting single, noncrystalline proteins, e. g., for single particle/molecule imaging experiments. Improvements directly ${ }^{53}$ relevant to scientific applications could be made through the systematic derivation and implementation as well as 5 experimental comparison of models for novel techniques, e. g., acoustic [63] or photophoretic [27, 57] focusing. This would open up possibilities to explore these new and exciting pathways toward higher-quality particle beams with ${ }_{5}$ CMInject, pushing the limits of the imaging of chemical 5 and biochemical processes with atomic resolution.

From a software perspective, development effort should be well-invested to make MPI bindings and GPUs available for users of CMInject, e. g., by use of the mpi4py library [64] or the CUDA bindings in the automatic optimization library Numba [45, which should significantly improve simulation runtimes [40] and is foreseen for future versions of CMInject.
Besides such efforts, a direct integration with
computational-fluid-dynamics software packages such as
5 COMSOL [58] or OpenFOAM [65] would allow to run CMInject simulations without the need to manually calculate the flow fields beforehand. Users could then provide or the description of an experimental device simply as a set sos of numerical parameters. This could greatly speed up iterations of geometric optimization in the simulations and offer options for automatic optimization of experimental ${ }_{11}$ parameters, e.g., using learning-loop approaches.

To facilitate fast availability of improvements as well 3_{3} as community contributions to the development, the framework has been published at https://github.com/ cfel-cmi/cminject under a modified GPLv3 license requiring attribution, e. g., through referencing of this pub-
${ }_{517}$ lication. Up to date documentation is available at https:
$518 / / \mathrm{cminject} . r e a d t h e d o c s . o r g$ Additional forces and 19 experiments will be modeled and open problems that
520 were discussed here and elsewhere [40] will be resolved, 521 in close exchange with the user community.

DECLARATION OF INTERESTS

The authors declare that they have no known competing 524 financial interests or personal relationships that could have ${ }_{525}$ appeared to influence the work reported in this paper.

Simon Welker: Methodology, Software, Valida52 tion, Formal analysis, Investigation, Visualization, Writ${ }_{30}$ ing - Original draft, Writing - Review \& Editing; Muhamed Amin: Conceptualization, Writing - Review $=2$ Editing, Supervision; Jochen Küpper: Conceptualization, Resources, Writing - Review \& Editing, Supervision, ${ }_{34}$ Project administration

CREDIT AUTHORSHIP CONTRIBUTION STATEMENT

We gratefully acknowledge useful discussions with An53 drei Rode on photophoretic forces. We thank Lena Worbs s for many useful comments and the CMI COMOTION 9 team for tests and feedback of the software package.

We acknowledge support by Deutsches Elektronen${ }_{41}$ Synchrotron DESY, a member of the Helmholtz Asso542 ciation (HGF), and the use of the Maxwell computational resources operated at Deutsches Elektronen-Synchrotron ${ }_{44}$ DESY. This work has been supported by the Euro5 pean Research Council under the European Union's Sev56 enth Framework Programme (FP7/2007-2013) through 547 the Consolidator Grant COMOTION (614507) and by ${ }_{48}$ the Deutsche Forschungsgemeinschaft through the Clus549 ter of Excellence "Advanced Imaging of Matter" (AIM, 550 EXC 2056, ID 390715994).
[1] R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, 612 and J. Hajdu, Potential for biomolecular imaging with 613 femtosecond x-ray pulses, Nature 406, 752 (2000). 614
[2] J. C. H. Spence and H. N. Chapman, The birth of a new 615 field, Phil. Trans. R. Soc. B 369, 20130309 (2014) 616
[3] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, 617 J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F. J. 618 Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, 619 J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, 620 Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Mi- 621 ahnahri, S. Moeller, H. D. Nuhn, G. Pile, D. Ratner, 622 J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, 623 J. Turner, J. Welch, W. White, J. Wu, G. Yocky, and 624 J. Galayda, First lasing and operation of an angstrom- 625 wavelength free-electron laser, Nat. Photon. 4, 641 (2010). 626
[4] W. Decking, S. Abeghyan, P. Abramian, A. Abramsky, 627 A. Aguirre, C. Albrecht, P. Alou, M. Altarelli, P. Alt- 628 mann, K. Amyan, V. Anashin, E. Apostolov, K. Ap- 629 pel, D. Auguste, V. Ayvazyan, S. Baark, F. Babies, 630 N. Baboi, P. Bak, V. Balandin, R. Baldinger, B. Barana- 631 sic, S. Barbanotti, O. Belikov, V. Belokurov, L. Belova, 632 V. Belyakov, S. Berry, M. Bertucci, B. Beutner, A. Block, 633 M. Blöcher, T. Böckmann, C. Bohm, M. Böhnert, V. Bon- 634 dar, E. Bondarchuk, M. Bonezzi, P. Borowiec, C. Bösch, 635 U. Bösenberg, A. Bosotti, R. Böspflug, M. Bousonville, 636 E. Boyd, Y. Bozhko, A. Brand, J. Branlard, S. Briechle, 637 F. Brinker, S. Brinker, R. Brinkmann, S. Brockhauser, 638 O. Brovko, H. Brück, A. Brüdgam, L. Butkowski, T. Büt- 639 tner, J. Calero, E. Castro-Carballo, G. Cattalanotto, 640 J. Charrier, J. Chen, A. Cherepenko, V. Cheskidov, 641 M. Chiodini, A. Chong, S. Choroba, M. Chorowski, 642 D. Churanov, W. Cichalewski, M. Clausen, W. Clement, 643 C. Cloué, J. A. Cobos, N. Coppola, S. Cunis, K. Czuba, 644 M. Czwalinna, B. D'Almagne, J. Dammann, H. Danared, 645 A. de Zubiaurre Wagner, A. Delfs, T. Delfs, F. Diet- 646 rich, T. Dietrich, M. Dohlus, M. Dommach, A. Donat, 647 X. Dong, N. Doynikov, M. Dressel, M. Duda, P. Duda, 648 H. Eckoldt, W. Ehsan, J. Eidam, F. Eints, C. En- 649 gling, U. Englisch, A. Ermakov, K. Escherich, J. Eschke, 650 E. Saldin, M. Faesing, A. Fallou, M. Felber, M. Fen- 651 ner, B. Fernandes, J. M. Fernández, S. Feuker, K. Fil- 652 ippakopoulos, K. Floettmann, V. Fogel, M. Fontaine, 653 A. Francés, I. F. Martin, W. Freund, T. Freyermuth, 654 M. Friedland, L. Fröhlich, M. Fusetti, J. Fydrych, A. Gal- 655 las, O. García, L. Garcia-Tabares, G. Geloni, N. Gerasi- 656 mova, C. Gerth, P. Geßler, V. Gharibyan, M. Gloor, 657 J. Głowinkowski, A. Goessel, Z. Gołębiewski, N. Golubeva, 658 W. Grabowski, W. Graeff, A. Grebentsov, M. Grecki, 659 T. Grevsmuehl, M. Gross, U. Grosse-Wortmann, J. Grün- 660 ert, S. Grunewald, P. Grzegory, G. Feng, H. Guler, G. Gu- 661 sev, J. L. Gutierrez, L. Hagge, M. Hamberg, R. Hanneken, 662 E. Harms, I. Hartl, A. Hauberg, S. Hauf, J. Hauschildt, 663 J. Hauser, J. Havlicek, A. Hedqvist, N. Heidbrook, F. Hell- 664 berg, D. Henning, O. Hensler, T. Hermann, A. Hid- 665 végi, M. Hierholzer, H. Hintz, F. Hoffmann, M. Hoff- 666 mann, M. Hoffmann, Y. Holler, M. Hüning, A. Ignatenko, 667 M. Ilchen, A. Iluk, J. Iversen, M. Izquierdo, L. Jachmann, 668 N. Jardon, U. Jastrow, K. Jensch, J. Jensen, M. Jeżabek, 669 M. Jidda, H. Jin, N. Johansson, R. Jonas, W. Kaabi, 670 D. Kaefer, R. Kammering, H. Kapitza, S. Karabekyan, 671 S. Karstensen, K. Kasprzak, V. Katalev, D. Keese, B. Keil, 672
M. Kholopov, M. Killenberger, B. Kitaev, Y. Klimchenko, R. Klos, L. Knebel, A. Koch, M. Koepke, S. Köhler, W. Köhler, N. Kohlstrunk, Z. Konopkova, A. Konstantinov, W. Kook, W. Koprek, M. Körfer, O. Korth, A. Kosarev, K. Kosiński, D. Kostin, Y. Kot, A. Kotarba, T. Kozak, V. Kozak, R. Kramert, M. Krasilnikov, A. Krasnov, B. Krause, L. Kravchuk, O. Krebs, R. Kretschmer, J. Kreutzkamp, O. Kröplin, K. Krzysik, G. Kube, H. Kuehn, N. Kujala, V. Kulikov, V. Kuzminych, D. La Civita, M. Lacroix, T. Lamb, A. Lancetov, M. Larsson, D. Le Pinvidic, S. Lederer, T. Lensch, D. Lenz, A. Leuschner, F. Levenhagen, Y. Li, J. Liebing, L. Lilje, T. Limberg, D. Lipka, B. List, J. Liu, S. Liu, B. Lorbeer, J. Lorkiewicz, H. H. Lu, F. Ludwig, K. Machau, W. Maciocha, C. Madec, C. Magueur, C. Maiano, I. Maksimova, K. Malcher, T. Maltezopoulos, E. Mamoshkina, B. Manschwetus, F. Marcellini, G. Marinkovic, T. Martinez, H. Martirosyan, W. Maschmann, M. Maslov, A. Matheisen, U. Mavric, J. Meißner, K. Meissner, M. Messerschmidt, N. Meyners, G. Michalski, P. Michelato, N. Mildner, M. Moe, F. Moglia, C. Mohr, S. Mohr, W. Möller, M. Mommerz, L. Monaco, C. Montiel, M. Moretti, I. Morozov, P. Morozov, and D. Mross, A MHz-repetition-rate hard x-ray free-electron laser driven by a superconducting linear accelerator, Nat. Photon. 14, 391 (2020)
[5] U. Lorenz, N. M. Kabachnik, E. Weckert, and I. A. Vartanyants, Impact of ultrafast electronic damage in singleparticle x-ray imaging experiments, Phys. Rev. E 86, 051911 (2012), arXiv:1206.6960 [physics]
[6] A. Barty, J. Küpper, and H. N. Chapman, Molecular imaging using x-ray free-electron lasers, Annu. Rev. Phys. Chem. 64, 415 (2013).
[7] K. Pande, C. D. M. Hutchison, G. Groenhof, A. Aquila, J. S. Robinson, J. Tenboer, S. Basu, S. Boutet, D. P. DePonte, M. Liang, T. A. White, N. A. Zatsepin, O. Yefanov, D. Morozov, D. Oberthuer, C. Gati, G. Subramanian, D. James, Y. Zhao, J. Koralek, J. Brayshaw, C. Kupitz, C. Conrad, S. Roy-Chowdhury, J. D. Coe, M. Metz, P. L. Xavier, T. D. Grant, J. E. Koglin, G. Ketawala, R. Fromme, V. Šrajer, R. Henning, J. C. H. Spence, A. Ourmazd, P. Schwander, U. Weierstall, M. Frank, P. Fromme, A. Barty, H. N. Chapman, K. Moffat, J. J. van Thor, and M. Schmidt, Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein, Science 352, 725 (2016).
[8] A. Ourmazd, Cryo-EM, XFELs and the structure conundrum in structural biology, Nat. Meth. 16, 941 (2019).
[9] K. Ayyer, A. J. Morgan, A. Aquila, H. DeMirci, B. G. Hogue, R. A. Kirian, P. L. Xavier, C. H. Yoon, H. N. Chapman, and A. Barty, Low-signal limit of x-ray single particle diffractive imaging, Opt. Exp. 27, 37816 (2019).
[10] M. F. Hantke, J. Bielecki, O. Kulyk, D. Westphal, D. S. D. Larsson, M. Svenda, H. K. N. Reddy, R. A. Kirian, J. Andreasson, J. Hajdu, and F. R. N. C. Maia, Rayleighscattering microscopy for tracking and sizing nanoparticles in focused aerosol beams, IUCrJ 5, 673 (2018).
[11] K. Ayyer, P. L. Xavier, J. Bielecki, Z. Shen, B. J. Daurer, A. K. Samanta, S. Awel, R. Bean, A. Barty, M. Bergemann, T. Ekeberg, A. D. Estillore, H. Fangohr, K. Giewekemeyer, M. S. Hunter, M. Karnevskiy, R. A. Kirian, H. Kirkwood, Y. Kim, J. Koliyadu,
H. Lange, R. Letrun, J. Lübke, T. Michelat, A. J. Mor- 737 gan, N. Roth, T. Sato, M. Sikorski, F. Schulz, J. C. H. 738 Spence, P. Vagovic, T. Wollweber, L. Worbs, O. Yefanov, 739 Y. Zhuang, F. R. N. C. Maia, D. A. Horke, J. Küpper, 740 N. D. Loh, A. P. Mancuso, and H. N. Chapman, 3D 741 diffractive imaging of nanoparticle ensembles using an $x-742$ ray laser, Optica 8, 15 (2021), arXiv:2007.13597 [physics], 743 [12] R. Fung, V. Shneerson, D. Saldin, and A. Ourmazd, Struc- 744 ture from fleeting illumination of faint spinning objects 745 in flight, Nat. Phys. 5, 64 (2009)
[13] G. Bortel and G. Faigel, Classification of continuous 747 diffraction patterns: a numerical study, J. Struct. Biol. 748 158, 10 (2007).
[14] A. K. Samanta, M. Amin, A. D. Estillore, N. Roth, 750 L. Worbs, D. A. Horke, and J. Küpper, Controlled beams 751 of shockfrozen, isolated, biological and artificial nanopar- 752 ticles, Struct. Dyn. 7, 024304 (2020), arXiv:1910.12606 [physics].
[15] N. Roth, S. Awel, D. A. Horke, and J. Küpper, Optimizing 75 aerodynamic lenses for single-particle imaging, J. Aerosol. Sci. 124, 17 (2018), arXiv:1712.01795 [physics].
16] Y.-P. Chang, D. A. Horke, S. Trippel, and J. Küp- 758 per, Spatially-controlled complex molecules and their 759 applications, Int. Rev. Phys. Chem. 34, 557 (2015), 760 arXiv:1505.05632 [physics||

761
[17] P. Liu, P. J. Ziemann, D. B. Kittelson, and P. H. McMurry, 762 Generating particle beams of controlled dimensions and 763 divergence: I. theory of particle motion in aerodynamic 764 lenses and nozzle expansions, Aerosol Sci. Techn. 22, 293765 (1995)
[18] X. Wang and P. H. McMurry, An experimental study 767 of nanoparticle focusing with aerodynamic lenses, Int. J. 76 Mass Spectrom. 258, 30 (2006).
[19] X. Wang, A. Gidwani, S. L. Girshick, and P. H. McMurry, 770 Aerodynamic focusing of nanoparticles: II. numerical 771 simulation of particle motion through aerodynamic lenses, 772 Aerosol Sci. Techn. 39, 624 (2005)

773
[20] X. Wang and P. H. McMurry, A design tool for aerody- 774 namic lens systems, Aerosol Sci. Technol. 40, 320 (2006). 775
[21] L. Worbs, N. Roth, J. Lübke, A. Estillore, P. L. 776 Xavier, A. K. Samanta, and J. Küpper, Optimizing 777 the geometry of aerodynamic lens injectors for single- 778 particle coherent diffractive imaging of gold nanoparticles, 779 arXiv:2105.15084v1 [physics] (2021), submitted.
[22] E. Sobolev, S. Zolotarev, K. Giewekemeyer, J. Bielecki, 781 K. Okamoto, H. K. N. Reddy, J. Andreasson, K. Ayyer, 782 I. Barak, S. Bari, A. Barty, R. Bean, S. Bobkov, H. N. 783 Chapman, G. Chojnowski, B. J. Daurer, K. Dörner, 784 T. Ekeberg, L. Flückiger, O. Galzitskaya, L. Gelisio, 785 S. Hauf, B. G. Hogue, D. A. Horke, A. Hosseinizadeh, 786 V. Ilyin, C. Jung, C. Kim, Y. Kim, R. A. Kirian, H. Kirk- 787 wood, O. Kulyk, R. Letrun, D. Loh, M. Messerschmidt, 788 K. Mühlig, A. Ourmazd, N. Raab, A. V. Rode, M. Rose, 789 A. Round, T. Sato, R. Schubert, P. Schwander, J. A. Sell- 790 berg, M. Sikorski, A. Silenzi, C. Song, J. C. H. Spence, 791 S. Stern, J. Sztuk-Dambietz, A. Teslyuk, N. Timneanu, 792 M. Trebbin, C. Uetrecht, B. Weinhausen, G. J. Williams, 793 P. L. Xavier, C. Xu, I. Vartanyants, V. Lamzin, A. Man- 794 cuso, and F. R. N. C. Maia, Megahertz single-particle 795 imaging at the European XFEL, Comm. Phys 3, 97 (2020), 796 arXiv:1912.10796 [physics]
[23] J. Bielecki, M. F. Hantke, B. J. Daurer, H. K. N. Reddy, 798 D. Hasse, D. S. D. Larsson, L. H. Gunn, M. Svenda, 799 A. Munke, J. A. Sellberg, L. Flueckiger, A. Pietrini, soo
C. Nettelblad, I. Lundholm, G. Carlsson, K. Okamoto, N. Timneanu, D. Westphal, O. Kulyk, A. Higashiura, G. van der Schot, N.-T. D. Loh, T. E. Wysong, C. Bostedt, T. Gorkhover, B. Iwan, M. M. Seibert, T. Osipov, P. Walter, P. Hart, M. Bucher, A. Ulmer, D. Ray, G. Carini, K. R. Ferguson, I. Andersson, J. Andreasson, J. Hajdu, and F. R. N. C. Maia, Electrospray sample injection for single-particle imaging with x-ray lasers, Science Advances 5, eaav8801 (2019)
24] Y.-P. Chang, D. Horke, S. Trippel, and J. Küpper, CMIfly, https://github.com/CFEL-CMI/cmifly (2020), originally published in [16].
[25] F. Filsinger, J. Küpper, G. Meijer, L. Holmegaard, J. H. Nielsen, I. Nevo, J. L. Hansen, and H. Stapelfeldt, Quantum-state selection, alignment, and orientation of large molecules using static electric and laser fields, J. Chem. Phys. 131, 064309 (2009), arXiv:0903.5413 [physics]
[26] N. Roth, M. Amin, A. K. Samanta, and J. Küpper, Microscopic force for aerosol transport, submitted (2020), arXiv:2006.10652 [physics]
[27] N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, and A. V. Rode, Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum, Phys. Rev. Appl. 4, 064001 (2015).
[28] A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment, Opt. Exp. 17, 8201 (2009).
[29] B. J. Daurer, K. Okamoto, J. Bielecki, F. R. N. C. Maia, K. Mühlig, M. M. Seibert, M. F. Hantke, C. Nettelblad, W. H. Benner, M. Svenda, N. Timneanu, T. Ekeberg, N. D. Loh, A. Pietrini, A. Zani, A. D. Rath, D. Westphal, R. A. Kirian, S. Awel, M. O. Wiedorn, G. van der Schot, G. H. Carlsson, D. Hasse, J. A. Sellberg, A. Barty, J. Andreasson, S. Boutet, G. Williams, J. Koglin, I. Andersson, J. Hajdu, and D. S. D. Larsson, Experimental strategies for imaging bioparticles with femtosecond hard x-ray pulses, IUCrJ 4, 251 (2017).
[30] K. B. Tarmyshov and F. Müller-Plathe, Parallelizing a molecular dynamics algorithm on a multiprocessor workstation using openmp, Journal of Chemical Information and Modeling 45, 1943 (2005)
[31] F. Filsinger, U. Erlekam, G. von Helden, J. Küpper, and G. Meijer, Selector for structural isomers of neutral molecules, Phys. Rev. Lett. 100, 133003 (2008), arXiv:0802.2795 [physics]
[32] A. Yachmenev, J. Onvlee, E. Zak, A. Owens, and J. Küpper, Field-induced diastereomers for chiral separation, Phys. Rev. Lett. 123, 243202 (2019), arXiv:1905.07166 [physics]
[33] H. Stapelfeldt and T. Seideman, Colloquium: Aligning molecules with strong laser pulses, Rev. Mod. Phys. 75, 543 (2003).
[34] J. C. H. Spence and R. B. Doak, Single molecule diffraction, Phys. Rev. Lett. 92, 198102 (2004)
[35] L. Holmegaard, J. H. Nielsen, I. Nevo, H. Stapelfeldt, F. Filsinger, J. Küpper, and G. Meijer, Laser-induced alignment and orientation of quantum-state-selected large molecules, Phys. Rev. Lett. 102, 023001 (2009). arXiv:0810.2307 [physics]
[36] J. Küpper, S. Stern, L. Holmegaard, F. Filsinger, A. Rouzée, A. Rudenko, P. Johnsson, A. V. Martin,
M. Adolph, A. Aquila, S. Bajt, A. Barty, C. Bost- 863 edt, J. Bozek, C. Caleman, R. Coffee, N. Coppola, 864 T. Delmas, S. Epp, B. Erk, L. Foucar, T. Gorkhover, 865 L. Gumprecht, A. Hartmann, R. Hartmann, G. Hauser, 866 P. Holl, A. Hömke, N. Kimmel, F. Krasniqi, K.-U. Kühnel, 867 J. Maurer, M. Messerschmidt, R. Moshammer, C. Re- 868 ich, B. Rudek, R. Santra, I. Schlichting, C. Schmidt, 869 S. Schorb, J. Schulz, H. Soltau, J. C. H. Spence, D. Staro- 870 dub, L. Strüder, J. Thøgersen, M. J. J. Vrakking, G. Wei- 871 denspointner, T. A. White, C. Wunderer, G. Meijer, J. Ull- 872 rich, H. Stapelfeldt, D. Rolles, and H. N. Chapman, X-ray 873 diffraction from isolated and strongly aligned gas-phase 874 molecules with a free-electron laser, Phys. Rev. Lett. 112, 87 083002 (2014), arXiv:1307.4577 [physics]
37| E. T. Karamatskos, S. Raabe, T. Mullins, A. Trabattoni, 877 P. Stammer, G. Goldsztejn, R. R. Johansen, K. Dłu- 878 gołęcki, H. Stapelfeldt, M. J. J. Vrakking, S. Trippel, 879 A. Rouzée, and J. Küpper, Molecular movie of ultrafast 880 coherent rotational dynamics of OCS, Nat. Commun. 10, 881 3364 (2019), arXiv:1807.01034 [physics]

882
[38] J. Miao, T. Ishikawa, Q. Shen, and T. Earnest, Extend- 883 ing x-ray crystallography to allow the imaging of non- 884 crystalline materials, cells, and single protein complexes, 885 Annu. Rev. Phys. Chem. 59, 387 (2007)

886
[39] J. Miao, P. Charalambous, J. Kirz, and D. Sayre, Extend- 88 ing the methodology of x-ray crystallography to allow ${ }_{88}$ imaging of micrometre-sized non-crystalline specimens, 88 Nature 400, 342 (1999)
[40] S. Welker, Simulation of artificial and biological nanopar- $\boldsymbol{\varepsilon}$ ticles' trajectories in hybrid force-fields, Bachelor thesis, $\mathbf{8 9}$ Universität Hamburg (2019).
41] G. van Rossum and Talin, PEP 3119: Introducing abstract 8 base classes, Website, URL: https://www.python.org/ 89 dev/peps/pep-3119 (2007), accessed on 2019-10-04.
[42] L. Petzold, Automatic selection of methods for solving s9 stiff and nonstiff systems of ordinary differential equations, 898 SIAM J. Sci. \& Stat. Comp. 4, 136 (1983)
43] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber- 900 land, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, 901 W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, 902 J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. 903 Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Po- 904 lat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, 905 J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, 906 C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe- 907 dregosa, P. van Mulbregt, and SciPy 1.0 Contributors, 908 SciPy 1.0: fundamental algorithms for scientific comput- 909 ing in Python, Nat. Meth. 17, 261 (2020)

910
[44] S. van der Walt, S. C. Colbert, and G. Varoquaux, The 911 NumPy array: A structure for efficient numerical compu-912 tation, Comp. in Sci. \& Eng. 13, 22 (2011).

913
[45] S. K. Lam, A. Pitrou, and S. Seibert, Numba: A LLVM- 914 based Python JIT compiler, in Proceedings of the Second 915
Workshop on the LLVM Compiler Infrastructure in HPC 9_{1} LLVM '15 (Association for Computing Machinery, New 917 York, NY, USA, 2015).
[46] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Sel- 919 jebotn, and K. Smith, Cython: The best of both worlds, 920 Comp. Sci. \& Eng. 13, 31 (2011)
[47] G. G. Stokes, On the effect of the internal friction of fluids 922 on the motion of pendulums, Trans. Cambridge Phil. Soc. 9, 8 (1851)
[48] E. Cunningham and J. Larmor, On the velocity of steady fall of spherical particles through fluid medium, Proc. Royal Soc. London A 83, 357 (1910).
[49] D. K. Hutchins, M. H. Harper, and R. L. Felder, Slip correction measurements for solid spherical particles by modulated dynamic light scattering, Aerosol Sci. Techn. 22, 202 (1995)
|50| K. Willeke, Temperature dependence of particle slip in a gaseous medium, J. Aerosol. Sci. 7, 381 (1976).
[51] A. Li and G. Ahmadi, Dispersion and deposition of spherical particles from point sources in a turbulent channel flow, Aerosol Sci. Techn. 16, 209 (1992)
[52] P. S. Epstein, On the resistance experienced by spheres in their motion through gases, Phys. Rev. 23, 710 (1924)
[53] R. W. Bowman and M. J. Padgett, Optical trapping and binding, Rep. Prog. Phys. 76, 026401 (2013)
[54] N. O. Eckerskorn, Trapping and guiding microscopic particles with light-induced forces, Dissertation, College of Physical \& Mathematical Sciences, Research School of Physics and Engineering, Laser Physics Centre, Australia (2016).
[55] V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, Optical guiding of absorbing nanoclusters in air, Opt. Exp. 17, 5743 (2009)
[56] V. G. Shvedov, C. Hnatovsky, A. V. Rode, and W. Krolikowski, Robust trapping and manipulation of airborne particles with a bottle beam, Opt. Exp. 19, 17350 (2011)
[57] S. Awel, S. Lavin-Varela, N. Roth, D. A. Horke, A. V. Rode, R. A. Kirian, J. Küpper, and H. N. Chapman, Optical funnel to guide and focus virus particles for x-ray laser imaging (2020), submitted.
[58] Comsol, Multiphysics 5.5 (2019), cOMSOL Multiphysics v. 5.5. http://www.comsol.com COMSOL AB, Stockholm, Sweden.
[59] S. Saini, H. Jin, R. Hood, D. Barker, P. Mehrotra, and R. Biswas, The impact of hyper-threading on processor resource utilization in production applications, in 2011 18th International Conference on High Performance Computing (2011) pp. 1-10.
[60] NVIDIA Corporation, CUDA C++ best practices guide (2020), accessed on 2020-12-09.
[61] L. Seiffert, Q. Liu, S. Zherebtsov, A. Trabattoni, P. Rupp, M. C. Castrovilli, M. Galli, F. Submann, K. Wintersperger, J. Stierle, G. Sansone, L. Poletto, F. Frassetto, I. Halfpap, V. Mondes, C. Graf, E. Rühl, F. Krausz, M. Nisoli, T. Fennel, F. Calegari, and M. F. Kling, Attosecond chronoscopy of electron scattering in dielectric nanoparticles, Nat. Phys. 13, 766 (2017).
[62] A. Aquila, A. Barty, C. Bostedt, S. Boutet, G. Carini, D. DePonte, P. Drell, S. Doniach, K. H. Downing, T. Earnest, H. Elmlund, V. Elser, M. Gühr, J. Hajdu, J. Hastings, S. P. Hau-Riege, Z. Huang, E. E. Lattman, F. R. N. C. Maia, S. Marchesini, A. Ourmazd, C. Pellegrini, R. Santra, I. Schlichting, C. Schroer, J. C. H. Spence, I. A. Vartanyants, S. Wakatsuki, W. I. Weis, and G. J. Williams, The linac coherent light source single particle imaging road map, Struct. Dyn. 2, 041701 (2015).
[63] Z. Li, L. Shi, L. Cao, Z. Liu, and J. Küpper, Acoustic funnel and buncher for nanoparticle injection, Phys. Rev. Appl. 11, 064036 (2019), arXiv:1803.07472 [physics].
[64] L. Dalcín, R. Paz, and M. Storti, MPI for Python, J. Parallel Distr. Comp. 65, 1108 (2005).
65] The OpenFOAM Foundation, OpenFOAM | free CFD software, Website, URL: https://openfoam.org/ (2020), accessed on 2020-05-28.

