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CMInject simulates nanoparticle injection experiments of particles with diameters in the micrometer
to nanometer-regime, e.g., for single-particle-imaging experiments. Particle-particle interactions
and particle-induced changes in the surrounding fields are disregarded, due to low nanoparticle
concentration in these experiments. CMInject’s focus lies on the correct modeling of different forces
on such particles, such as fluid-dynamics or light-induced interactions, to allow for simulations that
further the scientific development of nanoparticle injection pipelines. To provide a usable basis for
this framework and allow for a variety of experiments to be simulated, we implemented first specific
force models: fluid drag forces, Brownian motion, and photophoretic forces. For verification, we
benchmarked a drag-force-based simulation against a nanoparticle focusing experiment. We envision
its use and further development by experimentalists, theorists, and software developers.

Keywords: Nanoparticles, Injection, Numerical simulation, Single-particle imaging, X-ray imaging,
Framework

PROGRAM SUMMARY

Program Title: CMInject

CPC Library link to program files: (to be added by Technical Editor)

Developer’s repository link: https://github.com/cfel-cmi/cminject

Code Ocean capsule: (to be added by Technical Editor)

Licensing provisions: GPLv3

Programming language: Python 3

Supplementary material: Code to reproduce and analyze simulation results, example input and output data,
video files of trajectory movies

Nature of problem: Well-defined, reproducible, and interchangeable simulation setups of experimental injection
pipelines for biological and artificial nanoparticles, in particular such pipelines that aim to advance the field
of single-particle imaging.

Solution method: The definition and implementation of an extensible Python 3 framework to model and
execute such simulation setups based on object-oriented software design, making use of parallelization facilities
and modern numerical integration routines.

Additional comments including restrictions and unusual features: Supplementary executable scripts for

quantitative and visual analyses of result data are also part of the framework.

1. INTRODUCTION

Single-particle imaging (SPI) with x-ray beams is a rel-
atively new technique [T}, 2] for the imaging of small parti-
cles down to the size of single macromolecules, promising
to image nanometer-sized particles without the need for
crystallization. In this context a “particle” can be anything
from a small molecule to an entire protein or an artificial
nanoparticle. In SPI, a beam of x-rays illuminates single
particles in flight, with each particle hit by the x-ray pulse
producing a diffraction pattern. From a collection of such

* Email: jochen.kuepper@Qcfel.de; website: https: //www.controlled-
molecule-imaging.org
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patterns gathered from many identical particles, the par-
ticle 3D structure can be approximated. Substantial ad-
vances were made on the capabilities of x-ray free-electron
lasers (XFELs) in recent years [3] 4], offering brilliant and
collimated ultra-short pulsed x-ray beams that can out-
run radiation damage to the sample [I, [5] and allow for
time-resolved imaging on femtosecond timescales [0l [7].

There are multiple factors to consider for collecting and
reconstructing electron densities and molecular structures
with high resolution: Incident x-ray intensity, experimen-
tal repetition rate, and particle density in the interaction
region. They all affect the quality of the reconstructed
structure: increasing the incident intensity results in more
signal in each diffraction pattern, and increasing the rep-
etition rate or particle density results in more diffraction
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3s patterns being collected in the same timespan. It was
30 suggested that incident laser intensity is not the limiting
« factor [8], which was corroborated by showing that the
a1 level of signal contained in collected patterns can be re-
42 duced drastically while maintaining good reconstruction
«3 quality [9]. However, a large number of good hits, i.e.,
aa diffraction patterns of single particles inside the focus of
s the x-ray pulse, need to be collected in any case. It was
46 previously noted in the literature that “different injection
«7 strategies to extend XFEL imaging to smaller targets,
s such as single proteins” are needed [10], and that “im-
40 provements could be made through optimized focusing for
so the targeted size distribution or cryogenic injection sys-
s1 tems that additionally allow conformational selection” [11].
s2 Therefore, there is an urgent need for novel optimized
s3 particle injection systems.

To recover the 3D structure of the imaged particles
ss from their 2D diffraction patterns, sophisticated computer
se algorithms are used [9], [TTHI3]. These algorithms use
s7 diffraction patterns from structurally identical particles.
ss Thus, it is important to understand how the variation in
so particles’ sizes/shapes and structural conformations will
o affect their trajectories in the injection system. These
e1 trajectories are also dependent on several experimental
s parameters, e.g., the geometry of the injection system,
63 the temperature and pressure of the guiding aerosols,
e and the initial phase space distribution of the injected
es particles [I4] I5]. Accordingly, selecting specific particle
e Species, e.g., through the use of inhomogeneous electric
oz fields [I6], are an advanced topic for creating a high-
es quality particle beam.

54

A simulation framework provides a quick and efficient
70 tool for searching the experimental parameters’ space and
71 to produce optimized molecular /nanoparticle beams. Fur-
72 thermore, the feedback loop between simulation and ex-
73 periment offers a road to progress in both theoretical and
experimental physics. Simulations are repeatedly used as
a basis, supplementary, guiding, or verification method in
SPI research. Examples for this are (1) optimization of
experimentally verified aerodynamical injector designs for
a variety of specific particle sizes and materials [I5] [I7-
21], (2) exploration of the effects of experimental injection
parameters [22] and types of injectors [23] on diffraction
patterns, and (3) control of shock frozen isolated particles
of both biological and artificial origin [14]. Progress in
all of these areas was the foundation of recent signifi-
cant improvements of the amount of data that can be
collected in a given timeframe in SPI experiments [IT].
We therefore propose that providing a problem-tailored
s7 yet extensible simulation framework, as previously done
by our research group and collaborators [16} 24 25], will
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Here, we introduce and describe CMInject, a computa-
tional framework that aims to be an extensible basis for
such simulations[Figure 1] depicts examples of simulation
results, indicating that recent developments, as well as
s future ideas, are supported by our framework.
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further help progress in the field of nanoparticle injection. *
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FIG. 1. Example trajectory plots of experiments simulated
with CMInject: (a) 2D trajectories from a simulated focusing
experiment using an axisymmetric aerodynamic lens stack
(ALS) to focus d = 27nm gold nanoparticles [2I]. The simula-
tions include (black) or disregard (pink) Brownian motion. The
background shows the fluid’s velocity in z direction. (b) 3D
trajectories of a focusing experiment [I4], where a cooled buffer
gas cell (BGC) focuses d = 490 nm polystyrene nanoparticles
by a flowing carrier gas at a cryogenic temperature (4K).
The used force model is a new theoretical development for
particles moving in the molecular flow regime and at low tem-

peratures [26], see [Section 3.3.4 Trajectory colors indicate

different starting positions for otherwise identical particles.
(c) Qualitative reproduction of an optical trapping and levita-
tion experiment [27], showing the interplay of photophoretic
forces 28], gravity, and air resistance. Particles with different
masses — indicated by the trajectory colors: heaviest in green,
lightest in purple — settle into different equilibrium positions
over time.

2. PROBLEM DESCRIPTION

926

oz Creating high-quality nanoparticle beams poses diverse
os technical and scientific challenges [14, 15, 23, 29]. The
oo development of improved or sample-adjusted injection
100 pipelines [I5] needs to be supported by a flexible and
101 extensible simulation package, which enables quantitative
102 predictions of arbitrary nanoparticle injection pipelines.
103 Possibilities to easily implement additional virtual detec-
10a tors, particle types, and force fields are crucial for the
10s Usability in a wider scientific context. Capabilities for
106 the subsequent visualization and analysis of simulation
results, on their own or in comparison with experimental
data, are also important.

Reasonable assumptions within the set of possible sim-
ulated experiments were made when designing the initial
computational framework presented here: (1) particles do
not interact with each other nor do they affect the sur-
rounding environment. (2) the particles’ overall motion is
predominantly in the direction of a designated spatial axis,
which we refer to as z. Assumption (1) is appropriate
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tion easier. If necessary, it could be relaxed by writing
a parallelized implementation of particle-particle interac-
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dynamics software [30].

Further points of interest for nanoparticle injection
are the separation of species, e.g., by quantum state,
conformation, or enantiomer [16] 311 [32], the alignment
or orientation in space [33H37], or the preservation of
native biological structures [14}, [38], [39]. These are not
yet implemented in CMInject and will not be discussed
further in this paper, but we designed our framework
foreseeing corresponding as well as unforeseen extensions.

Furthermore, the framework must be usable by theo-
rists and experimentalists alike in order to evaluate and
exchange ideas and experiments for nanoparticle injection.
The framework should strike a balance between expres-
siveness and processing requirements: a long procedural
script, written with optimized functions, might run simu-
lations very quickly, but is likely incomprehensible to most
potential developers and users. A very general framework,
while intuitively usable by users and developers, might in
turn require so much dynamicism in its implementation
that simulations become unsuitably slow.

3. FRAMEWORK DESCRIPTION

CMInject enables theorists and experimentalists to
work together toward inventing or optimizing nanoparticle
injection pipelines [40]. CMInject is written in Python 3
and its design follows an object-oriented paradigm. Most
objects in this framework represent real-world counter-
parts that are present in actual experiments. For example,
a user might create a Setup instance, passing along one
or more Source instances that generate particles, and one
or more Device instances that affect particles throughout
their simulated trajectories by simulating physical forces.
The user can run() a concrete Experiment constructed
by the Setup and observe the returned results: a list
of Particle instances that have been updated and, if
desired, tracked along each particle’s trajectory.

CMInject does not impose many explicit constraints
on how specific objects need to behave, it only requires
that all parts of an Experiment work with each other
in a well-defined way. For example, while all currently
implemented sub-types of Particle are spherical objects,
CMInject is in principle agnostic to the particle shape.
If someone wished to, for example, simulate elliptical
articles in a fluid flow, they could do so by (i) defining a
Particle subclass EllipticalParticle with additional
shape parameters, e.g., 74, 7y, 7, for an ellipsoid and (ii)
deriving an implementation of the FluidFlowField class
to be able to handle these new particles by an appropriate
force model.

Going further, one could even implement the manipu-
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160 lation of molecules by electric fields using the quantum- 212
170 mechanical Stark effect [I6], 25], something we are fore- 213

3.1. Framework structure

CMIngject’s framework structure consists of:

1. a set of abstract definitions corresponding to real-
world experimental objects, with a prescribed way
of constructing a wirtual experiment out of these
objects.

. a parallelized routine that uses numerical integration
to generate particle trajectories through a virtual
experiment.

. supplementary executable scripts, mostly for the
analysis of result data.

. implementations of the abstract definitions for the
concrete physical models listed in

8.1.1. Base class definitions

The following list provides the base classes [4I]
of CMInject implemented in the cminject.base and
cminject.experiment modules, including brief versions
of their documentation. The full documentation is at-
tached in the supplementary materials and updated ver-
sions are available at https://cminject.readthedocs,
org.

cminject.base:

Particle: A particle whose trajectory we want to
simulate. First and foremost a simple data con-
tainer.

Field: An acceleration field acting on Particles.

Action: Updates the properties of a Particle after
each integration step. Useful for changes over time
that are not described by the ordinary differential

equations in [Section 3.3.1

Boundary: A spatial boundary, evaluates if a
Particle is inside its spatial extent.

Device: A combination of Fields, Actions, and
a Boundary, modeling real-world experimental de-
vices. Applies the effects of its Fields and Actions
only if a particle is inside of its Boundary; otherwise
does not affect the particle in any way.

Detector: Evaluates if and where a Particle in-
teracted with it.

ResultStorage: Stores experiment results to disk,
and offers convenience methods to read them back
into memory later.
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264

e Setup: Akin to a laboratory experimental setup
with changeable pieces and parameters. Exposes a
set of parameters that can be changed by the user,
and constructs an Experiment instance from them
that can then be simulated.

cminject.experiment:

e Experiment: Akin to a real-world experiment which
has a fixed set of sources, devices, detectors, and
experimental parameters. Contains one or more
instances of all of the classes from cminject.base
listed above (except for Setup, which constructs
Experiment instances). Constitutes the entry point
for simulation, and returns the results.

3.1.2.  Numerical and technical implementation

To numerically solve the particle trajectories for any
virtual experiment, we used the numerical integration
routine LSODA [42] as offered by the scipy.ode mod-
ule [43]. This routine was chosen for its automatic method
switching for stiff and non-stiff problems [42], which is
very useful in our generic multiphysics framework where
various forces make up an ODE system that can exhibit
different degrees of stiffness at different positions in space
of the same experiment.

For storing trajectories the integrator is instructed to
piecewise integrate from the current time ¢ up until ¢ + dt¢
with a chosen macro-timestep d¢. Note that the integra-
tor may automatically choose to calculate many smaller
timesteps in each macro-timestep, which does happen by
default and thus d¢ does not negatively affect the accuracy
of the integration. However, the size of d¢ determines how
often additional actions, e. g., Brownian motion updates,
detectors, or termination checks, are executed as these
actions occur for every trajectory point, see
for further details. We picked a default macro-timestep
dt = 10 ps, which we found appropriate for our simula-
tions. The user can adjust this value in a tradeoff between
the required resolution of the trajectories and the duration
of calculations.

These integration calculations are, as well as most other
calculations in CMInject, heavily based on NumPy ar-
rays [44]. We wrote a parallel implementation based on
the multiprocessing module offered by the Python 3
core library, letting simulated particles be processed in
parallel by a pool of w € N worker processes, where by de-
fault w is the number of available CPU cores. We use the
automatic optimization library Numba [45] as well as the
compiled language Cython [46], for automatic and manual
optimization of the calculation functions, respectively.

3.1.8.  Ezecutable scripts

CMIngject is supported by a collection of executable
scripts.  The main program, cminject, simulates
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a specified setup, passing along mandatory and op-
tional parameters and providing documentation for
them if needed, and writes the results to a speci-
fied output (HDF5) file. cminject_visualize and
cminject_analyze-asymmetry support the user’s anal-
ysis of the result files: They provide visualization and
metrics of beam profile asymmetry, respectively. Docu-
mentation for all utility programs is provided with the
software.

3.2. Program flow of simulation runs

To provide a foundation for further discussion of the
generality and possible improvements, we provide a de-
scription of the general program flow of a CMInject simu-
lation. A listing of the steps involved in the current im-
plementation is given in To clarify the short
descriptions given there, we note the following: A particle
is considered “done” if it is outside of all Boundary objects,
or if its current time is outside of the simulation time-
window. Whether integration is successful is determined
by the integrator. When a Detector detects a given par-
ticle, it stores a detection event on the Particle, so this
event is stored in the result list. Actions can change a
particle’s phase space position, and if this happens, it is
taken into account for the integration routine by resetting
the integrator accordingly.

Algorithm 1 Program flow of a CMInject simulation.

1. Get particles from all Sources, merge into one list

2. Initialize an empty result list

3. For each particle, parallelized via multiprocessing.Pool:
(a) Initialize integrator: t = to,x = o
(b) If particle “not done” and integration successful:

e Update particle phase space position from integrator
Update done-ness of particle using every Boundary
Let each Action update the particle

If particle position changed, reset the integrator
Let each Detector try to detect the particle
Update t, by incrementing it by the time step dt¢

Run the integrator until ¢. At each evaluated point:
— Consult each Device’s applicable Fields
— Sum all accelerations
e Go to (b)
(c) Store fully simulated particle in the result list

4. Store the result list as an HDF5 file

simplifies the description given in the step-by-
step listing, to a higher-level form and omits

implementation details in favor of general concept. We
anticipate that the community will discuss and optimize,
or even replace, the concrete implementation further,
while keeping the conceptual program flow as illustrated
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in [Figure 2| fairly consistent across future versions of soz the accelerations corresponding to spatial dimension 3.

CMInject.

3.3. Physics models

This first release of CMInject provides several physical
models that are briefly described in the following.

8.8.1. Newton’s equations of motion

We treat particle trajectories as a collection of incre-
mental numerical solutions to the initial value problem:

[t (1))

(t,
(JC Y, 2, Vg, vy,vz)T(t)

) =
) =
) (1)
) =

/(t
ot
(0

f(t,0(t)

¢ is a time-dependent vector in (2n)-dimensional phase-

space, with n = 3 in the general case or n = 2 for axially
symmetrical simulations. wv; are the velocities and a;

T
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FIG. 2. Conceptual program flow of a particle simulation with
CMInject, following a single particle through a collection of ob-
jects instantiated from the classes provided by the framework.
Solid arrows follow the particle’s path; their grey annotations
show the effect each object can have on the particle. The
shaded background indicates the integration loop, which is
repeated until the particle’s simulation is considered “done”.
Classes displayed as a stack of layered rectangles, like Source,
imply that a simulation can contain more than one object of
such a class. The stack simply labeled “A” and the dashed
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a=F /mp, with the total force F exerted on a particle
having mass m,,.

3.8.2. Stokes’ drag force

We use Stokes’ model for the drag force of an isolated
spherical particle embedded in a flowing medium [47] for
very small Reynolds numbers Re <« 1, which is essential
to our simulations of aerodynamical focusing. It is formu-
lated in terms of the fluid dynamic viscosity u, particle
radius 7, particle mass m, difference in velocity between
fluid and particle Av, and a Cunningham slip-correction
factor C, [48]. For room-temperature ALS simulations
we used an empirical slip-correction-factor model valid for
high Knudsen numbers [49]. For cryogenic temperatures,
e.g., 4 K, we used a temperature-dependent model [50]
scaled by an experimentally determined factor of 4, de-
tailed further in previous work [14]:

67rur£v

= ©)

FStokes =

3.8.8.  Brownian motion

Since we model nanoparticle injection, Brownian
motion becomes non-negligible, especially for smaller
nanoparticles. The model for Brownian motion used
is that of a Gaussian white-noise random process with a
spectral intensity Sp taken from Li and Ahmadi [51].

S
@Brown = N'(0,1, k) ”Af (3)
g _  216pkpT
07 T2(2r)52C,

./\_/&(07 1, k) denotes a vector of k entries, each being inde-
pendently and randomly drawn from a zero mean unit
variance normal distribution. At is the duration of the
time-interval over the force should be calculated, which is
the time increment of each integration step. r,m, u and
C, are the same quantities as defined in kg
is the Boltzmann constant, 7" is the temperature of the
fluid, and p is the density of the particle material.

8.8.4. Microscopic drag force

For the simulation of nanoparticles moving through
fluids with a wide range of pressures, velocities, and tem-
peratures, Stokes’ drag force is often not well applicable.
Thus, a new drag force model based on the kinetic theory
of gases was developed [26]. The original formulation [52]
of this model was extended to broad sets of conditions
encountered in novel nanoparticle injection experiments,
for instance, temperatures as low as 4 K [14]. This force
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time-dependent temperature difference between the in-
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for Brownian motion was also provided [26].

8.8.5.  Photophoretic force

Furthermore, a model of the photophoretic force, i.e.,
the force of the surrounding gas exerted on an anisotropi-
cally radiatively-heated particle. This has found various
applications in the physical and biological sciences [53]
and has also been exploited for controlling and focusing
particle beams [27] [54H57]. A full theoretical description
is not available [28] and we have implemented an approxi-
mate force model described and benchmarked before [28].
It assumes a Laguerre-Gaussian laser beam of order 1, and
uses a phenomenological constant x to model the axial
and transverse components separately. A description of
how we implemented this model, which closely follows the
publication by Desyatnikov, is given in the supplementary
information.

SIMULATION RESULTS AND COMPARISON
WITH EXPERIMENT

4.

To verify baseline correctness of our framework, we
benchmarked it against particle distributions from ex-
periment [2I]. There, d = 27 nm gold spheres were
injected into vacuum in an electrospray-ionization setup,
passed through a differential pumping stage to remove
background gas, and then guided into an optimized aero-
dynamic lens stack (ALS) [I5, 2I]. The 1D position
distributions, an arbitrary cross-section of the true 2D
distribution assuming axisymmetry around the z axis,
was measured at various distances from the exit of the
ALS along the propagation axis z.

To simulate this experiment we used the models for the
drag force and Brownian motion described in
We modeled the ALS using its known geometry and exper-
imentally recorded pressures at fixed points in the system.
Details about the setup and these measurements were
provided elsewhere [2I]. We then solved for a laminar flow
through this geometry using a finite-element solver [5§]
and exported a regular grid of the quantities flow velocity
¥ and gas pressure p throughout the ALS. We defined
one FluidFlowDevice and nine SimpleZDetectors at the
distances from the ALS exit where the experimental mea-
surements were made. Then we let CMInject read in
the flow field and run a simulation for 10° gold spheres
with d = 27 nm. We chose a macro-timestep of 10 ps.
The code to reproduce these results is provided in the
supplementary materials.

To get a comparable measure for the quality of the
particle beam’s focus that does not depend on fitting
any particular beam shape, we calculated the distance
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FIG. 3. Focus curves determined by experiment (orange) and
simulation (blue) for 27nm gold particles, moving through an
ALS |2I]. We measure the x positions of all particles relative to
the origin, and take the 70% quantile of these positions as our
measure of focus size. The results agree well on the minimum
focus size and position, i.e., a 38 pm focus at z = 3 mm after
the ALS exit, and also agree on the defocusing behavior after
this minimum.

from the origin in X to which 70 % of the particles were
detected, both for the simulated and the measured data.
The results are shown in One can see that there
is good agreement regarding the minimum focus size,
~35 pm at z = 3 mm and the defocusing behavior after
z = 3 mm. The focusing at z < 3 mm is in fair agreement,
but deviations are clearly visible and tentatively ascribed
to the neglect of gas-particle interactions in the initial
space outside the ALS. Nevertheless, the position and
size of the minimum focus are the most important results
for an injection pipeline used for single-particle X-ray
imaging, which our simulations model very well.

To better understand the focusing and defocusing be-
havior, we visually examined the results. For instance,

a8 shows 2D histograms of useful quantity pairs at
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different z positions in the experiment described above.
This allows for a visual, somewhat intuitive, disentangling
of the evolving ensemble of particles. Such plots can be
generated with the provided cminject_visualize tool
using the -H option. Alternatively, a qualitative visual
analysis can be obtained by plotting and inspecting par-
ticle trajectories as lines, using the -T option, as shown
for this and other experiments in Less con-
gested visualizations are obtained by animated trajectory
evolutions, using the -M option, where time-dependent
snapshots of the trajectories provide a visualization of the
particles positions and velocities. Examples are provided
as video files in the supplementary materials.

5. PROGRAM PERFORMANCE

The achievable simulation performance was bench-
marked on modern multicore computers, specifically nodes
of the Maxwell compute cluster at DESY. The nodes we
used are equipped with “Intel(R) Xeon(R) CPU E5-2698
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FIG. 4. Phase-space histograms of 10° simulated particles
at four detectors in an ALS. Two detectors are positioned in
the first chamber at the beginning and just before the first
aerodynamic lens (a—d). Two further detectors are positioned
after the last lens (e-h). The detectors’ z positions increase
downward. The left column shows the evolving ¢/z distribu-
tion and the right one the v, /x distribution. From the ¢/
distributions one sees that particles with a larger initial z
deviation take longer to arrive at the lens, with slowest parti-
cles traveling more than 30 ms longer than the fastest ones
(c). The v, /x distribution is initially Gaussian with a large
deviation in z (b). One can see strong focusing just before the
first lens (d) and slight defocusing just after the last lens (f).
The distribution finally turns into a more focused, collimated
particle beam (h).

v3” or “Intel(R) Xeon(R) E5-2640” CPUs, offering 32/64
and 16/32 cores/hyperthreads, respectively.

We note that performance may improve or degrade sub-
stantially compared to what is shown here when different
force models, experiment sizes, or time steps are used.
Here, we benchmarked the fluid dynamics simulation de-

Clock time Max. memory usage
104 10%
Z10? T
E 20
g 102 —4— 16B | &
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—4— 32

10% 10* 10°

Number of particles

10° 10* 10° 10°

Number of particles

10?

FIG. 5. Scaling behavior of clock time and memory usage for
the simulation described in [Section 5l “32” and “16” refer to
a Intel Xeon E5-2698 (32 cores) and a Intel Xeon E5-2640
CPU (16 cores), respectively. “B” indicates that Brownian
motion was enabled, whereas it wasn’t otherwise. Note that
the variance in memory usage is very low for a fixed number
of particles and all curves look like one. Besides initial setup
overhead, linear scaling of both clock time and memory is
clearly visible.

scribed in[Section 4] involving only Stokes’ drag force and
Brownian motion at a macro-timestep of 10 ps and an

experiment length of ~13 cm.

shows runtime and memory requirements for
this simulation when varying the number of particles, and
demonstrates that both scale linearly with the number of
particles — as expected from a Monte Carlo simulation
with no particle-particle interactions, which is trivially
parallel.

In we analyze multiple performance metrics
as functions of the number of parallel computation pro-
cesses. The optimal runtime is reached when we use
exactly as many processes as there are physical CPU
cores. When we use more processes, runtime performance
degrades significantly, together with several other perfor-
mance metrics. This is observed even though the CPU

Performance on Xeon E5-2698

100%
0% —e— Clock .time
—o— User time
60% —e— Kernel time
—e— Max. memory
40% —o— Vol. ctx. sw.
20% —e— Invol. ctx. sw.
) Minor page faults
0%
16 32 48 64
Number of processes

FIG. 6. Performance measurements made on an Intel Xeon
E5-2698 CPU with 32 physical cores for the same simulation
with different numbers of threads. The maximum value for
each measurement is set to be 100 %, and the other values
displayed in relation to it. “Vol.”/“Invol.” are shorthand for
“voluntary”/“involuntary”, and “ctx. sw.” is shorthand for
“context switches”.



aae Offers up to 64 available hyperthreads, which points to
as0 our current implementation not being well-suited to gain
a1 performance from hyperthreading. In line with previous
452 literature on this topic, we assume the reason to be that

computational-fluid-dynamics software packages such as
COMSOL [58] or OpenFOAM [65] would allow to run
CMInject simulations without the need to manually calcu-
late the flow fields beforehand. Users could then provide
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hyperthreading increases competition for resources in the
memory hierarchy [59]. If this is indeed the reason, it
could mean that our current implementation performs a
significant number of memory accesses that under-utilize
caches.

Graphics-processing units (GPUs) are particularly well- s
suited to trivially parallelizable calculations that largely sis
consist of repeated, similar floating-point operations. sis
They offer much higher internal bandwidths in their mem- sis
ory hierarchy than the bandwidths between CPU and sis
main memory [60], and as such should have less trouble sz
maintaining reasonable performance even when faced with sis
many cache misses. Therefore, they should exhibit sig- sie
nificantly better runtime-performance scaling at a much sz
larger number of parallel threads. We had also discussed sz
other reasons why GPUs could offer significant speedups
for our calculations [40, ch. 7]. With recent developments
in the automatic optimization library Numba [45] making sz2
GPU calculations in Python more accessible, GPUs could
be effectively utilized in future versions of our object- 5,3
oriented framework.
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6. SUMMARY AND OUTLOOK

526

We introduced, described, and benchmarked a new °**

Python framework for the simulation of nanoparticle-
injection pipelines. We hope that it will not only improve szs
the sample delivery in single-particle x-ray imaging [I1], s2
but also other isolated-nanoparticle experiments [61], [62]. s
The force models already implemented in CMlInject s
enable simulation-based development and exchange of ss2
improved and novel injector designs, help to understand sss
the effects of Brownian motion and how to control it sss
better, and facilitate scientific development for inject-
ing single, noncrystalline proteins, e. g., for single parti-
cle/molecule imaging experiments. Improvements directly s
relevant to scientific applications could be made through
the systematic derivation and implementation as well as sse
experimental comparison of models for novel techniques, ss7
e. g., acoustic [63] or photophoretic [27] [57] focusing. This sss
would open up possibilities to explore these new and excit- sso
ing pathways toward higher-quality particle beams with s
CMInject, pushing the limits of the imaging of chemical sa
and biochemical processes with atomic resolution. 54
From a software perspective, development effort should sas
be well-invested to make MPI bindings and GPUs avail- sas
able for users of CMlInject, e.g., by use of the mpidpy sas
library [64] or the CUDA bindings in the automatic opti- sas
mization library Numba [45], which should significantly sar
improve simulation runtimes [40] and is foreseen for future sas
versions of CMInject.
Besides such efforts,

N

549

a direct integration with sso

the description of an experimental device simply as a set
of numerical parameters. This could greatly speed up it-
erations of geometric optimization in the simulations and
offer options for automatic optimization of experimental
parameters, e. g., using learning-loop approaches.

To facilitate fast availability of improvements as well
as community contributions to the development, the
framework has been published at https://github.com/
cfel-cmi/cminject under a modified GPLv3 license re-
quiring attribution, e. g., through referencing of this pub-
lication. Up to date documentation is available at https:
//cminject.readthedocs.orgl Additional forces and
experiments will be modeled and open problems that
were discussed here and elsewhere [40] will be resolved,
in close exchange with the user community.
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