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Abstract

This paper shows the development of a multi-GPU version of a time-explicit finite volume solver
for the Shallow-Water Equations (SWE) on a multi-GPU architecture. MPI is combined with
CUDA-Fortran in order to use as many GPUs as needed. The METIS library is leveraged to
perform a domain decomposition on the 2D unstructured triangular meshes of interest. A CUDA-
Aware OpenMPI version is adopted to speed up the messages between the MPI processes. A
study of both speed-up and efficiency is conducted; first, for a classic dam-break flow in a canal,
and then for two real domains with complex bathymetries: the Mille Îles river and the Montreal
archipelago. In both cases, meshes with up to 13 million cells are used. Using 24 to 28 GPUs on
these meshes leads to an efficiency of 80% and more. Finally, the multi-GPU version is compared
to the pure MPI multi-CPU version, and it is concluded that in this particular case, about 100
CPU cores would be needed to achieve the same performance as one GPU.

1. Introduction
Floods are among the costliest natural disasters. Whether due to tsunamis, ruptured dams, or heavy rainfall, they affect
large areas and often require the evacuation of many people. Governments and agencies must therefore develop reli-
able and accurate maps of flood risk areas as part of their preventive measures (Raja and Elshorbagy, 2018; Das and
Umamahesh, 2018; Haltas et al., 2016; Tsai and Yeh, 2017). Hence, predictive simulations should quantify the uncer-
tainties that may arise from multiple sources (such as the boundary conditions, the geometry, the physical parameters,
etc.) and that propagate through the modeling system. Since the uncertainties propagation methods usually require a
large dataset of high-fidelity solutions, these should be computed in a reasonable time-frame.

Several numerical simulation codes have been developed to model floods, usually by solving the Shallow-Water Equa-
tions (Soulaimani et al., 2002; Toro, 2001; Audusse et al., 2004a; Bradford and Sanders, 2002; Brufau et al., 2004;
Zokagoa and Soulaïmani, 2010; Loukili and Soulaimani, 2007). These codes need to be capable of computing solutions
for large domains very quickly. Rapid computations are especially required in the context of uncertainty propagation or
inverse analysis studies, and more generally for the case of an extreme emergency event. Parallel computing is deemed
essential to achieve this goal, often using GPUs to further speed up the computations.

In De la Asunción et al. (2010); De la Asunción et al. (2013); Niksiar et al. (2014); Ayyad et al. (2020), a single GPU
was used to speed up the computations. Speed-ups on the order of 10 to 40 times were achieved by the GPU versions
compared to their CPU sequential counterparts. In Vacondio et al. (2014), with the use of better GPUs, even greater
speed-ups are achieved. One GPU is used to solve the SWE using CUDA C, C++ or Fortran in Brodtkorb et al. (2012,
2010); Escalante et al. (2018) and using OpenCL in Smith and Liang (2013).

The need for faster computations and larger domains led to the use of multiple GPUs per simulation. In order to meet
these expectations, the use of GPU programming languages like CUDA C, C++, Fortran or OpenCL was combined
with some CPU-level parallelism, such as OpenMP or MPI. The most popular approach is to use MPI coupled with
CUDA C, C++ or Fortan and domain decomposition. In this approach, each MPI process solves the problem on a
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sub-domain using the GPU it is associated with. Such approaches can be found in Komatitsch et al. (2010); Jacobsen
et al.; Jacobsen and Senocak (2011); Lai et al. (2019); Viñas et al. (2013); Turchetto et al. (2020).

This paper describes a methodology for porting a finite volume solver for the SWE on a multi-GPU architecture. The
methodology is quite general and thus applicable for other solvers, especially with explicit time discretization. We use
this methodology to port our in-house code CuteFlow (Loukili and Soulaimani, 2007; Zokagoa and Soulaïmani, 2010;
Suthar and Soulaimani, 2018; Jacquier et al., 2021) for the resolution of the SWE on a multi-GPU architecture using
CUDA Fortran, a CUDA-Aware version of OpenMPI Gabriel et al. (2004) and METIS Karypis and Kumar (2009) to
perform the domain decomposition.

The article is divided into several sections. In section 2, we present the SWE and their resolution using a time-explicit
finite volume method. The Riemann solvers used during this step are presented in section 3, as well as the treatment
of bathymetric and friction source terms. Next, in section 4 we tackle the heart of multi-GPU porting, starting with
the pre-processing required for the domain decomposition. We use the METIS library (Karypis and Kumar, 2009) to
performd the decomposition and devote particular attention to the numbering of the cells to be sent and received by
each sub-domain. The use of OpenMPI (Gabriel et al., 2004), in combination with CUDA, is then presented in section
5. We show in section 5.3 the general functioning of our in-house code and how we overlapped the computations
with the MPI memory exchange. The results obtained on different domains are presented in section 6. We begin
with a classic dam-break case, followed by the domain of the Mille Îles river and then the domain of the archipelago
of Montreal. We calculate the speed-up and efficiencies for different mesh sizes and comment on the scaling of our
proposed multi-GPU version. The performance of the multi-GPU version is then compared to that of of the pure MPI
multi-CPU version. A discussion of the usefulness of the multi-GPU version concludes section 6. We end with our
conclusions and recommendations for further work in section 7.

2. The Shallow-Water Equations
The Shallow-Water Equations system is presented here. The convention for describing the bathymetry 𝑏, the surface 𝑠
and the water height ℎ is illustrated on Figure 1.

Figure 1: Illustration of the notations
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The Shallow-Water Equations system is written as

𝑈𝑡 + 𝐹 (𝑈 )𝑥 + 𝐺(𝑈 )𝑦 = 𝑆(𝑈 ), (1)

with

𝑈 =

⎡
⎢⎢⎣

ℎ

ℎ�̄�

ℎ�̄�

⎤⎥⎥⎦
, 𝐹 (𝑈 ) =

⎡⎢⎢⎣

ℎ�̄�

ℎ�̄�2 +
1

2
𝑔ℎ2

ℎ�̄��̄�

⎤
⎥⎥⎦
,

𝐺(𝑈 ) =

⎡⎢⎢⎣

ℎ�̄�

ℎ�̄��̄�

ℎ�̄�2 +
1

2
𝑔ℎ2

⎤⎥⎥⎦
, 𝑆(𝑈 ) =

⎡⎢⎢⎣

𝑠1
𝑠2
𝑠3

⎤⎥⎥⎦
.

where �̄� and �̄� are the depth averaged velocities on the x and y direction, ℎ is the height of the water column as defined
in Figure 1, and g is the gravitational acceleration.

The system can be represented in integral form in order to accept the discontinuities, as in the following expression

𝜕

𝜕𝑡 ∫Ω 𝑈𝑑𝑉 + ∫𝜕Ω 𝑛.𝐻(𝑈 ) 𝑑𝑆 = ∫Ω 𝑆(𝑈 ) 𝑑𝑉 , (2)

with 𝐻(𝑈 ) = (𝐹 (𝑈 ),𝐺(𝑈 )) .

The source term of (1) can be separated into two, one part for bathymetry and one for friction. We will use the following
notations

𝑆(𝑈 ) = 𝑆𝑂(𝑈 ) + 𝑆𝑓 (𝑈 ) (3)

where the bathymetry term 𝑆𝑂 is

𝑆𝑂 = (0,−𝑔ℎ𝑏𝑥,−𝑔ℎ𝑏𝑦) (4)

and the friction term 𝑆𝑓 is

𝑆𝑓 = (0,−𝑔ℎ
𝑚2�̄�

√
�̄�2 + �̄�2

ℎ4∕3
,−𝑔ℎ

𝑚2�̄�
√
�̄�2 + �̄�2

ℎ4∕3
). (5)

in which 𝑚 is Manning’s roughness coefficient.

3. Numerical resolution of the SWE by the finite volume method
This section presents the resolution of the SWE by the finite volume method (Loukili and Soulaimani (2007); Ata et al.
(2013); Audusse and Bristeau (2005); Toro (2001)). We use a finite volume method centered on the cells, realized by
combining the HLLC scheme and the semi-implicitation of the friction terms of Loukili and Soulaimani (2007) with
the treatment of the bathymetry terms presented in Ata et al. (2013), an approach inspired by Audusse and Bristeau
(2005).

3.1. Finite volume discretization
The finite volume method is based on a tiling of the study area in volumes; we chose to use triangular volumes. We
start by integrating the SWE on each volume Ω𝑖 which, by applying the divergence theorem, gives

∫Ω𝑖

𝜕𝑈

𝜕𝑡
𝑑𝑉 + ∫𝜕Ω𝑖

𝐻(𝑈 ).𝑛𝑖 𝑑𝑆 = ∫Ω𝑖

𝑆(𝑈 ) 𝑑𝑉 (6)

with 𝐻(𝑈 ) = (𝐹 ,𝐺)𝑇 , and 𝑛𝑖 is the unit normal of 𝜕Ω𝑖 outwards of Ω𝑖.

We then use the following definitions

𝑈𝑖 =
1

|Ω𝑖| ∫Ω𝑖

𝑈𝑑𝑉 , (7)
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and

𝑆𝑖(𝑈 ) =
1

|Ω𝑖| ∫Ω𝑖

𝑆(𝑈 ) 𝑑𝑉 , (8)

which transform (6) into

|Ω𝑖|
𝑑𝑈𝑖

𝑑𝑡
= −

3∑
𝑗=1

𝐿𝑖𝑗𝐻(𝑈 ).𝑛𝑖𝑗 + |Ω𝑖|𝑆𝑖(𝑈 ), (9)

with |Ω𝑖| the area ofΩ𝑖 (triangular),𝐿𝑖𝑗 the length of the side 𝑗 ofΩ𝑖 and 𝑛𝑖𝑗 the unit normal of the side 𝑗 outwards ofΩ𝑖.

We can also separate the source term 𝑆𝑖 into two parts, 𝑆𝑂𝑖
for bathymetry and 𝑆𝑓𝑖

for friction

⎧⎪⎪⎨⎪⎪⎩

𝑆𝑂𝑖
(𝑈 ) =

1

|Ω𝑖| ∫Ω𝑖

𝑆𝑂(𝑈 ) 𝑑𝑉 ,

𝑆𝑓𝑖
(𝑈 ) =

1

|Ω𝑖| ∫Ω𝑖

𝑆𝑓 (𝑈 ) 𝑑𝑉 .

(10)

Equation (9) can then be written as

|Ω𝑖|
𝑑𝑈

𝑑𝑡
= −

3∑
𝑗=1

𝐿𝑖𝑗𝐻(𝑈 ).𝑛𝑖𝑗 + |Ω𝑖|𝑆𝑂𝑖
(𝑈 ) + |Ω𝑖|𝑆𝑓𝑖

(𝑈 ). (11)

We then use the rotational invariance between 𝐺 and 𝐻 around each side (Toro (2001); Loukili and Soulaimani (2007);
Hemker and Spekreijse (1985)), which gives

𝐻(𝑈 ).𝑛𝑖𝑗 = 𝑇 −1
𝑛𝑖𝑗

𝐺(𝑇𝑛𝑖𝑗𝑈 ), 𝑇𝑛𝑖𝑗
=

⎡⎢⎢⎣

1 0 0

0 𝑛1
𝑖𝑗

𝑛2
𝑖𝑗

0 −𝑛2
𝑖𝑗

𝑛1
𝑖𝑗

⎤⎥⎥⎦
. (12)

In this approach we use a finite volume method centered on the cells with piecewise constant variables. To approximate
the fluxes, we solve a unidirectional Riemann problem in the direction 𝑛𝑖𝑗 , which allows (11) to be written as

|Ω𝑖|
𝑑𝑈𝑖

𝑑𝑡
= −

3∑
𝑗=1

𝐿𝑖𝑗𝑇
−1
𝑛𝑖𝑗

�̃�(𝑇𝑛𝑖𝑗𝑈𝑖, 𝑇𝑛𝑖𝑗
𝑈𝑗) + |Ω𝑖|𝑆𝑂𝑖

(𝑈 ) + |Ω𝑖|𝑆𝑓𝑖
(𝑈 ), (13)

with �̃�(𝑇𝑛𝑖𝑗𝑈𝑖, 𝑇𝑛𝑖𝑗
𝑈𝑗) = �̃�(𝑈𝐿,𝑈𝑅) a discrete flux found by solving a Riemann problem with 𝑈𝐿 = 𝑇𝑛𝑖𝑗

𝑈𝑖 and
𝑈𝑅 = 𝑇𝑛𝑖𝑗

𝑈𝑗 as the initial states. That is to say,

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑈

𝜕𝑡
+

𝜕𝐺(𝑈 )

𝜕𝑥𝑛
= 0,

𝑈 (𝑥, 0) =

{
𝑈𝐿 if 𝑥𝑛 < 0,

𝑈𝑅 if 𝑥𝑛 > 0.

(14)

As far as the boundary conditions are concerned, we choose to proceed as in Loukili and Soulaimani (2007). A trans-
missive condition is solved by supposing a state 𝑈𝑅 = 𝑈𝐿 in the resolution of the Riemann problem. For a condition
with an incoming flow 𝑄 we calculate the flow directly with �̃�(𝑈𝐿) = (𝑄, 𝑄2∕ℎ𝑙 + (𝑔ℎ𝑙)

2∕2, 0)𝑇 , and for a non-
transmissive wall condition we use the preceding calculation with a zero incoming flow, ie �̃�(𝑈𝐿) = (0, (𝑔ℎ𝑙)

2∕2, 0)𝑇 .

Temporal discretization is done using an explicit Euler method, which makes it possible to avoid having to solve a
linear system at the cost of a time step constrained by a stability condition. The stability analysis from Loukili and
Soulaimani (2007) gives the following CFL condition
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𝐶𝐹𝐿 = Δ𝑡
𝑚𝑎𝑥(

√
𝑔ℎ +

√
𝑢2 + 𝑣2)

𝑚𝑖𝑛(𝑑𝐿,𝐿𝑅)
, (15)

with 𝑑𝐿,𝐿𝑅 the distance between the cell center and the L/R interface. However, for simplicity we choose to take
𝑑𝐿,𝐿𝑅 = 𝑅𝐿, the radius of the circle inscribed in cell L. This is a very conservative condition and has proven to result
in great stability for CFL = 0.9.

Using the explicit Euler discretization, (13) becomes

𝑈𝑛+1
𝑖

− 𝑈𝑛
𝑖

Δ𝑡
= −

1

|Ω𝑖|

3∑
𝑗=1

𝐿𝑖𝑗𝑇
−1
𝑛𝑖𝑗

�̃�(𝑈𝑛
𝐿
,𝑈𝑛

𝑅
) + |Ω𝑖|𝑆𝑛

𝑂𝑖
(𝑈 ) + |Ω𝑖|𝑆𝑛

𝑓𝑖
(𝑈 ), (16)

where the 𝑛 exponent shows that the values are taken at times 𝑡𝑛.

3.2. HLL and HLLC schemes
We recall here the flux of the HLL scheme (Loukili and Soulaimani, 2007; Toro, 2001; Harten et al., 1983)

�̃�𝐻𝐿𝐿 =

⎧⎪⎨⎪⎩

𝐺(𝑈𝐿), 𝑆𝐿 ≥ 0,

𝐺(𝑈𝑅), 𝑆𝑅 ≤ 0,

�̃�(𝑈∗), 𝑆𝐿 ≤ 0 and 𝑆𝑅 ≥ 0,

(17)

with �̃�(𝑈∗) the flux in the star region given by

�̃�(𝑈∗) = (𝑆𝑅𝐺(𝑈𝐿) − 𝑆𝐿𝐺(𝑈𝑅) + 𝑆𝑅𝑆𝐿(𝑈𝑅 − 𝑈𝐿))∕(𝑆𝑅 − 𝑆𝐿). (18)

The right and left wave speeds, 𝑆𝑅 and 𝑆𝐿, are estimated as follows

𝑆𝐿 = 𝑢𝐿 − 𝑎𝐿𝑝𝐿,𝑆𝑅 = 𝑢𝑅 + 𝑎𝑅𝑝𝑅, (19)

where 𝑘 = 𝐿,𝑅, 𝑎𝑘 =
√
𝑔ℎ𝑘 and

𝑝𝑘 =

�
[ℎ∗(ℎ∗ + ℎ𝑘)∕2)]

1∕2∕2, ℎ∗ > ℎ𝑘,

1, ℎ∗ ≤ ℎ𝑘,
(20)

with ℎ∗ the water height in the star region.

The water height ℎ∗ is evaluated in multiple steps. A first approximation indicates if this is a shock wave or a rarefaction
wave

ℎ∗
0
=

ℎ𝐿 + ℎ𝑅

2
−

(𝑈𝑅 − 𝑈𝐿)(ℎ𝐿 + ℎ𝑅)

4(𝑎𝑅 + 𝑎𝐿)
. (21)

If ℎ∗
0
≤ 𝑚𝑖𝑛(ℎ𝐿,ℎ𝑅), then it is a rarefaction wave and we have

ℎ∗ = [(𝑎𝑅 + 𝑎𝐿)∕2 + (𝑈𝐿 − 𝑈𝑅)∕4]
2∕𝑔, (22)

whereas, if ℎ∗
0
> 𝑚𝑖𝑛(ℎ𝐿,ℎ𝑅), then it is a shock wave and we have

ℎ∗ = (ℎ𝐿𝑔𝐿 + ℎ𝑅𝑔𝑅 + 𝑢𝐿 − 𝑢𝑅)∕(𝑔𝐿 + 𝑔𝑅),

𝑔𝑘 =

�
𝑔(ℎ∗

0
+ ℎ𝑘)

2ℎ∗
0
ℎ𝑘

�1∕2

, 𝑘 = 𝐿,𝑅.
(23)
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We can then modify this scheme to obtain HLLC (Loukili and Soulaimani, 2007; Ata et al., 2013; Toro, 2001; Harten,
1983) by accounting for the speed 𝑆∗ in the star region. This step only modifies the last component of the flux, as
follows

�̃�𝐻𝐿𝐿𝐶
3

=

�
�̃�𝐻𝐿𝐿
1

(𝑈𝐿,𝑈𝑅)𝑣𝐿, 𝑆
∗ ≤ 0,

�̃�𝐻𝐿𝐿
1

(𝑈𝐿,𝑈𝑅)𝑣𝑅, 𝑆
∗ ≥ 0,

(24)

with

𝑆∗ =
𝑠𝐿ℎ𝑅(𝑢𝑅 − 𝑆𝑅) − 𝑠𝑅ℎ𝐿(𝑢𝐿 − 𝑆𝐿)

ℎ𝑅(𝑢𝑅 − 𝑆𝑅) − ℎ𝐿(𝑢𝐿 − 𝑆𝐿)
, (25)

by considering the following dry bed situations

ℎ𝐿 = 0 : 𝑆𝐿 = 𝑈𝑅 − 2𝑎𝑅, 𝑆𝑅 = 𝑢𝑅 + 𝑎𝑅,𝑆
∗ = 𝑆𝐿,

ℎ𝐿 = 0 : 𝑆𝐿 = 𝑈𝐿 − 𝑎𝐿, 𝑆𝑅 = 𝑢𝐿 + 2𝑎𝐿,𝑆
∗ = 𝑆𝑅.

(26)

With this new flux, (16) becomes

𝑈𝑛+1
𝑖

− 𝑈𝑛
𝑖

Δ𝑡
= −

1

|Ω𝑖|

3∑
𝑗=1

𝐿𝑖𝑗𝑇
−1
𝑛𝑖𝑗

�̃�𝐻𝐿𝐿𝐶 (𝑈𝑛
𝐿
,𝑈𝑛

𝑅
) + 𝑆𝑛

𝑂𝑖
(𝑈 ) + 𝑆𝑛

𝑓𝑖
(𝑈 ) (27)

3.2.1. Bathymetric source term

To compute the bathymetric source term, we use the method in Ata et al. (2013) that is based on Audusse and Bristeau
(2005). It is a method that can be used with any consistent numerical scheme (Ata et al. (2013)).

The main steps are:

• Define the interface bathymetry between cells i and j with 𝑧𝑖𝑗 = 𝑧𝑗𝑖 = 𝑚𝑎𝑥(𝑧𝑖, 𝑧𝑗) .

• Define the water depth at the interface ℎ∗∗
𝑖𝑗

= 𝑚𝑎𝑥(0,ℎ𝑖 + 𝑧𝑖 − 𝑧𝑖𝑗) and redefine the interface unknowns

𝑈∗∗
𝑖𝑗

= (ℎ∗∗
𝑖𝑗
,ℎ∗∗

𝑖𝑗
𝑢𝑖,ℎ

∗∗
𝑖𝑗
𝑣𝑖)

𝑇
. (28)

• Use the hypothesis ∇𝑠 ≃ 0; so that −𝑔ℎ∇𝑏 ≃ ∇(𝑔ℎ2∕2), which leads to

𝑆𝑂(𝑈 ) =

(
0

∇(𝑔ℎ2∕2)

)
. (29)

Then, by using the definition in (10), we choose a new discretization with the new set of unknowns in (28) to
get (Audusse et al., 2004b)

𝑆𝑂𝑖
(𝑈 ) =

1

|Ω𝑖|

3∑
𝑗=1

𝐿𝑖𝑗

�
0

𝑔(ℎ∗∗
2

𝑖𝑗
− ℎ2

𝑖
)𝑛𝑖𝑗

�
. (30)

• Finally, we replace 𝑆𝑂𝑖
in (27) with its expression in (30).

3.2.2. Friction

We recall that

𝑆𝑓𝑖
(𝑈 ) =

1

|Ω𝑖| ∫Ω𝑖

𝑆𝑓 (𝑈 ) 𝜕Ω, (31)

with

𝑆𝑓 (𝑈 ) =

�
0,−𝑔ℎ

𝑚2�̄�
√
�̄�2 + �̄�2

ℎ4∕3
,−𝑔ℎ

𝑚2�̄�
√
�̄�2 + �̄�2

ℎ4∕3

�
. (32)

To deal with this nonlinear term, we take up the semi-implicitation proposed in Loukili and Soulaimani (2007). This
method consists of taking
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𝑆𝑓 =
𝑆𝑛+1
𝑓

+ 𝑆𝑛
𝑓

2
, (33)

and then making the approximation
𝑆𝑛+1
𝑓

≃ 𝑆𝑛
𝑓
+ 𝐽𝑓 (𝑈

𝑛+1 − 𝑈𝑛), (34)

with

𝐽 𝑛
𝑓
=

𝜕𝑆𝑛
𝑓

𝜕𝑈
=

⎛⎜⎜⎝

0 0 0

𝜕𝑆𝑛
𝑓𝑥
∕𝜕ℎ 𝜕𝑆𝑛

𝑓𝑥
∕𝜕(ℎ�̄�) 𝜕𝑆𝑛

𝑓𝑥
∕𝜕(ℎ�̄�)

𝜕𝑆𝑛
𝑓𝑦
∕𝜕ℎ 𝜕𝑆𝑛

𝑓𝑦
∕𝜕(ℎ�̄�) 𝜕𝑆𝑛

𝑓𝑦
∕𝜕(ℎ�̄�)

⎞⎟⎟⎠
. (35)

Equation (31) can then be approximated by
𝑆𝑓𝑖

(𝑈 ) = 𝑆𝑓 (𝑈𝑖). (36)

Finally, replacing (33) in (27) gives the final form of the discretization

𝑈𝑛+1
𝑖

− 𝑈𝑛
𝑖

Δ𝑡
=

[
𝐼 −

Δ𝑡

2
𝐽𝑓

]−1
�
−

1

|Ω𝑖|

3∑
𝑗=1

𝐿𝑖𝑗𝑇
−1
𝑛𝑖𝑗

�̃�𝐻𝐿𝐿𝐶 (𝑈𝑛
𝐿
,𝑈𝑛

𝑅
).𝑛𝑖 + 𝑆𝑓 (𝑈

𝑛
𝑖
) + 𝑆𝑛

𝑂𝑖
(𝑈𝑛

𝑖
,𝑈∗∗𝑛

𝑖𝑗
, 𝑛𝑖𝑗)

�
. (37)

4. Domain Decomposition
In this section, we present the pre-processing steps implemented in order to perform the domain decomposition. The
objective is to generate a mesh file for each sub-domain, starting from the mesh file of the whole domain. We use a
fairly classical method, diagrammed in Figure 2. All of the major domain decomposition steps are presented in the
following subsections.

Reading
input mesh METIS Sub-domain

generation
Adding

ghost cells
Renumbering

send/receive cells
Renumbering
sub-domains

Writing
output meshes

Figure 2: Pre-processing of the mesh files using METIS

4.1. Using METIS
To perform the domain decomposition, we use the METIS library (Karypis and Kumar, 2009). METIS is a widely
used library that allows a mesh to be decomposed into sub-domains using the mesh’s graph’s partitioning. This step is
crucial, as it is necessary to limit the contact surfaces between the sub-domains as much as possible in order to have
the minimum amount of memory exchanged between the processors. METIS does this very quickly and efficiently.

We use METIS to attribute a sub-domain to each cell. Next, we add one layer of ghost cells on each sub-domain. This
process is described in the following section.

4.2. Adding ghost cells
Following the decomposition of the initial mesh, we obtain the number of desired sub-domains. We manage these
sub-areas by anticipating what will be needed during the memory exchanges.

As presented in section 2, our numerical scheme requires knowing the unknowns in the neighboring cells, i.e., the cells
that have an edge common to the computed cell. This requirement implies the need for special treatment at the edges
of the sub-domains.

The cells on the edges of the original domain are treated with the boundary conditions presented in section 2. Special
care must be given to the cells on the edges of the sub-domains that are in contact with other sub-domains. To calculate
the new value of a cell on such an edge, we determine the value of the neighboring cells that are potentially in another
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sub-domain and thus allocated to another processor. This is when we will have to use the MPI library to perform a
memory exchange between the processors.

To avoid having to perform a memory exchange each time we try to compute a border cell, a common approach is to
add a layer of so-called ghost cells to each sub-domain. Thus, the values of all these cells can be recovered at one time,
with no further issues about memory exchanges during the next time step’s computation.

To find the ghost cells, the first step is to find the nodes that are common between two adjacent sub-domains. Figure
3(a) shows the allocation of the cells made by METIS; one area is colored in blue, the other in white. We show the
dividing line between the domains in red. The nodes common to the two sub-domains are on this red line.

(a) (b) (c)

Figure 3: Allocation of cells made by METIS at the interface between two sub-domains. The blue cells correspond to one
domain, the white cells to the other domain. The line of nodes common to the two sub-domains is represented in red.
Green cells are added to the blue sub-domain, and purple cells are added to the white sub-domain.

After finding these common nodes, each sub-domain is examined to determine the cells with two successive nodes
that belong to the list of the common nodes. These will be ghost cells for the other sub-domain. Figure 3(b) shows the
ghost cells of the blue sub-domain in green. They will be received by the blue sub-domain and sent from the white
sub-domain. Similarly, Figure 3(c) shows the ghost cells of the white domain in purple. They will be received by the
white sub-domain and sent from the blue sub-domain.

As it is only done once for each mesh, this serial domain decomposition is good enough for our purposes. In the future,
this decomposition may need to be upgraded by using parallel computing, as in Patchett et al. (2017).

4.3. Renumbering the ghost cells and generating the sending/receiving information
The numbering of the cells that will be sent/received is essential for the memory exchange’s performance. Indeed,
when a message is sent with MPI, there is a latency time. Hence, messages should be grouped as much as possible to
send a single large one rather than several small ones.

Our goal is to send all the cells needed by an adjacent sub-domain at one time by sending a memory block. Thus, the
cells need to be grouped in a single block by our numbering. We will therefore renumber the cells to have: first, the
cells that will neither be sent nor received; then the cells to be sent to other sub-domains, grouped in as many blocks as
there are adjacent sub-domains; and finally the ghost cells that must be received, gathered in as many blocks as there
are adjacent sub-domains.

Considering how the ghost cells are added to each sub-domain, it is natural that these cells are located at the end of
the numbering and form a block for each adjacent sub-domain. On the other hand, the cells that each sub-domain
must send are derived from the mesh’s initial numbering and are therefore not generally side-by-side in the numbering.
Therefore, we will re-number these cells to ensure that they are correctly grouped into blocks. The objective is to have
a mesh file as shown in Figure 4.
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Figure 4: Mesh file for the 4th sub-domain.

This process allows us to generate directly in the mesh files
all the information that will be necessary to send and re-
ceive messages by block in the simulation. In particular, as
presented in Figure 4, each mesh file will contain the start-
ing indices of each block to be sent, their size, and the in-
dex of the sub-domain to which the block must be sent.
The process works in the same way for the cells to receive;
each mesh file contains the starting index of the block of
ghost cells to receive, the size of this block, and the num-
ber of the sub-domain from which this block will be re-
ceived.

In figure 4, each cell category is associated with a color:

• Uncolored cells are neither to send nor to receive;

• Red cells are to be sent to sub-domain 3;

• Orange cells are to be sent to sub-domain 5;

• Cyan cells are to be received from sub-domain 3;

• Purple cells are to be received from sub-domain 3.

Generating this data in pre-processing thus simplifies the task in
the simulation code, as all the information necessary to correctly
carry out the ghost cells’ exchange can be read in the meshes’ files.

4.4. Sub-domain renumbering
The goal here is to renumber the sub-domains of the decomposition, meaning the renumbering of the sub-domains
themselves rather than a renumbering of the cells in each sub-domain.

For most computer clusters, there are usually 4 to 8 GPUs per computer node. If we plan to use 4 GPUs per node, we
will have four sub-domains per node, and therefore we would have to optimize the renumbering accordingly. However,
there is often no quick fix that would avoid all of the exchanges between nodes.

This renumbering does not have a significant impact on the code’s performance; in the best case, it improved the perfor-
mance by 8− 10%. We present it here because it is very straightforward, simple to implement and could be especially
useful when dealing with many sub-domains.

While METIS already has a way to deal with the numbering of sub-domains, we found that in our case, it could easily
be optimized. To improve this numbering, we propose to use the well-known Cuthill-McKee algorithm (Cuthill and
McKee, 1969).

In the classic Cuthill-McKee algorithm, we choose to start numbering with an edge domain by looking for the do-
main with the least important degree, i.e., the domain with the fewest neighbors. However, in our case, where there
are only a few sub-domains, many have only two neighbors, which complicates being able to start the numbering
with an edge domain. To solve this problem as simply as possible, we suggest starting the numbering with a domain
that contains input nodes from the original domain. These nodes are given in our meshes, and are then used to de-
fine the boundary conditions. Therefore, it becomes a simple task to identify the sub-domains that contain input nodes.
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(a) (b)

Figure 5: Domain of the Mille Îles river broken into 32 sub-domains, each corresponding to a color. The METIS numbering
is on the left (a), our renumbering is on the right (b).

Once this first domain has been selected, we can use the classic Cuthill-McKee algorithm. As an example, in Figure
5 we show a comparison of the numbering of 32 sub-domains on the Mille Îles river.
As expected with the Cuthill-McKee algorithm, the spatially-close sub-domains have close numbers, which implies
that they will probably be on the same computation node. However, as we have specified, there will be exchanges
between domains on separate nodes no matter how the renumbering is done.

(a) (b)

Figure 6: Domain of the Montreal archipelago broken into 32 sub-domains, each sub-domain corresponds to a color. The
METIS numbering is on the left (a), our renumbering is on the right (b).

Although there is a rather satisfactory renumbering on the Mille Îles river domain presented in Figure 5, this method
quickly reaches its limits with domains containing several entries, such as the domain of the Montreal archipelago.
The METIS numbering shows these limits on the left in Figure 6. As with the renumbering on the Mille Iles river,
Figure 6 shows close sub-domains that have distant numbers.

Our renumbering is on the right of Figure 5. In this case, it is difficult to say whether our numbering is better than the
METIS numbering on the left. This is confirmed by the small performance improvement of 2 − 3%.

If the objective is to treat more and more domains containing several inputs and outputs, and to break them down into
even more sub-domains, then a better method for this renumbering will have to be proposed. For our purposes, this
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simple renumbering is sufficient.

As stated earlier, this renumbering of the sub-domains led to, at most, a 10% speed-up of the computation on the Mille
Îles river decomposed into 32 sub-domains.

5. CUDA, MPI and CUDA-Aware MPI
GPU programming in CUDA is discussed here to give the reader some background to understand how it works with
MPI. For further information about GPU programming see Sanders and Kandrot (2010), Fatica and Ruetsch (2014)
and Kirk and mei W. Hwu (2017).

The general idea of CUDA is to use the CPU to launch specially-written functions on the GPU. Such functions are
called kernels and are launched in parallel on the GPU following a specified configuration of threads and blocks. It
must be noted that the kernels only work with variables that are on the GPU. In CUDA-Fortran, a variable should be
declared with the device attribute in order to be allocated on the GPU. As the variables are declared on the GPU, a
copy from the host memory (CPU memory) to the device memory (GPU memory) will most often be made just before
the calling of a kernel.

Thus, the goal is to reduce the number of exchanges between the CPU and the GPU in order to speed up the com-
putations. In our case, we wrote all the functions used in the time loop of the algorithm on the GPU. This allows us
to initialize and set up all the vectors on the CPU side at the beginning, then copy all of these vectors on the GPU,
perform the iterations over time on the GPU without any exchanges between the CPU and the GPU, and finally copy
back the vectors from the GPU to the CPU to do the post-processing.

MPI (Message Passing Interface) is a standard that defines the communication functions between several processors
or remote computers. We used OpenMPI (Gabriel et al., 2004) in order to run different copies of the code on different
processors. Each MPI process thus has its own memory, which will be the only one it is able to modify. Furthermore,
each MPI process will be associated with a unique GPU on which it will be the only one to launch kernels on.

5.1. Classic GPU memory exchange
Usually, MPI only allows memory exchanges between variables defined on the CPU. When we couple MPI with
CUDA-Fortran, each MPI process has its own variables on the CPU and on the GPU it is associated with. To exchange
the variables of the GPU, it is necessary, in the classic case, to copy these variables onto the CPU, then make the MPI
memory exchange, and finally copy the variables on the GPU in return. These copies are done using the 𝑐𝑢𝑑𝑎𝑀𝑒𝑚𝑐𝑝𝑦

function from CUDA.

For example, to make the classic reduction on the time step dt, one can do the following,

ierr = cudaMemcpy(dt,dt_d ,1)

call MPI_ALLREDUCE(MPI_IN_PLACE , dt, 1,

fp_kind_mpi , MPI_MIN , MPI_COMM_WORLD , mpi_ierr)

ierr = cudaMemcpy(dt_d ,dt ,1)

where 𝑑𝑡_𝑑 has been declared on the GPU using the attribute device.

There are more complex ways to overlap memory exchanges with calculations, such as by using CUDA streams to
make an asynchronous copy between the CPU and the GPU and by using the non-blocking version of ALLREDUCE,
IALLREDUCE.

Although the latter method works, it is generally not the most effective, especially if the exchanges are not overlapped
with calculations. A better method, which is also simpler to program, is to use CUDA-Aware OpenMPI, as detailed
bellow.
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5.2. GPU Memory exchange using CUDA-Aware OpenMPI
A CUDA-Aware OpenMPI version indicates that the OpenMPI library has been compiled with support for CUDA.
Such a compiled library makes it possible to send and receive GPU memory directly without copying the GPU mem-
ory onto the CPU. This possibility has been available since version 1.7 of OpenMPI.

In the CUDA-Aware OpenMPI documentation, it states, "Now, the Open MPI library will automatically detect that the
pointer being passed in is a CUDA device memory pointer and do the right thing" (https://www.open-mpi.org/
faq/?category=runcuda). We are not going to detail what the right thing means but we can give offer some clues.

If two GPUs are on the same computer node, they may communicate in Peer-To-Peer, i.e., they can communicate di-
rectly with each other without going through the host’s memory. We can then write a function that checks whether the
GPUs can communicate in Peer-to-Peer. If this is the case, we can perform a memory exchange directly between the
two GPUs using the cudaMemcpy2D () function of CUDA Fortran. If the GPUs cannot communicate in Peer-to-Peer,
we will be forced to copy the GPU variables to the CPU and then use MPI to exchange memory. This is the maximum
that we can do in terms of programming; using CUDA-Aware OpenMPI allows us to avoid this situation and instead
use the exchange in Peer-to-Peer whenever possible.

It is clear that CUDA-Aware OpenMPI lightens the programming task load, allowing us not to be concerned about
how the memory exchange is done. However, as certain functionalities are too low-level to be accessible from CUDA-
Fortran, the use of CUDA-Aware OpenMPI becomes necessary to achieve the best performances. One such function-
alities is the GPU RDMA (Remote Direct Memory Access) which allows direct memory exchange between GPUs on
different computation nodes. This functionality is not accessible to programming in MPI and CUDA-Fortran, the only
way to use it is through a CUDA-Aware version of OpenMPI. These are obviously not the only two advantages of using
CUDA-Aware OpenMPI; as the library manages everything, all unnecessary memory exchanges are avoided.

Using CUDA-Aware OpenMPI also has some disadvantages. For example, it is more difficult to know what is used by
the library to perform a memory exchange, and it can be difficult to determine if the system is really being used at its
maximum level. In addition, for proper operation, the OpenMPI library must be particularly compiled to accommodate
the system. In our case, it must be compiled with support for CUDA and for the pgf90 compiler.

Using CUDA-Aware OpenMPI, the reduction on the time step shown earlier can be directly performed on the variable
dt_d in the following way:

call MPI_ALLREDUCE(MPI_IN_PLACE , dt_d , 1,

fp_kind_mpi , MPI_MIN , MPI_COMM_WORLD , mpi_ierr)

The same approach works for the functions SEND and RECV, which are used to communicate the ghost cells at each
step. This step is easy to perform, as the file format presented in Figure 4 gives us all the information we need to send
and receive the ghost cells as blocks of data.

5.3. Overlapping MPI memory exchanges with computation in our in-house code CuteFlow
Here we present how we overlapped the computations with the MPI memory exchanges in CuteFlow, our in-house
solver for the SWE.

CuteFlow is an in-house research code for solving the SWE with the finite volume scheme described in section 2.
The first sequential version on a CPU was developed by Azzeddine Soulaïmani and Youssef Loukili (Loukili and
Soulaimani, 2007), and subsequently adapted by Jean-Marie Zokagoa (Zokagoa and Soulaïmani, 2010). Arun Kumar
Suthar Suthar and Soulaimani (2018) then used CUDA Fortran to make use of a single GPU. Figure 7 shows the inner
processes of the CuteFlow solver which are very common among time-explicit finite volume solvers.
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CPU

Reads the input files

Reads the meshes

Vector allocation

While t < T_end or permanent regime is not reached

Calculation of input and output flow rates

Update t

Post-treatment

GPU

Vector allocation

Search for neighbors

Initialization and computation of the initial time step

Flux calculations

Source term calculations

Update the solution with explicit Euler and semi-implicit friction terms

MPI memory exchangeTime step computation

Copy of U into U_old

Copy of U on the CPU

Figure 7: Flow chart of CuteFlow

.

5.3.1. Compilation

CuteFlow uses MPI and CUDA-Fortran. To compile,
we use the OpenMPI wrapper mpif90 with the PGI
compiler pgf90. The following versions of different
modules are used on the computer clusters:

• pgi/19.4 ;

• cuda/10.0.130 ; and

• openmpi/3.1.2 .

More information on a CUDA-Aware version of Open-
MPI can be found on the official website https://

www.open-mpi.org/faq/?category=runcuda.

5.3.2. Overlapping

computations and memory exchanges

When using MPI and CUDA-Fortran there are many
ways to overlap computations and memory exchanges.
One approach is to use CUDA streams to overlap
CPU-GPU memory exchanges with computations on
the GPU. For example, when calculating the inflow
and outflow rates, data can be sent from the GPU
to the CPU on a particular CUDA stream so that
the GPU computations can continue without interrup-
tion.

In order to get the best performance, MPI memory exchanges must be overlapped with computations. In our code, it is
simple to compute the CFL time step while performing MPI memory exchanges asynchronously with the ISEND and
IRECV functions. Thanks to the use of a CUDA-Aware version of OpenMPI, these functions allows us to exchange
GPU memory asynchronously by using CUDA streams internally.

As soon as the new solution has been updated, the new time step’s computation can begin. This computation is not
likely to take very long on its own, as each thread will calculate a local time step for each cell. However, when we add
the reduction performed on the GPU (see Harris (2007)) to find the minimum time step in the sub-domain, and then the
reduction via an ALLGATHER on the time step to find the minimum time step of all the sub-domains, the computation
becomes quite long. We therefore take this opportunity to exchange ghost cells between the sub-domains at the same
time. This exchange does not pose a problem because the computation of the new time step only depends upon the
sub-domain’s interior cells. We launch the non-blocking MPI exchanges of ghost cells just before performing the time
step computations so that these two steps overlap as much as possible.

The impact of overlapping computations with the MPI memory exchange is discussed in section 6, as it leads to far
better results than using blocking exchanges.
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6. Results
After presenting the computer cluster we utilized, and defining how we calculate speed-up and efficiency, here we
present some results for the case of a dam-break flow in a flat canal, for the Mille Îles river and finally for the Montreal
archipelago.

6.1. Computer cluster used
The results presented in this section were produced using BELUGA, a cluster managed by Compute Canada and Calcul
Quebec. At the time of this writing it contained 172 GPU nodes consisting of 2 Intel Gold 6148 Skylake @ 2.4 GHz
and 4 NVidia V100SXM2 (16G memory), connected via NVLink. The full configuration can be found on the Compute
Canada website https://docs.computecanada.ca/wiki/B%C3%A9luga/en.

6.2. Definitions of speed-up and efficiency
We recall the definitions of speed-up and efficiency. Most of the time, we compare the times on 𝑛 GPUs with the times
on one GPU. Thus, for the speed-up, we have

Speed-Up =
Time on 1 GPU
Time on 𝑛 GPU

,

and for the efficiency

Efficiency =
Time on 1 GPU

n * Time on 𝑛 GPU
.

6.3. Case of one-dimensional dam failure
The test case presented here corresponds to the resolution of a one-dimensional Riemann problem. To simulate this
problem, we take a rectangular domain Ω = [−10, 10] ∗ [0, 100] and choose the following initialization values

⎧⎪⎪⎨⎪⎪⎩

ℎ =

{
10 if 𝑦 < 50,

1 if 𝑦 > 50.

�̄� = 0

�̄� = 0.

We use a basic mesh that we generate from points placed on a grid in the xy plane. Figure 8 shows a coarse mesh of
a domain with 400 elements. The results presented in the following sub-sections are computed on much finer meshes,
ranging from 400,000 to 13,000,000 elements.

Figure 8: 400-cell mesh for the one-dimensional dam-break case
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6.3.1. Solutions

The solutions presented in Figures 6.3.1 and 6.3.1 were computed using our in-house code on a 400,000-cell mesh.
These are very classic results that can be found in Toro (2001); Ata et al. (2013); Zokagoa and Soulaïmani (2010).

(a) 𝑡 = 0𝑠 (b) 𝑡 = 1𝑠

(c) 𝑡 = 2𝑠 (d) 𝑡 = 3𝑠

Figure 9: Solutions for the one-dimensional dam-break case on a 400,000-cell mesh at different times.

(a) 𝑡 = 0𝑠 (b) 𝑡 = 2𝑠

(c) 𝑡 = 4𝑠 (d) 𝑡 = 6𝑠

Figure 10: Projected solutions on the y-axis for the one-dimensional dam-break case on a 400,000-cell mesh. For each
time, water depth is plotted on the left and velocity magnitude is plotted on the right.
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6.3.2. Speed-up and efficiency for different meshes

Table 1 presents the speed-up and efficiencies obtained for various meshes of 400,000, 1,600,000, 6,300,000 and
13,000,000 elements.

First, we can see that the performance of the non-blocking exchange is always much better than that of the blocking
exchange. This is as we expected, because the non-blocking exchange allows us to launch all memory exchanges at
the same time in addition to superimposing them on the calculations, such as the computation of the CFL condition.

Next, we note that on the smallest mesh of 400,000 elements, we are far from the ideal speed-up with a maximum
acceleration factor of 4, even using 16 GPUs. This can be explained quite simply: the mesh is too small to allow the
calculations to be superimposed correctly on the memory exchanges. In this case, we are strictly limited by latencies,
whether they come from the launch of kernels on the GPUs or from MPI memory exchanges. We can also observe
that the larger the mesh becomes, the closer the speed-up is to the ideal.

From these results, we can determine the optimal number of elements per GPU. We choose here to consider optimal
as an efficiency greater than 80%. With this choice, the optimal number of elements per GPU appears to be between
300,000 and 500,000 elements. This means that to obtain the results that we consider optimal, we must use 1 GPU for
the case of 400,000 elements, 4 GPUs for the case of 1,600,000 elements, 12 GPUs for the case of 6,300,000 elements,
and 20 GPUs for the case of 13,000,000 elements.

Obviously, this choice of an efficiency greater than 80% is arbitrary. During the first phase of the simulations, when
we are trying to have the first stabilized solution, we may want to proceed as quickly as possible without worrying
about efficiency. It is not a problem to have a low efficiency during the first phase, because we only launch a single
simulation, and thus only use a few resources on the computation clusters. On the other hand, during the second phase,
where we build the simulation database, we will need an efficiency greater than 80%, as we will be launching hundreds
of simulations. This will be the most costly phase of resource use on the calculation clusters.

6.4. Case of the Mille Îles River
Here we present results obtained on the Mille Îles river domain. On Figure 11 we can see the simulation domain
superimposed on a satellite image recovered by Google Earth Pro. The image is oriented with the y-axis to the north.
The entrance to the domain is at the bottom left of the image and the exit is at the top right.

(a) Wet areas only (b) Wet areas and dry areas

Figure 11: Mille Îles river domain overlapped with a satellite image from Google Earth Pro.

We have several versions of meshes for this domain which vary between 200,000 and 11 million elements. The mesh
is refined in the critical zones, in particular around the piers of a bridge that crosses the river. Figure 12 shows the area
of the dam under the first bridge of the domain with a high degree of refinement.
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Table 1

Speed-up and efficiencies for different types of meshes for the dam-break test case

Speed-up, 400,000-cell mesh Efficiency, 400,000-cell mesh

Speed-up, 1,600,000-cell mesh Efficiency, 1,600,000-cell mesh

Speed-up, 6,300,000-cell mesh Efficiency, 6,300,000-cell mesh

Speed-up, mesh of 13,000,000-cell mesh Efficiency, 13,000,000-cell mesh
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Figure 12: Refinement zone around the piers of a bridge in the Mille Îles river, 200,000-cell mesh.

6.4.1. Results using a plane as the initial water level

The results presented here were calculated with 4 GPUs. We show the domain’s decomposition and its bathymetry in
Figure 13, and the solutions for different times in Figure 14 .

(a) Mesh sub domains (b) Mesh bathymetry

Figure 13: Mille Îles river domain divided into 4 sub-domains on the left (a) and bathymetry on the right (b)

The results shown in Figure 14 were generated starting from an initialization with a plane orthogonal to the z-axis. We
can see in Figure 14(a) that the entrance of the domain (in the bottom left corner) is not completely wet, and that the
more the simulation advances, the more the domain fills and the more clearly we can see the river current forming.

Using 4 GPUs on the 740,000-cell mesh, we were able to calculate the 7 ℎ 30 𝑚𝑖𝑛 of the simulation in 10 𝑚𝑖𝑛.
Obviously, this time is highly dependent upon the refinement of the mesh; the more the mesh is refined, the smaller
the characteristic distance in the calculation of the CFL condition and the more iterations will be necessary to arrive
at the final time.
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(a) 𝑡 = 0𝑠 (b) 𝑡 = 2ℎ30𝑚𝑛

(c) 𝑡 = 5ℎ (d) 𝑡 = 7ℎ30

Figure 14: Solutions for the Mille Îles river case on a mesh of 740,000 elements using 4GPUs, dry domain colored according
to bathymetry, wet domain colored according to ||ℎ𝐕||2

6.4.2. Results of a dummy dam failure mode

Here we initialize the solution as a one-dimensional Riemann problem. On the left of the discontinuity, a water height
of 30 𝑚 is defined, and on the right, a height of 29 𝑚. The initial velocities are zero.

We present here the solutions for different instants in order to show the usefulness of a more refined mesh. In Figure
15, the solutions on a mesh of 740,000 elements are on the left, and the solutions on a mesh of 11 million elements are
on the right.

Figure 15 shows that the solutions are very close. Nevertheless, it is obvious that the solution is more finely defined
starting from the initialization on the 11 million-cell mesh. We can see that the solution is finer at the end of 30 𝑠,
especially on the wave front. Finally, the usefulness of a fine mesh is demonstrated at the end of 120 𝑠, as we can
clearly observe the impact of the bridge’s pillars on the watercourse, whereas with the 400,000-cell mesh the impact
is practically invisible.

6.4.3. Visualization of the flood lines

Once we have generated a stable solution for an average flow, we can move on to phase 2 of the simulations. Figure
16 illustrates the flood lines for an inflow of 800 𝑚3∕𝑠 (in black) and an inflow of 1100 𝑚3∕𝑠 (in red) on the Mille Îles
river domain.
In a real case scenario, we launch several hundred simulations by sampling the parameters, such as the inflow rate
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(a) 𝑡 = 0𝑠, 700,000-cell mesh (b) 𝑡 = 0𝑠, 11,000,000-cell mesh

(c) 𝑡 = 30𝑠, 700,000-cell mesh (d) 𝑡 = 30𝑠, 11,000,000-cell mesh

(e) 𝑡 = 120𝑠, 700,000-cell mesh (f) 𝑡 = 120𝑠, 11,000,000-cell mesh

Figure 15: Solutions at different times for a problem with a fictitious dam failure on the Mille Îles river.
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Figure 16: Flood lines for an inflow of 800 𝑚3∕𝑠 in black and an inflow of 1100 𝑚3∕𝑠 in red, superimposed on the bathymetry
of the downstream domain of the Mille Îles river

or Manning’s number. The goal is to build a database and then perform statistical studies like those in Abdedou and
Soulaimani (2018). This database can also be used to train machine learning algorithms, as in Jacquier et al. (2021).

6.4.4. Speed-up and efficiency

Figure 17 presents the speed-up and efficiencies for two sizes of domain meshes, a version with 740,000 cells and
another with 11,700,000 cells.

The results are quite identical to those of section 6.3.2. It appears that 300,000 to 500,000 elements is a good compro-
mise with which to achieve an appropriate level of efficiency.

6.5. Case of the Montreal archipelago
Here we present a mesh of an area of the Montreal archipelago domain, which was provided by the Communauté
métropolitaine de Montréal (CMM). The domain mainly includes the Mille Îles river, the Prairies River and the St.
Lawrence. The domain therefore has several entrances, seven in total counting the small tributaries, and a single exit
which corresponds to the St-Lawrence river at the top of the domain.

Figure 18(a) illustrates the complete domain, and Figure 18(b) shows the wet domain for a stabilized solution with a
total incoming flow of 15090 𝑚3∕𝑠, an average inflow rate for this domain.

6.5.1. Solutions

The results presented here are calculated with four GPUs. Figure 19(a) shows the domain decomposition, divided into
four sub-domains, and the bathymetry is illustrated in Figure 19(b). Next, we present the solutions for four different
times (𝑡 = 0 𝑠, 15 𝑚𝑛, 30 𝑚𝑛 and 45 𝑚𝑛) in Figure 20 .

V. Delmas and A. Soulaïmani: Preprint submitted to Elsevier Page 21 of 27



Multi-GPU Shallow-Water Equation solver

(a) Speed-up, 740,000-cell mesh (b) Efficiency, 740,000-cell mesh

(c) Speed-up, 11,700,000-cell mesh (d) Efficiency, 11,700,000-cell mesh

Figure 17: Speed-up and efficiency for multiple meshes of the Mille Îles river domain

(a) Wet and dry areas (b) Wet areas only

Figure 18: Area of the Montreal archipelago superimposed on a satellite image generated with Google Earth Pro. Wet
and dry areas (a); wet areas only (b).
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(a) Mesh sub-domains (b) Mesh bathymetry

Figure 19: Domain of the Montreal archipelago divided into four sub-domains on the left (a) and its bathymetry on the
right (b).

(a) 𝑡 = 0𝑠 (b) 𝑡 = 15𝑚𝑛

(c) 𝑡 = 30𝑚𝑛 (d) 𝑡 = 45𝑚𝑛

Figure 20: Solutions at four times (𝑡 = 0 𝑠, 15 𝑚𝑛, 30 𝑚𝑛 and 45 𝑚𝑛) for the Montreal Archipelago River on a mesh of
690,000 elements using four GPUs; dry domain colored according to bathymetry, wet domain colored according to ||ℎ𝐕||2
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The results shown in figure 14 were generated starting from an initialization with an inclined plane. Using an inclined
plane rather than a plane orthogonal to the z-axis allows for faster initialization, as it is easier for the fluid to gain speed
in the downstream direction. In figure 20, we only show the solutions for early times in the simulation; it took 11 ℎ of
simulation to have a steady state solution. These 11 ℎ of simulation took 4 GPUs 1 hour to perform the calculations.

6.6. Comparison of the pure MPI CPU version to the MPI CUDA multi-GPU version
A multi-CPU version of CuteFlow was developed from the domain decomposition shown in 4. This version uses the
same algorithm as the multi-GPU version, the only difference is that the functions written to be executed on the GPU
were re-written in order to be executed on the CPU. These modifications mainly consisted of putting back the loops
over the mesh cells inside the functions.

We tried using both ifort and gfort to compile the code, and achieved better results by using ifort -O3 -xHost -ipo, which
we then used to create the results shown in figure 21. Both the multi-CPU and multi-GPU versions were launched on
the same simulation using the same mesh sizes and the same parameters, while we varied the number of CPU cores
and the number of GPUs, respectively, utilized to produce the results shown in Figure 21.

(a) multi-CPU using MPI (b) multi-GPU using MPI and CUDA

Figure 21: Execution times of the multi-CPU (a) and the multi-GPU (b) versions on an 11M-cell mesh

As can be seen in Figure 21, close to 96 and 128 CPU cores are needed per GPU to obtain the same multi-CPU per-
formance as the multi-GPU version. For example, using 1024 CPU cores, the multi-CPU version takes 278 seconds
to complete, whereas using 8 GPUs, it takes 266 seconds for the multi-GPU version to complete. In this case it takes
128 CPU cores per GPU to equal the performance of the multi-GPU version.

We can see that the minimum execution time is also shorter for the multi-GPU version. This is due to the use of
many more sub-domains in the multi-CPU version, which leads to significantly more memory exchanges than for
the multi-GPU version. This issue has been addressed in some studies by combining MPI with OpenMP, as in Shang
(2014); Yilmaz et al. (2009); Jacobsen and Senocak (2013). Based on these articles, the hybrid OpenMP/MPI approach
sometimes gives better performances than the pure MPI method, but we believe that in our case the multi-GPU version
will always be better in terms of cost and resource utilization on computer clusters.
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7. Conclusion
This paper has presented the different stages of parallelizing a time-explicit finite volume solver for the resolution SWE
on a multi-GPU architecture. We explained the process of the SWE resolution by means of finite volume methods,
with particular emphasis on the Riemann solvers used during this step.

Next, the process of porting a time-explicit finite volume solver on a multi-GPU architecture using MPI and CUDA-
Fortran was detailed. The METIS library was used to tackle domain decomposition on the 2D unstructured triangular
meshes of interest. During this stage, special attention must be paid to the numbering of the cells to be sent and re-
ceived by each sub-domain in anticipation of the MPI memory exchanges. This section also explained the use of MPI
and a CUDA-Aware version of OpenMPI in solving the SWE.

After showing the general functioning of our in-house code for the resolution of the SWE in its multi-GPU version, we
presented the results for several different cases. Efficiencies of more than 80% were reported for meshes of 300,000
to 500,000 elements per GPU, no matter which mesh size was used. This means that choosing which mesh size to
process only depends upon the number of GPUs available.

Finally, we compared the multi-GPU version to the pure MPI multi-CPU version and found that about 96 to 128 CPU
cores are needed to equal the performance of a single GPU. The multi-GPU version allows us to obtain the same per-
formances as using 1024 CPU cores with the multi-CPU version but with only 8 GPUs. This result clearly shows how
useful and efficient multi-GPU versions can be.

We hope that the ability to use as many GPUs as needed with multi-GPU codes such as the one developed here, and
their better scaling than their multi-CPU counterpart, may lead to the creation of very large river meshes of more than
100M cells.

Based on the work conducted here, we put forth the following suggestions for future studies. The MPI memory ex-
change needs to be further optimized by activating functionalities such as GPU-Direct RDMA on the computer clusters.
This could lead to a better scaling of the CUDA MPI approach over many computer nodes. Load balancing needs to
be utilized to leverage the CPU cores that are not used to control the GPUs, as done in Xu et al. (2014); Borrell et al.
(2020); Fang et al. (2019). Such methods are able to make use of the idle CPU cores that are not used in the approaches
proposed here, and could greatly increase the efficiency of the computer nodes. The approach proposed here should be
tested on much larger meshes that have practical utility, for example, on a much more refined (10- to 100 million-cell)
mesh of the Montreal archipelago.
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