
Empathes: A general code for nudged elastic band
transition states search

Marco Bertinia, Francesco Ferrantea,∗, Dario Ducaa

aDipartimento di Fisica e Chimica “Emilio Segrè” - Università degli Studi di Palermo,
Viale delle Scienze Ed. 17, 90128 Palermo, Italy

Abstract

An easy and flexible interface, Empathes (Extensible Minimum PATH EStima-

tor), that allows to perform Nudged Elastic Band calculation for the determina-

tion of transition states is presented. The code is designed to be easily modified,

in order to be associated with the user’s preferred calculation software, even with

those which implement composite approaches. In particular, the interfaces to

Gaussian and Siesta programs are discussed in details, being the former only

used for testing purpose, while the latter can be productively employed for tran-

sition states search with that commonly used density functional theory software

for periodic calculations.

Keywords: NEB, Siesta, chemical reactions

PROGRAM SUMMARY

Program Title: Empathes

CPC Library link to program files: (to be added by Technical Editor)

Developer’s repository link: https://github.com/marberti/empathes

Code Ocean capsule: (to be added by Technical Editor)

Licensing provisions: GPLv3

Programming language: Fortran 08

Nature of problem:

∗Corresponding author
Email addresses: marco.bertini@unipa.it (Marco Bertini),

francesco.ferrante@unipa.it (Francesco Ferrante), dario.duca@unipa.it (Dario Duca)

Preprint submitted to Computer Physics Communications December 10, 2021

The search for the structure of transition states through computational methods, es-

sentially based on Density Functional Theory, is of overwhelming importance for the

determination of the elementary steps forming a reaction mechanisms. Allowing to

develop basic knowledge, these investigations can be used to direct experimentalists

towards a more efficient realization of chemical compounds synthetic processes. In

cases where it is necessary to describe the reactive system through periodic calcula-

tions, which is very common in heterogeneous catalysis, this research must be done

through the use of non-analytical methods.

Solution method:

In case of lacking of analytical procedures, the search for the transition states asso-

ciated with the elementary stages that make up chemical reactions must take place

through numerical methods. The Nudged Elastic Band (NEB) approach is, together

with its variants, one of the most used for this purpose. In accordance with the

NEB algorithm, a chain of geometric structures, generated by interpolating between

the reactant and product geometries and joined by fictitious springs, is relaxed on the

minimum energy path, allowing the association of the transition state to the maximum

along this path. The NEB method involves the determination of molecular energies

and forces acting on the nuclei of the system, which is generally carried out through

a program for electronic structure calculation. The present code is a useful general

interface.

1. Introduction

The Nudged Elastic Band (NEB) is a numerical method used for the discov-

ery of the Minimum Energy Path (MEP) connecting two molecular geometries,

generally the reagent and the product of a chemical reaction, along the Potential

Energy Surface (PES). This method is largely used for studying transposition

or migration processes, although it can be applied, at least in principle, to any

kind of reaction. Knowledge of the MEP gives useful information about the

transition state(s) (TS) and possible reaction intermediates. By knowing the

2

TS structure, useful energetic and kinetic information, like activation barriers

and reaction rates, can be extrapolated.

The logic behind this method is pretty straightforward. Given the molecular

geometries of reagent and product, an arbitrary number of intermediate geome-

tries, called images, are interpolated between them. Those images are virtually

connected one another by some fictitious springs, thus an elastic band of ge-

ometries is obtained, which will be gently nudged on the PES. This is done by

iteratively calculating some appropriate forces acting on the images, and using

them to optimize their geometries. The numerical process ends when the norms

of the forces are below a given convergence threshold. If this threshold is chosen

wisely, then the band will be an accurate estimation of the real MEP.

In the NEB method, as described in the work of Henkelman et al.,[1] each

image i is optimized with respect to the total forces F toti

F toti = F PESi⊥ + F eli‖ (1)

where F PESi⊥ is the perpendicular component of the real atomic forces F PESi

acting on the system, calculated by any computational chemistry software, and

F eli‖ is the parallel component of the elastic forces, computed by the Hooke’s

law. These forces are projected along the normalized tangent, τ̂ i = τ i/‖τ i‖, on

image i, with τ i computed as

τ i =

τ
+
i if Ei+1 > Ei > Ei−1

τ−i if Ei+1 < Ei < Ei−1

(2)

where Ei is the calculated energy of the image i, while τ+
i and τ−i are defined

as

τ+
i = Ri+1 −Ri, and τ−i = Ri −Ri−1 (3)

being Ri the molecular geometry of the image i. If i is related to either an

energy minimum or a maximum, the following alternative equation is used to

compute τ i

3

τ i =

τ
+
i ∆Emaxi + τ−i ∆Emini if Ei+1 > Ei−1

τ+
i ∆Emini + τ−i ∆Emaxi if Ei+1 < Ei−1

(4)

where

∆Emaxi = max(|Ei+1 − Ei|, |Ei−1 − Ei|)

∆Emini = min(|Ei+1 − Ei|, |Ei−1 − Ei|)
(5)

Once determined τ̂ i, the components of F toti can be computed as

F eli‖ = k(‖Ri+1 −Ri‖ − ‖Ri −Ri−1‖)τ̂ i (6)

F PESi⊥ = F PESi − (F PESi · τ̂ i)τ̂ i (7)

In this work we report the design of a new code, Empathes, for the applica-

tion of NEB approach for transition states search. Although some commercial

quantum chemistry software capable of applying the NEB procedure already

exist (e.g. Vasp [2]), the here proposed implementation of the method is gen-

eral enough to be easily interfaced with virtually any program able to compute

energy and atomic forces of a chemical system. At present, this software can

interface Gaussian [3] and Siesta.[4] The former was chosen for testing pur-

pose, since it has an implicit analytical method for TS discovery with which

the TS found by the numerical NEB method can be compared. The latter was

intended to supply an interface for production runs on periodic systems with

Siesta, that can be used as an all-integrated alternative to the Flos library,[5]

which needs external programs to generate NEB images.

2. Implementation Details

2.1. Modules Overview

The design behind this program involves communication between modules

based on protected global variables, that is, accessible in read-only mode. When

4

it is necessary to set one of these variables, this is done through a call to the

appropriate subroutine. This prevents unintentional changes to their content.

Here a brief presentation of the modules follows:

mod input.f90: deals with reading Empathes input file, and checks that all

necessary arguments have been specified and are consistent.

mod geometry.f90: contains information about the geometry of the images, as

well as the linear interpolation procedure necessary to initialize them.

mod idpp.f90: the Image Dependent Pair Potential (IDPP) method [6] can be

used as an initial estimation of the reaction path, and is an excellent alternative

to the simple linear interpolation. Within this module the subroutines are de-

fined, which determine the value of the IDPP object function and its derivatives,

to be used within a minimization method.

mod elastic.f90: is the heart of the NEB method. This module collects the

subroutines for the calculation of the tangents τ̂ i between images, as well as

those for the decomposition of PES and elastic forces into F PESi⊥ and F eli‖, and

for the determination of the total forces F toti acting on each image.

mod pes.f90: here are specified the subroutines that interface to computa-

tional chemistry software, necessary to get the energy Ei of the images and the

atomic forces F PESi acting on them. These calculations can also be performed

in parallel thanks to a specific subroutine that uses the MPI library.[7]

mod pes data.f90: set additional information for external calculations, such

as the maximum number and convergence threshold of SCF cycles, as well as

the names of auxiliary files.

mod pes input template.f90: the data written inside the input blocks will be

stored in specific structures defined here. This module defines subroutines to

store the read data in the appropriate location, and to write it where necessary

during the composition of the external program input files.

5

mod climbing.f90: contains the procedures to perform the Climbing Image

method (CI) [8] and the Descending Image (DI) methods, which is an analogue

of the previous one that applies to the energy minima.

mod optimization.f90: within this module are collected the subroutines that

solve the minimization problem using the values of a function and its first deriva-

tives in a given point (e.g. energies and PES forces, or the analogous quantities

of the IDPP method). The Steepest Descent, the Fast Inertial Relaxation En-

gine (FIRE), the Broyden–Fletcher–Goldfarb–Shanno (BFGS) and the limited-

memory BFGS are currently implemented, being the latter the default method

thanks to its effectiveness.

mod output.f90: all the subroutines that print information, such as geometries,

forces, energy barriers, etc. are grouped here.

mod slave.f90: defines a subroutine to put MPI slave processes in an idle

state, waiting for the master to assign them a task.

mod utility.f90: all global parameters and generic utility functions are col-

lected in this module. The get field subroutine is located here; how it is used

for reading the output of the external programs will be detailed later.

mod c utility.f90: defines some Fortran subroutines to interface the C code

contained in c utility.c. This C module is intended to collect operating sys-

tem specific functionalities (like changing the execution directory) in a portable

way using standard OS libraries, making it possible, at least in principle, to

compile this program on any linux system regardless of the compiler used.

[Figure 1 about here.]

[Figure 2 about here.]

2.2. Workflow

The flowcharts outlining how Empathes works are reported in Figure A.1

and A.2. Once read the input file, the geometries of the images that make

6

up the elastic band are generated. This is done either through an interpolation

technique, or through a direct reading of these geometries from a file. The latter

case occurs mostly when a calculation needs to be restarted, but this feature

can also be exploited to pass some handcrafted geometries to the program.

The NEB method is now applied. As equation (1) shows, the total forces are

computed from the real PES forces. Obtaining F PESi and Ei is therefore the

first step, as well as the critical part of the program and the one that takes almost

all of the execution time. The present code can be seen as an automation of the

NEB method in order to make it available with any computational chemistry

program, interacting with it by writing its input, executing it, and reading its

output. If the calculation has converged all the necessary information is read

and stored, otherwise, if desired, the SCF convergence threshold is automatically

increased up to a certain limit value, and the calculation is launched again.

The second step is the construction of F toti from the information obtained

above and from the equations of the NEB method. The third and last step

is the optimization of the images with respect to their energy and F toti . This

minimization problem has been solved in countless ways, and many algorithms

are reported in the literature. The first optimizer to be used was the Steepest

Descent, but due to its poor performance the FIRE [9, 10] and two flavours of

BFGS [11] were implemented; the default method is the global limited-memory

BFGS, which relaxes all image geometries at once.[12]

These three steps are repeated iteratively until the norm of F toti is below a

certain threshold for each i. Its value depends on the optimizer employed, but

can also be set by the user. If all images converged, then a file containing the

relaxed geometries is written, and the activation barriers for all TS found are

printed in the Empathes output file.

2.3. Efficient IDPP forces derivation

The idea behind the Image Dependent Pair Potential approach is the gen-

eration of NEB images through linear interpolation on interatomic distances.

This technique has a double advantage over the common linear interpolation

7

performed on the coordinates. The first one is that the geometries of the im-

ages estimated this way follow a smoother path going from reagent to product.

The second and most important one, is that it never produces geometries with

atoms too close one another (a quite frequent case with linear interpolation), a

situation that can make it hard for the external program to run successfully on

that given image.

Since, given N atomic nuclei, there are generally more interatomic distances,

((N − 1)N/2), than atomic coordinates, (3N), the IDPP method cannot be

applied as easily as the linear interpolation. The solution is to find the minimum

of a properly defined objective function, SIDPPi ; this problem is quite similar to

the one solved by the NEB, with SIDPPi used in place of Ei and its derivatives

instead of F PESi , being the elastic part of the forces calculated exactly in the

same way.

The equation set employed in the present implementation showed to define

an efficient frame allowing to avoid system resources waste. Let’s denote by dIij

and dFij the interatomic distances between the i and j nuclei of the initial and

final geometry, respectively. For each image k, the ideal interatomic distances

can therefore be defined as

dkij = dIij + k(dFij − dIij)/(p+ 1) (8)

where p is the total number of images. So, starting from an initial guess on

the images geometries (generally by standard linear interpolation), a set of co-

ordinates that produces interatomic distances dij as close as possible to dkij is

obtained. For this purpose, given that each image k contains N atoms, the

IDPP objective function is defined as

SIDPPk (r) =

N∑
i

N∑
j>i

ω(dij)
(
dkij − dij

)2
(9)

where r ≡ {x1, y1, z1, . . . , zN} is the set of all the spatial coordinates, dij is the

actual interatomic distance between i and j, and ω(dij) is a weight function

that prevents two nuclei from being too close each other

ω(dij) = (dij)
−4 (10)

8

By contracting all terms after the summations in (9) into a single term skij

skij = ω(dij)
(
dkij − dij

)2
(11)

the forces acting on atom l, obtained by taking the negative derivative of SIDPPk ,

can be written as

F kl = −∇lS
IDPP
k = −∇l

N∑
i

N∑
j>i

skij (12)

where only the skij terms having either i or j equal to l give not vanishing

contributions. If a generic skij is derived with respect to a certain spatial variable

αr (α = x, y, z; r = i, j), we get

∂

∂αr
skij = −4t

(
dkij − dij

)2
(dij)

6 − 2t

(
dkij − dij

)
(dij)

5 (13)

where

t =



+(xi − xj) if αr = xi

−(xi − xj) if αr = xj

+(yi − yj) if αr = yi

−(yi − yj) if αr = yj

+(zi − zj) if αr = zi

−(zi − zj) if αr = zj

(14)

Therefore, for a given atom l, the force component along α is given by the

general equation

F kl,α =

l−1∑
i=1

∂

∂αi
skil −

N∑
j=l+1

∂

∂αl
sklj (15)

If these components are calculated sequentially starting from l = 1, then it can

be argued that for a generic l the terms inside the first summation have already

been calculated. In this way all the forces can be composed without wasting

computing resources and system memory, that is by calculating once all the

three spatial derivatives of all skij , and adding them in the right place in the

final matrix that will contain the IDPP forces.

9

2.4. About Parallelization

As previously said most of the time is spent waiting for the external pro-

gram to finish its calculations on the images. Since these computations are

totally independent from each other, this is an embarrassingly parallel problem.

It was therefore decided to make the code parallel using the MPI library, in

order to support its use on computer clusters. However, the use of conditional

compilation techniques also allows to build a serial executable suited for smaller

systems.

Master and slaves is the parallelization paradigm employed, where the master

performs almost all operations alone, with the exception of the calculations of

PES energies and forces in which all processes contribute. Since the master is

the only one who reads the Empathes input file, it must also initialize the slaves

by broadcasting those information to them, so that they will be able to write

the input files for the external program.

In order to carry out the PES computations in parallel, firstly the master

broadcasts the images to the slaves since it is the only process that has the

updated geometries. Then each process independently determines whether a

given image belongs to it, and runs the PES computations on those that do.

This determination does not require communication: it is as simple as taking the

module between the image number and the number of processes, and comparing

it to the process ID. Once each process executed all its PES computations, the

inter-process communication begin. Slaves send the energies to the master via

point to point communication. After that, master and slaves meet at the only

MPI barrier present in the code, and finally also the forces are sent from slaves

to master via point to point. It’s worth to be noted that, with a single call

to the MPI Send subroutine, two information can be passed: one is either the

energy or the force array itself, the other one is the image number to which

those values refer, stored in the tag argument.

It is possible to run Empathes in parallel with any number of processes, al-

though the best situation is achieved by setting it equal to the number of images

used or a submultiple, so that each process has roughly the same workload.

10

It is to note, when the code is interfaced to quantum chemistry programs,

which, like Siesta, use itself the MPI library, to run Empathes in parallel could

not be a real advantage. In fact, a serial run of Empathes will allow the external

program to continuously exploit all time long the available computational re-

sources. However, there is the possibility to execute both Empathes and Siesta

in parallel if the latter was compiled with OpenMP. Finally, if the end-user

wants to employ an MPI version of Siesta, the #PESPROGRAMWITHMPI

keyword must be specified in the input file.

3. Usage Examples

By executing Empathes with the “-h” option, usage instructions and more

command line arguments will be printed. Some of them generate a template

for the input file, that is a good starting point for the user since it lists and

describes all the keyword that can be used to set the Empathes runtime behavior.

Some keywords are mandatory, some are optional, and some are even mutually

exclusive. They can be specified in any order, but an error message will follow

if the same keyword is set more than once. Any keywords begin with a “#”

character and could be followed by one or more arguments depending on its

kind. A “!” at the beginning of the line, instead, states a comment that will

be ignored by the program.

One of the main tasks of Empathes is to write the input files for the quantum

chemistry software that will compute energy and atomic forces on images. From

the Empathes point of view, these input files can be conceptually divided into

two parts: one that varies from one image to another, and another that remains

the same. Information to be written in the variable part must be somehow

known by Empathes, so that it can adapt and write them appropriately. Among

these information there are the geometries of the images, which change from

one iteration to another; the SCF convergence threshold, so that Empathes can

automatically lower it up to a limit value if the calculation does not reach it;

and the maximum number of SCF cycles that will be performed by the external

11

program, necessary to determine the convergence when using Empathes with

some older versions of Siesta. These information must be specified by some

appropriate keywords, like #START and #END for the starting and ending

geometries, #SCFCONV and #SCFCYCLE for the SCF convergence threshold

and maximum number of cycles, respectively. As for the part of the input

that does not vary, this generally includes all the information related to the

calculations that is intended to be performed on the various images. In this

case, Empathes does not need to “understand” what will be written in this

section of the input, but it will simply copy and paste these information, which

are specified by means of the #PESINPUTTEMPLATE blocks.

The input files built by Empathes for Gaussian and Siesta are shown in

the listings (1) and (2) reported in Appendix A, respectively. The first two

characters of every line are here reported for explanatory reason, they are not

printed in the real file. The first character indicates who prints that section of

the input: a number means that it has been specified in the relative #PESIN-

PUTTEMPLATE block, while an “E” indicates that Empathes itself prints it

in that exact format. The second character “|”, instead, is only a graphic sep-

arator, and is followed by what is actually written in the file. If Gaussian is

used as the external program, the user may want to specify something after

the geometry block, like a basis set or a pseudopotential. This can be done by

specifying a “#PESINPUTTEMPLATE 3” block. If, instead, Siesta is used,

more than two #PESINPUTTEMPLATE blocks are never needed, as it uses

a free format for the input. In this case, however, it is worth noting that the

geometry block written by Empathes must not contain chemical elements that

refer to coordinates, but labels. For this reason, using Siesta, it is necessary to

specify these labels by putting them as the fifth column in both the #START

and #END geometries.

The following three examples of input files for Empathes will show how to

execute a NEB calculation with Gaussian and with Siesta, as well as how to

restart a NEB calculation if something wrong occurs.

12

3.1. Example 1 - Gaussian

Listing (3) shows an Empathes input file of use with Gaussian. Below the

#START and #END keywords are specified, respectively, the coordinates of

reagent and product in the xyz format. It has to be noticed that it is up to the

user to ensure the consistency of the two geometries, since Empathes can only

verify that the elements are inserted in the same order in the initial and final

geometries, but it cannot do anything in the event that two lines referring to

the same element have been accidentally swapped. The energies of those struc-

tures, needed to compute the tangents τ̂ i, are given by #STARTENERGY

and #ENDENERGY. Then the keywords that define the NEB computation

itself begin: #OPTCYCLE specifies the maximum number of NEB iteration

(a negative value indicates “until convergence is achieved”), #OPTCONV sets

the threshold on the total force, #IDPP specifies that the IDPP interpolation

must be used, #IMAGES tells the program how many images have to be gener-

ated, and “#CLIMBING 1” means that the CI-NEB will be performed only on

“one” image that is an energy maximum. It is to say that, in the general case,

“#CLIMBING n” will apply climbing up to the n highest energy maxima. The

final part contains info on the PES calculation: #PESPROGRAM specifies the

kind of program is intended to use, #PESEXEC contains the actual name of the

executable, and the two #PESINPUTTEMPLATE blocks contain information

to write in the input files for Gaussian.

3.2. Example 2 - Siesta

Listing (4) shows an Empathes input file of use with the Siesta code. Al-

though the system in this example is the same as the previous one, the input file

required to execute this NEB calculation is longer than that used for Gaussian,

mostly due to the larger #PESINPUTTEMPLATE blocks. The first difference

is a fifth additional column in the specification of both initial and final geome-

tries. These numbers (but they can be anything, since they are stored as strings)

are the labels related to every atom of the geometry. It’s mandatory that the

labels appear in the same order in both geometries, just like the atomic nuclei.

13

The next new keyword is #PESPROC, used to specify the number of processors

on which the external program will run. This information is needed because a

parallel run of Siesta is obtained via MPI. The #SCFCYCLE sets the number

of SCF cycles that the external program will perform. #AUXINPUTFILES is

used to specify how many and what auxiliary input files the external program

needs. In this case only one file is needed, that is *.psml. Here the asterisk has

the same function as in regular expressions, so all the files ending with .psml will

be copied from the master directory into the working directories. The #AUX-

OUTPUTFILES keyword has a similar behavior as the previous one. It can be

used to specify how many and what auxiliary output files are to be stored, in

order to reuse them in the next optimization iteration. Here the density matrix

files are requested to be saved, that is all the files ending with .DM, since using

them as the starting point for the next optimization iteration is a tremendous

improvement in terms of computational time.

3.3. Example 3 - Restarting a Calculation

Suppose that the NEB calculation in listing (3) is launched and that for

some reason it didn’t end well. In the master directory there is a file called

lastgeom.bkp containing, in order, the xyz molecular geometries of reagent,

images and product, computed in the last well-ended optimization iteration.

These can be used as the restarting point. In such a circumstance, it is preferable

to copy lastgeom.bkp into another file, let’s say geometries.in, and tell the

program that the geometries it needs are located in this file.

Listing (5) shows an Empathes input file to restart a calculation. The #GE-

OMETRIESFILE keyword is followed by the name of the file that stores the

geometries. The first geometry is associated with the reagent, the last one with

the product, an all the the intermediate geometries will be the corresponding im-

ages. When this keyword is specified, in order to avoid mistakes, the #START,

#END, #IMAGES, and #IDPP keywords must not be present in the input

file. The remaining of the input file is the same except for the new #CLIMB-

INGQUICKSTART keyword, that is used to apply the Climbing Image method

14

from the very first iteration.

4. Results

All the tests here reported has been executed using Gaussian09 as the exter-

nal program, so that the TS obtained from the NEB method could be directly

compared with those coming from its analytic method. Parallel performances

were also investigated on a homogeneous cluster, where each node has two In-

tel Xeon E5-2690 processors for a total of 16 physical CPUs. Being the Intel

Hyper-Threading technology enabled during the tests, there were 32 logical

CPUs available on each node.

The first reaction studied was the simple CH2O −−→ CHOH tautomerism.

This system has been analyzed with the DFT B3LYP/cc-pVDZ method, 6 im-

ages were generated by IDPP interpolation, and the CI-NEB method was ap-

plied on one of them. Dynamic spring constants were used, and the FIRE

optimization algorithm with a convergence threshold of 1.0 · 10−3 Eh/Å was

set. Following this setting, convergence was achieved after 90 iterations. The

TS found showed an energy of -114.370339 Eh, that is the same result obtained

with the Gaussian09 analytic method. The running times related to parallel

executions are reported in table (A.1). This table also contains a timing relative

to an OpenMP run. This was the first form of parallelization implemented, but,

being suitable only for computations on small systems, it has been removed,

also considering the identical performance with MPI. In these runs, Gaussian

was executed with 2 threads. The theoretical performance in this case is 1/6

of the serial time (i.e. 16.67%), that can be achieved only if each Gaussian

calculation on each of the 6 images lasts exactly the same amount of time. Here

a pretty close result of 19.03% is achieved in the best MPI run.

The second test was the acetone – propen-2-ol tautomerism. Once again the

hydrogen hopping is involved, but this time in a slightly larger system. The

calculation was carried out using the same conditions as in the previous case.

The energies obtained for the TS from NEB and Gaussian09 computations

15

were, respectively, -193.058873 Eh and -193.058869 Eh, so there is virtually no

difference between the two results.

The last test was performed on a phosphoro-thionate cation, where the re-

action

CH3 –PO–SCH3
+ −−→ CH3 –PS–OCH3

+

involves the hopping of a methyl group from S to O.[13] This time B3LYP/6-

311+G calculation was performed, and the NEB was set to use 8 images. Once

again the analytic calculation and the estimation by NEB of the TS are in

agreement, being the energies, respectively, -894.207182 Eh and -894.207170

Eh. Table (A.2) contains the computing times related to the parallel runs. For

these tests the B3LYP/cc-pVDZ method was used, and Gaussian was executed

with 4 threads. There being 8 images, the theoretical best time in this case is

12.50% of serial time, and in the best MPI run a very close 14.17% is obtained.

As regards a fairly more complex application, the authors very recently used

Empathes interfaced with Siesta to successfully unravel the spillover mechanism

of hydrogen atoms from Pd to graphene in a system formed by a Pd4 cluster

anchored on a C-vacancy of the graphene sheet. [14]

[Table 1 about here.]

[Table 2 about here.]

5. Extending the Interface

The interface of Empathes can be extended to other chemistry software.

To do this, the user must edit the mod_pes.f90 module only. Here he has to

accomplish two tasks:

A to write at the end of the module three new subroutines that must:

1. write the input file for the external program

2. run it

3. read its output to get energy and atomic forces

16

B to modify the get_pes_force subroutine in three points, which can be find

by searching the “@end_user” string:

1. setting a maximum SCF convergence threshold for the new program

2. inserting a check between the actual SCF threshold (stored in conv_threshold)

and the maximum one

3. inserting the calls to the three previously written subroutines (point

A), in that order.

The last two points require to specify a new case statement with the name

of the new program, in which to insert the said logic.

The get_pes_force subroutine is used to obtain energy and atomic forces

of the i-image. It sets some variables and then calls the three subroutines whose

guidelines will be outlined shortly. It is to note that the arguments names are

not casual, but are the same as the variables used in the get_pes_force: in

this way the subroutine declarations and their calls are the same. After a suc-

cessful implementation of an interface, to use Empathes with the new program

it is mandatory to specify the #NEWPESPROGRAM keyword in its input,

that disables some internal checks and makes mandatory the #SCFCONV and

#SCFCYCLE keywords. The keyword #NEWPESPROGRAM exists in order

to limit possible errors and simplify the implementation of a new interface.

5.1. Guideline for write progname input Subroutine

Arguments list

integer , intent(IN) :: i

real(DBL), intent(IN) :: conv_threshold

integer , intent(IN) :: fnumb_in

character (*), intent(OUT) :: fname_in

character (*), intent(OUT) :: fname_out

i is the image on which the computation will be performed; conv_threshold is

the SCF convergence threshold to use; fnumb_in is the integer that must be as-

sociated to the input file through the open statement; fname_in and fname_out

are respectively the names of the input and output files, that need to be set.

17

Useful global variables/subroutines/functions

integer :: geom_len

real(DBL) :: image_geom(i,j)

character (*) :: element(i)

character (*) :: elabel(i)

integer function :: get_scfcycle ()

subroutine :: write_pes_it(fnumb ,n)

geom_len is the geometry length: being N the number of nuclei, geom_len=

3N ; image_geom(i,j), where 1 ≤ j ≤ geom_len, is a matrix of real numbers,

containing the j-coordinate of the i-image, following the order

x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN ;

the array of strings element(i), where 1 ≤ i ≤ geom_len/3, contains the chemi-

cal symbols of the N elements; elabel(i), where 1 ≤ i ≤ geom_len/3, contains

the labels specified in the fifth column of the geometry blocks; get_scfcycle()

function returns the integer specified by #SCFCYCLE; write_pes_it(fnumb,n)

subroutine writes the #PESINPUTTEMPLATE block n in an opened file as-

sociated with fnumb.

Subroutine body

Firstly the subroutine must set the names for input and output files. This can

be achieved with

fname_in = base_name //i_str// in_extension

fname_out = base_name // i_str// out_extension

where base_name is a global string defined in the current module, i_str is the

transposition to characters of the integer i, and in_extension and out_extension

are the input and output file extensions respectively.

After opening the input file fname_in, all the necessary information can be

written in the appropriate format. Here the contents of the #PESINPUTTEM-

PLATE blocks can be pasted using the write_pes_it(fnumb,n) subroutine,

while geometry, SCF cycles and SCF convergence threshold must be written

manually using the above variables. If it does not do so by default, the keywords

needed by the external program to calculate/write the atomic forces should be

specified here. Once written, fname_in must be closed.

18

5.2. Guideline for exec progname Subroutine

Arguments list

character (*), intent(IN) :: fname_in

character (*), intent(IN) :: fname_out !optional

logical , intent(OUT) :: flag_conv !optional

fname_in is the input file name, that is generally required as an argument

by the external program; fname_out is the output file name that is needed

sometimes; flag_conv is used to store the convergence status: .true. if it has

been achieved, .false. otherwise.

Useful global variables/subroutines/functions

character (*) :: pes_exec

integer :: pes_proc

pes_exec is the executable name specified in #PESEXEC; while the integer

pes_proc is the number of cores that the program will use, set by #PESPROC.

Subroutine body

This subroutine composes the command string to run the external program us-

ing the executable name stored in pes_exec, the file names, and the number of

processors for the parallel run if they must be specified as command line argu-

ments. The resulting string is executed by the operating system by passing it to

the execute_command_line() subroutine. Sometimes, the exit code returned

by the external program can be directly used to determine if convergence has

been achieved or not. If this is the case, the value of flag_conv should be set

here.

A final note on external programs that use MPI for parallelization. Since

Empathes also use MPI, the external program can be launched via mpirun only

if Empathes is run without mpirun. If a parallel run of Empathes is desired,

then the external program must be launched using the MPI library subroutine

MPI_Comm_spawn; this is not implemented in the current version of Empathes.

19

5.3. Guideline for read progname output Subroutine

Arguments list

integer , intent(IN) :: i

integer , intent(IN) :: fnumb_out

character (*), intent(IN) :: fname_out

logical , intent(OUT) :: flag_conv !optional

i is the image on which the computation has been performed; the integer

fnumb_out must be used to open the output file named fname_out; flag_conv

is used to store the convergence status: .true. if it has been achieved, .false.

otherwise.

Useful global variables/subroutines/functions

real(DBL) :: pes_energy(i)

real(DBL) :: pes_forces(i,j)

integer function :: get_scfcycle ()

subroutine :: get_field(str ,field ,n,err_n ,err_msg)

pes_energy(i) is a vector of reals used to store the energy of the i-image;

pes_forces(i,j), where 1 ≤ j ≤ geom_len, is a matrix of reals that stores the

atomic force j of the i-image, in the order Fx1
, Fy1 , Fz1 , Fx2

, . . . , FzN ; get_scfcycle()

function returns the integer specified by #SCFCYCLE; get_field(str,field,n,err_n,err_msg)

subroutine can be used to extract the word n from the string str, that will be

stored into field. If an error occurs, a non-zero value is returned in err_n, and

an error message is set in err_msg.

Subroutine body

If the convergence status has been determined in the previous subroutine, the

value of flag_conv can be used to establish whether the output should be read

or not. Otherwise, the convergence status must be inferred by the output file

itself, which therefore must be read in any case, and the flag_conv value must

be set inside this subroutine.

This is the most critical subroutine to write, since the user must tailor its

logic based on the format of the output file, which can differ sensibly from

one program to another. For this purpose there is a subroutine, defined in the

20

mod_utility.f90 module, called get_field() that extract a specific field from

a string of characters. This is a pretty basic subroutine and, at present, the only

supported separator between fields is the blank space (one or more characters).

This example shows its use

str = "This is an example string"

call get_field(str ,field ,4,err_n ,err_msg)

Here the fourth field from the string str (i.e. "example") is taken and saved

in the field variable. It’s a good practice to ensure that err_n is zero before

using the content of field.

If the computation executed by the external program converged, then the

user must locate the position of the energy and the atomic forces, and store

them inside pes_energy(i) and pes_forces(i,:), respectively. It would be

advisable to ensure that forces stored in pes_forces(i,:) are expressed in

Eh/Å.

6. Conclusion

The Nudged Elastic Band approach frames a numerical method useful to es-

timate the minimum energy path connecting pairs of (energy-minimum) molec-

ular structures, belonging to the same potential energy surface. The underneath

NEB theory was here summarized along with the implementation design of the

proposed code, Empathes. Some examples of using (employing different inter-

face suit of programs, namely Gaussian and Siesta) and the corresponding

input files with the following results got, were also given.

The main purpose of the Empathes code is to provide an implementation

of the NEB method that is independent from any specific quantum chemistry

software. By doing so, the end user would have the freedom to choose the

software with which he usually works and to interface it with a NEB procedure.

Acknowledgement

This work was funded by the Italian Ministry of Economic Development

(MISE) in the framework of the “Fondo per la Ricerca di Sistema Elettrico

21

- Piano Triennale 2019- 2021 - Progetto Sistemi di accumulo, compresi elet-

trochimico e power to gas, e relative interfacce con le reti”.

22

References

[1] G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elas-

tic band method for finding minimum energy paths and saddle points, J.

Chem. Phys. 113 (22) (2000) 9978–9985.

[2] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-

energy calculations using a plane-wave basis set, Phys. Rev. B 54 (16)

(1996) 11169.

[3] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,

J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Peters-

son, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov,

J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,

R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,

H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,

M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,

R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,

S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E.

Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.

Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochter-

ski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,

J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman,

J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian˜09, Revision A.01, gaussian

Inc. Wallingford CT (2009).

[4] J. M. Soler, E. Artacho, J. D. Gale, A. Garćıa, J. Junquera, P. Ordejón,

D. Sánchez-Portal, The siesta method for ab initio order-n materials simu-

lation, J. Phys.: Cond. Matt. 14 (11) (2002) 2745.

[5] FLOS: A lua library for linking with SIESTA, https://flos.readthedocs.io/.

[6] S. Smidstrup, A. Pedersen, K. Stokbro, H. Jónsson, Improved initial guess

for minimum energy path calculations, J. Chem. Phys. 140 (21) (2014)

214106.

23

[7] Message Passing Interface Forum, MPI: A Message-Passing Interface Stan-

dard, Version 3.1, 2015, https://www.mpi-forum.org/.

[8] G. Henkelman, B. P. Uberuaga, H. Jónsson, A climbing image nudged

elastic band method for finding saddle points and minimum energy paths,

J. Chem. Phys. 113 (22) (2000) 9901–9904.

[9] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural

relaxation made simple, Phys. Rev. Lett. 97 (17) (2006) 170201.

[10] J. Guénolè, W. G. Nöhring, A. Vaid, F. Houllé, Z. Xie, A. Prakash,

E. Bitzek, Assessment and optimization of the fast inertial relaxation engine

(FIRE) for energy minimization in atomistic simulations and its implemen-

tation in lammps, Comput. Mater. Sci. 175 (2020) 109584.

[11] J. Nocedal, S. J. Wright, Numerical Optimization - Second Edition,

Springer, 2006.

[12] D. Sheppard, R. Terrell, G. Henkelman, Optimization methods for finding

minimum energy paths, J. Chem. Phys. 128 (2008) 134106.

[13] J. Barr, A. Bell, F. Ferrante, G. La Manna, J. Mundy, C. Timperley,

M. Waters, P. Watts, Fragmentations and reactions of some isotopically

labelled dimethyl methyl phosphono and trimethyl phosphoro thiolates and

thionates studied by electrospray ionisation ion trap mass spectrometry,

Int. J. Mass Spectrom. 244 (1) (2005) 29–40.

[14] F. Ferrante, A. Prestianni, M. Bertini, D. Duca, H2 transformations on

graphene supported palladium cluster: DFT-MD simulations and NEB cal-

culations, Catalysts 10 (2020) 1306.

24

Appendix A. Listings

Listing 1: Input file for Gaussian, built by Empathes

1|% nproc=2

1|% mem=2GB

1|#p b3lyp/cc -pvdz

E|#scf(conver =8)

E|#scf(maxcycle =64)

E|#force test

E|

2| gaussian title

2|

2|0 1

E|O 0.000000 0.000000 0.000000

E|C -1.209277 0.000000 0.000000

E|H -1.896357 0.876338 0.000000

E|H -1.558378 -1.162947 0.000000

E|

25

Listing 2: Input file for Siesta, built by Empathes

1| SystemName lblneb

1| SystemLabel lblneb

1| NumberOfAtoms 4

1| AtomicCoordinatesFormat Ang

1|% block AtomicCoordinatesAndAtomicSpecies

E| 0.000000 0.000000 0.000000 1

E| -1.207081 0.000000 0.000000 2

E| -1.868949 0.896768 0.000000 3

E| -1.615736 -1.120896 0.000000 3

2|% endblock AtomicCoordinatesAndAtomicSpecies

2| NumberOfSpecies 3

2|% block ChemicalSpeciesLabel

2| 1 8 O

2| 2 6 C

2| 3 1 H

2|% endblock ChemicalSpeciesLabel

2|PAO.EnergyShift 0.005 Ry

2|PAO.SoftDefault true

2|PAO.BasisType split

2|PAO.BasisSize DZP

2| LatticeConstant 1.0 Ang

2|% block LatticeParameters

2|30.0 30.0 30.0 90.0 90.0 90.0

2|% endblock LatticeParameters

2|xc.functional GGA

2|xc.authors PBE

2| SpinPolarized true

2| MeshCutoff 450 Ry

2|DM.UseSaveDM true

2| SolutionMethod diagon

2|MD.TypeOfRun CG

2|MD.NumCGsteps 0

E|DM.Tolerance 1.00E-04

E|MaxSCFIterations 64

E|WriteForces true

26

Listing 3: Empathes input to perform NEB/Gaussian

#START

4

O 0.000000 0.000000 0.000000

C -1.203990 -0.000000 0.000000

H -1.805419 0.945297 0.000000

H -1.805419 -0.945297 0.000000

#END

4

O 0.000000 0.000000 0.000000

C -1.317837 -0.000000 0.000000

H -1.542714 1.108433 0.000000

H 0.296335 -0.928935 0.000000

#STARTENERGY -114.507640701

#ENDENERGY -114.423707780

#OPTCYCLE -1

#OPTCONV 1.0E-3

#IDPP

#IMAGES 6

#CLIMBING 1

#PESPROGRAM gaussian

#PESEXEC g09

#PESINPUTTEMPLATE 1

%nproc=2

%mem=2GB

#p b3lyp/cc -pvdz

#ENDPESINPUTTEMPLATE

#PESINPUTTEMPLATE 2

gaussian title

0 1

#ENDPESINPUTTEMPLATE

27

Listing 4: Empathes input to perform NEB/Siesta

#START

4

O 0.013513 0.000000 -0.000000 1

C -1.204755 -0.000000 0.000000 2

H -1.811774 0.966861 0.000000 3

H -1.811774 -0.966861 0.000000 3

#END

4

O 0.005787 -0.000049 0.000000 1

C -1.330060 -0.009745 0.000000 2

H -1.547582 1.125306 0.000000 3

H 0.307075 -0.936793 0.000000 3

#STARTENERGY -643.692226

#ENDENERGY -641.312969

#OPTCYCLE -1

#OPTCONV 1.0E-3

#IDPP

#IMAGES 6

#CLIMBING 1

#PESPROGRAM siesta

#PESEXEC siesta_psml

#PESPROC 16

#SCFCYCLE 200

#AUXINPUTFILES 1 *.psml

#AUXOUTPUTFILES 1 *.DM

#PESINPUTTEMPLATE 1

SystemName lblneb

SystemLabel lblneb

NumberOfAtoms 4

AtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies

#ENDPESINPUTTEMPLATE

#PESINPUTTEMPLATE 2

%endblock AtomicCoordinatesAndAtomicSpecies

NumberOfSpecies 3

%block ChemicalSpeciesLabel

1 8 O

2 6 C

3 1 H

%endblock ChemicalSpeciesLabel

PAO.EnergyShift 0.005 Ry

PAO.SoftDefault true

PAO.BasisType split

PAO.BasisSize DZP

LatticeConstant 1.0 Ang

%block LatticeParameters

30.0 30.0 30.0 90.0 90.0 90.0

%endblock LatticeParameters

xc.functional GGA

xc.authors PBE

28

SpinPolarized true

MeshCutoff 450 Ry

DM.UseSaveDM true

SolutionMethod diagon

MD.TypeOfRun CG

MD.NumCGsteps 0

#ENDPESINPUTTEMPLATE

29

Listing 5: Empathes input to restart an interrupted calculation

#GEOMETRIESFILE geometries.in

#STARTENERGY -114.507640701

#ENDENERGY -114.423707780

#OPTCYCLE -1

#OPTCONV 1.0E-3

#CLIMBING 1

#CLIMBINGQUICKSTART

#PESPROGRAM gaussian

#PESEXEC g09

#PESINPUTTEMPLATE 1

%nproc=2

%mem=2GB

#p b3lyp/cc -pvdz

#ENDPESINPUTTEMPLATE

#PESINPUTTEMPLATE 2

gaussian title

0 1

#ENDPESINPUTTEMPLATE

30

List of Figures

A.1 Flowchart of the Emphates code. 32
A.2 Flowchart detailing the NEB algorithm. 33

31

Figure A.1: Flowchart of the Empathes code.

32

Figure A.2: Flowchart detailing the NEB algorithm.

33

List of Tables

A.1 H migration on formaldehyde. 35
A.2 CH3 migration on phosphoro-thionate cation. 36

34

Table A.1: H migration on formaldehyde.

Typea c N c/N Ub Time %c

Serial 1 1 1 2 11m 56.282s 100.00
OpenMP 6 1 6 12 2m 16.541s 19.06
MPI 6 1 6 12 2m 16.317s 19.03
MPI 6 3 2 4 2m 25.274s 20.28
MPI 6 6 1 2 2m 49.560s 23.67
Theoretical best time 1m 59.404s 16.67
a Gaussian09 executed with t=2 threads. NEB executed with c

processes on N nodes.
b Total number of CPUs used per node: t · c/N .
c % = 100 · Time/TimeSerial.

35

Table A.2: CH3 migration on phosphoro-thionate cation.

Typea c N c/N Ub Time %c

Serial 1 1 1 4 2h 19m 13.107s 100.00
MPI 8 1 8 32 33m 38.119s 24.16
MPI 8 2 4 16 21m 48.204s 15.66
MPI 8 4 2 8 19m 43.837s 14.17
Theoretical best time 17m 24.138s 12.50
a Gaussian09 executed with t=4 threads. NEB executed with c

processes on N nodes.
b Total number of CPUs used per node: t · c/N .
c % = 100 · Time/TimeSerial.

36

