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Multifractal detrended fluctuation analysis (MFDFA) has become a central method to charac-
terise the variability and uncertainty in empiric time series. Extracting the fluctuations on different
temporal scales allows quantifying the strength and correlations in the underlying stochastic proper-
ties, their scaling behaviour, as well as the level of fractality. Several extensions to the fundamental
method have been developed over the years, vastly enhancing the applicability of MFDFA, e.g. em-
pirical mode decomposition for the study of long-range correlations and persistence. In this article
we introduce an efficient, easy-to-use python library for MFDFA, incorporating the most common
extensions and harnessing the most of multi-threaded processing for very fast calculations.

Software: https://github.com/LRydin/MFDFA

I. INTRODUCTION

A common tool to unveil the nature of the scal-
ing and fractionality of a process, natural or computer-
generated, is Multifractal Detrended Fluctuation Anal-
ysis (MFDFA). It was initially developed by Peng et
al. [1, 2] as basic Detrended Fluctutation Analysis (DFA)
and later extended to study multifractal processes by
Kandelhardt et al., giving rise to MFDFA [3]. It ad-
dresses the question of the presence of correlations in
time series and can be employed to analyse both discrete
as well as continuous-time stochastic processes. Since its
initial development in the late 90’s, it has been revis-
ited to incorporate several other elements, e.g. empirical
mode decomposition as a method for detrending [4–7],
overlapping moving windows [8, 9], and a new metric de-
noted extended detrended fluctuation analysis [10–13].
There are several additional features exist, designed to
study correlations of two or more time series [14, 15],
lag correlations in time series [16], and Fourier-DFA [17],
amongst others. A comprehensive study of DFA and the
interplay between trends in data and correlated noise can
be found in Ref. [18]. MFDFA has found application in
various fields, such as the analysis of heartbeat rate [19],
arterial pressure [10], EEG sleep data [11, 13], physi-
ology [20], keystroke time series from Parkinson’s dis-
ease patients [21], cosmic microwave radiation [22, 23],
seismic activity [24, 25], sunspot activity [26], atmo-
spheric scintillation [27], temperature variability [28], me-
teorology [29], precipitation levels [30], streamflow and
sediment movement [7, 31–36], protein folding [37], fi-
nance and econophysics [38–42], electricity prices [43, 44],
power-grid frequency [45, 46], epidemiology [47], mu-
sic [48–50], ethology [51, 52], multifractal harmonic sig-
nals [53], and microrheology [54].

MFDFA is a numerical algorithm designed to deter-
mine the self-similarity of a stochastic process. Putting it
simply, the algorithm examines the relation between the

diffusion of the process and its propagation in time or
space. Auto-regressive and stochastic processes with dif-
ferent power-law scaling will diffuse with different rates.
Fluctuation Analysis (FA) provides a method to uncover
these correlations, but fails in the presence of trends in
the data, which, for example, are particularly present
in weather and climate data. Detrending the data via
polynomial fittings (DFA) allows one to uncover solely
the relation between the inherent fluctuations and the
time scaling of a process, thus circumventing the im-
pact of non-stationarity in the data. Likewise, other
methods—as empirical mode decomposition or moving
average windows—are viable options to detrend the data.
Another problem is that a process might be driven by
more than one time scale, i.e., have more than one in-
ternal period, which can be removed either with local
polynomial fittings or EMD. Moreover, a stochastic pro-
cess might be of a monofractal or multifractal nature. By
studying a continuum of power variations of DFA one ex-
tends into MFDFA, which permits the study of the frac-
tality of the data by comparing power variations, i.e., a
multifractal spectrum.

In this software we sought to design a computationally
efficient code focused on computational speed and us-
ability. There are currently no flexible and available im-
plementations of MFDFA in python. Available are some
MATLAB [55] as well as R packages [56, 57]. There is a
particularly thorough introductory guide to MFDFA in
MATLAB with a source-code by Espen A. F. Ihlen [55],
which is easy to implement but numerically inefficient.
With this implementation efficiency was sought. This was
achieved by making the most out of python, reshaping
the code to allow for multi-threading, especially relying
on numpy’s polynomial, which scales easily with modern
computers having more processor cores [58]. Moreover,
this library contains the most commonly applied meth-
ods alongside with DFA and MFDFA: the added feature
of empirical mode decomposition is implemented to sub-

ar
X

iv
:2

10
4.

10
47

0v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
1 

A
pr

 2
02

1

https://github.com/LRydin/MFDFA


2

stitute the polynomial fittings; A moving window is in-
cluded, especially valuable for shorter time series; The
extended DFA (eDFA) method is also included, adding
a second metric of fractal scaling, especially valuable for
multifractal or aperiodic time series.

In the following sections we will introduce MFDFA
alongside some of the aforementioned methods incor-
ported into the MFDFA library. We will present two clas-
sical applications, one with a monofractal process and
one with a multifractal noise, and show how to use
MFDFA to extract their characteristics from a single
one-dimensional time series. Python code is presented to
explicate the use of the MFDFA library. Subsequently we
study two real-world time series: the sunspot time series
from 1818 to 2020 which accounts for the daily recorded
sunspots and the quarter-hourly electricity trading mar-
ket, which accounts for a small volume of electricity sell
and purchase at 15 minute windows in Continental Eu-
rope. Lastly we address a few details of the library and
contribute a few closing remarks.

II. THEORETICAL BASIS

In the following we briefly summarise the theoreti-
cal basis of Multifractal Detrended Fluctuation Analy-
sis. Later we detail the different included extensions and
which modifications these add to the original MFDFA
algorithm.

A. Multifractal Detrended Fluctuation Analysis

Multifractal Detrended Fluctuation Analysis studies
the variances of the fluctuations of a given process by
considering increasing segments of a time series.

i) Take a time series X(t) (in time or space t) with N
data points, discretised as Xi, i = 1, 2, . . . , N . Find the
“detrended” profile of the process by defining

Yi =

i∑
k=1

(Xk − µX) , for i = 1, 2, . . . , N, (1)

i.e., the cumulative sum of Xi subtracting the mean µX
of the data.

ii) Section the data into smaller non-overlapping seg-
ments of length s, obtaining therefore Ns = int(N/s)
segments. Given the total length of the data is not al-
ways a multiple of the segment’s length s, discard the
last points of the data.

iii) Consider the same data, apply the same procedure,
but discard now instead the first points of the data. One
has now 2Ns segments of the time series.

iv) To each of this segments fit a polynomial yv of order
m and calculate the variance of the difference of the data

to the polynomial fit

F (v, s) =
1

s

s∑
i=1

[Y(v−1)s+i − y(v−1)s+i]2, (2)

for v = 1, 2, . . . , Ns, where y(v−1)s+i is the polynomial fit-
ting for the segment Y(v−1)s+i of length s, fitted via least-
squares. The order of the polynomial yv can be freely cho-
sen, giving rise to the denotes (MF)DFA1, (MF)DFA2,
. . . , (MF)DFAm, dependent on the chosen degree m of
the polynomial.

v) Notice now F (v, s) is a function of each variance of
each v-segment of data and of the different s-length seg-
ments chosen. Define the q-th order fluctuation function
by averaging over the Ns variances of the segments of
size s

Fq(s) =

{
1

Ns

Ns∑
v=1

[F (v, s)]q/2

}1/q

. (3)

The fluctuation function Fq(s) depends on two parame-
ters: the segment size s and the q-th power. The fluctua-
tion function Fq(s) is the function we will focus on which
the MFDFA algorithm developed extracts from the data.

Two closely related algorithms are discussed and intro-
duced here, DFA [1] and MFDFA [3]. DFA is a particular
case of MFDFA for the choice of q = 2. What is presented
above is the MFDFA algorithm as according to Kantel-
hardt et al. [3], for which a particular choice of q = 2
leads to the fluctuation function F2(s). The DFA fluc-
tuation function F2(s) can unveil solely the monofractal
spectrum of a time series. If the examined time series Xi

is monofractal, DFA is sufficient to describe and uncover
the scaling relations in the data. If not, one must rely
on MFDFA and the study of the spectrum unveiled by
varying the q-th power.

We will later detail two changes: i) The first involv-
ing empirical mode decomposition (EMD) for detrend-
ing, where the local polynomial fittings are replaced and
the trends of the data are subtracted by removing select
Intrinsic Mode Functions (IMFs) obtained via empirical
mode decomposition. ii) The second change involves sub-
stituting the non-overlapping segments with overlapping
ones.

The inherent scaling properties of the data, if the data
displays power-law correlations, can now be studied in a
log-log plot of Fq(s) versus s, where the scaling of the
data obeys a power-law with exponent h(q) as

Fq(s) ∼ sh(q) (4)

where h(q) is the generalised Hurst exponent or self-
similarity exponent, which will dependent on q if the
data is multifractal, and relates directly to the Hurst in-
dex [59]. The generalised Hurst exponent h(q) is obtained
by finding the slope of Fq(s) curve in the log-log plots.

If the data is monofractal, the generalised Hurst expo-
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FIG. 1. Multifractal Detrended Fluctuation Analysis
(MFDFA) of an exemplary 288 data points time series Xt.
Panel a) shows, from top to bottom: the time series; first-
order polynomial fit (m = 1); third-order polynomial fit (m =
3); EMD detrending with the slowest Intrinsic Mode Func-
tion (EMD); first-order polynomial fit (m = 1) with a moving
windows with a step of 36 data points (window = 36). Seg-
ments with a size of s = 72 data points. The lines indicate
the fits, either via polynomials or EMD. Panel b) displays the
changing segment size s for a first-order polynomial fit (m =
1); From top to bottom: the time series; segmentation with
s = 48; s = 72; s = 96; s = 144. Shaded areas on both panels
indicated the standard deviation of each segment.

nent h(q) = H is independent of q and the generalised
Hurst exponent is simply the Hurst index H. On the
other hand, if the data is multifractal, the dependence on
q can be understood by studying the multifractal scaling
exponent τ(q), given by

τ(q) = qh(q)− 1, (5)

which depends on the generalised Hurst exponent h(q).
Similarly, one can construct the singularity spectrum
D(α) as the Legendre transform [60–63]. If τ(q) is suffi-
ciently smooth, the singularity strength α is given by

α = τ ′(q) = h(q) + qh′(q), (6)

from which the singularity spectrum D(α) can be con-
structed as

D(α) = qα− τ(q). (7)

The singularity spectrum D(α) describes the dimen-
sion of the subset of the time series which is charac-
terised by the singularity strength α [64]. The breadth of

singularity strength α indicates the strength of the mul-
tifractality of the time series, centred around the most
prominent scale of the time series, i.e., h. The singularity
spectrum D(α) takes the shape of an inverted parabola
with a maximum at D(α = 0) = D0, known as the box-
counting or Minkowski–Bouligand dimension, or some-
times simply fractal dimension [60]. D(α = 1) = D1 is
known as the information dimension and D(α = 2) = D2

the correlation dimension [65]. For a clearer discussion
of these properties, see Refs. [3, 66]. An extensive and
very illustrative representation of this can be found in
Ref. [55]. For a careful analysis of the meaning and inter-
pretation of the generalised Hurst coefficients extracted
from (MF)DFA, see Ref. [67], where a description and
clarification is given on what are persistent and anti-
persistent motions, stationary and non-stationarity time
series, among other relevant details.

1. Empirical mode decomposition

Empirical mode decomposition (EMD) is a method
with a variety of applications in time series analysis [68].
It seeks to extract the modes of oscillation of a time se-
ries strictly from the data. One can harness the abil-
ity of the EMD, i.e., the Hilbert–Huang decomposition
of a time series, to obtain the trend or trends of the
time series and utilise those to transform non-stationary
into stationary data. The central concept, developed by
Qian, Gu, and Zhou [6], is to substitute the detrend-
ing method employed in the traditional MFDFA, i.e.,
polynomial fittings, by removing instead particular In-
trinsic Mode functions extracted via EMD. A sketch of
the method can be seen in Fig. 1.

EMD can be summarised in a few steps: a set of intrin-
sic mode functions (IMFs) are extracted from the time se-
ries, obeying: 1) the number of extrema and the number
of zero crossings must maximally differ by one. 2) for any
point, the mean value of the envelope defined by the local
extrema is zero. Numerical methods—as cubic splines—
are used to find the curve that best fits “between” the
local extrema of the time series. The method is applied
iteratively: i) Obtain an IMF by finding the “best” curve
between the local extrema of the time series; ii) Subtract
this IMF to the time series; iii) Repeat. Apply the process
recursively to the time series until the final IMF contains
solely a residual trend of the data.

2. Moving windows

The overlapping moving windows included in this li-
brary is not aimed at detrending, but instead for the
analyses of rather short time series or very large scales
in longer time series [8]. In the literature several appli-
cations of moving average windows have been proposed
as methods to remove trends and ensure stationarity,
by simply removing a windowed average to the time se-
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ries [8, 9, 42]. This is not what we do here. Here, we
substitute the non-overlapping segmentation, as explain
after Eq. (1), by a moving window, replacing the two
separate segmentations by a moving window of each seg-
ment size s over the time series, as proposed by Zhou and
Leung [8]. This is particularly relevant when examining
short time series, where quickly the choice of larger lags
s separates the data into a small number of segments, re-
sulting in a poor statistics for the scaling at larger lags.
A sketch of the methods can be seen in Fig. 1.

3. Extended Detrended Fluctuation Analysis

A new metric of similar nature as the fluctuation func-
tion Fq(s), given in Eq. (3), has been proposed in Ref. [10]
This measure supersedes the q-order powers and takes in
solely the case of DFA where q = 2. Instead of finding the
average of the variances over each choice of segments of
size s, it considers the difference between the extrema of
the fluctuation function at each segment s. Take F (v, s)
as given in Eq. (2) and extract the maximum and min-
imum of the variances over all windows v for a certain
window size s

∆F (s) = max
v

[F (v, s)]−min
v

[F (v, s)]. (8)

This new metric ∆F (s) is denoted Extended Fluctuation
Analysis. In general, ∆F (s) can scale as a power law with
a different exponent

∆F (s) ∼ sβ . (9)

This metric takes into account aperiodicities in the data
which, in some sense, would be accounted for as a mul-
tifractal behaviour. It can unravel a second scaling phe-
nomenon due to local changes of a time series’ period.

III. EXAMPLES

To exemplify the usage of MFDFA, we first take two
common examples of stochastic processes, a fractional
Ornstein–Uhlenbeck process and general process that has
a symmetric Lévy α-stable distribution, with single pa-
rameter α. We will show how to extract the fluctuation
function Fq(s) and how to interpret the plots convention-
ally extracted to perform the analysis. Subsequently we
test the algorithm with real-world data on sunspot time
series, following Ref. [26], and later apply the algorithm
to electricity price time series from the European Power
Exchange.

A. Numerically generated data

1. Fractional Ornstein–Uhlenbeck process

To study the scaling effects in continuous stochas-
tic processes, three exemplary fractional Ornstein–
Uhlenbeck processes are taken, defined as [69]

dXt = −θXtdt+ σdBHt , (10)

with a fractional Brownian motion BHt with the covari-
ance function

E
[
BHt B

H
t′
]

=
1

2

(
|t|2H + |t′|2H − |t− t′|2H

)
. (11)

Eq. (10) fixed mean reverting strength θ = 1.0 and
volatility σ = 0.5, with three distinct Hurst indices of
H = 0.3, 0.5, and 0.7. Note here that the classic uncor-
related Brownian motion is given by H = 0.5. A frac-
tional Brownian motion has a self-similarity exponent
given by the Hurst index H, thus the three choices of
fractional Ornstein–Uhlenbeck should result in a scaling
of h(q) = H + 1. The +1 is due to the integration, which
smooths the fluctuations and thus increases the regularity
of the process. We will now numerically integrate these
processes and utilise the MFDFA library to identify the
Hurst coefficients and the presence of a monofractal vs
multifractal spectrum in the time series.

Let us exemplify how to numerically generate data and
utilise the MFDFA library Load the MFDFA library along-
side with the fractional Brownian noise generator fgn
included in your python console or editor.

Listing 1. Load the MFDFA library

1 from MFDFA import MFDFA
2 from MFDFA import fgn

To numerically integrate an Ornstein–Uhlenbeck process,
given by Eq. (10), we utilise an Euler–Maruyama scheme
with a stepsize ∆t = 0.001 for a total time of t = 104

(thus we have 107 data points). Here exemplified is the
fractional Ornstein–Uhlenbeck process with H = 0.3.

Listing 2. Integrate Ornstein–Uhlenbeck process

3 # integration time and time sampling

4 t_final = 10000

5 delta_t = 0.001

6 N = int(t_final/delta_t)
7

8 # The parameters theta and sigma

9 theta = 1

10 sigma = 0.5

11

12 # Initialise the array X

13 X = np.zeros(N)

14

15 # Generate the fractional Brownian noise

16 # with a Hurst coefficient of H = 0.3
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FIG. 2. Multifractal Detrended Fluctuation Analysis (MFDFA) of three exemplary sample paths of fractional Ornstein–
Uhlenbeck processes, given by Eq (10), with Hurst indices of H = 0.3, 0.5, and 0.7. Panel a) displays the log-log plot of
the segment size s versus the fluctuation function F2(s), given by Eq. (3), for q = 2. Each line has a slope of H + 1, as
expected. The inset shows Fq(s) for the case of H = 0.3 and the power variations q = −10,−2, 2, 10. These lines are all parallel
indicating that the process is monofractal, as expected. The dashed lines indicate the theoretical expected scaling, i.e., a slope
of H+1 = 0.3+1, where the +1 account for the increase in regularity due to the integration. The generalised Hurst coefficients
h(q), which are simply H + 1, are obtained by extracting the slopes of the curves (in a log-log scale). Panel b) shows the
multifractal scaling exponent τ(q), given by Eq. (4), which exhibits a linear dependency, i.e., h(q) = H, indicating again the
process is monofractal. The processes were numerically integrated with an integration step ∆t = 0.001 over N = 104 time units
(N = 107 data points). The MFDFA algorithm ran in 1min 29 s ± 1.85 s, for 100 segments s and 40 q-variation powers, with
first-order polynomial fits.

17 dB = (t_final ∗∗ H) ∗ fgn(N, H = 0.3)
18

19 # Integrate the process

20 for i in range(1,N):
21 X[i] = X[i-1] -

theta∗X[i-1]∗delta_t + sigma∗dB[i]

To retrieve the MFDFA spectrum of the generated time
series, define the set of q power variations and the lags s
to examine, and call the MFDFA function.

Listing 3. Applying MFDFA

22 # 100 lag s points from 3 to 1000

23 lag = np.logspace(0.6,3,118).astype(int)
24 lag = np.unique(lag)

25

26 # q power variations , removing 0 power

27 q = np.linspace(-10,10,41)

28 q = q[q!=0.0]

29

30 lag, fluct = MFDFA(X, lag = lag, q = q)

When not declaring the values of the q powers, q = 2 is
assumed, thus resulting in the conventional DFA. Like-
wise, not declaring the order of the polynomial fitting, a
first-order polynomial is assumed, i.e., order = 1.

In Fig. 2 the MFDFA of the three processes can be
seen. In panel a) the fluctuation function F2(s), with
q = 2, is shown for a polynomial detrending of first order.
This is the conventional DFA. The slopes of each curve
in the log-log plot reveal the Hurst indices of each pro-
cess, i.e., the fractional Ornstein–Uhlenbeck with Hurst
H = 0.3 scales with a slope of 1.3 = 0.3+1, the other two
with H = 0.5 and H = 0.7 have a slope of 1.5 and 1.7,
respectively. The inset in panel a) shows the fluctuation

function Fq(s), with q = −10, −2, 2, and 10, for the frac-
tional Ornstein–Uhlenbeck process with H = 0.3. Note
that the slope of all power variations is the same, i.e., the
process is monofractal, as expected. The monofractality
of the process is also evident in panel b). The multifractal
scaling exponent τ(q) is shown and is purely a linear func-
tion. Likewise, in the inset, the generalised Hurst indices
h(q) for the three processes for a set of power variations
q ∈ [−10, 10] is displayed. The linear shape of τ(q) and
constant value of h(q) in the inset indicates, as expected,
that these three processes are monofractal. Small devia-
tions are seen for very negative q powers (q . 7), which
arise due to the numeric (negative) powering operation,
which highly depends on the numerical precision of the
data.

2. Lévy-driven process

As a second example, take a collection of Lévy dis-
tributed random variables [70]. That is, each Xt is drawn
independently from a symmetric α-stable distribution,
such that the probability density function of X(t) van-
ishes as a power-law P (x) ∼ |x|−(α−1) for large |x| [70].
These processes exhibit heavy tails, ill-defined variances,
and multifractal scaling. In Fig. 3 three symmetric Lévy
α-stable distributed processes with α = 1.75, 1.25, and
0.75 are studied with MFDFA.

The multifractal behaviour can be identified directly
in panel a), where the fluctuation function Fq(s) for
α = 1.25 is shown. The lines of Fq(s) are not parallel
for different positive q powers, showing that the process
is not mono-fractal. In fact, the process is bi-fractal, hav-
ing a separate behaviour for q < 0 and q > α. For positive
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FIG. 3. Multifractal Detrended Fluctuation Analysis (MFDFA) of three exemplary symmetric Lévy α-stable distributed pro-
cesses, with α = 1.75, 1.25, and 0.75. In panel a) the fluctuation function Fq(s) is shown as a function of the segment size s
on double logarithmic scales for α = 1.25 and different values of the power, q = −10,−5,−2, 2, 5, 10. For q > α the curves are
not parallel, indicating the multifractal nature of the process. Panel b) displays the generalised Hurst exponent h(q), where a
clear non-linear dependency on q is observable. The inset displays the multifractal scaling exponent τ(q) displaying two clear
distinct behaviours for q < 0 and q > α. The solid lines indicate the theoretical expected scaling for q < 0. The three processes
were drawn from Lévy α-stable distributions, each with N = 107 data points. The MFDFA algorithm ran in 1min 24 s ± 2.17 s
for 100 segments s, 40 q powers, and third-order polynomial fits.

power variations q > α, the generalised Hurst exponent
h(q) decays like 1/q. For values of q < 0, the generalised
Hurst exponent h(q) = 1/α. This can be seen clearly in
Fig. 3 b), where the generalised Hurst exponent h(q) is
displayed. In the inset, one notices that the multifractal
scaling exponent τ(q) = 0, for q > α (always zero for
q > 2), once again showing that none of these processes
are distinguishable for positive power variations.

In general, without the aid of the multifractal spectra,
which we uncovered by studying MFDFA for a range of
q values, it is not possible to distinguish between Lévy
distributed processes. The particular choice of q = 2,
i.e., conventional DFA, obscures the fractality of these
processes, as they all show a similar scaling for q = 2,
i.e., h(q = 2) = 1/2 for all Lévy motions, including (non-
fractional) Brownian motions (where α = 2).

B. Real-world data, empirical mode
decomposition, and extended DFA

In order to evaluate the efficiency of the algorithm, we
test here two real-world data sets. Firstly, using MFDFA
we will evaluate the multifractality of sunspots time se-
ries, a recurring phenomenon on the Sun’s photosphere
which can be observed with a telescope [26]. Secondly,
we will analyse the German and Autrian spot mar-
ket intraday quarter-hourly electricity price extracted
from the European Power Electricity Exchange (EPEX
SPOT) [71, 72]. We illustrate the application of two ad-
vanced features of the developed python package, moving
windows and the masking of missing data points.

1. Sunspots

The sunspot numbers, also called Wolf numbers, are a
rather simple measure of solar activity by counting in a
weighted manner the number of groups of sunspots and
single sunspots visible from the Earth in the solar photo-
sphere, i.e. it is an integrated measure over space [74, 75].
Hence, the sunspot numbers form a time series which has
a mean period of about 11 years, but is far from being
simply periodic [62]. Solar activity is the result of com-
plex magneto-hydrodynamic processes in the Sun char-
acterised by a highly complex spatio-temporal dynamics.
It is of special interest to analyse the rather long series
of sunspot numbers in order to explore some relations to
the underlying spatio-temporal system.

The emergence of sunspots has a distinct statistics
and a multifractal spectrum which has been examined
in Ref. [26]. This publication has become a reference for
multifractal studies as the data from the ILSO World
Data Center, Royal Observatory of Belgium, Brussels is
freely available [73]. Here, we will focus on numerical ef-
ficiency and how to deal with missing or corrupt data.
We utilised another feature integrated in MFDFA that en-
ables an efficient management of missing data points.
In python’s numpy arrays, missing or corrupt values in
a time series can be handled with masked data, which
logs the missing data points and takes these into account
while performing averages, sums, and power operations.
When calculating averages or the variance of a segment,
or when taking powers, the masked entries are not taken
into account. For the particular application with sunspot
time series, which are recorded daily since 1818, there
are 3247 missing values, over a total of 74145 entries,
i.e., roughly 4.4% of the data is missing. To go around
this, simply use
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FIG. 4. Multifractal Detrended Fluctuation Analysis (MFDFA) of sunspot time series from 1818 to 2020, by the ILSO World
Data Center, Royal Observatory of Belgium, Brussels [73]. Panel a) shows the number of sunspots registered from 1818 to
2020. Panel b) displays the fluctuation function Fq(s) as a function of the segment size s on a double-logarithmic scale for
q = −10,−5,−2, 2, 5, 10, with positive q values in orange and negative q values in green. Panel c) displays the generalised
Hurst coefficient h(q) over q, and the inset displays the multifractal scaling exponent τ(q), given by Eq. (4), both highlighting
the multifractal spectrum of the data (h(q) is not constant over q, τ(q) is not linear over q). Panel d) displays the singularity
spectrum D(α) over the singularity strength α which shows a large breadth of α spanning over [1.25, 2.25], indicating the
strong multifractality of the data. The MFDFA algorithm ran in 426ms ± 11.8ms, for 70 segments s, 40 q powers, and first-order
polynomial fits. The missing values were neatly removed by utilising numpy’s masked arrays, which is integrated in MFDFA and
allows the user to simply “mask” empty or corrupted data.

Listing 4. MFDFA and missing data

1 # Read data whichever way preferred

2 data = read_data(’sunspot.csv’)
3

4 # Mask missing values. For this case -1

5 # is a missing entry in the record

6 data[data ==-1.] = np.nan

7 data = np.ma.masked_invalid(data)
8

9 # Run MFDFA (choose lag and q)

10 lag, fluct = MFDFA(data, lag, q)

The MFDFA will extract the variances as it is possible,
taking into account the missing values in the time series.
Here we highlight that MFDFA calculated 40 q-powers over
70 segments s in 426ms ± 11.8ms.

In Fig. 4 we display the fluctuation function Fq(s) for
q = −10,−5,−2, 2, 5, 10, in panel a), for s ∈ [70, 1000]
These curves are not parallel, suggesting the time series
is not monofractal. In panel b) the generalised Hurst ex-
ponent h(q) is shown as function of q, and similarly the
multifractal scaling exponent τ(q) in inset. The gener-
alised Hurst exponent h(q) is not constant over q and
consequently the multifractal scaling exponent τ(q) is not

linear, indicating clearly the time series in multifractal.
In panel c) we display the singularity spectrumD(α) over
the singularity strength α, as given by Eq. (7). The sin-
gularity strength α spans a wide range of values, over
[1.25, 2.25], indicating how strongly multifractal the time
series is. Here recall that a monofractal time series, as
the fractional Ornstein–Uhlenbeck previously shown in
Fig. 2, has a very narrow range of the singularity strength
α, centred around H. For the case of sunspot time series
we see a wide range of α, indicating the various scales of
the phenomenon. Note as well that h(q) and α are always
larger than 1, indicating that this is a non-stationary pro-
cess.

2. German and Austrian spot market intraday
quarter-hourly electricity price time series

We will examine now a 4-year long time series sam-
pled at 15 minutes of the spot market intraday quarter-
hourly German and Austrian electricity price [71, 72],
from the 1st of January 2015 to end of December 2019,
traded at the European Power Exchange (EPEX SPOT).
To the extent of our knowledge no multifractal analysis
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FIG. 5. Multifractal Detrended Fluctuation Analysis (MFDFA) of the spot market intraday quarter-hourly German and Aus-
trian electricity price time series from 2015 to 2019, traded at the European Power Exchange (EPEX SPOT) [71, 72]. Panel a)
displays the price in EUR/kWh from 2015 to 2019. Panel b) displays the log-log plot of the segment size s versus the fluctuation
function Fq(s) for q = −10,−5,−2, 2, 5, 10. Orange and green markers indicate the segments larger than two days, where purple
indicate segments between 1 and 48 hours. There two scales are studied separately. Panel c) displays the generalised Hurst
coefficient h(q) over q, and the inset displays the multifractal scaling exponent τ(q), given by Eq. (4). Panel d) displays the
singularity spectrum D(α) over the singularity strength α. The short-time scale (1–48 hours) displays large generalised Hurst
coefficient h(q) and a very large breadth of the singularity strength α, indicating precisely the high volatility of the market at
short time scales. In comparison, the longer time scales (> 48 hours) are much “milder”, and the variations of α ∈ [0.67, 0.92],
which indicates the process is both stationary, int the long run, and only moderately volatile. The MFDFA algorithm ran in 2min
11 s ± 4.43 s for 50 segments s, 40 q powers, first-order polynomial fits, and the moving window.

of this particular data has been performed before, but
other multifractal studies of price time series exist [44].
In Wang et al. [44], the authors examine different scal-
ing properties for selected periods of low, regular, and
high electricity price for some United States of Amer-
ica’s electricity markets in the year 2000 and 2001. Here
we propose a different analysis, studying the data and ex-
amining a short and long time scale of the data without
separating different activity periods.

We know that the 15 minute trading electricity mar-
ket amounts to a small volume of the overall exchange
electricity sold, thus this market serves only electricity
producers which can either extract or inject power from
the power-grid system in a very fast manner (< 15 min-
utes) [76, 77]. This will lead us to explore to separate scal-
ing phenomena in the data: A short and a long timescale
of market activities. The expectation is that the very
short-time trading is highly volatile, given the necessity of
the power grid in injecting or extracting power is a fairly
speedy manner. In the long run, the quarter-hourly mar-
ket is intrinsically linked to the larger hourly and daily
electricity market, which has far less variability, as most
of the power is sold in lengthier contracts, stabilising the

value of the electricity price. Thus one expects a narrower
multifractality at large temporal scales. Multifractality is
nevertheless expected, as the system exhibits very large
yet seldom negative prices, as well as an occasional four of
five-fold increase of the (positive) prices, again occurring
seldom and lasting very short periods.

In order to obtain a better statistics of the shorter time
scales, we will employ MFDFA’s moving windows method
previously discussed. The moving window method re-
quires the input of the number of steps used to “move” the
windows. For the following example, the window parame-
ter is set to 1, thus each overlapping window is displaced
by solely 1 data point. This substantially increases the
computational time as each averaging operation is re-
peated by the number of segments s− 1. For Fig. 5, the
total calculation lasted 2min 11 s ± 4.43 s for the win-
dowed mode, compared with 764ms ± 9.32ms with the
conventional non-overlapping windows, for 50 s segments.

Listing 5. MFDFA and moving window

1 # Read data whichever way preferred

2 data = read_data(’price.csv’)
3
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4 # Run MFDFA (choose lag and q)

5 lag, fluct = MFDFA(data, lag, q,
6 extension = {’window’ : 1})

In Fig. 5 we display the MFDFA analysis of the price
time series, as previously done for the sunpots in Fig. 4.
We perform a similar analysis as above, thus we will con-
dense the technical details and focus on the interpreta-
tion. Previous studies point to a clear separation of the
scaling behaviour of price time series [43, 78, 79]. They
separate two time scales for periods shorter and longer
than 24 hours. These studies used pricing data from be-
fore 2004 for the Nordic grid (Nordpool). In our analysis,
we similarly separate two scales, between 1 and 48 hours
and between 48 hours and 10 days. These are indicated in
purple (short timescale) and orange and green (long time
scale). We first observe that negative q powers do not ex-
ist for the short time scale. This is not unusual, many
processes do not show a multifractal spectrum with neg-
ative q values. Note that this involves taking negative
powers of the average of the variances, which is not al-
ways well defined for short s segments. This also served as
a threshold to assess the change in the fractal behaviour
of the time series. For the large time scales (> 48 hours)
the negative powers are well defined, and we can iden-
tify the full singularity spectrum D(α), as seen in panel
c). We note that the short time scale (< 48 hours) has
a very strong multifractality (in purple). The singularity
strength α, which we can only extract for positive q val-
ues, has a very large breadth, especially with its equiv-
alent for the large time scale (in orange). This is well
grounded on the previous arguments of having a very
volatile market at these short time scales, thus these re-
sults are in line with what is known about this market:
The high volatility and occasional burst—into very large
electricity prices or into negative prices—generate a wide
range of the singularity strength. The long-term stability,
connected with the larger intraday and day-ahead elec-
tricity markets, makes the process far less multifractal at
large temporal scales.

IV. THE MFDFA LIBRARY

The Multifractal Detrended Fluctuation Analysis li-
brary MFDFA in python presented is a standalone pack-
age based integrally on python’s numpy [58]. It can be
found in https://github.com/LRydin/MFDFA. It har-
nesses numpy’s vectorised polynomial fittings, making it
possible to utilise all computational cores in a computer’s
processor(s). Additionally, EMD is included as an ex-
tra feature, which is integrated into MFDFA by simply in-
stalling the python library PyEMD [80]. The conventional
plots associated with multifractal analysis, i.e., Fq(s) vs.
s, h(q) and τ(q) vs. q, and D(α) vs. α, are available as
well and require the plotting library matplotlib [81].

The MFDFA library accepts numpy’s masked arrays,
which is particularly convenient when dealing with time
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FIG. 6. Speed performance of MFDFA for time series with
sizes varying between [103, 106] data points of a fractional
Ornstein–Uhlenbeck as given by Eq. (10). Included are first-
order and third-order polynomial fits, first-order fits with ex-
tended DFA, and first-order fits with a moving window with a
step size of 5. A comparison with the distributed MATLAB code
is included [55]. Tests ran on python 3.8.2 and MATLAB R2020b.
MFDFA has a average speed-up compared with the MATLAB code,
with a five-fold speed increase for first-order polynomial fits
(m=1) and a ×27-fold increase for third-order polynomials fits
(m=3). Both codes were tested for 100 segments s and 40 q
powers. All tasks were performed on a laptop on two com-
puter cores at 2.9GHz each.

series with missing data, as exemplified in Sec. III B and
Fig. 4.

The MFDFA library offers a considerable speed-up in
comparison with the available MATLAB version. The li-
brary is fully developed to work with multi-threading,
which shows an increase in the performance, while han-
dling time series larger than 105 data points. In Fig. 6
we display the performance of the MFDFA library for time
series of fractional Ornstein–Uhlenbeck processes given
in Eq. (10) of increasing length. The MFDFA operation
scales linearly with the number of points of the gener-
ated time series. The MFDFA algorithm runs in under 1
second for time series having up to 105 datapoints, with
a first-order polynomial fittings, 100 segments s and 40
q powers, and outperforms the conventional library in
MATLAB by up to a factor of ×103 in computational speed.

Estimation error and significance calculation have not
been included in the library, as the focus lied on compu-
tational speed and the inclusion of several extra features,
as discussed.

V. CONCLUSION

We have presented a numerically efficient python
implementation of Multifractal Detrended Fluctuation
Analysis called MFDFA. MFDFA has found extensive ap-
plication in the past two decades, yet a reliable, all-
encompassing open-source software in python does not

https://github.com/LRydin/MFDFA


10

exist to this date. In this library we have harnessed the
most of python’s flexibility with handling matricial op-
erations and multi-threaded polynomial fittings. In this
implementation we have included some of the more com-
mon extensions of MFDFA, including a simple empirical
mode decomposition as a mechanism to detrend the data,
a moving window to handle very short time series, and
the extended Detrended Fluctuation Analysis, which can
track a different scaling mechanism for non-stationary
time series. The MFDFA library can also handle missing
values in the data with the aid of numpy’s masked time
series.

We have initially turned to two classic numeri-
cally generated stochastic processes, fractional Ornstein–
Uhlenbeck processes and Lévy-distributed motions, and
uncovered their monofractal and multifractal with MFDFA.
Subsequently we have studied two real-world time series,
the sunspot count from 1818 to 2020 and the quarter-
hourly electricity price time series from 2015 to 2019. For
both we performed a multifractal analysis, unveiling their
scaling properties and the strength of their multifractal-
ity. We focused on MFDFA’s speed, the ability to handled
missing data, and the integrated overlapping moving win-
dow. The analysis displayed here covered only part of
MFDFA’s integrated options, thus we leave the user to ex-
plore the other implemented methods, as the extended
DFA and EMD detrending, as these are more specialised
to particular research fields.

We hope with this contribution we open a door to fast

MFDFA calculations that can the performed on a local
machine without an extensive numerical effort and very
long time runs, thus permitting in the future to analyse
larger time series.
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