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Abstract

The Least Trimmed Squares (LTS) estimator is a frequently used robust estimator
of regression. When it comes to inference for the parameters of the regression model,
the asymptotic normality of the LTS estimator can be used. However, this is usually
not appropriate in situations where the use of robust estimators is recommended.
The bootstrap method constitutes an alternative, but has two major drawbacks.
First, since the LTS in itself is a computer-intensive estimator, the classical boot-
strap can be extremely time-consuming. And second, the breakdown point of the
procedure is lower than that of the estimator itself. To overcome these problems,
an alternative bootstrap method is proposed which is both computationally simple
and robust. In each bootstrap sample, instead of recalculating the LTS estimates,
an approximation is computed using information from the LTS solution in the orig-
inal sample. A simulation study shows that this method performs well, particularly
regarding confidence intervals for the regression parameters. An example is given
to illustrate the benefits of the method.
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1 Introduction

It is well known that the classical least squares estimator for the linear regres-
sion model is extremely sensitive to outliers in the data. Therefore, several
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robust alternatives have been investigated in the literature. Among those,
Rousseeuw’s Least Trimmed Squares (LTS) estimator [5] is a popular choice
mainly because of its computability and its intuitively appealing definition.
The LTS estimator minimizes a trimmed sum of squared residuals, thereby al-
lowing some potentially influential observations to have large residuals. In this
way, outliers do not necessarily affect the estimates of the model parameters,
as they do in case of the least squares estimator.

When it comes to inference concerning the parameters of the regression model
there are two standard possibilities. The first is to approximate the standard
error of the LTS estimates by using their asymptotic variances, see [6]. How-
ever, this asymptotic result only holds for some specified underlying model dis-
tributions, such as the central normal model. Empirical versions of the asymp-
totic variances can be used in practice but they are not likely to yield accurate
approximations in situations where robust methods are recommended.

Alternatively, the sampling distribution of LTS estimates can be estimated us-
ing the bootstrap method [3]. However, two important drawbacks arise when
using classical bootstrap on a robust estimator like LTS. First, although nowa-
days there exists a reasonably fast algorithm to compute the LTS [7], the
estimator still is computer-intensive. Especially for high dimensional data,
computing e.g. 1000 recalculated bootstrap estimates might not be feasible
due to the computational cost.

The second problem concerns the robustness of the method. Even if the esti-
mator is resistant to the proportion of outliers appearing in the original data,
when taking a bootstrap sample this proportion can become high enough
to break down the estimator for that particular sample. As a consequence,
variance estimates or confidence intervals based on the resulting bootstrap
distribution can break down even if the original LTS estimate did not [9,10].
In other words, the classical bootstrap estimates are not as robust as the
estimator that is bootstrapped.

Recently, a robust and fast bootstrap method was developed [8,11] for the
class of robust regression estimators that can be represented as a solution of a
smooth fixed-point equation. This class includes MM-, GM- and S-estimators,
but not the LTS estimator. In this paper we propose a simple approximating
bootstrap method for LTS which is both fast and robust. The idea is to draw
bootstrap resamples (just as in classical bootstrap), but instead of applying
the actual LTS algorithm to each resample, we compute an approximation
by using information gathered from the LTS solution of the original data
set. Simulations show that this fast method performs well, both in case of
regular (outlier-free) data as in case of contaminated data. Hence this inference
method is a preferable choice in all cases.



The rest of the paper is organized as follows. In Section 2 the LTS estimator
and its properties are described. Section 3 introduces the fast and robust
bootstrap method and Section 4 shows some simulation results. In Section 5
the method is illustrated on an example, while Section 6 concludes.

2 Least Trimmed Squares Estimator

Consider the univariate regression model given by
yZ:a:;BjLel, 221,,TL

Here, ; € IR? are the regressors, y; € IR is the response and ¢; € IR is the
error term. It is assumed that the errors are independent and homoscedastic
with zero center and unknown scale o. For every 3 € IRP we denote the
corresponding residuals by r;(8) = r; := y; —x}B and 72, < ... <712 denote
the ordered squared residuals.

The LTS estimator minimizes the objective function Y%, r2  where h is to be
chosen between 3 and n. This is equivalent to finding the subset of size h with
the smallest least squares objective function. The LTS estimate of 3 is then
the least squares estimate of that subset. The estimate of ¢ is given by the
corresponding least squares scale estimate, multiplied by a consistency factor
depending on the ratio h/n, and a finite-sample correction factor depending
on h,n and p to obtain unbiasedness at the normal model (see [4]).

If the data come from a continuous distribution, the breakdown value of the
LTS equals min(n—h+1, h—p+1)/n. We have that h = [(n+p+1)/2] yields the
maximum breakdown value, which asymptotically equals 50%, whereas h = n
gives the ordinary least squares estimator with breakdown value 1/n. As is
the case with most robust estimators, there is a trade-off between robustness
and efficiency. We prefer to use h ~ 0.75n which is considered to be a good
compromise, yielding an asymptotic breakdown value of 25%.

The LTS is an intuitively appealing regression estimator that also has some
desirable formal properties such as affine equivariance and asymptotic nor-
mality. Moreover, its influence function is bounded for both vertical outliers
and bad leverage points. As already stated, the LTS breakdown value can be
set to any value between 0% and 50%.

The computation of LTS estimates is not a straightforward task. For large
datasets in high dimensions it is practically not feasible to find the exact
solution. Usually one turns to approximating algorithms and in this paper we
will use the recently developed FAST-LTS algorithm [7]. It should be noted
that this particular algorithm then has to be regarded as the actual estimator.



The FAST-LTS algorithm aims to find the h-subset which yields the smallest
objective function. To find the exact minimum, it would have to consider every
possible subset of size h, which is not practical for large datasets. Therefore,
the algorithm will typically find a local minimum which is close to the global
minimum, but not necessarily equal to that global minimum. A key element
of the algorithm is the fact that starting from any h-subset, it is possible to
construct another h-subset yielding a lower value of the objective function.
Rousseeuw and Van Driessen [7] call this a C-step, and it works as follows:

e suppose we have an h-subset H,q with corresponding LS-estimate 3,4
e compute the residuals r;, =y, — !B, 1 =1,...,n
e set Hyey := { h observations with smallest r?}.

The least squares estimate 3,,, based on H,y, and its corresponding resid-
uals then yield a value of the objective function that is smaller or equal to
that of Hyyq. The basic idea of the FAST-LTS algorithm is to construct many
initial h-subsets, apply C-steps to each of them until convergence, and keep
the solution with the lowest value of the objective function.

3 Bootstrapping the LTS estimator

We are now interested in obtaining inference, such as confidence intervals, for
the parameters B and o. For this we can use the asymptotic normality of
LTS but, as pointed out in the introduction, the asymptotic variance is not
available for situations in which the use of LTS is recommended, such as the
situation of suspected severe non-normality of the errors. Therefore we turn
to bootstrap methods.

3.1  Classical bootstrap

The use of the bootstrap method is gradually increasing nowadays, due to
increasing computer power. The basic idea is to generate a large number of
samples by randomly drawing observations with replacement from the origi-
nal dataset, and to recalculate the estimates for each of these bootstrap sam-
ples. The empirical distributions of the bootstrap estimates B* and ¢* are an
approximation to the true sample distributions of B and o. However, recal-
culating the LTS estimator (using FAST-LTS) for each bootstrap sample is
extremely time-consuming, and might not be feasible for large datasets, de-
spite considerable computer power. Table 1 lists some computation times for
the classical bootstrap procedure for LTS on simulated datasets. The number
of bootstrap samples was set to B = 1000, which is generally regarded as



Table 1
Computation time for classical bootstrap on LTS with B = 1000 (in CPU minutes,
on Pentium IV 1.9 Ghz)

n=20 n=50 n=200 n=1000

p=2 5.5 17.0 32.9 168.9
p=>5 186 20.0 36.1 188.6

the minimum number needed to get accurate bootstrap confidence limits. We
used a Matlab implementation of the FAST-LTS algorithm. As can be seen
from Table 1, in practice the computation time is a serious drawback of the
bootstrap method.

The second problem is the lack of robustness, in particular the fact that the
bootstrap estimates are less robust than the LTS estimates itself. An important
notion in robustness is the breakdown value € of an estimator. It is defined
as the minimum fraction of the observations in the dataset that need to be
shifted for the estimator to take on arbitrary values (see e.g. [6]). In other
words, €, indicates the minimum proportion of outliers in the data that the
estimator is not able to resist anymore. Now, for any estimator, denote by V*
the regular bootstrap variance estimate, being the empirical variance of the
bootstrap recalculations of the estimator. Then, as pointed out in [10],
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regardless of the breakdown point of the estimator that is bootstrapped. This
result is intuitively clear since the presence of a single bad observation in
the dataset makes it theoretically possible that a bootstrap sample emerges
with more bad observations than the estimator can resist. Furthermore, one
contaminated bootstrap sample suffices to break down the empirical variance
V*. In practice, the convergence is rather slow and the bootstrap method is
unlikely to fail if the proportion of bad observations is small, but break-down is
still possible. Now denote by )} the ¢-th quantile of some marginal bootstrap
distribution of the estimator. These quantiles are used to estimate confidence
limits for the estimated parameters. Similar reasoning can now be applied
to show that the breakdown point of )7 is lower than that of the estimator
itself, although not as low as that of V* (see [9,8]). A number of straightforward
robustifications of the bootstrap have been proposed in the literature (see [10]).
For example, one could replace the empirical variance V* by a more robust
measure of variability, such as the interquartile range. Another possibility is to
exclude bootstrap samples that select the same index more than m™* times, but
the appropriate choice for m* is unclear. Still another possibility is to delete the
outliers identified by the initial estimator and bootstrap only the remaining
observations. Clearly, it is not difficult to adapt the bootstrap for LTS such
that the robustness problem is more or less solved. However, the problem of



computational feasibility remains. Next we will propose a bootstrap method
for LTS, that solves both problems.

3.2 A fast and robust bootstrap method

The main reason for the high computation time of the FAST-LTS algorithm is
that it needs to start from a large number of initial subsets. This large number
is necessary to obtain a sufficient probability that at least one of the initial
subsets is not contaminated with outliers. When bootstrap samples are drawn
from the original dataset, they consist of observations also present in the orig-
inal dataset. Often it will be the case that observations identified as outliers
by the original LTS estimate, are also outliers when they appear in bootstrap
samples. This consideration leads to a short-cut when searching for the LTS
solution of a bootstrap sample. We propose the following bootstrap procedure
which intends to mimic the classical bootstrap. First, in the original dataset,
label those observations (x;, ;) for which |r;(81¢)/0rrs| > ®71(0.9875) as
outliers. Then as in the classical procedure, draw B bootstrap samples from
the complete original data, and for each bootstrap sample compute an ap-
proximate LTS solution in the following way:

e Draw 1 random initial A-subset out of the observations that were not labeled
as outliers in the original dataset.

e Apply C-steps on this initial A-subset until convergence to obtain the ap-
proximate LTS solution. While excluded from the initial subset, observations
labeled as outliers are allowed to be included in this process.

e In case the number of non-outlying observations A’ in the resample is less
than h, then replace h with A’ in the previous steps for this particular resam-
ple. In this way we can deal with highly contaminated bootstrap samples.

So we assume here that indeed the outliers in a bootstrap sample are mostly
the same observations as those identified in the original sample. In this way we
avoid the need for many initial h-subsets. Furthermore we use the effectiveness
of the C-step to obtain a local minimum of the LTS objective function starting
from the initial subset.

We now argue that the 'short-cut’ procedure satisfies the following properties:

(1) more robust than the classical bootstrap
(2) faster than the classical bootstrap
(3) the variability of the (FAST-)LTS estimator is accurately mimicked.

With regard to the first property, it is clear that due to the choice of the ini-
tial subset for the bootstrap samples the short-cut procedure generally will not
break down as long as the original LTS estimate did not break down. Theoret-



Table 2
Average number of observations shared by the final h-subsets, with quartiles Q1
and Q3 (based on 500 samples with normal errors and p = 5 regressors).

# C-steps: 0 1 2 3 00
Q1 29 34 35 35 35

n=>50 Avg 30.3 357 362 363 364 (h=239)
Qs 31 37 38 38 39
Q1 112 139 141 142 143

n =200 Avg 113.8 142.0 144.0 145.0 145.8 (h=151)
Qs 116 145 148 149 150

ically it could happen though that a bootstrap sample emerges with less than
p non-outlying observations, in which case breakdown is possible. However, in
practice these situations hardly occur. We thus assert that the proposed short-
cut procedure is much more robust than the classical bootstrap. See also the
example in Section 5.

Naturally, the short-cut procedure is much faster than running FAST-LTS for
each bootstrap sample. Implementations of the FAST-LTS algorithm typically
start with 500 random initial subsets, of which a number is discarded after
2 C-steps. Instead the short-cut procedure starts with just one (well chosen)
initial subset. Note that we could also consider two or more well chosen initial
subsets instead of one, which then still would be relatively fast and might
perform even better. In this paper we restrict our method to one initial subset
and show that this yields good results.

The short-cut in effect attempts to achieve an accurate reflection of the vari-
ability by aiming for a good (and fast) approximation of the FAST-LTS so-
lution in each resample when there are not too many outliers, while on the
other hand applying a robustification in case of severe contamination. A good
approximation of the estimate in each resample would mean that the final
h-subsets selected by both estimators, FAST-LTS and the short-cut, are suffi-
ciently similar. We performed some simulations on datasets without outliers.
Table 2 shows the average number of observations shared by the final h-subset
of the FAST-LTS algorithm and that of the short-cut procedure after various
numbers of performed C-steps. The oo-entries correspond to the full short-cut
(after convergence of the C-steps). The average is taken over 500 resamples,
each one from a bootstrap procedure on a different simulated dataset. The
number of regressors was set to p = 5, the errors were generated from a
normal distribution. Results for n = 50 and n = 200 are given and we set
h =~ 0.75n. The first and third quartile of the 500 samples are also shown. We
see how the short-cut subset becomes more similar to the FAST-LTS subset
with each additional C-step. The average number of C-steps that it takes to



converge is about 2.9 for n = 50 and 4.5 for n = 200. In the next section an ex-
tended simulation study will show how accurate the variance of the FAST-LTS
is being approximated by the short-cut.

4 Simulations

In this section we will show that in spite of its simple and approximating
nature, the short-cut procedure generally performs well. Through simulations
we investigate the performance of two inference results provided by the pro-
cedure. The first is the estimated variance of the LTS estimates, while the
second is the coverage and length of univariate confidence intervals for the
regression parameters.

Simulations were performed for sample sizes n = 50, 200 and 500 and dimen-
sions p = 5 and 10. An intercept term was included by setting z;, = 1,1 =

1,...,n. The remaining regressors were generated from the (p — 1)-variate
normal distribution N(0,I). The true value of the parameter 3 was set equal
to (0,...,0)". However, this choice does not affect the performance results

since the LTS is regression, scale and affine equivariant. We now consider the
following cases:

(1) normal errors, generated from N (0, 1)

(2) long-tailed errors, generated from t3 (Student-t, 3 d.f.)

(3) far outliers, proportion 80% of the errors generated from N(0,1) and
proportion 20% generated from N(10,0.1).

For each case 2000 data sets were generated and we computed LTS estimates
with h =~ 0.75n. On each data set we applied the short-cut bootstrap proce-
dure as described in the previous section, with B = 1000. In computing the
bootstrap scale estimates we used the consistency and small sample correction
factors as proposed in [4]. These factors were also incorporated in the Matlab
implementation of FAST-LTS that was used throughout this paper.

Let us first focus on the variance estimates of the estimators. The short-cut
bootstrap variance estimate is the empirical variance of the B recalculated
estimates. We also computed for each dataset an estimate of the asymptotic
variance of LTS as given in [6] for the regression coefficients, and in [1] for the
error scale 0. The estimate consists of an empirical version of the analytical
result for symmetric distributions. For the coefficients we used:

-t EZ 1 Zn(IBLTS)
ASV((IBLTS [(Zm Ti ) Lj (h/n — 22, ¢(2,))?



Table 3
LTS variance estimates (x100), compared with Monte Carlo; normal errors

n = 50 n = 200
P MC 0C ooC ASV  MC 0C ooC ASV
slope 649 250 539 713 176 0.58 142 177
5 int 6.0l 234 500 685  1.67 057 142 1.76
scale  2.02 258 267 299 048 052 0.51 0.57

slope 743 293 599 6.28 1.70 0.59 143 1.69
10 int 6.8 2.70 5.58 6.04 1.77 058 1.42 1.68
scale 2.24 3.25 3.87 4.45 0.48 0.59 0.58 0.67

where z;, = rh:n(B rs)/0rrs. For the scale estimate an analogous expression
was used. Both methods are compared to a Monte Carlo estimate (MC) of the
variances, which are considered to be good approximations of the variances
of the LTS estimator. Note that we did not include the classical bootstrap in
this simulation study because of its high computation time.

Table 3 lists the variance estimates for the case of normal errors. Besides
the actual short-cut estimate (oo C) we also show the results for the short-
cut without C-steps (0 C), to show the effect of the C-steps (see also Table
2). The values shown are the averages over the 2000 samples. The entries
corresponding to the slope are in turn averages over the p — 1 coefficients. The
results for n = 500 are not shown here due to lack of space, but were found
to be comparable to those for n = 200. Table 4 and 5 give the results for the
long-tailed errors and the far outliers respectively. Here we left out the entries
for the short-cut without C-steps.

We see from Table 3 that the short-cut estimates are not too far from the MC

Table 4
LTS variance estimates (x100), compared with Monte Carlo; t3 errors
n =50 n = 200 n = 500
» MC o©C ASV  MC ooC ASV  MC ooC ASV

slope 6.56 6.66 10.63 1.40 1.37 248 0.55 0.53 0.99
) int 6.06 6.07 10.26 1.37 133 2.46 0.53 052 0.98
scale 4.01 4.81 4.57 0.83 091 0.83 034 034 0.30
slope 8.37 8.43 10.10 148 148 243 0.54 054 0.98
10 int 797 774 9.70 146 1.43 240 0.53 054 0.97
scale 4.77 6.84 7.32 095 1.01 0.99 035 035 0.33




Table 5
LTS variance estimates(x100), compared with Monte Carlo; 20% far outliers

n =50 n = 200 n = 500
P MC oocC ASV  MC ooC ASV  MC oocC ASV
slope 347 441 1721 097 098 3.62 036 038 143
5 int 3.37 401 1647 089 095 3.58 036 038 142
scale 399 6.81 7.89 087 201 1.28 031 076 045

slope 3.45 5.83 20.24 0.93 1.02 3.67 0.37 039 1.44
10 int 3.29 535 1942 091 1.00 3.63 0.37 038 143
scale 5.86 8.95 15.85 094 233 1.59 032 083 0.1

variance of the LTS coefficients, but there seems to be a consistent underesti-
mation. The latter is not present for the long-tailed errors, where the method
apparently performs very well, as can be seen from Table 4. For the case of
far outliers Table 5 indicates an overestimation, which becomes smaller as the
sample size grows. These results can be explained as follows. For normal errors
very few observations will be labeled as outliers. Therefore the initial h-subset
is approximately a random h-subsample of the bootstrap sample. The estimate
corresponding to this initial subset is then the least squares (LS) estimate of
a random h-subsample. Accordingly, the variance estimates of the short-cut
without C-steps (0 C) are close to the variance of the least squares estimator
for sample size h. The C-steps are subsequently applied in an attempt to move
the estimate roughly from the LS solution towards the LTS solution. This aim
will not always be achieved and often the estimate ends up in between the LS
and the LTS estimates. A result is that the variance of the bootstrap estimates
is higher than the LS variance corresponding to sample size h, but still some-
what lower than the LTS variance. Presumably there are two reasons for the
disappearance of the underestimation in the case of long-tailed errors. First,
while the initial short-cut estimate in each bootstrap sample still somewhat
resembles a least squares estimate, the latter is less efficient for this kind of
errors, yielding a higher variance in itself. Second, the eventual short-cut solu-
tions are now in fact more similar to the actual LTS estimates. The result for
the case of 20% outliers can be explained along the same lines. It should be
noted however that the bootstrap cannot be expected here to approximate the
MC result in a truly accurate way. Indeed, the MC estimate is obtained from
samples that contain exactly 20% outliers, while in the bootstrap samples this
proportion varies.

For the scale o the short-cut in all cases overestimates the variance. However,
the bias is not dramatic except in case of outliers. Intuitively this overestima-
tion stems from the fact that the scale corresponds to the objective value of
the LTS estimator. Therefore short-cut bootstrap estimates for o are greater
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Table 6

Coverage and length of 95% confidence intervals (B=1000); normal errors

p=5 n = 50 n = 200
0C ooC  ASV 0C ooC  ASV
slope  89.3 961  95.6 929 968  95.0
(0.614)  (0.886) (1.031) (0.208)  (0.459)  (0.520)
int  89.8 963  96.2 933 975 058
(0.596) (0.869) (1.016) (0.297)  (0.464) (0.518)

than or equal to the FAST-LTS estimates. This explains the higher variance
for the short-cut estimates of o, since we found the bootstrap distributions for
0 to be generally skewed to the right.

The empirical asymptotic variance performs better than the short-cut boot-
strap for normal errors. However in the other two situations, which are cases
where the use of LTS is recommended, this asymptotic variance estimate is
not accurate at all and much worse than the short-cut bootstrap.

Concerning confidence intervals for the parameter 3, we compared 95% per-
centile bootstrap intervals with intervals based on the asymptotic normality of
LTS, using the empirical asymptotic variance. Tables 6, 7 and 8 list the per-
centage of the intervals in the simulation that contained the value 0 (the true
value of the parameter), as well as the average length of the intervals. Here we
only produce the results for p = 5, those for p = 10 being similar. We see that
the coverage of the short-cut bootstrap intervals in all cases is higher than
the nominal value, while their length is quite short relative to the variance of
the LTS. These results follow from the fact that the intervals are usually not
centered around the original LTS estimate, but rather are somewhat shifted
towards what would be the LS estimate of the non-outlying observations. Note
that one could argue that the intervals could be even more precise if they were
based on the least squares estimates of the non-outlying observations in each
bootstrap sample. However, the coverage for those intervals turns out to be

Table 7
Coverage and length of 95% confidence intervals (B=1000); 3 errors
p=5 n = 50 n = 200 n = 500
oo C ASV oo C ASV oo C ASV
slope 96.7 97.9 96.4 98.8 96.0 99.1
(0.984) (1.256) (0.453) (0.615) (0.215) (0.389)
int 96.9 98.3 97.0 99.1 97.1 99.5
(0.949)  (1.240) (0.450)  (0.613) (0.283)  (0.388)
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Table 8
Coverage and length of 95% confidence intervals (B=1000); 20% far outliers

p=5 n =50 n = 200 n = 500
oo C ASV oo C ASV oo C ASV
slope  96.6 100 96.2 99.9 96.6 99.9
(0.809) (1.605) (0.385) (0.743) (0.241) (0.468)
int 96.1 100 97.0 100 96.9 100.0
(0.781) (1.578) (0.383) (0.740) (0.242)  (0.467)

somewhat too low. Moreover, with such a bootstrap method we would not be
able to obtain a fair estimate of the variance of the LTS estimator.

We can conclude that the short-cut bootstrap method for LTS yields reason-
able variance estimates, which are relatively more efficient when the data has
longer tails. The confidence intervals based on the bootstrap are short and
conservative. Note that we only considered one type of outliers in this simu-
lation, but it is expected that the performance is similar for different kinds of
outliers, as long as the LTS itself is capable of resisting this contamination.
Also note that it is not our intent to give a theoretical justification for the
short-cut bootstrap method. In fact, it is clear from the simulations that the
method will probably give an asymptotic bias. Rather we intended to show
that by using fast approximations in the resamples, the bootstrap method can
become a practical tool for inference on the LTS.

5 Example

For an illustration of the use as well as the benefits of the short-cut bootstrap
procedure for LTS, we consider the so-called Pilot-Plant data [2], consisting
of 20 observations on 2 variables. The response variable is the acid content de-
termined by titration, and the explanatory variable is the organic acid content
determined by extraction and weighing. A scatter plot of the data is given in
Figure 1a. The regression lines estimated by least squares and LTS respectively
are superimposed on the plot. These lines practically coincide here. Obviously
this dataset contains no outlying observations so actually there is no need for
a robust estimator. In fact, even if there would be an outlier present, since we
only have one explanatory variable we would be able to easily spot the outlier
and remove it if desired. It should be clear that robust regression in general is
more beneficial in case of multiple regression. However, we chose to illustrate
our method on an example of simple regression for reasons of clarity.

Now suppose that two of the observations have been wrongly recorded, yielding

12
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Fig. 1. Pilot-Plant data, regression fit (LS and LTS); (a) original data; (b) data with
2 observations shifted
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Fig. 2. Pilot-Plant data, LTS bootstrap estimates for the slope: classical versus
short-cut estimates; (a) original data; (b) data with 2 observations shifted

the situation as depicted in Figure 1b. We now see that the least squares
estimate is attracted to the leverage points, while LTS, with h = 15, was
able to resist them. We applied the classical bootstrap as well as the short-
cut bootstrap for LTS on both the original dataset and the contaminated
dataset. For both bootstrap methods the same B = 1000 resamples were used.
Figure 2 depicts the classical bootstrap estimates for the slope parameter
versus the short-cut bootstrap estimates. The left panel corresponds to the
original Pilot-Plant data, the right to the contaminated data. It can be seen
that for the contaminated dataset the LTS estimate broke down in several
bootstrap resamples, yielding e.g. a negative slope estimate. Note that, since
h = 15, the LTS can cope with at most 5 recurrences of either one of the
leverage points. This robustness problem is avoided when using the short-cut
procedure.

Table 9 summarizes some inference results on the slope parameter for both
datasets. The high contamination of several classical bootstrap estimates re-
veals itself in the fact that the lower 99% percentile confidence limit for the
slope parameter has a negative value. The classical bootstrap estimate for the
standard deviation is also affected. This clearly illustrates the non-robustness
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Table 9
Pilot-Plant data: Bootstrap results for the slope

Classical Short-cut
(Brrs):  SD  99% Conflnt.  SD  99% ConfInt.
Original data 0.313 0.01017 [0.274 0.355] 0.00828 [0.304 0.348]
Contaminated ~ 0.316 ~ 0.05776 [-0.144 0.356] 0.00767 [0.299 0.344]

of the classical bootstrap procedure, as opposed to the robustness of the LTS
estimate itself, and of course as opposed to the robustness of the short-cut
bootstrap procedure. Probably more important however than the robustness
benefit is the fastness of the short-cut procedure. The computation time for
the classical bootstrap (where 500 initial subsets were used for FAST-LTS)
on the Pilot-Plant dataset was approximately 7 minutes, while the short-cut
bootstrap took only about 5 seconds.

6 Conclusion

When it comes to inference methods for regression parameters using robust
estimators, the bootstrap is a natural choice. However, the classical bootstrap
often demands excessive computation time and has a problem of robustness. In
this paper we proposed an alternative bootstrap method for the LTS estimator,
which performs a ’short-cut’ in each resampled dataset instead of the whole
FAST-LTS algorithm. Through a simulation study, it is shown that this fast
method generally yields accurate results and is more robust than the classical
bootstrap. The method was also illustrated on an example.
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