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Abstract

An accurate normal approximation for the cumulative distribution function of the chi-square
distribution with n degrees of freedom is proposed. This considers a linear combination of
appropriate fractional powers of chi-square. Numerical results show that the maximum absolute
error associated with the new transformation is substantially lower than that found for other
power transformations of a chi-square random variable for all the degrees of freedom considered
(1 < n<1000).
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Power transformations of the chi-square random variable can be employed to im-
prove its approximate normality. Among these, the best known are the Fisher’s square
root transformation (2ny%)"/? (Fisher, 1922) and the third root transformation (y2/n)'/?
(Wilson and Hilferty, 1931), where n stands for the number of degrees of freedom
(d.f.). Also the fourth root transformation (?/n)"/* has a distribution which is close
to normality for all degrees of freedom (Cressie and Hawkins, 1980; Hawkins and
Wixley, 1986).

The third root transformation produces a closer approximation to normality than the
square root transformation (Merrington, 1941; Goldberg and Levine, 1946; Zar, 1974).
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For 1 and 2 degrees of freedom the fourth root is superior to the third root; however,
for larger numbers of degrees of freedom the third root is better.

Goria (1992) proposed a linear combination of the square and of the fourth root trans-
formations, which are the only that, within the family of power transformations, have
the property that the Pearson’s kurtosis index is zero to an appropriate order. However,
the results were substantially similar to those obtained using the third root transfor-
mation, with clear benefits only for high values of the degrees of freedom. In this
paper a more accurate linear combination of power transformations of the chi-square
random variable will be proposed, that fits well regardless of the number of degrees
of freedom.

2. Power approximation

The basic idea underlying the transformation was to combine different powers of
%> in order to have the Pearson’s kurtosis index equal to zero to an appropriate or-
der, and the symmetry near to zero also for a small number of degrees of freedom.
A preliminary search suggested that a linear combination of powers 1,1, 1 would be

62372
suitable. So, the following linear combination was considered:
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where the constants a,b,c must be determined in such a way that both the skewness
and the kurtosis of L tend rapidly to those of the normal distribution. It is clear from
the above equation that the constant a affects only the variance, but neither skewness
nor kurtosis, so it was set equal to one. An admissible solution was found for b = f%
and ¢ = % (see the appendix for details); therefore the linear combination proposed as

normal approximation for the chi-square distribution is the following:
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The resulting linear combination does have an appealing feature as it can be ex-
pressed as
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The skewness and kurtosis coefficients of L are, respectively, > f 7 + O™ 2) and
O(n~?), while its expected value is
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and the variance is
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3. Numerical results

The numerical accuracy of the linear combination L in terms of the maximum abso-
lute error (MAE) was investigated for n between 1 and 1000 employing the approach
of Li and Martin (2002). To evaluate the performance of each approximation function,
V(x;n), the MAE was defined over the range of the chi-square random variable with
degrees of freedom for which the cumulative probability F.,2(x;n) lies between 0.0001
and 0.9999, in steps of 0.0001. This set is denoted by X:

MAE = max |F,2(x;n) — V(x;n)|.
xeX .

Each evaluation was performed twice, once using Mathematica version 4.2 (Wolfram,
1999) and the other using a FORTRAN program which employed the algorithms AS91,
AS111, AS147, AS66, ACM291 (Griffiths and Hill, 1985). The same set of numerical
results was obtained. These are displayed in Fig. 1 and, for selected values of #, in
Table 1, along with the MAE for the approximation function, V' (x;n), taken as

1. the ordinary normal asymptotic approximation: V(x;n) = ®[(x — n)/+/2n];

2. the Fisher’s square root approximation (Fisher, 1922): V(x;n) = @[x — v/2n — 1];

3. the third root approximation (Wilson and Hilferty, 1931): V(x;n) = ®[(x — p)/o]
with p=1—2/9 and ¢> =2/9x;

4. the fourth root approximation (Hawkins and Wixley, 1986): V(x;n) = ®[(x — u)/o]
with u=1—3/16n — 7/512n* +231/8192n° and ¢? = 1/8n + 3/128n% — 23/1024n3;

5. the linear combination of Goria (Goria, 1992): V(x;n) = ®[(x — p)/o] with
w=>5—1/n—3/128n* + 311/2048r> and o> = 9/2n + 1/8n*> — 207/256n>;
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Fig. 1. Maximum absolute errors of selected approximations for the cumulative distribution function of the
%% random variable.
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Table 1
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Comparison of maximum absolute errors for seven approximations to the chi-square cumulative distribution

function with n degrees of freedom

n L Ordinary Fisher Wilson— Fourth root  Goria Peizer—
normal Hilferty Pratt

1 92E-03 24E-01 16E—-01 52E-02 2.0E-02 42E—-02 —
2 18E—-03 16E—-01 54E-02 12E—-02 1.I1E-02 12E—-02 3.6E—03
3 78E-04 I11E-01 32E—-02 55E-03 1.1IE—02 63E—-03 12E-03
4 44E—-04 94E-02 24E-02 33E—-03 99E-03 41E—-03 5.8E—04
5 29E—-04 84E-02 20E—-02 26E—-03 93E-03 30E—03 33E-04
6 20E-04 77E—-02 19E—-02 22E-03 87E-03 23E—-03 21E-04
7 15E-04 71E-02 17E—-02 18E-03 82E-03 19E—-03 14E-04
8 12E—-04 67JE—-02 16E—-02 16E-03 7.7E—-03 1.6E — 03  1.0E — 04
9 95E—-05 63E—-02 15E—-02 14E-03 74E-03 14E—-03 75E-05
10 78E—-05 60E—-02 15E-02 13E-03 7.0E—03 12E—-03 S58E—-05
11 65E—-05 57E—02 14E-02 1.1IE—03 6.7E—03 1.1IE—03 4.6E—05
12 55E-05 S4E-02 13E-02 10E-03 6.5E—-03 95E—-04 37E-05
13 48E—-05 52E—-02 13E—-02 9.6E—04 6.3E-03 8.6E—04 3.1E—05
14 42E-05 SO0E—-02 12E—-02 89E-04 6.0E—03 79E — 04  2.6E — 05
15 37E—-05 49E—-02 12E-02 82E—04 S59E-03 72E—-04 22E-05
20 22E—-05 42E-02 10E—-02 6.1E—-04 S5.1E-03 50E—04 12E-05
25 15E—-05 38E—-02 93E—-03 48E—-04 4.6E—03 40E —-04 73E-06
30 LLIE—05 34E-02 85E—-03 39E—-04 42E-03 32E—04 5.0E-—06
40 65E—06 30E—02 74E-03 29E—-04 3.7E-03 23E—-04 29E—06
50 44E-06 27E—-02 66E-03 23E—-04 33E-03 18E—-04 19E - 06
60 33E—-06 24E—-02 6.1E—-03 19E—04 3.0E—03 1.5E—04 14E - 06
80 20E—-06 21E—-02 S52E—-03 14E-04 26E-03 1.IE—04 8.1E-07
100 14E—-06 19E—02 47E—-03 1.IE—04 23E-03 8.6E—05 55E-07
120 10E—-06 17E—-02 43E-03 92E-05 21E-03 7.1E—-05 4.1E-07
150 73E—-07 15E—-02 38E-03 73E—-05 19E-03 5.6E—05 28E-—07
200 47E—-07 13E—-02 33E-03 54E-05 1.7E—03 41E-05 18E-07
240 35E—-07 12E—-02 30E—-03 45E—-05 1.5E—03 34E—-05 13E-07
400 16E—-07 94E-03 23E-03 27E-05 12E-03 20E—-05 59E —08
600 85E—08 77E—03 19E—-03 18E—-05 9.6E—04 I3E—05 3.1E-08
800 S55E—-08 66E—03 17E—-03 13E—-05 83E-—-04 99E — 06  2.0E — 08
1000 39E—-08 59E—-03 15E—-03 1.0E—-05 74E-04 79E — 06 4.0E — 08

6. the Peizer—Pratt approximation (Peizer and Pratt, 1968): V(x;n) = @[ — (1/3 +
0.08/n)/(2n — 2)'?] if x =n — 1 and V(x;n) = O[((x — n + (2/3) — (0.08/n))/
x = (= D)) x ((n = Dlog((n = 1))x) +x—(n— 1) if x #n—1;
7. the linear combination L proposed: V(x;n) = ®[(x — u)/o] with u=5/6 — 1/9n —

7/648n% + 25/2187n and ¢? = 1/18n + 1/162n% — 37/1166413.

From Table 1 it can be seen that the accuracy of L is to four decimal places from
3 degrees of freedom onward and that its performance is considerably superior to the
other power approximations considered; the greatest MAE for L, which is achieved

with 1 d.f,, is less than 0.01.

Figures shown in Table 1 reproduce and extend those reported in Table 3 of Ling
(1978) and in Table 18.3 of Johnson et al. (1995). Compared with the Peizer—Pratt



L. Canall Computational Statistics & Data Analysis 48 (2005) 803—-808 807

approximation, the linear combination L is more accurate for 2—6 degrees of freedom
(for 1 d.f. the Peizer—Pratt approximation is not defined). Although the Peizer—Pratt
approximation does not belong to the power transformation family, it was chosen since
it was the best normal approximation among those evaluated in the studies by Ling
(1978) and El Lozy (1982).

Appendix.

Let Y, = (4*/n)" a power transformation of the chi-square random variable and
&= y? —n. We can write (Stuart and Ord, 1994)

é h 9] h £ j
Vnw=[(14+4=2) = =]
() - ()¢
j=0 \J
Taking expectations we find the first six moments of Y, using the following relation

between the moment of order # of Y} and the moment of order k» of Yy, where k& is
a constant:

o hfk kr
() 1=E ((‘) ) = E[(Y)")

It is now possible to calculate the moments of L = Y5 + bYy 3 + Y/, and from the
relations between moments and cumulants, the cumulants of L. We require that the
Pearson’s skewness and kurtosis coefficients of L tend to zero to order n—3; therefore,
we consider the third and the fourth cumulant

k3(L) = (3¢ — 1)(1 +2b + 3¢)?

1
108n2
(b 1 sk
324 108 729 432 27

+7bzc i 61c? n 25bc? L e 55 1 O
36 432 108 16 11664 ’

n
1
729n3

Putting the largest term of k3(L) and k4(L) equal to zero we find as solutions the two
sets {b=—1,c=1} and {b=—1,c=1}. However, the first set must be discarded
since, in this case, the variance of L is zero.

Therefore the linear combination is

1/6 1/3 12
(7 1 /(7 (7
= £ — (£ + - | &=
n 2\ n 3\n

with mean and variance given respectively in (1) and (2).

ka(L) = (14 2b +3¢)*(2 — b — 4b*> — 12¢ — 15bc¢) +0(n™).
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