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Abstract

New iterative reduced-rank regression procedures for seasonal cointegration analysis were pro-
posed. The suggested methods are motivated by the idea that modelling the cointegration restrictions
jointly at different frequencies may increase efficiency in finite samples. Monte Carlo simulations
indicate that the new tests and estimators perform well with respect to already existing statistical
procedures.
© 2004 Elsevier B.V. All rights reserved.
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0. Introduction

It is still common to use seasonally adjusted time series in empirical analyses. However,
a body of research has recently shown that seasonal adjustment may alter such time series
properties such as invertibility (Maravall, 1995), linearity (Ghysels et al., 1996), cointe-
gration (Granger and Siklos, 1995), and short-run comovements (Cubadda, 1999). Since
there is convincing evidence of seasonal unit roots in common macroeconomic time series
(Hylleberg et al., 1993), it is important to model them properly. The common practise of
adding seasonal dummies to the set of regressors leads to misspecified models when sea-
sonal unit roots are present (Abeysinghe, 1994). The analysis of seasonal cointegration, as

∗ Corresponding author. Tel.: +39-0874404467; fax: +39-0874311124.
E-mail address:gianluca.cubadda@uniroma1.it(G. Cubadda)

0167-9473/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2004.05.016

http://www.elsevier.com/locate/csda
mailto:gianluca.cubadda@uniroma1.it


334 G. Cubadda, P. Omtzigt / Computational Statistics & Data Analysis 49 (2005) 333–348

first proposed inHylleberg et al. (1990), has gained recent interest, seee.g., the thorough
surveys byFranses and McAleer (1998)andBrendstrup et al. (2004). Indeed,Lof and
Franses (2001)shows that seasonal cointegration models tend to yield better forecasts than
alternative models of seasonal data.

A set of seasonally cointegrated time series may be represented by a seasonal version of
the Error-Correction Model (ECM), see inter aliaAhn and Reinsel (1994). The statistical
analysis of the seasonal ECM can be complicated by the existence of cointegration rela-
tionships that vary over the frequencies. Moreover, the cointegration vectors at frequencies
other than zero and� are generally polynomial. However,Lee (1992)shows that asymp-
totically optimal inference on seasonal cointegration may be conducted by Reduced-rank
Regression (RR) analyses separately for each frequency. Unfortunately, Lee’s method ap-
plies only to the peculiar case of synchronous cointegration at frequencies different from
zero and�. Based onBoswijk (1995), Johansen and Schaumburg [henceforth, JS] (1998)
provides a rather involved iterative procedure for detecting and estimating dynamic cointe-
gration relationships at complex root frequencies. Recently,Cubadda (2001)shows that an
estimator and a test statistic that are asymptotically equivalent to those proposed by JS can
be obtained by RR between complex-valued data.

Although the RR approach considerably simplifies seasonal cointegration analysis, it
suffers from two main limitations: it ignores the fact that complex unit roots occur in
conjugate pairs in real-valued data, and Maximum Likelihood (ML) analysis of the seasonal
ECM requires the cointegration vectors at different frequencies to be jointly estimated
(JS, 1998).

The goal of this paper is twofold. First, we propose an iterative RR procedure that allows
the cointegration restrictions at the conjugate complex unit root frequencies to be modelled
simultaneously. Second, we extend our new procedure to estimate the cointegration vectors
jointly at the zero and seasonal frequencies. We investigate the small-sample properties
of the proposed methods through simulations and find that they often perform better with
respect to separate RR analyses at the different frequencies. As modelling non-stationary
seasonality increases substantially the number of parameters of VAR models, we think that
new methods are of practical value.

This paper is organized as follows. Section 1 reviews the relevant representations of
seasonally cointegrated time series. Section 2 introduces the new tests and estimators.
Section 3 compares the performances of our procedures with existing ones by Monte Carlo
simulations. Section 4 concludes.

1. Error-correction models for seasonally cointegrated time series

LetXt be ann-vector time series satisfying

�(L)Xt = �Dt + εt , (1)

where�(L) is ap-order polynomial matrix with�0 = In, theεt are i.i.d.Nn(0,�), the
initial valuesY−p+1, . . . , Y0 are fixed, andDt is a deterministic kernel that may contain a
constant, a linear trend, and a set of seasonal dummies.
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Suppose for simplicity that theXt are observed on a quarterly basis. We know(JS, 1998)
that if the series are cointegrated of order (1,1) at frequencies 0,�, �

2 , and3�
2 Eq. (1) may

be rewritten in the following ECM:

�̃(L) (1− L4)Xt︸ ︷︷ ︸
X0,t

=�Dt + �1�
′
1 (1+ L+ L2 + L3)Xt−1︸ ︷︷ ︸

X1,t−1

+ �2�
′
2 (1− L+ L2 − L3)Xt−1︸ ︷︷ ︸

X2,t−1

+ �∗�
′
∗ (−i − L+ iL2 + L3)Xt−1︸ ︷︷ ︸

X∗,t−1

+ �∗�′
∗ (i − L− iL2 + L3)Xt−1︸ ︷︷ ︸

X∗,t−1

+εt , (2)

where�1�
′
1 = −1

4�(1), �2�
′
2 = 1

4�(−1), �∗�
′
∗ = −1

4�(i), �j and�j aren× rj -matrices
with rank equal torj for j = 1,2, �∗ and�∗ are complexn× r3-matrices with rank equal

to r3, andC denotes the complex conjugateC, �̃0 = In, and�̃k = −∑[(p−k)/4]
l=1 �k+4l for

k = 1,2, . . . , p − 4.
Notice that four cointegrating relationships are present in the ECM (2). Indeed,�1 and�2

are, respectively, the cointegration matrices at frequencies 0 and�, whereas the conjugate
complex cointegration matrices�∗ and�∗ are respectively associated with frequencies�/2
and 3�/2.

Below we refer to (2) when conducting statistical inference on the various cointegra-
tion matrices. However, since complex valued coefficients are not amenable to economic
interpretation, we observe that (2) can be rewritten more neatly as

�(L)X0,t=�Dt + �1�
′
1X1,t−1 + �2�

′
2X2,t−1

+ (�4 − �3L)(�
′
3 − �′

4L) (1− L2)Xt−1︸ ︷︷ ︸
X3,t−1

+εt , (3)

where�1 = �̃1 + �3�
′
4, and�∗�

′
∗ ≡ 1

2(�3 + �4i)(�
′
3 − �′

4i).
Representation (3) is entirely real-valued and it exhibits a polynomial cointegration ma-

trix, namely(�3 − �4L), and an intertemporal loading matrix, namely(�4 − �3L), for the
annual frequency.

2. Optimal inference on seasonal cointegration

In this section we introduce some new statistical tools for seasonal cointegration analysis.
Specifically,weoffer variousmethods fordetectingandestimatingpolynomial cointegration
vectors and an iterative procedure for ML estimation of the cointegration vectors at the zero
and seasonal frequencies. All the proposed inferential procedures are motivated by the idea
that jointmodelling of the cointegration restrictionsat thedifferent frequenciesmay increase
efficiency in finite samples.
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2.1. Statistical analysis of cointegration at the complex root frequencies

Cubadda (2001)observes that asymptotically optimal inference on cointegration at com-
plex root frequencies may be obtained through partial RR applied to model (2).

At frequency�/2, this RR procedure goes as follows: We regressX0,t , X1,t−1, X2,t−1,
andX∗,t−1 on (Dt ,X0,t−1, X0,t−2, . . . , X0,t−p+4) to obtain, respectively, the residuals
R0,t , R1,t , R2,t , andR∗,t . These residuals asymptotically satisfy

R0,t = �1�
′
1R1,t + �2�

′
2R2,t + �∗�

′
∗R∗,t + �∗�′

∗R∗,t + εt . (4)

Since the processR∗,t is asymptotically uncorrelated withR1,t ,R2,t , andR∗,t we can safely
ignore reduced rank restrictions at frequencies different from the one of interest. Hence,
we solve

CanCor{R0,t , R∗,t | R1,t , R2,t , R∗,t }, (5)

whereCanCor(Y,X | Z) denotes the partial canonical correlations between the elements
of YandX conditional onZ.

A test for the null hypothesis that there exist at mostr3 cointegration vectors at the annual
frequency is based on the statistic

Q1(r3|n)= −2T
n∑

l=r3+1

ln(1− �̂l ), r3 = 1, . . . , n,

where�̂l is thelth largest squared canonical correlation coming from the solution for (5).
The test statisticQ1(r3|n) converges weakly in distribution to the same limit as the

Likelihood Ratio (LR) test statistic; that is

tr

{∫ 1

0
dBc(u)F

′
c(u)

[∫ 1

0
Fc(u)F

′
c(u)du

]−1 ∫ 1

0
Fc(u)dB

′
c(u)

}
, (6)

where tr{·} denotes trace,Bc(u) is the standard complex-valued Brownian motion of di-
mension(n− r3), andFc(u)=Bc(u) if Dt does not include a set of seasonal dummies, and
Fc(u)= Bc(u)−

∫ 1
0Bc(v)dv otherwise.

Moreover, the eigenvectors associated with ther3 largest eigenvalueŝ�1, . . . , �̂r3 are
T-consistent estimators for the complex cointegration matrix�∗.

A Monte Carlo study inCubadda (2001)indicates that the JS and RR procedures have
similar performances in small samples. There is evidence of a slight superiority for the
JS procedure when testing, but not for estimation. This apparent paradox is explained by
the fact that the test based onQ1(r3|n) does not use the information that the cointegration
restrictions at frequency�/2 apply also at the aliasing frequency 3�/2. Although there is
no asymptotic gain in exploiting this information, it may well matter with finite samples.

Hence,wepropose the following testing procedure. Solve (5) to obtain theRRestimate�̂∗
of ther3 complex cointegration vectors. Then regressR0,t on (R′∗,t �̂∗, R

′
∗,t �̂∗, R′

1,t , R
′
2,t )

′
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and compute the residual covariance matrix�(�̂∗). The proposed test statistic is

Q2(r3|n)= T log




∣∣∣�(�̂∗)
∣∣∣

|�(In)|


 , r3 = 1, . . . , n.

Since the estimator̂�∗ is asymptotically equivalent to the ML estimator (Cubadda, 2001),
Q2(r3|n) has the same limiting distribution (6) as the LR test statistic.

In a similar spirit asJS (1998), we also consider a LR test that is based on an itera-
tive estimation procedure called Alternating Reduced-rank Regression (ARR). The ARR
procedure, which increases the likelihood function in each step, goes as follows:

(1) Estimate�∗ by solving (5)

(2) For fixed�∗=�̂∗, obtain�̂∗ as theeigenvectors associatedwith ther3 largest eigenvalues
coming from the solution of

CanCor{R0,t , R∗,t | R1,t , R2,t ,�
′
∗R∗,t }.

(3) For fixed�∗=�̂∗, obtain�̂∗ as theeigenvectors associatedwith ther3 largest eigenvalues
coming from the solution of

CanCor{R0,t , R∗,t | R1,t , R2,t ,�
′
∗R∗,t }.

(4) Repeat 2 and 3 until numerical convergence occurs.

The associated test statistic is

Q3(r3|n)= −2T
n∑

l=r3+1

ln(1− 	̂l ), r3 = 1, . . . , n, (7)

where	̂l indicates thelth largest squared canonical correlation coming from the last iteration
of the above switching procedure.

Moreover, the eigenvectors associated with ther3 largest eigenvalueŝ	1, . . . , 	̂r3 are the

ARR estimator of the complex cointegration matrix�∗.
Notice that both the new tests may be easily adapted to include the seasonal dummies in

the seasonal error-correction terms, as suggested inFranses and Kunst (1999). However, in
this case their asymptotic distribution will be the one tabulated inTable 2of JS (1998).

2.2. ML estimation of seasonal cointegration vectors

It is noted inJS (1998)that the ML estimator of the complex ECM requires estimating the
cointegration vectors jointly at the zero and seasonal frequencies. However, the switching
algorithm proposed there is computationally cumbersome since it typically involves a large
number of variables. Hence, a simpler estimation strategy is suggested that focuses on each
frequency separately. Although such strategy leads to asymptotically optimal estimation
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of the various cointegration relationships, there may be some efficiency loss with finite
samples.

We now consider a convenient procedure for the simultaneous ML estimation of the
various cointegration vectors that appear in the complex-valued ECM (2). In view of
Eq. (4), we propose the following iterative scheme that increases the likelihood in each
step:

(1) Fix the various cointegration ranksrj for j = 1,2,3 and let�̂i for i = 1,2, ∗ denote
the estimates of the cointegration vectors obtained by RR at the various frequencies.

(2) For fixed�2 = �̂2, �∗ = �̂∗, and�∗ = �̂∗, obtain�̂1 as the eigenvectors associated with
ther1 largest eigenvalues coming from the solution of

CanCor{R0,t , R1,t | �′
2R2,t ,�

′
∗R∗,t ,�

′
∗R∗,t }.

(3) For fixed�1 = �̂1, �∗ = �̂∗, and�∗ = �̂∗, obtain�̂2 as the eigenvectors associated with
ther2 largest eigenvalues coming from the solution of

CanCor{R0,t , R2,t | �′
1R1,t ,�

′
∗R∗,t ,�

′
∗R∗,t }.

(4) For fixed�1 = �̂1, �2 = �̂2 and�∗ = �̂∗, obtain�̂∗ as the eigenvectors associated with
ther3 largest eigenvalues coming from the solution of

CanCor{R0,t , R∗,t | �′
1R1,t ,�

′
2R2,t ,�

′
∗R∗,t }.

(5) For fixed�1 = �̂1, �2 = �̂2, and�∗ = �̂∗, obtain�̂∗ as the eigenvectors associated with
ther3 largest eigenvalues coming from the solution of

CanCor{R0,t , R∗,t | �′
1R1,t ,�

′
2R2,t ,�

′
∗R∗,t }.

(6) Repeat 2–5 until numerical convergence occurs.

We shall refer to this iterative procedure as the Generalized Alternating Reduced-rank
Regression (GARR) estimator of the cointegration vectors(�1,�2,�∗). Remarkably, the
GARR approach can easily be extended to take account of more complex root frequencies,
like in the case of monthly data.

3. Monte Carlo experiments

Here we conduct a Monte Carlo study to evaluate the small-sample properties of the
different statistical procedures for seasonal cointegration analysis. In particular, we first
investigate size and power of the various tests for cointegration at the annual frequencies.
Then, we analyze the efficiency of the RR and ARR estimators of the annual cointegration
vectors. Finally, we compare the usual RR estimators of the various seasonal cointegration
vectors with the ones obtained by GARR.
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3.1. Size and power of annual cointegration tests

To evaluate the small-sample performances of the tests statisticsQ1(r3|n),Q2(r3|n) and
Q3(r3|n), we extend to the seasonal case a Data Generating Process (DGP) which has been
used extensively in the zero-frequency cointegration literature (e.g.,Gonzalo, 1994; Haug,
1996). The bivariate DGP is

X0,t=
[−0.2

0

]
[ 1 − 1]X1,t−1 +

[
0.2
0

]
[ 1 −1]X2,t−1

+
[



0

]
[ 1 − L ]X3,t−1 + εt , (8)

or, equivalently, in a complex-valued format

X0,t=
[−0.2

0

]
[ 1 −1]X1,t−1 +

[
0.2
0

]
[ 1 −1]X2,t−1

+
[
i
/2
0

]
[ 1 −i ]X∗,t−1 +

[−i
/2
0

]
[ 1 i ]X∗,t−1 + εt , (9)

wheret = 1,2, . . . , T and

E(εtε
′
t )=

[
1 ��
�� �2

]
.

The design parameters are


 = (0,0.2), � = (−0.5,0,0.5), �2 = (0.5,1,2), and T = (50,100,200).

Some comments on the choice of the parameter values are in order. The cointegration
rank at the annual frequencies is zero when
 = 0 and is one otherwise. When
 = 0.2
slow adjustment to equilibrium takes place. This slow adjustment assures that the small-
sample properties of the tests statistics differ substantially from the large-sample ones. The
value of� determines the sizes of the non-stationary components in the system. Hence,
the small-sample behavior of the tests statistics can be evaluated under rather different
signal-to-noise ratios. The various non-stationary components are strictly exogenous when
� = 0 and weakly exogenous when� = ±0.5. However, there is no loss of generality since
exogeneity assumptions are not relevant for the comparison of full-information procedures.
By letting� vary, we also check if the tests statistics are sensitive to the degree and sign of
correlation between the innovations.

In all the simulations, 10000 series are generated with initial values set to zero. The first
50 observations are discarded to eliminate dependence from the starting conditions. Based
on preliminary experiments, numerical convergence of the ARR procedure is assumed to
be reached after six iterations. Notice that a constant and seasonal dummies are included
unrestrictedly in the estimated model. Hence, the asymptotic distribution of the three test
statistics is the one tabulated inTable 1of Cubadda (2001).

In Tables 1and2 the acceptance frequencies at the 5% level tests based onQ1(r3|n),
Q2(r3|n) andQ3(r3|n) are reported, both forr3 = 0 andr3 = 1. All the results are based
on the 5% asymptotic critical value. Notice that the last two test statistics assume the same
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Table 1
Acceptance Percentages of 5% level tests for the annual cointegration rankr3 DGP: no cointegration (
 = 0)

T = 50 T = 100

r3 Q1 Q2 Q3 Q1 Q2 Q3

�2 = 0.5 0 91.80 92.17 92.17 94.32 94.38 94.38
� = −0.5 1 7.69 7.34 7.37 5.32 5.25 5.25

2 0.51 0.49 0.46 0.37 0.38 0.37

�2 = 0.5 0 91.57 92.03 92.03 94.24 94.26 94.26
� = 0 1 7.93 7.45 7.49 5.39 5.36 5.36

2 0.50 0.52 0.48 0.37 0.38 0.38

�2 = 0.5 0 91.30 91.75 91.75 94.15 94.25 94.25
� = 0.5 1 8.17 7.72 7.77 5.47 5.37 5.37

2 0.53 0.53 0.48 0.38 0.38 0.38

�2 = 1 0 92.08 92.33 92.33 94.45 94.47 94.47
� = −0.5 1 7.40 7.17 7.18 5.19 5.15 5.15

2 0.52 0.50 0.49 0.36 0.38 0.38

�2 = 1 0 91.76 92.08 92.08 94.33 94.23 94.23
� = 0 1 7.73 7.40 7.44 5.29 5.40 5.40

2 0.51 0.52 0.48 0.38 0.37 0.37

�2 = 1 0 91.46 91.93 91.93 94.24 94.24 94.24
� = 0.5 1 8.04 7.53 7.59 5.38 5.36 5.37

2 0.50 0.49 0.48 0.38 0.40 0.39

�2 = 2 0 92.32 92.45 92.45 94.43 94.52 94.52
� = −0.5 1 7.19 7.05 7.07 5.22 5.07 5.08

2 0.49 0.50 0.48 0.35 0.41 0.40

�2 = 2 0 92.07 92.24 92.24 94.37 94.40 94.40
� = 0 1 7.39 7.26 7.30 5.26 5.21 5.21

2 0.54 0.50 0.46 0.37 0.39 0.39

�2 = 2 0 91.78 91.95 91.95 94.37 94.39 94.39
� = 0.5 1 7.71 7.57 7.58 5.26 5.21 5.21

2 0.51 0.48 0.47 0.37 0.40 0.40

value whenr3 = 0. It is apparent that for a given sample size the most important parameter
in determining the performance of the test statistics is�. As expected, all the tests perform
better when the variance of the common seasonal component becomes larger. The degree
of correlation between the innovations has little effect on the size but is beneficial to the
power of the tests. In particular, power is higher when this correlation is negative.

In comparative terms, we consider a difference between the acceptance frequencies of
two different tests as significant when it is larger than twice the Monte Carlo standard error
at the nominal 5% level, i.e., 0.44%.
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Table 2
Acceptance Percentages of 5% level tests for the annual cointegration rankr3 DGP: one cointegration vector
(
 = 0.2)

T = 50 T = 100

r3 Q1 Q2 Q3 Q1 Q2 Q3

�2 = 0.5 0 10.91 11.89 11.89 0.01 0.00 0.00
� = −0.5 1 83.04 82.28 82.31 94.80 94.65 94.67

2 6.05 5.83 5.80 5.19 5.35 5.33

�2 = 0.5 0 32.48 32.17 32.17 0.41 0.42 0.42
� = 0 1 62.90 63.03 63.10 94.29 94.20 94.21

2 4.62 4.80 4.73 5.30 5.38 5.37

�2 = 0.5 0 24.50 23.50 23.50 0.13 0.11 0.11
� = 0.5 1 71.30 71.90 72.10 94.35 94.42 94.43

2 4.20 4.60 4.40 5.52 5.47 5.46

�2 = 1 0 6.63 6.01 6.01 0.00 0.00 0.00
� = −0.5 1 87.12 87.80 87.83 94.47 94.42 94.42

2 6.25 6.19 6.16 5.53 5.58 5.58

�2 = 1 0 26.09 22.18 22.18 0.08 0.05 0.05
� = 0 1 68.75 72.52 72.59 94.51 94.51 94.51

2 5.16 5.30 5.23 5.41 5.44 5.44

�2 = 1 0 19.97 15.64 15.64 0.02 0.02 0.02
� = 0.5 1 75.09 79.32 79.44 94.26 94.22 94.23

2 4.94 5.04 4.92 5.72 5.76 5.75

�2 = 2 0 2.62 1.71 1.71 0.00 0.00 0.00
� = −0.5 1 90.85 91.71 91.76 94.36 94.31 94.31

2 6.53 6.58 6.53 5.64 5.69 5.69

�2 = 2 0 15.90 10.57 10.57 0.01 0.01 0.01
� = 0 1 78.40 83.72 83.81 94.26 94.35 94.38

2 5.70 5.71 5.62 5.73 5.64 5.61

�2 = 2 0 13.49 7.53 7.53 0.00 0.00 0.00
� = 0.5 1 80.96 87.01 87.13 94.28 94.36 94.36

2 5.55 5.46 5.34 5.72 5.64 5.64

Whenr3=0, the tests statisticQ2(0|n)=Q3(0|n) is better sized thanQ1(0|n) for all the
9 experiments withT =50. However, only two differences between the acceptance rates of
the two tests are significant according to the adopted rule. WithT = 100 the test statistics
Q2(0|n) andQ3(0|n) are better sized thanQ1(0|n) in seven experiments but no difference
between the acceptance rates is significant.

When r3 = 1, the experimental evidence is more clear-cut. Indeed, withT = 50 the
test statisticsQ2(1|n) andQ3(1|n) are significantly more powerful thanQ1(1|n) in seven
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experiments,whereas theopposite is true for oneexperiment only.Moreover, the test statistic
Q3(1|n) dominates both the alternatives in eight experiments. The power of the three tests
become similar withT = 100.

To save space, we do not report the tables forT = 200. Indeed, the performances of the
three testing procedures are almost identical both whenr3 = 0 andr3 = 1.

Overall, the new testing procedures appear to be superior toQ1(r3|n) when a limited
sample size is available. In particular, the test statisticQ3(r3|n) leads more often to the right
decision than both the alternatives. However, if one wishes to avoid the use of an iterative
procedure for computational reasons, the test statisticQ2(r3|n) generally performs better
thanQ1(r3|n).

3.2. Efficiency of complex cointegration vectors estimators

It is not obvious how to analyze the finite sample properties of the RR andARR estimators
of the annual cointegration vectors in Eq. (9). Indeed, the asymptotic distribution of such
estimators is the complex-valued analog to the distribution of the usualJohansen (1996)
estimator, seeJS (1998)andCubadda (2001). AlthoughAbadir and Paruolo (1997)shows
that the normalized Johansen estimator has asymptotically finite second moments, the use
of the minimum standard error criterion remains problematic due to the Cauchy-like tails
of the exact distribution of such estimator, seePhillips (1994). Hence, we compare the RR
and ARR estimators on the basis of three criteria, namely the standard error, the mean bias
module of the normalized estimators, and the distance between the actual and nominal size
of the associated LR tests for the null hypothesis that the annual cointegration vector is
equal to the “true” one, i.e.,�

′
∗ = [1,−i]. The last criterion is used as a dispersion measure

that is robust to the possible presence of extreme outliers in the simulated distributions of
the two estimators.

We rely on the previous Monte Carlo design with
 fixed to 0.2. FromTable 3we see that
with T =50 the RR estimator has the smallest standard error in seven experiments whereas
the ARR is less biased in all the experiments. According to the criterion of the acceptance
rate of the LR test for�

′
∗ = [1,−i] at the 5% level, the ARR test is always better sized even

if no difference between the rejection rates is significant. The results inTable 4indicate that
the performances of the two estimators become similar whenT = 100.

Though outside the scope of this paper, we observe that the actual rejection probabilities
of both of the LR tests are far away from the nominal size. This means that some kind of
small-sample correction, such as a Bartlett correction or bootstrap, is called for, see e.g.,
Johansen (2000)andOmtzigt and Fachin (2002)for the zero-frequency case.

Overall, the efficiency gains of the ARR over the RR estimator appear quite limited.
Interestingly enough, a similar conclusion is found in a previous Monte Carlo study in
Cubadda (2001)where the RR estimator is compared with the JS switching procedure.
Notice that althoughweare not able to prove that the JSand theARRalgorithmsnumerically
converge to the same limit, their simulated values are indistinguishable in our experiments.
This implies that all the results that we find for the ARR can be practically referred to the
JS switching procedure as well. However, we emphasize that ARR numerically converges
much faster than JS.
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Table 3
Standard errors (SE) and bias modules (BM) of the RR and ARR estimators of�∗, rejection percentages (RP) of

the 5% level LR-tests for the null hypothesis:�
′
∗ = [1,−i]

T = 50 RR estimator ARR estimator

SE BM RP SE BM RP

�2 = 0.5
� = −0.5 0.548 0.0111 16.79 0.571 0.0095 16.50
� = 0 0.662 0.0231 19.58 0.651 0.0218 19.23
� = 0.5 0.509 0.0258 18.12 0.552 0.0230 17.97

�2 = 1
� = −0.5 0.397 0.0054 15.79 0.413 0.0052 15.52
� = 0 0.436 0.0165 18.07 0.437 0.0150 17.66
� = 0.5 0.359 0.0181 16.98 0.362 0.0167 16.80

�2 = 2
� = −0.5 0.246 0.0023 14.61 0.251 0.0020 14.30
� = 0 0.298 0.0082 16.21 0.296 0.0075 16.14
� = 0.5 0.251 0.0100 15.36 0.252 0.0095 15.32

Table 4
Standard errors (SE) and bias modules (BM) of the RR and ARR estimators of�∗, rejection percentages (RP) of

the 5% level LR-tests for the null hypothesis:�
′
∗ = [1,−i]

T = 100 RR estimator ARR estimator

SE BM RP SE BM RP

�2 = 0.5
� = −0.5 0.202 0.0016 9.89 0.203 0.0018 9.63
� = 0 0.246 0.0070 10.89 0.240 0.0073 10.76
� = 0.5 0.206 0.0084 10.25 0.207 0.0087 10.27

�2 = 1
� = −0.5 0.143 0.0012 9.22 0.143 0.0012 9.08
� = 0 0.168 0.0045 9.96 0.169 0.0049 10.07
� = 0.5 0.146 0.0058 9.53 0.147 0.0060 9.43

�2 = 2
� = −0.5 0.101 0.0009 8.75 0.101 0.0009 8.64
� = 0 0.119 0.0025 8.94 0.119 0.0027 9.01
� = 0.5 0.104 0.0031 8.54 0.105 0.0032 8.63

3.3. Efficiency of seasonal cointegration vectors estimators

In order to examine if the GARR estimator provides any efficiency gain in small samples
over separated RR analyses at the different frequencies, we make use of the previous Monte
Carlo design with
 fixed to 0.2. Hence, we fix a cointegration vector proportional to[1,−1]
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Table 5
Standard errors (SE) and biases of the Johansen and GARR estimators of�1, rejection percentages (RP) of the
5% level LR-tests for the null hypothesis:�′

1 = [1,−1]
T = 50 Johansen estimator GARR estimator

SE Bias RP SE Bias RP

�2 = 0.5
� = −0.5 2.903 −0.0374 12.90 5.878 −0.1087 12.49
� = 0 62.91 −0.6844 16.15 23.41 −0.2749 15.52
� = 0.5 29.36 0.2439 16.88 12.60 0.1691 16.26

�2 = 1
� = −0.5 21.52 −0.3319 12.02 10.31 0.0707 11.74
� = 0 8.247 0.0776 14.98 7.568 0.0113 14.34
� = 0.5 11.76 0.2070 16.52 5.148 0.0539 16.15

�2 = 2
� = −0.5 19.96 −0.2001 11.18 0.489 −0.0153 10.88
� = 0 2.713 −0.0078 13.53 1.693 −0.0091 13.29
� = 0.5 2.150 −0.0052 15.65 5.667 0.0534 15.46

and a slow adjustment to equilibrium at both frequencies zero and�. We assume that the
various cointegration ranks are known. The comparison of the separated RR estimators with
GARR is again evaluated according to the three criteria used above.

In Table 5we report the results of the simulations of the usualJohansen (1996)estimator
and GARR for the zero-frequency case withT = 50. Visual inspection of the biases and
standard errors of both the estimators reveals a high incidence of abnormal values, which is
likely due to the Cauchy-like tails of such estimators in finite samples. However, the GARR
estimator has the smallest standard errors in seven experiments and the smallest bias in
six experiments. Interestingly, the GARR test for�′

1 = [1,−1] at the 5% level is always
better sized than the RR one and three differences between the rejection rates of the two
LR tests are indeed significant. FromTable 6we notice that whenT = 100 the simulated
distributions of the two estimators are much less affected by the presence of large outliers.
In comparative terms, the GARR estimator is less dispersed and biased in six experiments
and the GARR test is better sized in eight, although no difference between the rejection
rates is significant.

From Table 7we see the results of the comparison of theLee (1992)estimator with
GARR for the case of frequency� with T = 50. We again notice that the presence of large
outliers in the simulated distributions of both the estimators inflates their biases and standard
errors. Remarkably, although the Lee estimator exhibits the smallest standard error in five
experiments and the GARR estimator is less biased in five experiments, efficiency gains
and bias reductions are more relevant when the GARR estimator is superior. For instance,
when the Lee estimator is less dispersed than GARR the average standard error ratio of
these estimators is 0.805, whereas when the reverse is true the average standard error ratio
of the GARR and Lee estimators is 0.434. Moreover, the GARR test for�′

2 = [1,−1] is
closer to the nominal size than RR in eight experiments even if just one difference between
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Table 6
Standard errors (SE) and biases of the Johansen and GARR estimators of�1, rejection percentages (RP) of the
5% level LR-tests for the null hypothesis:�′

1 = [1,−1]
T = 100 Johansen estimator GARR estimator

SE Bias RP SE Bias RP

�2 = 0.5
� = −0.5 0.252 −0.0038 8.17 0.298 −0.0000 8.21
� = 0 0.375 −0.0022 9.31 0.398 0.0002 9.20
� = 0.5 0.387 0.0168 9.98 0.340 0.0154 9.77

�2 = 1
� = −0.5 0.174 −0.0029 8.01 0.172 −0.0008 7.99
� = 0 0.234 −0.0017 9.09 0.280 −0.0020 9.06
� = 0.5 0.490 −0.0001 9.74 0.264 0.0055 9.54

�2 = 2
� = −0.5 0.122 −0.0023 7.76 0.121 −0.0006 7.70
� = 0 0.226 −0.0013 8.54 0.154 −0.0022 8.41
� = 0.5 1.176 −0.0130 9.03 0.300 −0.0030 8.99

Table 7
Standard errors (SE) and biases of the Lee and GARR estimators of�2, rejection percentages (RP) of the 5% level
LR-tests for the null hypothesis:�′

2 = [1,−1]
T = 50 Lee estimator GARR estimator

SE Bias RP SE Bias RP

�2 = 0.5
� = −0.5 1.389 −0.0371 12.95 1.231 −0.0466 12.80
� = 0 136.6 1.3292 15.49 6.303 −0.0042 15.52
� = 0.5 42.77 −0.4288 17.43 5.976 0.0086 16.97

�2 = 1
� = −0.5 1.459 −0.0919 12.04 0.912 −0.0344 11.91
� = 0 2.507 −0.0501 14.16 2.822 −0.0243 13.90
� = 0.5 3.715 −0.0177 15.87 4.971 −0.0123 15.60

�2 = 2
� = −0.5 0.358 −0.0149 11.64 0.331 −0.0174 11.55
� = 0 0.776 −0.0250 12.79 1.031 −0.0341 12.74
� = 0.5 1.599 −0.0673 13.72 3.161 −0.0801 13.83

the rejection rates is really significant. The results inTable 8indicate that whenT =100 the
simulated moments of both the estimators appear much less influenced by the Cauchy-like
tails. Moreover, the two estimators perform very similarly in terms of standard error and
LR test size, whereas the GARR estimator exhibits a smaller bias in seven experiments.
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Table 8
Standard errors (SE) and biases of the Lee and GARR estimators of�2, rejection percentages (RP) of the 5% level
LR-tests for the null hypothesis:�′

2 = [1,−1]
T = 100 Lee estimator GARR estimator

SE Bias RP SE Bias RP

�2 = 0.5
� = −0.5 0.250 −0.0041 8.52 0.249 −0.0038 8.43
� = 0 0.305 −0.0075 9.68 0.304 −0.0034 9.71
� = 0.5 3.056 0.0247 9.89 0.380 0.0072 9.93

�2 = 1
� = −0.5 0.173 −0.0016 7.98 0.173 −0.0020 8.02
� = 0 0.207 −0.0044 9.15 0.207 −0.0023 9.16
� = 0.5 0.190 −0.0049 9.48 0.190 −0.0007 9.47

�2 = 2
� = −0.5 0.122 −0.0004 7.93 0.122 −0.0012 7.89
� = 0 0.143 −0.0021 8.67 0.143 −0.0017 8.66
� = 0.5 0.125 −0.0029 8.84 0.125 −0.0011 8.89

Table 9
Standard errors (SE) and bias modules (BM) of the GARR estimator of�, rejection percentages (RP) of the 5%

level LR-tests for the null hypothesis:�
′
∗ = [1,−i]

T = 50 T = 100

SE BM RP SE BM RP

�2 = 0.5
� = −0.5 0.565 0.0129 16.45 0.202 0.0027 9.61
� = 0 0.625 0.0337 19.23 0.239 0.0109 10.80
� = 0.5 0.553 0.0373 17.81 0.206 0.0138 10.31

�2 = 1
� = −0.5 0.390 0.0061 15.43 0.143 0.0205 9.08
� = 0 0.432 0.0213 17.87 0.168 0.0070 10.02
� = 0.5 0.365 0.0267 16.79 0.146 0.0097 9.58

�2 = 2
� = −0.5 0.296 0.0025 14.50 0.101 0.0019 8.65
� = 0 0.299 0.0091 16.26 0.119 0.0033 9.12
� = 0.5 0.254 0.0144 15.42 0.104 0.0048 8.76

In Table 9we report the results relative to the GARR estimator for the case of frequency
�/2. These results must be compared with those corresponding to the RR and ARR esti-
mators of�∗ that are reported inTables 3and4. Interestingly, we notice that even when
T = 50 the three estimators do not exhibit anomalous standard errors and bias modules in
our simulations.An intuitive explanation of this different behavior of RR-type estimators in
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the complex-root case is that the occurrence of large outliers in the complex plane is more
unlikely than on the real axis only. In comparative terms, withT = 50 the GARR estimator
has the smallest standard error in three experiments and the largest bias module in all the
experiments, and the GARR test for�

′
∗ = [1,−i] has the best size in five experiments, but

no difference between the rejection rates is significant. WhenT = 100 the performances of
the three methods become similar even if the GARR estimator remains slightly more biased
than both RR and ARR in all the experiments.

4. Conclusions

In this paper we have evaluated new statistical procedures for seasonally cointegrated
systems. A Monte Carlo study has revealed that our new tests for the cointegration rank
at the annual frequency outperform the trace test proposed inCubadda (2001)for small
sample sizes.

Moreoverwehavepresented twonovel iterativeRRestimationprocedures; thefirst allows
for estimating jointly the conjugate complex cointegration vectors, the second is designed
for the simultaneous ML estimation of all the cointegration vectors at the zero and seasonal
frequencies.Our simulations suggest that the jointMLestimator is a clear improvement over
the individual RR estimators of cointegration vectors at frequencies zero and�, whereas the
efficiency gains of the new estimators appear more limited in the complex-root frequency
case.
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