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Abstract

Generalized additive models (GAM) for modelling nonlinear effects of continuous
covariates are now well established tools for the applied statistician. In this paper we
develop Bayesian GAM’s and extensions to generalized structured additive regression
based on one or two dimensional P-splines as the main building block. The approach
extends previous work by Lang and Brezger (2003) for Gaussian responses. Inference
relies on Markov chain Monte Carlo (MCMC) simulation techniques, and is either
based on iteratively weighted least squares (IWLS) proposals or on latent utility rep-
resentations of (multi)categorical regression models. Our approach covers the most
common univariate response distributions, e.g. the Binomial, Poisson or Gamma dis-
tribution, as well as multicategorical responses. As we will demonstrate through two
applications on the forest health status of trees and a space-time analysis of health
insurance data, the approach allows realistic modelling of complex problems. We con-
sider the enormous flexibility and extendability of our approach as a main advantage
of Bayesian inference based on MCMC techniques compared to more traditional ap-
proaches. Software for the methodology presented in the paper is provided within the
public domain package BayesX.

Key words: geoadditive models, IWLS proposals, multicategorical response, structured ad-
ditive predictors, surface smoothing

1 Introduction

Generalized additive models (GAM) provide a powerful class of models for modelling non-
linear effects of continuous covariates in regression models with non-Gaussian responses.
A huge variety of competing approaches are now available for modelling and estimating
nonlinear functions of continuous covariates. Prominent examples are smoothing splines
(e.g. Hastie and Tibshirani (1990)), local polynomials (e.g. Fan and Gijbels (1996)),
regression splines with adaptive knot selection (e.g. Friedman and Silverman (1989),
Friedman (1991), Stone et al. (1997)) and P-splines (Eilers and Marx (1996), Marx and
Eilers (1998)). Currently, smoothing based on mixed model representations of GAM’s
and extensions is extremely popular, see e.g. Lin and Zhang (1999), Currie and Durban
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(2002), Wand (2003) and the book by Ruppert et al. (2003). Indeed, the approach is
very promising and has several distinct advantages, e.g. smoothing parameters can be
estimated simultaneously with the regression functions.
Bayesian approaches are currently either based on regression splines with adaptive knot
selection (e.g. Smith and Kohn (1996), Denison et al. (1998), Biller (2000), Di Matteo et al.
(2001), Biller and Fahrmeir (2001) and Hansen and Kooperberg (2002)), or on smoothness
priors (Hastie and Tibshirani (2000), Fahrmeir and Lang (2001a) and Fahrmeir and Lang
(2001b)).
In this paper, we extend previous work by Lang and Brezger (2003) for Gaussian re-
sponses based on one or two dimensional Bayesian P-splines as the main building block.
Our approach covers univariate GAM’s for the most common response distributions (Bino-
mial, Poisson, Gamma) as well as models for multicategorical responses. Inference is fully
Bayesian and is based on Markov chain Monte Carlo inference techniques (a nice intro-
duction into MCMC can be found in Green (2001)). We adopt iteratively weighted least
squares (IWLS) proposals as proposed by Gamerman (1997) for generalized linear mixed
models. Similar proposals have been used by Rue (2001) and Knorr-Held and Rue (2002)
primarily in the context of spatial smoothing. A simple alternative are conditional prior
proposals (Knorr-Held (1999)) which work surprisingly well in many situations. For most
categorical response models, efficiency of MCMC inference can be considerably improved
by using latent utility respresentations of such models, see Albert and Chib (1993) and
Chen and Dey (2000) for (multicategorical) probit models and Holmes and Knorr-Held
(2003) for binary logit models. The advantage of such representations for MCMC infer-
ence is, that the full conditionals of the regression coefficients are (multivariate) Gaussian
and sampling schemes developed for Gaussian responses in Lang and Brezger (2003) can
be utilized with only minor changes. In all cases, numerical efficiency is guaranteed by
using matrix operations for band or sparse matrices (George and Liu (1981)).
A main advantage of a Bayesian approach for GAM’s is its flexibility and extendability to
more complex formulations. Our approach can be well extended to deal with unobserved
unit- or cluster specific heterogeneity by incorporating random intercepts or slopes into the
predictor. Spatial heterogeneity may be considered by incorporating spatial effects. We
will discuss two alternatives, Gaussian Markov random fields (e.g. Besag et al. (1991) and
two dimensional P-splines (Lang and Brezger (2003)). Models that can deal simultaneously
with nonlinear effects of continuous covariates as well as spatial heterogeneity are called
geoadditive models (Kammann and Wand (2003)) and are of growing interest in the recent
literature, see also Fahrmeir and Lang (2001a) and Fahrmeir and Lang (2001b). In general,
we will use models with a structured additive predictor including generalized additive mixed
models, dynamic models, varying coefficient models and geoadditive models as a special
case.
We will present examples of generalized structured additive models in two applications.
In our first application we analyse longitudinal data on the health status of beeches in
the forest district of Rothenburg in northern Bavaria. Important influencial factors on the
health state of trees are e.g. the age of the trees, the canopy density at the stand, calendar
time as a surrogate for changing environmental conditions, and the location of the stand.
The second application is a space-time analysis of hospital treatment costs based on data
from a German private health insurance company.
Another important advantage of inference based on MCMC is easy prediction for unob-
served covariate combinations including credible intervals, and the availability of inference
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for functions of the parameters (again including credible intervals). We will give specific
examples in our second application.
The methodology of this paper is included in BayesX, a software package for Bayesian
inference based on MCMC simulation techniques. BayesX is an easy to use public domain
program. The program together with a detailed 130 pages manual can be downloaded
from http://www.stat.uni-muenchen.de/~lang/. A particular advantage of BayesX is
that it can estimate very complex models and handle large datasets.
The remainder of the paper is organized as follows: The next section describes Bayesian
GAM’s based on one or two dimensional P-splines and discusses extensions to generalized
structured additive regression. Section 3 gives details about MCMC inference. In Section
4 we present two applications on the health status of trees and hospital treatment costs.
Section 5 concludes and discusses directions for future research.

2 Bayesian GAM’s and extensions

2.1 Bayesian P-splines

Suppose that observations (yi, xi, vi), i = 1, . . . , n, are given, where yi is a response vari-
able, xi = (xi1, . . . , xip)′ is a vector of continuous covariates and vi = (vi1, . . . , viq)′ are
further (mostly categorical) covariates. Generalized additive models (Hastie and Tibshi-
rani (1990)) assume that, given xi and vi the distribution of yi belongs to an exponential
family, i.e.

p(yi |xi, vi) = exp
(
yiθi − b(θi)

φ

)
c(yi, θi) (1)

where b(·), c(·), θi and φ determine the respective distributions. A list of the most common
distributions and their specific parameters can be found e.g. in Fahrmeir and Tutz (2001),
page 21. The mean µi = E(yi|xi, vi) is linked to a semiparametric additive predictor ηi by

µi = h(ηi), ηi = f1(xi1) + · · · + fp(xip) + v′iγ. (2)

Here, h is a known response function and f1, . . . , fp are unknown smooth functions of the
continuous covariates and v′iγ represents the strictly parametric part of the predictor.
For modelling the unknown functions fj we follow Lang and Brezger (2003), who present
a Bayesian version of the P-splines approach introduced in a frequentist setting by Eilers
and Marx (1996). Here, we assume that the unknown functions can be approximated by
a polynomial spline of degree l and with equally spaced knots

ζj0 = xj,min < ζj1 < · · · < ζj,k−1 < ζjkj = xj,max

over the domain of xj . The spline can be written in terms of a linear combination of
Mj = kj + l B-spline basis functions (De Boor (1978). Denoting the m-th basis function
by Bjm, we obtain

fj(xj) =
Mj∑

m=1

βjmBjm(xj).

By defining the n×Mj design matrices Xj with the elements in row i and column m given
by Xj(i,m) = Bjm(xij), we can rewrite the predictor (2) in matrix notation as

η = X1β1 + · · · +Xpβp + V ′γ. (3)
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Here, βj = (βj1, . . . , βjm)′, j = 1, . . . , p, correspond to the vectors of unknown regression
coefficients. The matrix V is the usual design matrix for fixed effects. To overcome the
well known difficulties involved with regression splines, Eilers and Marx (1996) suggest a
relatively large number of knots (usually between 20 to 40) to ensure enough flexibility,
and to introduce a roughness penalty on adjacent regression coefficients to regularize the
problem and avoid overfitting. In their frequentist approach they use penalties based on
squared r-th order differences. Usually first or second order differences are enough. In
our Bayesian approach, we replace first or second order differences with their stochastic
analogues, i.e. first or second order random walks defined by

βjm = βj,m−1 + ujm, or βjm = 2βj,m−1 − βj,m−2 + ujm (4)

with Gaussian errors ujm ∼ N(0, τ2
j ) and diffuse priors βj1 ∝ const, or βj1 and βj2 ∝

const, for initial values, respectively. The amount of smoothness is controlled by the
variance parameter τ2

j which corresponds to the smoothing parameter in the traditional
approach. By defining an additional hyperprior for the variance parameters the amount
of smoothness can be estimated simultaneously with the regression coefficients. We assign
the conjugate prior for τ2 which is an inverse Gamma prior with hyperparameters aj and
bj , i.e. τ2

j ∼ IG(aj , bj). Common choices for aj and bj are aj = 1 and bj small, e.g.
b = 0.005 or bj = 0.0005. Alternatively we may set aj = bj , e.g. aj = bj = 0.001. As a
standard choice we use aj = 1 and bj = 0.005. Since the results may considerably depend
on the choice of aj and bj some sort of sensitivity analysis is strongly recommended. For
instance, the models under consideration could be reestimated with (a small) number of
different choices for aj and bj .
In some situations, a global variance parameter τ2

j may be not appropriate, for example
if the underlying function is highly oscillating. In such cases the assumption of a global
variance parameter τ2

j may be relaxed by replacing the errors ujm ∼ N(0, τ2
j ) in (4)

by ujm ∼ N(0, τ2
j /δjm). The weights δjm are additional hyperparameters and assumed

to follow independent Gamma distributions δjm ∼ G(ν
2 ,

ν
2 ). This is equivalent to a t-

distribution with ν degrees of freedom for βj (see e.g. Knorr-Held (1996) in the context
of dynamic models). As an alternative, locally adaptive dependent variances as proposed
in Lang et al. (2002) could be used as well. Our software is capable of estimating such
models, but we do not investigate them in the following to keep the paper in reasonable
length. Estimation is, however, straightforward, see Lang and Brezger (2003) and Lang
et al. (2002) for details.

2.2 Modelling interactions

In many situations, the simple additive predictor (2) may be not appropriate because of
interactions between covariates. In this section we describe interactions between categori-
cal and continuous covariates and between two continuous covariates. In the next section,
we also discuss interactions between space and categorical covariates. For notational sim-
plicity, we keep the notation of the predictor as in (2) and assume for the rest of the
section that a particular covariate xj is now two dimensional, i.e. xij = (x1

ij , x
2
ij)

′.
Interactions between categorical and continuous covariates can be conveniently modelled
within the varying coefficient framework introduced by Hastie and Tibshirani (1993). Here,
the effect of covariate x1

ij is assumed to vary smoothly over the range of the second covariate
x2

ij , i.e.
fj(xij) = f ′j(x

2
ij)x

1
ij . (5)
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The covariate x2
ij is called the effect modifier of x1

ij . The design matrix Xj is given by
diag(x1

1j , . . . , x
1
nj)X

2
j where X2

j is the usual design matrix for splines composed of the basis
functions evaluated at the observations x2

ij .
If both interacting covariates are continuous, a more flexible approach for modelling in-
teractions can be based on two dimensional surface fitting. Here, we concentrate on two
dimensional P-splines described in Lang and Brezger (2003), see also Wood (2003) for a
recent approach based on thin plate splines. We assume that the unknown surface fj(xij)
can be approximated by the tensor product of one dimensional B-splines, i.e.

fj(x1
ij , x

2
ij) =

M1j∑
m1=1

M2j∑
m2=1

βj,m1m2Bj,m1(x
1
ij)Bj,m2(x

2
ij). (6)

The design matrix Xj is now n×M1j ·M2j dimensional and consists of products of basis
functions. Priors for βj = (βj,11, . . . , βj,M1jM2j )

′ are based on spatial smoothness priors
common in spatial statistics (see e.g. Besag and Kooperberg (1995)). Based on previous
experience, we prefer a two dimensional first order random walk based on the four nearest
neighbours. It is usually defined by specifying the conditional distributions of a parameter
given its neighbours, i.e.

βjm1m2 | · ∼ N
(

1
4
(βjm1−1,m2 + βjm1+1,m2 + βjm1,m2−1 + βjm1,m2+1),

τ2
j

4

)
(7)

form1 = 2, . . . ,M1j−1,m2 = 2, . . . ,M2j−1 and appropriate changes for corners and edges.
Again, we restrict the unknown function fj to have mean zero to guarantee identifiability.
Sometimes it is desirable to decompose the effect of the two covariates x1

j and x2
j into

two main effects modelled by one dimensional functions and a two dimensional interaction
effect. Then, we obtain

fj(xij) = f1
j (x1

ij) + f2
j (x2

ij) + f12
j (x1

ij , x
2
ij). (8)

In this case, additional identifiability constraints have to be imposed on the three functions,
see Lang and Brezger (2003).

2.3 Structured additive predictors

A main advantage of Bayesian regression analysis based on MCMC simulation techniques
is that models can be easily extended to more complex formulations. So far, we have
considered only continuous and categorical covariates in the predictor. In this section, we
relax this assumption by allowing that the covariates xj in (2) or (3) are not necessarily
continuous. We still pertain the assumption of the preceeding section that covariates xj

may be one or two dimensional. Based on this assumptions the models can be considerably
extended within a unified framework. We are particularly interested in the handling of
unobserved unit- or cluster specific and spatial heterogeneity. Models that can deal with
spatial heterogeneity are called geoadditive models (Kamman and Wand, 2001). We call
a predictor with one or two dimensional nonlinear effects of continuous covariates, time
scales and unit- or cluster specific and spatial heterogeneity a structured additive predictor
because it still has an additive structure but is more flexible than the usual predictor in
GAM’s.
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Unit- or cluster specific heterogeneity
Suppose that covariate xj is a index variable that indicates the unit or cluster a particular
observation belongs to. An example are longitudinal data where xj is an individuum
index. In this case, it is common practice to introduce unit- or cluster specific i.i.d.
Gaussian random intercepts or slopes, see e.g. Diggle et al. (1994). Suppose xj can
take the values 1, . . . ,Mj . Then, an i.i.d. random intercept can be incorporated into
our framework of structured additive regression by assuming fj(m) = βjm ∼ N(0, τ2

j ),
m = 1, . . . ,Mj . The design matrix Xj is now a 0/1 incidence matrix with dimen-
sion n × Mj . In order to introduce random slopes we assume xj = (x1

j , x
2
j ) as in

Section 2.2. Then, a random slope with respect to index variable x1
j is defined as

fj(xij) = f ′j(x
2
ij)x

1
ij with f ′j(x

2
ij) = βjm ∼ N(0, τ2

j ). The design matrix Xj is given by
diag(x1

1j , . . . , x
1
nj)X

2
j where X2

j is again a 0/1 incidence matrix. Note the close similarity
between random slopes and varying coefficient models. In fact, random slopes may be
regarded as varying coefficient terms with unit- or cluster variable x2

j as the effect modifier.

Spatial heterogeneity
To consider spatial heterogeneity, we may introduce a spatial effect fj of location xj

to the predictor. Depending on the application, the spatial effect may be further split
up into a spatially correlated (structured) and an uncorrelated (unstructured) effect, i.e.
fj = fj,str + fj,unstr. The correlated effect fj,str aims at capturing spatially dependent
heterogeneity and the uncorrelated effect fj,unstr local effects.
For data observed on a regular or irregular lattice a common approach for the correlated
spatial effect fstr is based on Markov random field priors, see e.g. Besag et al. (1991). Let
s ∈ {1, . . . , Sj} denote the pixels of a lattice or the regions of a geographical map. Then,
the most simple Markov random field prior for fstr(s) = βstr,s is defined by

βstr,s|βstr,u, u 
= s ∼ N

∑

u∈∂s

1
Ns
βstr,u,

τ2
str

Ns


 , (9)

where Ns is the number of adjacent regions or pixels, and ∂s denotes the regions which
are neighbours of region s. Hence, prior (9) can be seen as a two dimensional extension
of a first order random walk. More general priors than (9) are described in Besag et al.
(1991). The design matrix Xstr is a n× Sj incidence matrix whose entry in the i-th row
and s-th column is equal to one if observation i has been observed at location s and zero
otherwise.
Alternatively, the structured spatial effect fstr could be modelled by two dimensional
surface estimators as described in Section 2.2. In most of our applications, however, the
MRF random field proves to be superior in terms of model fit.
For the unstructured effect funstr we may again assume i.i.d Gaussian random effects with
the location as the index variable.
Similar to continuous covariates and index variables we can again define varying coefficient
terms, now with a spatial covariate as the effect modifier, see e.g. Fahrmeir et al. (2003)
for an application.
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2.4 General structure of the priors

As we have seen, it is always possible to express the vector of function evaluations fj =
(fj1, . . . , fjn) of a nonlinear effect as the matrix product of a design matrix Xj and a vector
of regression coefficients βj , i.e. fj = Xjβj . It turns out that the smoothness priors for
the regresssion coefficients βj can be cast into a general form as well. It is given by

βj |τ2
j ∝ 1

(τ2
j )rk(Kj)

exp(− 1
2τ2

j

β′jKjβj), (10)

where Kj is a penalty matrix which depends on the prior assumptions about smoothness
of fj and the type of covariate. E.g. for a P-spline with a first order random walk penalty
Kj is given by

K =




1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1


 .

For the variance parameter an inverse Gamma prior (the conjugate prior) is assumed, i.e.
τ2
j ∼ IG(aj , bj).

The general structure of the priors particularly facilitates the description of MCMC infer-
ence in the next section.

3 Bayesian inference via MCMC

Bayesian inference is based on the posterior of the model which is given by

p(α | y) ∝ L(y, β1, τ
2
1 , . . . , τ

2
p , βp, γ)

p∏
j=1

1
(τ2

j )rk(Kj)
exp(− 1

2τ2
j

β′jKjβj)

p∏
j=1

(τ2
j )−aj−1 exp(− bj

τ2
j

),

where α is the vector of all parameters in the model. The likelihood L(·) is a product
of the individual likelihoods (1). Since the posterior is analytically intractable we make
use of Markov chain Monte Carlo (MCMC) simulation techniques. Models with Gaus-
sian responses are already covered in Lang and Brezger (2003). Here, the main focus
is on methods applicable for general distributions from an exponential family. We first
adopt an approach based on iteratively weighted least squares proposals as suggested by
Gamerman (1997) in the context of generalized linear mixed models (Subsection 3.1). For
(multi)categorical responses more efficient sampling schemes can be developed by consid-
ering latent utility representations of the models (Subsection 3.3). In both approaches,
MCMC simulation is based on drawings from full conditionals of blocks of parameters,
given the rest and the data. Parameters are updated in the order τ2

1 , β1, . . . , τ
2
p , βp, γ.

3.1 Updating by iteratively weighted least squares (IWLS) proposals

The basic idea is to combine Fisher scoring or IWLS (e.g. Fahrmeir and Tutz (2001))
for estimating regression parameters in generalized linear models, and the Metropolis-
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Hastings algorithm. More precisely, the goal is to approximate the full conditionals of
regression parameters βj and γ by a Gaussian distribution, obtained by accomplishing
one Fisher scoring step in every iteration of the sampler. Suppose we want to update
the regression coefficients βj of the function fj with current state βc

j of the chain. Then,
according to IWLS, a new value βp

j is proposed by drawing a random number from the
multivariate Gaussian proposal distribution q(βc

j , β
p
j ) with precision matrix and mean

Pj = X ′
jW (βc

j )Xj +
1
τ2
j

Kj , mj = P−1
j X ′

jW (βc
j )(ỹ(β

c
j ) − η̃). (11)

Here, W (βc
j ) = diag(w1, . . . , wn) is the usual weight matrix for IWLS with weights

w−1
i (βc

j ) = b′′(θi){g′(µi)}2 obtained from the current state βc
j . The working observations

ỹi are defined as
ỹi(βc

j ) = ηi + (yi − µi)g′(µi).

The vector η̃ is the part of the predictor associated with all remaining effects in the model.
Note, that Pj is a symmetric matrix with band structure or which can be at least
brought into a band matrix like structure. For one dimensional P-splines, the band size
is max{degree of splines l, order of differences k}, for two dimensional P-splines the band
size is Mj · l + l, and for i.i.d random effects the posterior precision matrix is diagonal.
For a Markov random field, the precision matrix is not a priori a band matrix but sparse.
It can be transformed into a band matrix (with differing band size in every row) by re-
ordering the regions using the Cuthill Mc-Kee algorithm (see George and Liu (1981) p.
58 ff). Hence, random numbers from the (high dimensional) proposal distributions can be
efficiently drawn by using matrix operations, in particular Cholesky decompositions, for
sparse matrices. In our implementation we use the envelope method for Cholesky decom-
positions of sparse matrices as described in George and Liu (1981), see also Rue (2001)
and Lang and Brezger (2003).
Usually convergence and mixing of Markov chains is excellent with IWLS proposals. How-
ever, the following problems occured:

• Improper starting values: It turns out that convergence of the algorithm to the
stationary distribution is sometimes extremely slow because of improper starting
values for the βj . As a remedy, we initialize the Markov chain with posterior mode
estimates which are obtained from a backfitting algorithm with fixed and usually
large values for the variance parameters.

• Convergence problems for the variance parameter: If the effect of two covariates x1
j

and x2
j is decomposed into main effects and a two dimensional interaction effect as in

(8), severe convergence problems for the variance parameter of the interaction effect
are the rule. Similar, but less severe problems have been reported in Knorr-Held and
Rue (2002) in the context of spatial smoothing with Markov random field priors. To
overcome the difficulties, we follow Knorr-Held and Rue (2002) who propose to con-
struct a joint proposal for the parameter vector βj and the corresponding variance
parameter τ2

j , and to simultaneously accept/reject (βj , τ
2
j ). This is done by first

sampling (τ2
j )p from a proposal distribution for τ2

j , and subsequently drawing from
the IWLS proposal for the corresponding regression parameters given the proposed
(τ2

j )p. The proposal distribution for τ2
j may depend on the current state (τ2

j )c of
the variance, but must be independent of βc

j . As suggested by Knorr-Held and Rue
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(2002), we construct the proposal by multiplying the current state (τ2
j )c by a ran-

dom variable z with density proportional to 1 + 1/z on the interval [1/f, f ], where
f > 1 is a tuning constant. Since this proposal is independent of the regression pa-
rameters, the joint proposal for (βj , τ

2
j ) is the product of the two proposal densities.

Following the advise of Knorr-Held and Rue (2002), we tune f to obtain acceptance
probabilities of approximately 30%. The acceptance probability is given by

α =
L(y, . . . , βp

j , (τ
2
j )p, . . . , γc)

L(y, . . . , βc
j , (τ

2
j )c, . . . , γc)

p(βp
j | (τ2

j )p)p((τ2
j )p)

p(βc
j | (τ2

j )c)p((τ2
j )c)

q(βp
j , β

c
j )

q(βc
j , β

p
j )
. (12)

Computation of the acceptance probability requires the evaluation of the normalizing
constant of the IWLS proposal which is given by 1/(2|P−1

j |)0.5. The determinant
of P−1

j can be computed without significant additional effort as a by-product of
the Cholesky decomposition. Note also that the proposal ratio of the smoothing
parameter cancels out.

Summarizing, we obtain the following

Sampling scheme based on IWLS proposals:

1. Initialization:
Compute the posterior mode for β1, . . . , βj and γ given fixed variance parameters
τ2
j = cj , (e.g. cj = 10). The mode is computed via backfitting with Fisher scoring.

Use the posterior mode estimates as the current state βc
j ,(τ

2
j )c,γc of the chain.

2. For j = 1, . . . , p:

• Propose new τ2
j : Sample a random number z with density proportional to

1 + 1/z on the interval [1/f, f ], f > 1. Set (τ2
j )p = (τ2

j )c as the proposed new
value for the jth variance parameter.

• Propose new βj: Sample a random number βp
j from the multivariate Gaussian

distribution with mean and covariance matrix defined in (11).

• Accept/reject βp
j , (τ

2
j )p: Accept the proposed values βp

j and (τ2
j )p with accep-

tance probability (12). If the proposed random numbers are accepted, set
βc

j = βp
j and (τ2

j )c = (τ2
j )p.

3. Update fixed effects parameters: Draw a IWLS proposal γp from the Gaussian pro-
posal density q(γc, γp). Accept γp with probability

α =
L(y, . . . , γp)
L(y, . . . , γc)

q(γp, γc)
q(γc, γp)

.

If the proposal is accepted, set γc = γp.

4. If the random sample is large enough stop the algorithm, otherwise proceed with 2.

3.2 IWLS versus conditional prior proposals

As an alternative to IWLS proposals, we could use conditional prior proposals as suggested
by Knorr-Held (1999) in the context of dynamic models and by Fahrmeir and Lang (2001a)
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for generalized additive mixed models based on simple random walk priors. Here, the
parameter vector βj is divided into smaller blocks βj[r,s] = (βjr, . . . , βjs) and a proposal is
drawn from the conditional prior distribution of βj[r,s] given the remaining parameters, see
Fahrmeir and Lang (2001a) for details. The approach is computationally less demanding
and distribution free in the sense that no approximation of any characteristics of the
posterior (e.g. mode) is needed. A drawback is that careful tuning of block sizes is required
to obtain satisfying mixing of the chain and to speed up convergence. To overcome this
problem and to avoid several pre-runs in order to find appropriate block sizes, we perform
an automatic tuning. This means that we check the acceptance rates in the initial burn in
period and adjust the block sizes by a rule of thumb, to obtain acceptance rates between
about 30% and 70%, which showed to produce the best mixing.
For P-splines and particulary Markov random fields conditionl prior proposals work sur-
prisingly well in many siuations. There are however problems where IWLS proposals may
help to substantially improve the mixing of the chains. We illustrate the improvements
gained by a large data set (n = 162548) from two insurance companies in Belgium. The
data have been analyzed in Denuit and Lang (2003) using the methods of this paper. The
dependence of covariates on the number of claims reported by car holders was analyzed
using a Poisson model. Here we depict the effect of the bonus-malus score (bm) indicating
the level occupied in the 23-level Belgian bonus-malus scale. The left panel of Figure 1
shows the sampling paths for two particular parameters βbm

1 and βbm
10 obtained by using

conditional prior proposals. Obviously, the mixing of the chains is not satisfactorily. The
right panel shows that the mixing of the Markov chain can be substantially improved by
using IWLS proposals. The mixing of the regression parameters also affects the associated
variance parameters, see Figure 2.
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Figure 1: Sampling paths of two particular parameters (βbm
1 ,βbm

10 ) with conditional prior
proposal (left) and with IWLS proposal (right)
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3.3 Inference based on latent utility representations of categorical re-
gression models

For most models with categorical responses efficient sampling schemes based on latent
utility representations can be developed. The seminal paper by Albert and Chib (1993)
develops algorithms for probit models with ordered categorical responses. The case of
probit models with unordered multicategorical responses is delt with e.g. in Chen and Dey
(2000) or Fahrmeir and Lang (2001b). Recently, another important data augmentation
approach for binary logit models has been presented by Holmes and Knorr-Held (2003).
The adaption of these sampling schemes to the models discussed in this paper is more
or less straightforward. We briefly illustrate the concept for binary data, i.e. yi takes
only the values 0 or 1. We first assume a probit model. Conditional on the covariates
and the parameters, yi follows a Bernoulli distribution yi ∼ B(1, µi) with conditional
mean µi = Φ(ηi) where Φ is the cumulative distribution function of a standard normal
distribution. Introducing latent variables

Ui = ηi + εi, (13)

with εi ∼ N(0, 1), we define yi = 1 if Ui > 0 and yi = 0 if Ui < 0. It is easy to show
that this corresponds to a binary probit model for the yi’s. The posterior of the model
augmented by the latent variables depends now on the additional parameters Ui. Thus, an
additional sampling step for updating the Ui’s is required. Fortunately, sampling the Ui’s
is relatively easy and fast because the full conditionals are truncated normal distributions.
More specifically, Ui|· ∼ N(ηi, 1) truncated at the left by 0 if yi = 1 and truncated at the
right if yi = 0. Efficient algorithms for drawing random numbers from a truncated normal
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distribution can be found in Geweke (1991) or Robert (1995). The advantage of defining a
probit model through the latent variables Ui is that the full conditionals for the regression
parameters βj (and γ) are Gaussian with precision matrix and mean given by

Pj = X ′
jXj +

1
τ2
j

Kj , mj = P−1
j X ′

j(U − η̃). (14)

Hence, the efficient and fast sampling schemes developed for Gaussian responses can be
used with slight modifications. Updating of βj and γ can be done exactly as described
in Lang and Brezger (2003) using the current values U c of the latent utilities as (pseudo)
responses.
For binary logit models, the sampling schemes become slightly more complicated. A logit
model can be expressed in terms of latent utilities by assuming εi ∼ N(0, λi) in (13) with
λi = 4ψ2

i , where ψi follows a Kolmogorov-Smirnov distribution (Devroye (1986)). Hence,
εi is a scale mixture of normal form with a marginal logistic distribution (Andrews and
Mallows (1974)). The full conditionals for the U ′

is are still truncated normals with Ui|· ∼
N(ηi, λi) but additional drawings from the conditional distributions of λi are necessary.
Although the distribution has no standard form, sampling may be obtained by Metropolis-
Hastings steps with the prior distribution for λi as a proposal (Holmes and Knorr-Held
(2003)), i.e. draw a random number ψi from a Kolmogorov-Smirnov distribution and
propose λp

i = 4ψ2 as the new state of the Markov chain. The proposed new value is then
accepted with probability

α =
(
λi

λp
i

)0.5

exp
(

1
2
(Ui − ηi)2

(
1
λi

− 1
λp

i

))
,

where λi is the current state of the chain.

4 Applications

4.1 Longitudinal study on forest health

In this longitudinal study on the health status of trees, we analyse the influence of calendar
time t, age of trees A (in years), canopy density CP (in percent) and location L of the stand
on the defoliation degree of beeches. Data have been collected in yearly forest damage
inventories carried out in the forest district of Rothenbuch in northern Bavaria from 1983
to 2001. There are 80 observation points with occurence of beeches spread over an area
extending about 15 km from east to west and 10 km from north to south. The degree of
defoliation is used as an indicator for the state of a tree. It is measured in three ordered
categories, with yit = 1 for ”bad” state of tree i in year t, yit = 2 for ”medium” and yit = 3
for ”good”. A detailed data description can be found in Göttlein and Pruscha (1996).
We use a three-categorical ordered probit model based on a latent semiparametric model
Uit = ηit + εit with predictor

ηit = f1(t) + f2(Ait) + f1|2(t, Ait) + f3(CPit) + fstr(Li). (15)

The calendar time trend f1(t) and the age effect f2(A) are modelled by cubic P-splines
with a second order random walk penalty. The interaction effect between calendar time
and age f1|2(t, A) is modelled by a two dimensional cubic P-splines on a 12 by 12 grid of
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knots. Since canopy density is measrured only in 11 different values (0%, 10%,. . . ,100%)
we use a simple second order random walk prior (i.e. a P-spline of degree 0) for f3(CP ).
For the spatial effect fstr(L) we experimented with both a two dimensional P-spline (model
1) and a Markov random field prior (model 2). Following Fahrmeir and Lang (2001b), the
neighbourhood ∂s of trees for the Markov random field includes all trees u with euclidian
distance d(s, u) ≤ 1.2 km. In terms of the DIC (Spiegelhalter et al. (2002)), the model
based on the Markov random field is preferable. An unstructured spatial effect funstr is
excluded from the predictor for the following two reasons. First, a look at the map of
observation points (see Figure 5) reveals some sites with only one neighbour, making the
identification of a structured and an unstructured effect difficult if not impossible. The
second reason is that for each of the 80 sites only 19 observations on the same tree are
available with only minor changes of the response category. In fact, there are only a couple
of sites where all three response categories have been observed.
The data have been already analysed in Fahrmeir and Lang (2001b) (for the years 1983-
1997 only). Here, nonlinear functions have been modelled solely by random walk priors.
Also, the modelling of the interaction between calendar time and age is less sophisticated.
Since the results for the two models differ only for the spatial effect, we present for the
remaining covariates only estimates based on model 2. Figure 3 shows the nonlinear main
effects of calendar time and age of the tree as well as the effect of canopy density. The
interaction effect between calendar time and age is depicted in Figure 4. The spatial effect
is shown in Figure 5. Results based on a two dimensional P-spline can be found in the left
panels, results based on the Markov random field can be found in the right panels. Shown
are posterior probabilities based on a nominal level of 80% (top panels) and 95% (bottom
panels).
As we might have expected younger trees are in healthier state than the older ones. We
also see that trees recover after the bad years around 1986, but after 1994 health status
declines to a lower level again. The interaction effect between time and age is relatively
strong. It suggests that the health status of young trees was better than average at the
beginning of the observation period and considerably worsens in the years after 1986. For
very old trees, the interaction effect is always positive. The distinct monotonic increase of
the effect of canopy densities ≥ 30% gives evidence that beeches get more shelter from bad
environmental influences in stands with high canopy density. The spatial effect based on
the two dimensional P-spline and the Markov random field are very similar. The Markov
random field is slightly rougher (as could have been expected). Note that the spatial effect
is quite strong and therefore not negligible.
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Figure 3: Forest health data: Nonlinear main effects of calendar time, age of the tree
and canopy density. Shown are the posterior means together with 95% and 80% pointwise
credible intervals.
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Figure 4: Forest health data: Nonlinear interaction between calendar time and age of the
tree. Shown are the posterior means.

Figure 5: Forest health data: Spatial effect for model 1 (left panels) and model 2 (right
panels). Shown are posterior probabilities for a nominal level of 80% (top panels) and
95% (bottom panels). Black denotes locations with strictly negative credible intervals,
white denotes locations with strictly positive credible intervals.
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4.2 Space-time analysis of health insurance data

In this section we analyse space-time data from a German private health insurance com-
pany. In a consulting case the main interest was on analysing the dependence of treatment
costs on covariates with a special emphasis on modelling the spatio-temporal development.
The data set contains individual observations for a sample of 13.000 males (with about
160.000 observations) and 1.200 females (with about 130.000 observations) in West Ger-
many for the years 1991-1997. The variable of primary interest is the treatment cost C in
hospitals. Except some categorical covariates characterizing the insured person we anal-
ysed the influence of the continuous covariates age (A) and calendar time (t) as well as
the influence of the district (D) where the policy holder lives. We carried out separate
analysis for men and women. We also distinguish between 3 types of health services,
”accomodation”, ”treatment with operation” and ”treatment without operation”. In this
demonstrating example, we present only results for males and ”treatment with opera-
tion”. Since the treatment costs are nonnegative and considerably skewed we assume
that the costs for individual i at time t given covariates xit are Gamma distributed, i.e.
Cit|xit ∼ Ga(µit, φ) where φ is a scale parameter and the mean µit is defined as

µit = exp(ηit) = exp(γ0 + f1(t) + f2(Ait) + f3(Dit)).

For the effects of age and calendar time we assumed cubic P-splines with 20 knots and
a second order random walk penalty. To distinguish between spatially smooth and small
scale regional effects, we further split up the spatial effect f3 into a spatially structured
and a unstructured effect, i.e.

f3(Dit) = fstr(Dit) + funstr(Dit)

For the unstructured effect funstr we assume i.i.d. Gaussian random effects. For the spa-
tially structured effect we tested both a Markov random field prior and a two dimensional
P-spline on a 12 by 12 knots grid.
The estimation of the scale parameter φ deserves special attention because MCMC infer-
ence is not trivial. In analogy to the variance parameter in Gaussian response models, we
assume an inverse Gamma prior with hyperparameters aφ and bφ for φ, i.e. φ ∼ IG(aφ, bφ).
Using this prior the full conditional for φ is given by

p(φ|·)
(

1
Γ(φ)φφ

)n

φaφ−1 exp(−φb′φ)

with
b′φ = bφ +

∑
i,t

(log(µit) − log(Cit) + Cit/µit).

This distribution ist not of standard form. Hence, the scale parameter must be updated by
Metropolis-Hastings steps. We update φ by drawing a random number φp from an inverse
Gamma proposal distribution with a variance s2 and a mean equal to the current state
of the chain φc. The variance s2 is a tuning parameter and must be chosen appropriately
to guarantee good mixing properties. We choose s2 such that the acceptance rates are
roughly between 30 and 60 percent.
Figure 6 shows the time trend f1 (panel a) and the age effect f2 (panel b). Shown are the
posterior means together with 80% and 95% pointwise credible intervals. The effect for
the year 1999 is future prediction explaining the growing uncertainty for the time effect in
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this year. Note also the large credible intervals of the age effect for individuals of age 90
and above. The reason are small sample sizes for these age groups. To gain more insight
into the size of the effects, panels c) and d) display the marginal effects fmarginal

j which

are defined as fmarginal
j (xj) = exp(γ0 + fj(xj)), i.e. the mean of treatment costs with the

values of the remaining covariates fixed such that their effect is zero. The marginal effects
(including credible intervals) can be easily estimated in a MCMC sampling scheme by
computing (and storing) fmarginal

j (xj) in every iteration of the sampler from the current
value of fj(xj) and the intercept γ0. Posterior inference is then based on the samples
of fmarginal

j (xj). For the ease of interpretation, a straight line is included in the graphs
indicating the marginal effect for fj = 0, i.e. exp(γ0) ≈ 940DM . Finally, panels e) and f)
show the first derivatives of both effects (again including credible intervals). They may be
computed by the usual formulas for derivatives of polynomial splines, see De Boor (1978).
Figure 7 displays the structured spatial effect fstr based on a Markov random field prior.
The posterior mean of fstr can be found in panel a), the marginal effect is depicted in panel
b). Panels c) and d) show posterior probabilities based on nominal levels of 80% and 95%.
Note the large size of the spatial effect with a marginal effect ranging from 730-1200 DM.
It is clear that it is of great interest for health insurance companies to detect regions with
large deviations of treatment costs compared to the average. The unstructured spatial
effect funstr is negligible compared to the structured effect and therefore omitted.
Figure 8 shows the respective estimates of fstr now based on two dimensional P-splines.
The time trend and age effect for this model are almost identical to the effects displayed in
Figure 6 and are therefore not displayed. The estimated effects are similar but smoother
(as could have been expected) and therefore easier to interpret. However, in terms of the
DIC the model based on the MRF prior is preferable.

5 Conclusions

This paper proposes semiparametric Bayesian inference for regression models with re-
sponses from an exponential family and with structured additive predictors. The paper
can be seen as the last in a series of articles on Bayesian semiparametric regression based
on smoothness priors, see Fahrmeir and Lang (2001a), Fahrmeir and Lang (2001b) and
Lang and Brezger (2003). It particularly extends the methodology for Gaussian responses
in Lang and Brezger (2003) to situations with fundamentally non-gaussian responses. Our
approach allows estimation of nonlinear effects of continuous covariates and time scales
as well as appropriate consideration of unobserved unit- or cluster specific as well as spa-
tial heterogeneity. Many well known regression models from the literature appear to be
special cases of our approach, e.g. dynamic models, generalized additive mixed models,
varying coefficient models, geoadditive models or the famous and widely used BYM-model
for disease mapping (Besag et al. (1991)). The proposed sampling schemes work well and
automatically for the most common response distributions. Software is provided in the
public domain package BayesX.
Our current research is mainly focused on model choice and variable selection. Presently,
model choice is based primarily on pointwise credible intervals for regression parameters
and the DIC. A first step for more sohisticated variable selection is to replace pointwise
credible intervals by simultaneous probability statements as proposed by Besag et al.
(1995) and more rececently by Knorr-Held (2003). For the future, we plan to develop
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Bayesian inference techniques that allow estimation and model choice (to some extent)
simultaneously.
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Figure 6: Health insurance data: Time trend and age effect. Panels a) and b) show the
estimated posterior means of functions f1 and f2 together with pointwise 80% and 95%
pointwise credible intervals. Panels c) and d) depict the respective marginal effects and
panels e) and f) the first derivatives f ′1 and f ′2.
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Figure 7: Health insurance data: Structured spatial effect fstr based on Markov random
field priors. The posterior mean of fstr is shown in panel a) and the marginal effect in
panel b). Panels c) and d) display posterior probabilities for nominal levels of 80% and
95%. Black denotes regions with strictly positive credible intervals and white regions with
strictly negative credible intervals.
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Figure 8: Health insurance data: Structured spatial effect fstr based on two dimensional
P-splines. The posterior mean of fstr is shown in panel a) and the marginal effect in panel
b). Panels c) and d) display posterior probabilities for nominal levels of 80% and 95%.
Black denotes regions with strictly positive credible intervals and white regions with strictly
negative credible intervals.
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