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Abstract

The Hurst parameter H characterizes the degree of long-range dependence (and asymp-
totic self-similarity) in stationary time series. Many methods have been developed for the
estimation of H from data. In practice, however, the classical estimation techniques can be
severely affected by non-stationary artifacts in the time series. In fact, the assumption that
the data can be modeled by a stationary process with a single Hurst exponent H may be
unrealistic.

We focus on practical issues associated with the detection of long-range dependence in
Internet traffic data and develop two tools designed to address some of these issues. The first
is an animation tool which is used to visualize the local dependence structure. The second is
a statistical tool for the local analysis of self-similarity (LASS). The LASS tool is designed to
handle time series that have long-range dependence and are long enough that some parts are
essentially stationary, while others exhibit non-stationarity, which are either deterministic
or stochastic in nature. The tool uses wavelets to analyze the local dependence structure in
the data over a set of windows. It can be used to visualize local deviations from self-similar,
long-range dependence scaling and to provide reliable local estimates of the Hurst exponents.
The tool, which is illustrated by using a trace of Internet traffic measurements, can also be
applied to economic time series.

We also develop a median-based wavelet spectrum which can be used to obtain robust
local or global estimates of the the Hurst parameter that are less susceptible to local non-
stationarity. We make the software tools freely available and describe their use in an ap-
pendix.

1 Introduction

In the past decade there has been a growing interest in modeling the traffic in modern computer
telecommunication networks. A number of studies (Leland, Taqqu, Willinger and Wilson (1993),
Paxson and Floyd (1995) and the collection of papers in Park and Willinger (2000)) have shown
that the classical telephony models based on the homogeneous Poisson process apply to neither
the Ethernet traffic nor the traffic in wide area networks such as the Internet.

As shown by Leland et al. (1993), among others, network traffic exhibits self-similarity
and asymptotic self-similarity, consistent with long-range dependence. A stochastic process



X = {X(t)}t∈R with zero mean is said to be self-similar with self-similarity parameter H > 0,
if for all c > 0,

{X(ct)}t∈R =d {cHX(t)}t∈R, (1.1)

where =d means equal marginal and finite-dimensional distributions. Relation (1.1) implies that
the process {X(t)}t∈R appears, up to a multiplicative constant, to be statistically the same at
all time scales.

The fractional Brownian motion (FBM) process BH = {BH(t)}t∈R is a self-similar Gaussian
process with stationary increments and self-similarity parameter H ∈ (0, 1) (see Taqqu (2003),
Beran (1994), Mandelbrot and Van Ness (1968)). FBM has been one of the most successful
macroscopic models for fluctuations in the traffic arrival process. That is, at moderately large
time scales (about 1 sec) the aggregate network traffic can be often well-approximated by a Gaus-
sian process with stationary increments. The only self-similar Gaussian process with stationary
increments is the fractional Brownian motion. Therefore, due to the self-similarity property of
network traffic the FBM process is a natural candidate for a traffic model. Furthermore, the
FBM can be also interpreted as a physical model since it appears as the limit process in many
structural traffic models such as the ON/OFF source model and the infinite source Poisson
model (see, Taqqu, Willinger and Sherman (1997), Mikosch, Resnick, Rootzen and Stegeman
(2002), Taqqu (2002) and the references therein).

Fractional Brownian motion is not an adequate model at all scales as shown, for example,
by the recent extensive study of Hernández-Campos et al. (2004). It applies only to traffic
fluctuations at intermediate time scales (e.g. from 1 second to 1 hour). At larger time scales
non-stationary diurnal effects and deterministic trends in traffic start to play a dominant role.
On the other hand, at very small time scales (e.g. below 1 second) the fluctuations in network
traffic are no longer exactly statistically self-similar. They also possess non-Gaussian, skewed
distributions and intricate dependence structure, which often depends on the type of the network
(e.g. backbone core link, small ISP edge link, corporate link or university link), the dominant
network protocols (e.g. TCP, UDP, NNTP, HTTP etc.), the dominant applications (e.g. web,
mail, file-sharing, voice and video, etc.) and the user behavior.

Emerging applications and new protocol features can seriously affect the properties of net-
work traffic and its evolution over time. The fluctuations of the Internet traffic cannot be viewed
only as a purely physical phenomenon detached from technological and in fact social factors.
This makes traffic modeling a very difficult and novel challenge, which is somewhat different
from the challenges posed by natural phenomena in physics, hydrology or biology, for example.

The rapid technological development of the network hardware leads to greater link speeds.
This in turn yields extremely large amounts of traffic data to analyze, much of which is non-
stationary. Hence the need for better statistical tools.

In this work, we propose a statistical methodology for analyzing the local self-similar scaling
in real data. The focus is on time series that have strong dependence, and are long enough
that some parts are essentially stationary, while others exhibit non-stationarity, that are either
deterministic or stochastic in nature. As shown in Stoev, Taqqu, Park and Marron (2004),
some of the best available techniques to measure the Hurst parameter in data may be misled
by non-stationary artifacts. Some of these non-stationarity effects can often be alleviated by
looking at data locally in time, over a moving window. We present two wavelet-based tools for
the local analysis of the Hurst parameter in Internet traffic. Our emphasis is on exploratory
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analysis of the local scaling in data, in the spirit of the scale-space approach. That is, we focus
on describing data and detecting statistically significant features locally in time and on a variety
of scales, rather than on suggesting a rigid model. This type of analysis can be particularly
useful in the context of networking, where often models fail to capture interesting details and
nonetheless practitioners are faced with the challenge to understand the structure of the data.
A theoretical treatment for the problem of testing stationarity of the local Hurst estimates can
be found in Veitch and Abry (1999a).

The paper is organized as follows. In Section 2, we first briefly review the definition of
long-range dependence and a basic model – the fractional Brownian motion. Then, we present
the wavelet spectrum and sketch its use for the estimation of the Hurst long-range dependence
parameter. In Section 2.3, we briefly discuss some practical limitations in the estimation of the
Hurst parameter in long datasets, which possess non-stationarity. The tools presented in the
rest of the paper address some of these limitations.

In Section 3, we describe an animation tool designed to visualize the local dependence struc-
ture of a time series and in Section 4, we present the Local Analysis of Self-Similarity (LASS)
tool. The LASS tool provides insight into potential non-stationarity of a time series, through a
combination of views. These views are motivated, using Internet traffic data. They include the
global wavelet spectrum, coupled with a sequence of local wavelet spectra and local Hurst pa-
rameter estimates. Further effectiveness of the LASS combined views is demonstrated in Section
5, via a simulated example. Concluding remarks can be found in Section 6. The software tools
are implemented in MATLAB. These tools can be used not only for Internet traffic data but
also in the analysis of economic time series. They are freely available and their use is described
in the appendix.

2 Global versus local analysis of self-similarity

We start by briefly reviewing some basic facts related to the long-range dependence phenomenon
and fractional Brownian motion. Then, in Section 2.2, we present the wavelet spectrum of a
stationary time series and discuss its use for the estimation of the Hurst parameter. In Section
2.3, we conclude by discussing some practical difficulties in the estimation of the Hurst parameter
for long Internet traffic data sets. Some of these limitations can be bypassed by performing a
local rather than global analysis of the long-range dependent scaling in data.

2.1 Long-range dependence: basic notions

We start by recalling some basic facts about long-range dependence. For more details, see Beran
(1994) and Taqqu (2003).

Consider a second order stationary time series Y = {Y (k)}k∈Z with mean zero. The
time series Y is said to be long-range dependent if its auto-covariance function rY (k) =
Cov(Y (k), Y (0)) = EY (k)Y (0) decays slowly as a function of the lag k, so that the series∑

k rY (k) is not summable. Typically the long-range dependence is modeled by supposing a
power-like decay of the covariances:

rY (k) = EY (k)Y (0) ∼ cY |k|−γ , as k → ∞, 0 < γ < 1, (2.1)
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where cY > 0 and where ∼ means asymptotic equivalence. Observe, that since 0 < γ < 1,
Relation (2.1) implies

∑
k rY (k) = ∞.

One can also model long-range dependence by imposing conditions on the spectral density
fY of Y around the origin. Namely:

fY (ξ) ∼ cf |ξ|−α, as ξ → 0, 0 < α < 1 (2.2)

where cf > 0 and where fY (ξ) := (2π)−1/2 ∑
k∈Z eiξkrY (k).

Under some smoothness assumptions, the conditions in (2.1) and (2.2) can be related and
one has

α = 1 − γ

(for more details, see, for example, Taqqu (2003) and the references therein). Furthermore, long-
range dependent time series Y can be asymptotically self-similar. For example, if Y is Gaussian
and satisfies Relation (2.1), one has that, as n → ∞,

{ 1
nH

[nt]∑
k=1

Y (k)
}

t∈[0,1]

f.d.d.−→ {BH(t)}t∈[0,1], (2.3)

where →f.d.d. means convergence in the sense of finite-dimensional distributions, 1/2 < H < 1
and where BH is the fractional Brownian motion (FBM) process (see, e.g. Theorem 7.2.11 in
Samorodnitsky and Taqqu (1994), and Taqqu (1975)). The parameter H is called the Hurst
parameter of the time series Y and it relates to the parameters γ and α in (2.1) and (2.2) as
follows:

γ = 2(1 − H) and α = 2H − 1. (2.4)

The Hurst parameter quantifies the degree of long-range dependence as well as the asymptotic
self-similarity scaling of the process Y .

The FBM is a self-similar Gaussian process with self-similarity parameter H and with sta-
tionary increments. In view of Relation (2.3), it plays a fundamental role in modeling long-range
dependence. In practice, it is its increments that are used in modeling. The increments time
series GH(k) := BH(k)−BH(k−1), k ∈ Z of the FBM process BH are called fractional Gaussian
noise (FGN) and have covariances:

Cov(GH(k), GH(0)) =
σ2

2

(
|k + 1|2H + |k − 1|2H − 2|k|2H

)
,

where σ > 0. When 1/2 < H < 1, the FGN GH is long-range dependent and satisfies Relations
(2.1) and (2.2) with parameters γ and α as in (2.4).

The Hurst parameter H is an important parameter, characterizing the long-term dependence
structure of a time series. In the following section, we briefly present one of the most successful
techniques to estimate H in practice.

2.2 Wavelet spectrum: estimation of the Hurst parameter

Wavelets have become a popular tool in the analysis of long-range dependence properties of
network traffic. Here we shall briefly sketch the definition of the wavelet spectrum of a second
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order stationary time series Y and its use for the estimation of the Hurst parameter H of Y .
For more details, see Abry and Veitch (1998) and Abry, Flandrin, Taqqu and Veitch (2000).
We also introduce here a robust version of the wavelet spectrum, which limits the effect of large
fluctuations due to non-stationarity or heavy bursts in the traffic data.

Let ψ(s) be a square integrable function. The function ψ is called an orthogonal mother
wavelet if the collection of all its dyadic dilations and integer translates ψj,k(s) := 2−j/2ψ(2−js−
k), j, k ∈ Z forms an orthonormal basis of L2(ds) = {f(s),

∫
R f2(s)ds < ∞}. It follows that

any function f(s) ∈ L2(ds), admits the expansion

f(s) =
∑
j∈Z

∑
k∈Z

dj,k(f)ψj,k(s), where dj,k(f) =
∫

R
f(s)ψj,k(s)ds,

and where the last function series converges in the L2-sense. The coefficients dj,k(f) are called
detail wavelet coefficients of the function f . The set {dj,k(f)}j,k∈Z is referred to as the discrete
wavelet transform of the function f . The indexes j and k of the dj,k(f)s are called scale and
location, respectively. The coefficient dj,k(f) captures the behavior of the signal f , localized at
times about 2jk and restricted to a frequency band about 2j . Therefore wavelets present a rich
time/frequency picture of the signal, which can be more informative than that of the classical
Fourier analysis.

Orthogonal mother wavelets can be elegantly constructed using the framework of the mul-
tiresolution analysis of L2(ds) (for more details, see, for example, Ch. 6 in Daubechies (1992)).

To analyze a discrete time series Y (k), k = 1, . . . , N by using wavelets one typically uses Mal-
lat’s fast pyramidal algorithm. One obtains an array of wavelet coefficients dj,k, j = 1, . . . , J, k =
1, . . . , Nj , where J ≈ log2(N) and where Nj ≈ N/2j . The dj,ks are the “detail” coefficients of a
continuous time process Ỹ , related to the time series Y (see e.g. Stoev, Taqqu, Park and Marron
(2004) and Ch. 6 in Daubechies (1992), for more details).

The Hurst long-range dependence parameter of the time series Y (k) appears naturally in the
scaling of the energy of the wavelet coefficients dj,k. In particular, for sufficiently large scales j,
one has that

log2 Ed2
j,k ∼ j(2H − 1) + C, (2.5)

where C is a constant independent of k and where H denotes the Hurst parameter of the time
series Y (k).

The stationarity of the time series Y (k) implies the stationarity in k of the dj,k, for any fixed
scale j = 1, . . . , J. Furthermore, although the Y (k)s can be strongly dependent, the wavelet
coefficients dj,k are essentially uncorrelated in k (see, e.g. Kim and Tewfik (1992) and Bardet,
Lang, Moulines and Soulier (2000)). Therefore, one can estimate the left-hand side in (2.5) by
using the statistics

Sj(Y ) := log2

( 1
Nj

Nj∑
k=1

d2
j,k

)
− gNj (j), (2.6)

where gNj (j) is a bias correction term of the order (ln(2)Nj)−1, as Nj → ∞. This correction term
compensates for the fact that the logarithm of the expectation is not equal to the expectation
of the logarithm.
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The set of statistics Sj(Y ), j = 1, . . . , J is called the wavelet spectrum of the time series
Y (k), k = 1, . . . , N . At large scales j, the statistics Sj capture features in the low-frequency
region of the Fourier spectral density. Therefore, in view of (2.2), the large scale part of the
wavelet spectrum represents the long-range dependence behavior of the time series Y . On
the other hand, the wavelet spectrum Sj at small scales j reflects the short-term dependence
structure of Y .

The Hurst parameter H of Y can be estimated by using a linear regression of the wavelet
spectrum Sj on the scales j over a range of sufficiently large scales going from j1 to j2, where
1 ≤ j1 < j2 ≤ J . Namely,

Ĥ[j1,j2] :=
1
2

j2∑
j=j1

wjSj(Y ) +
1
2
, (2.7)

where wjs are such that
∑j2

j=j1
wj = 0 and

∑j2
j=j1

jwj = 1. In practice, the weights wj , j =
j1, . . . , j2 are carefully chosen in order to reduce the variance of the estimator Ĥ (for more
details, see Abry and Veitch (1998, 1999b)).

Alternatively, consider the statistics

Ĥ[j,j+1] :=
(Sj+1(Y ) − Sj(Y ))

2
+

1
2
, j = 1, 2, . . . , J − 1, (2.8)

where Sj+1(Y )− Sj(Y ) represents the local slope of the wavelet spectrum at scale j. In view of
(2.5), for large j, we expect Sj(Y ) ≈ j(2H − 1) + C and hence Ĥ[j,j+1] ≈ H, provided that Nj

is also sufficiently large. One can express the estimator Ĥ[j1,j2] in (2.7) of the Hurst parameter
in terms of the statistics Ĥ[j,j+1]:

Ĥ[j1,j2] =
j2−1∑
j=j1

vjĤ[j,j+1] (2.9)

by setting vj = wj+1 + · · · + wj2 , j = j1, . . . , j2 − 1. One has
∑j2−1

j=j1
vj = 1.

Empirically, the statistics Ĥ[j,j+1], j = 1, . . . , J − 1 appear to be weakly correlated and,
for large sample sizes, are well-approximated by a multivariate Gaussian distribution. Using
this property, we propose, in Section 4.1 below, a statistical methodology which allows one to
visualize how the choice of scales j1 and j2 affects the estimation of the Hurst parameter.

When the time series Y is Gaussian, so are the wavelet coefficients dj,k. However, if Y is
a heavy-tailed time series with infinite variance, then the dj,k will have infinite variance and
consequently the statistics Sj may not be consistent. In such cases one can use alternative
wavelet spectra such as:

Sβ
j (Y ) :=

2
β

log2

( 1
Nj

Nj∑
k=1

|dj,k|β
)
− gNj (j) (2.10)

where 0 < β < 2 is a free parameter or

Slog
j (Y ) := 2

1
Nj

Nj∑
k=1

log2 |dj,k|. (2.11)

6



Using these definitions of wavelet spectrum one can construct estimators Ĥβ and Ĥlog, as in
(2.7). Closely related estimators were shown to be consistent and asymptotically normal (see
Pipiras, Taqqu and Abry (2001), Stoev, Pipiras and Taqqu (2002) and Stoev and Taqqu (2003)).
In practice the estimators Ĥβ and Ĥlog work rather well.

• Robust, median-based wavelet spectrum

One can also consider a wavelet spectrum focused on sample medians. This spectrum is
robust with respect to large, rare fluctuations in the wavelet coefficients due to non-stationarity
anomalies in the data. Its definition parallels that of the wavelet spectra in (2.6), (2.10) and
(2.11). Let

Smed
j (Y ) := log2

(
Median

{
d2

j,k, k = 1, . . . , Nj

})
− hNj , (2.12)

where
hNj := E log2

(
Median

{
Z2

k , k = 1, . . . , Nj

})
− log2 m(Z2), (2.13)

and where Z, Zk, k = 1, . . . , Nj are independent standard normal random variables. In (2.12)
and (2.13), by “Median” we denote the sample median and by m(ξ), we denote the median of
the distribution of the random variable ξ. The term hNj serves as a first-order bias correction
term and can be computed in practice by using Monte Carlo simulations. Observe that for large
Nj , the term hNj is negligible. We will use the quantity

Vj := Var
(

log2 Median
{
Z2

k , k = 1, . . . , Nj

})

to estimate the variability of the statistic Smed
j (Y ). As with the term hNj , we compute Vj by

using Monte Carlo methods. There are, at this point, no theoretical results about the properties
of Vj and those of the median based spectrum Smed

j .

2.3 Applications: the curse of non-stationarity

The wavelet estimator often, in practice, may be the preferred estimator for the Hurst param-
eter. In particular, for non-contaminated data, it is essentially comparable to some of the best
estimators such as the local Whittle estimator (Robinson (1995)). When the data are contami-
nated with smooth slowly varying trends, the wavelet estimator continues to work well, whereas
the local Whittle estimator fails (see, for example, Stoev, Taqqu, Park and Marron (2004)).

On the other hand, as illustrated in Stoev, Taqqu, Park and Marron (2004), the wavelet
estimator can be sometimes misleading. For example, high-frequency periodic deterministic
components in the data affect the shape of the wavelet spectrum. Furthermore, non-stationarity
effects such as abrupt shifts in the mean typically yield a steep wavelet spectrum and result in
overestimating the Hurst parameter. These limitations suggest that, in practice:

(i) the wavelet estimator should not be used blindly, without a careful examination of the
wavelet spectrum.

(ii) data should be examined for severe non-stationarity such as shifts in the mean; in
particular when very long datasets are being analyzed, one should expect to encounter local
non-stationarity and/or trends.

Consider, for example, Figure 1. It displays an Internet traffic trace (time series) collected at
the University of North Carolina at Chapel Hill (UNC). The time series involves packet counts of
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Figure 1: The top plot shows one two-hour trace of the number of packets arriving on a link per
1 millisecond time intervals. The data was collected at the UNC main link on Thursday, April
11, 2002 from about 13:00 to 15:00 o’clock. The mean is shown in white. The bottom-left plot
shows the packet arrivals aggregated to 1 second time intervals. Observe the large drop in the
traffic rate at time about 2500 sec. The wavelet spectrum is shown in the bottom-right plot.
The Hurst parameter, estimated over the range of scales 10 ≤ j ≤ 20, based on the slope of the
fit line shown, is about Ĥ = Ĥ[10,20] ≈ 0.958. Note the large variability in the top portion of the
spectrum, which suggests that a global Hurst exponent may not be meaningful.
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the IP (Internet Protocol) packets in the Internet traffic coming into the UNC campus network.
They were measured every 1 millisecond, for the duration of about two hours, from 13:00 to 15:00
o’clock on Thursday, April 11, 2002. The data has been processed from logs of IP packets by
members of the DIstributed and Real-Time (DIRT) systems lab at the Department of Computer
Science of UNC and is freely available from http://www-dirt.cs.unc.edu/unc02 ts/. The file
name is 2002 Apr 11 Thu 1300.7260.sk1.1ms.B P.ts.gz.

The wavelet spectrum of the trace shown in this figure is consistent with long-range depen-
dence (see, Hernández-Campos, Le, Marron, Park, Park, Pipiras, Smith, Smith, Trovero and
Zhu (2004)). The variability in the spectrum at large scales, however, indicates inconsistency
with the classical fractional Gaussian noise type of models. This casts doubt on a global analysis
where one analyzes the long-range dependence in terms of a “global” Hurst parameter. In the
following sections, we introduce practical tools for the estimation of the local Hurst parameter
and we illustrate them by using the trace shown in Figure 1. These tools address the points (i)
and (ii), above, by providing means for visualization of the local dependence structure in the
data.

3 An animation tool to visualize the local dependence

We describe here an animation tool, that gives the opportunity to researchers to explore visually
local dependence structures. The tool subdivides the data in windows and as the focus moves
from one window to the next, one can clearly see the changes in the corresponding local wavelet
spectrum. This tool, although simple, is quite informative and useful.

To describe the tool, consider a time series Y (k), k = 1, . . . , N, choose an initial window size
w < N and divide the time series Y into [N/w] non-overlapping time series Yr, r = 1, . . . , [N/w],
where Yr is the time series corresponding to the rth window. The first [N/w] − 1 windows are
of size w and the last one is of size N − w([N/w] − 1) ≥ w. Compute the wavelet spectrum of
the time series Y within each window and obtain a matrix S of dimensions (J × [N/w]), where
J = J(w) < log2(w) equals the number of available dyadic scales in each of the windows. As in
(2.6), the (j, r)th element of the matrix S is defined as

Sj(r) := log2

( 1
Nj

Nj∑
k=1

d2
j,k(Yr)

)
− gNj (j), (3.1)

where dj,k(Yr), k = 1, . . . , Nj denote the wavelet coefficients of the time series Yr corresponding
to the rth window.

In Figure 2, we present one frame of the animation tool, which gives a preliminary view of the
local dependence of the data. For each window r = 1, . . . , [N/w], on the top-left plot we display
the wavelet spectrum. The vertical segments indicate 95% confidence intervals for the statistics
Sj(r), j = 1, . . . , J(w) of the current rth window, r = 1, . . . , [N/w]. On the bottom-left plot
therein, we display a color (gray-scale) diagram of the entire matrix of local wavelet spectra
and a vertical cursor focusing on the color-coded values of the column vector (Sj(r))J

j=1 for the
current frame.

The top part of this color diagram corresponds to the region of fine scales j of the wavelet
spectra Sj(r), r = 1, . . . , [N/w] and the bottom part corresponds to the coarse scales j of the
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spectra, respectively. A perfectly linear wavelet spectrum would correspond to evenly distributed
colors in the columns of the color diagram.

The bottom-right plot of Figure 2 shows the local mean of the data, that is, the average of
the time series Y per window. The vertical cursor indicates the position of the current frame.
The top-right plot shows local wavelet estimates of the Hurst parameter, based on the wavelet
spectrum within each window. We obtain these estimates by using a weighted linear regression
over a set of scales j1, . . . , j2, j1, j2 ∈ {1, . . . , J(w)}. The scales j1 < j2 are chosen by the user.
As the frame moves, a vertical bar is presented indicating a 95% confidence interval for the
estimated Ĥ(r) = Ĥ[j1,j2](r).

This simple initial step of local analysis of the data can be very useful in many circumstances.
It has the advantage of displaying in a succinct way the local dependence structure of the data
as seen through the wavelet spectrum lens. One can clearly observe, and to an extent quantify,
changes in the structure of the dependence. In fact, one can obtain local estimates of the Hurst
parameter, which are often more meaningful and reliable than a single global one (compare
Figures 1 and 2).

This view of the data, however, depends on two key choices:
(i) the size of the window w and
(ii) the range of scales [j1, j2] used to estimate the local Hurst parameter Ĥ(r) = Ĥ[j1,j2](r).
The next tool, described in the following Section 4, addresses these two issues. It also provides

additional methods for visualization and statistical inference of the local wavelet spectrum.

4 A tool for the Local Analysis of Self-Similarity (LASS)

Here, we introduce a wavelet-based tool for the local analysis of the Hurst parameter in data.
This tool was designed to facilitate the analysis of long datasets, which may exhibit non-
stationarity in some regions. We illustrate the tool by using the Internet traffic trace displayed
in Figure 1, and by using simulated fractional Gaussian noise.

4.1 Steps 1, 2 and 3: Visualizing the local self-similar scaling

When using the wavelet estimator of the Hurst exponent H of a LRD time series, it is crucial
to choose sufficiently large starting dyadic scales j1. On large (coarse) scales, the long-range
dependent time series become approximately self-similar with self-similarity parameter H. The
wavelet spectrum at small or high-frequency scales, however, may not be linear or may not have
the same slope, due to the specific short-term dependence structure of the time series. When
estimating the Hurst parameter one chooses, in practice, the widest possible range of large scales,
where the wavelet spectrum is approximately linear. Veitch, Taqqu and Abry (2003) proposed an
automatic procedure for choosing the scales j1 and j2. Here we present an alternative, graphical
tool, to choose the range of scales where self-similar scaling is present. This visualization also
provides the user with statistical confidence related to a choice of scales.

As in Section 3, above, we fix a window size w and compute the matrix S of the local wavelet
spectra of the data (see (3.1)).

• Step 1

10



0 5 10 15
5

10

15

20
DWT spectrum: regression

dyadic scales
DWT spectrum: features

time [1 unit = 200 sec]

10 20 30

2

4

6

8

10

12

14

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Local H(t): j
1
= 7

time [1 unit = 200 sec]

0 10 20 30 40
5.6

5.8

6

6.2

6.4

6.6
x 10

6 Local mean

time [1 unit = 200 sec]

6

8

10

12

14

16

Figure 2: This figure represents one frame of an animation view of the local dependence structure
of the Internet traffic trace shown in Figure 1 (number of packets per 1 ms). The top-left plot
shows the wavelet spectrum for the current frame, the bottom-left plot shows color-coded values
of all the wavelet spectra for the whole data set, the top-right plot shows the local estimates
Ĥ(t) and the bottom-right plot presents the local mean of the data. The window used here is
w = 200 000 observations, which corresponds to 200 sec of traffic. This frame encompasses an
extreme single drop in the data. The corresponding estimated value of the local Hurst exponent
Ĥ(t) is about 1.12. Theoretically, the range of values for the Hurst exponent of a second-order
stationary process is (0, 1). The animation indicates that, with the exception of a few such
fluctuations, the dependence structure of the presented trace is locally consistent with that of
FGN on a wide range of coarse scales.

11



First, we set j1 = 1 and j2 = J(w) and for each window r = 1, . . . , [N/w], we estimate the
local Hurst parameter Ĥ(r) = Ĥ[j1,j2](r) from all available wavelet scales (see the top-plot of
Figure 3). We do so by using Relation (2.9) with weights vj ∝

√
Nj , j = 1, . . . , J − 1, where Nj

is the number of wavelet coefficients used to obtain the statistic Sj(r) (see (2.6)). While other
choices of the weights vj are possible, this choice reduces the sample variance of the estimators
Ĥ(r), by putting more weight on statistics Sj(r) with lower variance (for more details, see Abry
and Veitch (1998)).

The bottom plot of Figure 3 displays statistically significant deviations from the estimated
local Hurst parameters. Namely, the rth column in this plot corresponds to the vector of
statistics Ĥ[j,j+1](r), j = 1, . . . , j2−1, where, as in (2.8), Ĥ[j,j+1](r) = (Sj+1(Yr)−Sj(Yr))/2+1/2.
The jth cell in the kth column of the plot is colored blue (or black in gray-scale), when Ĥ[j,j+1](r)
is above a 95% confidence interval about the estimate Ĥ(r) = Ĥ[j1,j2](r); it is colored in red (or
white) when Ĥ[j,j+1](r) is below this confidence interval; and it is colored in purple (or gray)
when the estimate Ĥ[j,j+1](r) is within the confidence interval. The LASS tool offers two ways
to compute the confidence interval:

(a) by assuming that the statistics Ĥ[j,j+1](r), j = j1, . . . , j2 − 1 are independent and Gaus-
sian with variances Var(Sj+1(r)) − Var(Sj(r)).

(b) by using the sample covariance matrix of the vectors (Ĥ[j,j+1](r))
j2−1
j=j1

, r = 1, . . . , [N/w].
The dependence of the statistics Ĥ[j,j+1](r), j = 1, . . . , J(w) − 1, is hard to evaluate, in

particular when no model for the time series Y is imposed. In practice, however, as shown
in Figure 4, the differences Ĥ[j,j+1](r), j = 1, . . . , J(w) − 1 are essentially uncorrelated. Their
joint distribution can be also well-approximated by a multivariate normal distribution since the
wavelet coefficients {d(j, k)}J

j=1, k ∈ Z involved in the statistics Sj(r) are weakly dependent (see,
Bardet et al. (2000) and also Pipiras, Taqqu and Abry (2001)). This justifies the assumptions
in (a) above.

Although the time series can be non-stationary, we assume, for the purpose of computing the
sample covariance matrix of Ĥ that the estimates Ĥ[·,·+1](r) are stationary in r. This sample
covariance matrix of the vectors (Ĥ[j,j+1](r))

j2−1
j=j1

, r = 1, . . . , [N/w] can be a very good first
approximation of the covariance structure of the local wavelet spectra. The choice in (b), which
is data driven, is typically in close agreement with the choice in (a).

By taking into account the variability of the statistics Ĥ[j,j+1](r) on different scales j, the
bottom plot of Figure 3 indicates whether the local wavelet spectra of the data scales linearly. It
also shows statistically significant deviations from linear scaling. It can be used as a diagnostic
tool for the estimation of the local Hurst parameter. When the plot displays many red (white)
and blue (black) patches, the statistics Ĥ(r) = Ĥ[j1,j2](r) may not be reliable estimates of the
local scaling exponents. One should perhaps change the choice of the scales j1 and j2 in order
to improve the estimators Ĥ(r). A strategy for this is:

• Step 2

Based on the results of Step 1 one may choose to focus on a different choice of scales j1 and
j2 and to repeat the same analysis. In Step 2 of the tool, by default, we set j2 = J(w) and
let the user choose a new value of j1. In Figure 5 we show what happens when j1 = 7 and
j2 = J(w) = 15, that is, by focusing on the largest scales of the wavelet spectra.
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Figure 3: This figure displays the output of Step 1 in the LASS tool applied to the two-hour
Internet traffic data set shown in Figure 1 (number of packets per 1 millisecond). We used
a window size w = 300 000, corresponding to 5 minutes of traffic, Daubechies mother wavelet
with 3 zero moments and all available scales j ∈ [j1, j2] = [1, 15] to estimate the local Hurst
parameters. The top plot displays the estimates Ĥ(r) = Ĥ[j1,j2](r) of the local Hurst parameter
and a band of their 95% confidence intervals. The mean of the local Hurst estimates (in r) is
indicated by the dotted line. The bottom plot visualizes (as explained in the text) the deviations
from linearity in the local wavelet spectra. The presence of many red (white) and/or blue (black)
patches indicates that the choice of scales j1 and j2 is not suitable and that these Hurst parameter
estimates may not be meaningful (see Figure 5).
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Figure 4: This figure displays a color-coded diagram of the sample correlation matrix of the
statistics {Ĥ[j,j+1](r)}J−1

j=1 involved in Figure 3 above. Here r = 1, . . . , [N/w] (= 1, . . . , 24),
where the window size w equals 300 000. Observe that the statistics Ĥ[j,j+1](r) appear to be
weakly correlated in j.

Observe that now fewer windows (columns of the bottom plot) show patches of red (white)
and blue (black) as compared to the lower plot in Figure 3. The estimates Ĥ(r) of the local
Hurst parameters have also changed. These estimates may be viewed as more reliable than the
ones obtained in Step 1.

The bottom plot of Figure 5 indicates interesting non-stationary features in the local depen-
dence structure of this data for window numbers r = 9 and 19 (corresponding to times t about
45 min and 100 min, respectively). These non-stationarities are also reflected in the top plot in
Figure 5. (These features can also be seen in Figure 2.)

• Step 3

In this step, the tool presents a summary plot of the estimators of the local Hurst parameters
in Steps 1 and 2. It also displays the local sample mean and local sample standard deviations
of the time series, computed within each window frame. For brevity, we do not include the
corresponding figure.

4.2 Step 4: The influence of the window size

In this step we explore the influence of the choice of the window size on the local estimates of
the Hurst parameter. In the top-plot of Figure 6, we display a color diagram of local estimates
Ĥinterp(t) of the Hurst parameter, for several values of the window size w. The vertical axis
corresponds to values of w. To be able to compare different window sizes, the horizontal axis of
this plot is “time”. Since for different window sizes w, the estimate Ĥ(r) = Ĥ[j1,j2](r) of Steps
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Figure 5: This figure contains the output of Step 2 of the LASS tool, applied to the Internet
traffic trace in Figure 1. As in Figure 3, the top plot displays estimates Ĥ(r) = Ĥ[j1,j2](r) of
the local Hurst parameter, their point-wise 95% confidence intervals and their average over the
window number parameter r. Now, however, to estimate the local Hurst parameters, we used
the range of scales [j1, j2] = [9, 15]. Consequently, the bottom plot in Figure 5 is different from
the bottom plot in Figure 3. There are relatively fewer red (white) and blue (black) patches in
the bottom plot of Figure 5, which indicates that the local Hurst estimates displayed on the top
plot therein are more reliable than those in Figure 3. Observe that the large fluctuations (at
r = 9 and r = 20) in the estimates Ĥ(r) in Figure 5 correspond to significant deviations (red
(white) and blue (black) patches) from linearity in the local wavelet spectra for the corresponding
windows.
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1 and 2 corresponds to different time locations t ∝ wr, we set

Ĥinterp(t) = Ĥ(r), for C(r − 1/2)w < t ≤ C(r + 1/2)w, (4.1)

with C = 1/w0, where w0 is the minimum of the involved window sizes so that when w = w0,
∆t = ∆r = 1. The correspondence between colors and values of Ĥinterp(t) is shown on the
vertical color-bar on the top-plot of Figure 6.

The bottom plot of Figure 6 displays an overlay plot of the estimators Ĥinterp(t), one for each
window size w = 50 000(50 000)500 000. The average of these plots is displayed in bold. The
estimates of Ĥinterp(t) were obtained by using the same starting scale j1 = 9 and all available
larger scales. This choice of j1 corresponds to the one in Step 2 (see Figure 5, above). Note
that the estimates Ĥinterp(t) for small window sizes (e.g. w = 50 000 and 100 000) have greater
variability than those for larger window sizes (e.g. w = 500 000). This is due to the fact that
fewer wavelet coefficients are involved in the statistics Sj(r) used to obtain Ĥinterp(t).

For the Internet data, displayed in Figure 1, note that in the top plot of Figure 6, looking
along vertical lines, one color tends to predominate over many different window sizes. Thus, the
resulting estimates of the local Hurst parameter are rather consistent, over all window sizes we
used here. Note also the change in the pattern of the estimates around times t = 50 and 110,
providing another view of the non-stationarity observed in Figures 2, 3 and 5.

4.3 Additional features and options

In Sections 4.1–4.2, above, we described a tool for the local analysis of self-similarity. We did
so by using only the basic default options. We will now list the tool’s other available options,
which may provide additional insights into the local dependence structure of the data. Some of
these options are illustrated in Section 5.

• Visualization of the extreme fluctuations of Ĥ(r)

The LASS tool involves an option which provides an additional view on the results of Step
4. It is based on the assumption that the estimates Ĥ(r) = Ĥ[j1,j2](r), r = 1, . . . , [N/w]
are essentially uncorrelated and stationary. For each fixed window size w involved in Step 4
(corresponding to a row on the top plot of Figure 6) using the sample Ĥ(r), r = 1, . . . , [N/w], it
displays a 95% confidence interval for the mean of the Ĥ(r)s based on a normal approximation.
As in Figure 6, two plots are provided. The bottom plot displays the confidence intervals as a
function of the window label and the top plot, which has the same axes as the top plot in Figure
6, displays color-coded extreme fluctuations of the local Hurst exponents. For a given window
size w (indicated by its label) and location r (time), a cell is colored blue (black) if the local Hurst
exponent estimate falls above its confidence interval, red (white) if it falls below its confidence
interval and purple (gray) if it falls within the confidence interval. This color-coded view of the
local Hurst estimates obtained on Step 4 can be useful to localize extreme fluctuations in the
local dependence structure of the data simultaneously for a set of window sizes.

• Robust wavelet spectrum

One can repeat the analysis on Steps 1 – 4 by using the median-based robust wavelet spectrum
defined in (2.12). In Section 5, below, we illustrate some advantages of this option.
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Figure 6: This figure displays the output of Step 4 in the LASS tool, applied to the Internet
data set in Figure 1. The top plot displays the color-coded values of the local Hurst estimates
Ĥinterp(t) in (4.1) for 10 window sizes: w = 50 000 (50 000) 500 000 indicated by their window
label 1 (1) 10. We obtained these estimates by using all available scales j greater than or equal
to j1 = 9 and used Daubechies wavelets with 3 zero moments. This plot visualizes the role of the
window size in the estimation of the local Hurst exponents. Observe that, looking along vertical
lines, one color tends to predominate over many different window sizes. The estimates Ĥinterp(t)
here are thus relatively robust with respect to the choice of the window size. In particular, the
features observed at r = 9 and 19 in Figure 5 appear for all window sizes in the top plot of
Figure 6 (note the vertical stripes at t = 50 and t = 110). The bottom plot displays an overlay
plot of the estimates Ĥinterp(t), for each window size w = 50 000 (50 000) 500 000. Their average
is displayed in bold.
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Figure 7: This figure visualizes the extreme fluctuations in the local Hurst estimates obtained
on Step 4 in the LASS tool (see Figure 6). The bottom plot displays 95% confidence intervals
for the means of the estimates Ĥinterp(t) displayed on the top plot of Figure 6. The horizontal
axis corresponds to the window label (i.e. to the vertical axis of the top plot in Figure 6). The
top plot visualizes the extreme outliers in the local estimates of the Hurst parameter which fall
out of the confidence intervals in the bottom plot. The vertical axis of the top plot corresponds
to the window label and the horizontal axis to time. For a given window size w (row) and a
location t (time), a cell is colored in blue/red (or black/white, in gray-scale, respectively), if the
estimate Ĥinterp(t) falls above/below its corresponding confidence interval shown on the bottom
plot. Observe that the fluctuations in Ĥinterp(t) about times t = 50 and 110, appear to be
significant for a wide range of window sizes w.
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• “log” type wavelet spectrum

One can also use the wavelet spectrum Slog
j , defined in (2.11), in place of the usual spectrum

Sj . This option is particularly useful when dealing with very heavy-tailed time series.

• The regression weights

The estimators Ĥ(r) = Ĥ[j1,j2](r) are obtained by using (2.9). One choice of weights is
vj ∝

√
Nj , where Nj denotes the number of available wavelet coefficients. Another option is to

use the sample covariance matrix of the statistics (Ĥ[j,j+1](r))
j2−1
j=j1

for r = 1, . . . , [N/w]. Namely,
suppose that Ĥ[j,j+1](r), j = j1, . . . , j2 − 1 are jointly normal with mean H and covariance
matrix equal to the sample covariance matrix. Under this assumption, one obtains weights vj ,
which yield the best linear unbiased estimator for H.

In practice, when the number of available windows [N/w] is sufficiently large (e.g. > 30) this
choice of weights may lead to estimates Ĥ(r) with lower sample variance. However, when the
time series appears to possess severe non-stationarity, one should use the first option instead.

• Confidence intervals in Steps 1 and 2

In order to compute the confidence intervals in Steps 1 and 2, one can use either method (a)
or method (b) described earlier. In Section 4.1, we used method (a).

• Analysis of a process with stationary increments

In Section 2.2, we used wavelets to analyze a stationary, long-range dependent time series.
When the data are observations of a non-stationary stochastic process with stationary incre-
ments, one can develop a similar wavelet spectrum based methodology for the estimation of
the (asymptotic) self-similarity parameter (see, for example, Pipiras, Taqqu and Abry (2001)
and Stoev and Taqqu (2003)). All of the LASS tool options, above, are available for data that
can be modeled by a process with stationary increments. In such a case, the resulting wavelet
spectra and the estimates of the local (asymptotic) self-similarity parameters are very similar
to the corresponding wavelet spectra and the estimates of the local Hurst parameters for the
increments of the data.

5 Simulation performance of LASS

We first display and comment on the output of the LASS tool for the ideal benchmark situation
when the data set is the fractional Gaussian noise. For brevity, we show only part of the results.
Then, we illustrate the benefits of the robust wavelet spectrum option of the LASS tool for the
Internet data set studied in the previous section.

• LASS for the fractional Gaussian noise

We simulated a fractional Gaussian noise (FGN) time series Y (k), k = 1, . . . , N of length
N = 1 000 000 with Hurst parameter H = 0.8, using the fast Fourier transform. Figure 8 displays
Step 2 of the LASS tool, applied to this FGN time series.

The choice j1 = 3 improved considerably the linear “fit” of the local wavelet spectra as
compared to the choice j1 = 1 on Step 1 of the tool. (For brevity, we do not include the figure
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Figure 8: This figure displays Step 2 in the LASS tool, applied to a simulated path of fractional
Gaussian noise of length N = 106 and with Hurst parameter H = 0.8. We used Daubechies
wavelets with 3 zero moments and weights vj ∝ √

Nj in (2.9) to estimate the local Hurst
exponents, where Nj denotes the number of wavelet coefficients available on scale j. The bottom
plot shows few red (white) and blue (black) patches, which suggests that the local estimates of
the Hurst parameter (on the top plot) are reliable. (Contrast this plot with the one in Figure
3.) And indeed, all estimates Ĥ(r) = Ĥ[j1,j2](r) are very close to the true value of H = 0.8.
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from Step 1.) Observe that the estimate of the local Hurst parameter on the top plot of Figure
8 appears to be constant and very close to the true value of H = 0.8.

In contrast, for the Internet traffic trace, we had to choose a relatively large value j1 = 9 in
order to achieve a reasonably good linear fit in Figure 5. This is due to the intricate dependence
structure of the Internet traffic on small time scales and the fact that fractional Gaussian noise
can be used to model traffic only at sufficiently large time scales.

Figure 9 illustrates Step 4 of the LASS tool for the FGN data. We used ten window sizes,
as in Figure 6. Observe now that the top plot of Figure 9 is a lot more homogeneous than the
one in Figure 6, which corresponds to the Internet traffic data. It clearly indicates no deviations
from stationarity.

• LASS with robust spectrum

As illustrated above, the non-stationarity in Internet traffic clearly affects the classical
wavelet estimator of the Hurst parameter (see also Stoev, Taqqu, Park and Marron (2004)).
One may want to use, in practice, estimators of the local and global Hurst parameters, which are
robust with respect to rare but significant non-stationarity artifacts. The median-based wavelet
spectrum introduced in (2.12) can be used to obtain such robust estimators.

In Figure 10, we show Step 2 of the LASS tool for the median-based spectrum in (2.12).
Observe that, qualitatively, the bottom plots of Figures 5 and 10 are quite similar (in these
two plots, we chose identical values for j1 and for the window size). However, the estimates
of the local Hurst parameter by using the robust spectrum, shown on the top plot of Figure
10, are now quite different from those on the top plot of Figure 5. Extremely large values of
Ĥ(r) = Ĥ[j1,j2](r), outside the range of (0, 1), are no longer present.

6 Concluding remarks

Internet traffic traces possess long-range dependence on a wide range of time scales. Their
dependence structure however is very intricate and can be obscured by non-stationarity effects.
In practice, the classical fractional Brownian motion type models should be applied with care.
In particular, a single parameter estimate of the Hurst long-range dependence exponent may
not be meaningful or may not be sufficient to capture interesting network behavior.

On the other hand, it is important, in practice, to be able to understand the statistical
structure of network traffic data sets, which can be very large. Here, we focused on estimating the
Hurst parameter, locally in time, and on providing tools for visualization of the local dependence
structure in large data sets. The local Hurst parameter estimates are more resilient to non-
stationarity artifacts, provide a richer picture of the data and are often more meaningful than a
single global one.
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Figure 9: This figure displays Step 4 in the LASS tool, applied to the simulated path of FGN,
involved in Figure 8 with Hurst parameter H = 0.8. As in Figure 6, the top plot displays
(color-coded) local Hurst estimates Ĥinterp(t) for different values of the window size. Here, we
used 10 window sizes w = 5 000 (5 000) 50 000, Daubechies wavelets with 3 zero moments and
parameter j1 = 3, for all values of w. That is, the local Hurst parameters were estimated by
using all available scales j, greater than or equal to j1 = 3. Observe that the top plot is a lot
more homogeneous than the top plot in Figure 6, which corresponds to an Internet traffic trace.
Consequently the overlay plot of the estimates Ĥinterp(t), displayed on the bottom plot, shows
no severe fluctuations and all estimates closely follow the theoretical value of H = 0.8.
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Figure 10: This figure displays Step 2 in the LASS tool with the option of median-based, wavelet
spectrum. We used the same Internet traffic data set involved in Figure 5 (shown on Figure
1). To be able to compare Figures 10 and 5, we used the same set of parameters: window size
w = 300 000, j1 = 9, j2 = 15 (maximum available wavelet scale) and Daubechies wavelets with 3
zero moments. Observe that now, the bottom plot of Figure 10 shows fewer red (white) and blue
(black) patches than the bottom plot of Figure 5. The estimates of the local Hurst parameter
in the top plot of Figure 10 have no extreme fluctuations above the theoretically admissible
value of 1, in contrast with the local Hurst estimates in top plot of Figure 5. Note also that,
on average, the local Hurst estimates based on the robust median spectrum are slightly greater
than the local Hurst exponents in Figure 5.
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Appendix: Guide to the software tools

The software was written in MATLAB and may be obtained from the authors. We illustrate its
use in this section. The examples, below, involve the exact set of parameters used to generate
the figures in the paper.

• Basic installation

We suppose that all MATLAB script files of the tools are located in a directory
/home/me/lass/ (or a folder C : \lass\ in MS Windows), for example. Under UNIX/Linux,
one can use the command unzip lass.zip, where the file lass.zip is available on request from
the authors.

After running MATLAB, make sure that the current directory is /home/me/lass/ (or
C : \lass\) or that this directory is in the path of MATLAB scripts. One can use the MAT-
LAB command addpath /home/me/lass/ to add the directory /home/me/lass/ to the path of
MATLAB scripts.

• Loading a dataset

Use the MATLAB command load to load a data set in MATLAB memory from a file. The
file can be in either MATLAB binary format (i.e. MAT file) or in a suitable text format (i.e. space
separated ASCII). For example, the command
>> data = load(’2002 Apr 11 Thu 1300.7260.sk1.1ms.B P.ts’);

loads the Internet traffic data used in this paper, from the text
file 2002 Apr 11 Thu 1300.7260.sk1.1ms.B P.ts, which is available from
http://www-dirt.cs.unc.edu/unc02 ts/.

This data set (and hence the variable data) happens to have 2 columns. We will use the
time series in the second column, namely data(:,2).

• Running the animation tool

The command
>> animate3(data(:,2),struct(’tau’,0.001,’window’,200000,’j1’,7));

invokes the animation tool for the data in the column vector data(:,2) with a time unit of
0.001, a window size w = 200 000 (corresponding to 200 sec of traffic) and parameter j1 = 7.

• Running the LASS tool

The LASS tool is invoked by the command lass as follows:
>> lass(data(:,2),struct(’window’,300000,’windows’,50000*[1:10]));
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With this command, the window size w used in Steps 1 and 2 is 300 000 and the window sizes
used in Step 4 are 50 000 to 500 000 with a step of 50 000. The output is Figure 3 using j1 = 1
(Step 1) and then the user is prompted to choose another value of j1. The outputs are Figure 5
(Step 2 using j1 = 9), a figure for Step 3 and Figure 6 (Step 4) as well as Figure 7.

The following defaults are used in both tools: Daubechies wavelets with 3 zero moments,
initialize the Mallat’s algorithm as proposed in Veitch, Taqqu and Abry (2000) and compute
the Hurst parameters by using weighted regression where vj ∝

√
Nj (see (2.9)).

Typing >> help animate3 or >> help lass yields detailed information about all the op-
tions.
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