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Abstract

Recently, the large T panel literature has emphasized unobserved, time-varying heterogeneity

that may stem from omitted common variables or global shocks that a¤ect each individual

unit di¤erently. These latent common factors induce cross-section dependence and may lead

to inconsistent regression coe¢ cient estimates if they are correlated with the explanatory

variables. Moreover, if the process underlying these factors is nonstationary, the individual

regressions will be spurious but pooling or averaging across individual estimates still permits

consistent estimation of a long-run coe¢ cient. The need to tackle both error cross-section

dependence and persistent autocorrelation is motivated by the evidence of their pervasiveness

found in three well-known, international �nance and macroeconomic examples. A range of

estimators is surveyed and their �nite-sample properties are examined by means of Monte

Carlo experiments. These reveal that a mean group version of the common-correlated-e¤ects

estimator stands out as the most robust since it is the preferred choice in rather general (non)

stationary settings where regressors and errors share common factors and their factor loadings

are possibly dependent. Other approaches which perform reasonably well include the two-way

�xed e¤ects, demeaned mean group and between estimators but they are less e¢ cient than

the common-correlated-e¤ects estimator.

Keywords : Factor analysis; global shocks; latent variables

JEL Classi�cation : C32; F31

1 Introduction

Panel or longitudinal data which have observations on cross-section units i = 1; 2; :::; N; such as

individuals, �rms or countries, over time periods t = 1; 2; :::; T enable one to model a variety of

forms of unobserved heterogeneity in regression models. The standard panel literature, developed

�Corresponding author: Tel. +44-01206-872455; fax: +44-01206-873429. E-mail address: jcoak-
ley@essex.ac.uk (J. Coakley).
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for cases where N is large and T is small, emphasizes unit-speci�c heterogeneity such as unobserved

ability in earnings equations. When T is large, one can allow for such unit-speci�c heterogeneity by

estimating a separate time-series equation for each unit. Recent years have witnessed increasing

interest in panel data models with unobserved time-varying heterogeneity induced by common

shocks that in�uence all units, perhaps to di¤erent degrees. This is particularly important in

international �nance and macroeconomics where long runs of data are available for many countries,

each of which may be subject to global shocks. Such heterogeneity will introduce cross-section

dependence or correlation between the errors of di¤erent units and will render the conventional

estimators inconsistent if the global shocks are correlated with the regressors.

It is also quite plausible that these unobserved factors, such as technology shocks in a production

function or �nancial innovation in a money demand function, may need �rst di¤erencing to achieve

stationarity. Such I(1) shocks cause the variables not to cointegrate and the regression to be

spurious, that is, the covariance between the I(1) error and the I(1) regressor does not go to

zero even as T ! 1 and so the estimator does not converge to the true parameter value but to

a random variable. However, Phillips and Moon (1999, 2000) and Kao (1999) show that panels

make it possible to obtain consistent estimators (as N !1) of a long-run average parameter even

when each of the individual time-series regressions is spurious: The averaging over N attenuates

the noise in the individual estimators and thus facilitates a consistent estimator of the mean e¤ect.

In the panel time-series literature where both N and T are large, the usual approach has been

either to ignore the possibility of cross-section dependence produced by time-speci�c heterogeneity

or deal with it by including period dummies or �xed e¤ects. But this assumes that the global shocks

have identical e¤ects on each unit which seems quite restrictive. When N is of the same order of

magnitude or greater than T , the traditional SUR-GLS approach for dealing with cross-section de-

pendence breaks down because the estimated contemporaneous variance-covariance matrix cannot

be inverted. If T is only slightly greater than N , estimation is feasible but it will be unreliable.

However, assuming cross-section independence seems restrictive for many applications in macro-

economics and �nance and neglecting it may be far from innocuous as has been clear in the

purchasing power parity (PPP) debate (see O�Connell, 1998). Phillips and Sul (2003) note that

pooling may provide little gain in precision over single-equation estimation if there is substantial

cross-section dependence. In addition, many theoretical results have been derived under the as-
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sumption of independence (Phillips and Moon, 2000). As Phillips and Moon (1999: p1092) put it

�...quite commonly in panel data theory, cross-section independence is assumed in part because of

the di¢ culties of characterizing and modelling cross-section dependence.�

In spatial econometrics, quite popular in urban economics and regional science, a natural

way to model cross-section dependence is in terms of distance (see Baltagi, 2001). But for most

economic problems there is no obvious distance measure. In recent years, characterizing cross-

section dependence by means of a factor structure has attracted a lot of attention (Robertson and

Symons, 1999; Bai and Ng, 2002; Coakley, Fuertes and Smith, 2002; Phillips and Sul, 2003; Moon

and Perron, 2004; Pesaran 2004a). Accordingly, the disturbances are assumed to contain one or

more unobserved (latent) factors which may in�uence each unit di¤erently.

This paper examines the consequences of time-varying heterogeneity that arises from unob-

served factors, which are possibly I(1) processes, and the relative e¤ectiveness of various approaches

in dealing with this phenomenon. The focus of the analysis is on estimation issues rather than

inference. Section 2 provides an empirical illustration of the problems. It shows that three stan-

dard bivariate economic relations involve substantial cross-section dependence and the residuals

resemble I(1) series. Section 3 discusses a range of possible estimators. Since we want to make the

paper accessible to a wide audience, we indicate the nature of the issues rather than provide formal

proofs or derivations. Section 4 provides Monte Carlo evidence on the �nite sample properties of

these estimators under various data generation processes and Section 5 concludes.

2 Empirical illustrations

We take three standard applications to assess the extent of the two problems, cross-section depen-

dence and I(1) errors, and to help in designing our Monte Carlo experiments. The applications

are PPP, the Fisher relationship and the Feldstein-Horioka (FH) puzzle. Each of them involves a

simple bivariate linear relationship that should hold in the long run.

Let sit be the logarithm of the nominal exchange rate and dit = pit�p�t the log price di¤erential

between country i and the base country (the US) at period t. According to PPP, exchange rates

should re�ect price �uctuations in the long-run so in the regression

sit = �i + �idit + eit; (1)
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the restriction �i = 1 should hold. Boyd and Smith (1999) and Coakley, Flood, Fuertes and Taylor

(2004) provide further discussion.

Let ilit denote the annualized long-term nominal interest rate and �it the log annual in�ation

rate. Assuming Et(�i;t+1) = �it, the ex ante real interest rate is rlit = ilit � �it: The Fisher e¤ect

suggests that nominal interest rates fully re�ect in�ation expectations in the long-run. Thus in

ilit = �i + �i�it + eit; (2)

the restriction �i = 1 should hold. Coakley, Fuertes and Wood (2004) discuss this in more detail.

In both examples, one might expect common (across countries) factors to be present. These would

include base country e¤ects, oil price shocks and the long swings in the real dollar rate for PPP

and movements in the world real interest rate for the Fisher equation.

Let Iit be the share of domestic �xed investment in GDP and Sit the share of savings. In

a world of free capital mobility, national saving would �ow to the countries o¤ering the highest

returns and domestic investment would be �nanced from global capital markets. Thus in

Iit = �i + �iSit + eit; (3)

�i = 0 should hold. The puzzle is that Feldstein and Horioka (1980) found the average �i for OECD

countries to be close to unity, the expected value under no capital mobility. Coakley, Kulasi and

Smith (1996, 1998) and Coakley, Fuertes and Spagnolo (2004) provide further discussion.

The analysis for the PPP and Fisher equations is based on quarterly data for 18 countries (Aus-

tralia, Austria, Belgium, Canada, Denmark, France, Germany, Ireland, Italy, Japan, Netherlands,

New Zealand, Norway, South Africa, Sweden, Switzerland, UK and US) over the 1973Q1-1998Q4

period. The panel dimensions for the PPP analysis are N = 17 (US is excluded) and T = 104 while

those for the Fisher regression are N = 18 (US is included) and T = 100 (four observations are

lost in calculating the annual in�ation series �it = pit�pi;t�4): Nominal exchange rates and prices

are scaled (1995=100) to remove the e¤ect of units of measurement on the intercepts. Long-term

interest rates are average yields to maturity on bellwether government bonds with residual matu-

rities between 9 and 10 years. All the price indexes are CPI series except for Australia where the

PPI is used due to data unavailability. The FH regression is based on quarterly national saving,

domestic investment and GDP observations for 12 OECD economies (Australia, Canada, Finland,

France, Italy, Japan, Netherlands, Norway, Spain, Switzerland, UK and US) over 1980Q1-2000Q4.
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Table 1 gives various summary statistics for the variables and two sets of residuals coming

from individual OLS and from two-way �xed e¤ects (2FE). Both levels and �rst di¤erences are

considered. The 2FE estimator imposes slope coe¢ cient (and error variance) homogeneity but

allows for country e¤ects �i and time e¤ects �t: The latter may pick up any common factor.

[Table 1 around here]

On the one hand, Table 1 reports the average (absolute) correlation as an indication of the degree of

cross-section dependence � Pesaran (2004b) proposes a test for cross-section dependence based on

the average correlation of the residuals and compares it with the Breusch-Pagan (1980) test based

on the average of the squared correlations. On the other hand, Table 1 reports the proportion of

the variance accounted for by the �rst two principal components (PCs), as an indication of how

well a factor structure works, and the average ADF t-statistic of Im, Pesaran and Shin (2003)

[IPS] as an indication of the possibility of a unit root. The PCs are the linear combinations of

the standardized time series that account for the maximal amount of the total variation. The

eigenvectors of the relevant correlation matrix are the weights and the ordered eigenvalues over

the cumulated eigenvalues give the variance proportions. The �rst PC often has roughly equal

weights and so it is close to the cross-section mean of the data for each time period.

The average absolute correlations between OLS residuals are 0:67 for PPP, 0:55 for Fisher and

0:26 for FH. Using the 2FE estimator reduces the average absolute correlation in the PPP and

(somewhat in) Fisher but not the FH case. There is little di¤erence between the average absolute

correlation and the average correlation (except for FH) since the residuals are mainly positively

correlated. This is not always the case for the variables. In particular, the log price di¤erential

has an average absolute correlation of 0.84 but an average correlation of only 0.06 because large

positive and negative correlations cancel out. The �rst PC accounts for 72% of the OLS residual

variance in the PPP case, 61% in Fisher and 29% in FH and similarly for the 2FE residuals. In

the PPP and Fisher cases, the �rst two factors explain about 80% of the total residual variation.

The IPS test is designed for variables (not residuals) and it assumes cross-section independence.

Therefore, the average ADF statistics should be treated as descriptive rather than as formal tests.

The fact that these statistics are rather small (around -2) suggests that a unit root is likely to

be present in the disturbances for many of the countries. There is slightly more evidence for a
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unit root in the residuals from 2FE than in those from individual OLS, which is the reverse of

what one would expect if there was an I(1) factor that the time �xed e¤ects have removed. The

�rst-di¤erenced series yield much larger (absolute) average ADF statistics, as expected, and lower

cross-section correlations. However, the residual dependence is still quite marked in the PPP and

Fisher cases. This analysis illustrates that both cross-section dependence and potentially I(1)

errors are a pervasive feature of the levels regressions (1)-(3).

3 Alternative panel estimators

3.1 The model

Suppose that the data generating process is a linear heterogeneous panel model

yit = �i + �ixit + uit, i = 1; :::; N ; t = 1; :::; T; (4)

where the parameters are distributed randomly over units, �i = � + ��i and �i = � + ��i with

��i s iid(0; �2�) and ��i s iid(0; �2�), and independently of xit and uit. Such random coe¢ cient

models (RCM) are discussed by Hsiao (2003) and Hsiao and Pesaran (2004). The variables and

disturbances may be I(1) or I(0): The cross-section and time dependence structure is given by

uit = �uiuit�1 + 
ift + "u;it; "u;it � iid(0; �2ui); (5)

xit = �xixit�1 + �ift +  i�t + "x;it; "x;it � iid(0; �2xi); (6)

where iid denotes independence across t and i. Both ft and �t are latent common factors such

that ft may in�uence both errors (loading 
i) and regressors (loading �i) whereas �t is regressor

speci�c. If 
i 6= 0 and �i 6= 0, the error and regressor in (4) are correlated. We assume that "u;it

and "x;it are independently distributed. The factors may be I(0) or I(1) processes such as

ft = �fft�1 + "ft; "ft � iid(0; �2f ); (7)

�t = ���t�1 + "�t; "�t � iid(0; �2�); (8)

where "ft and "�t are independently distributed.

We do not consider lagged dependent variables as regressors because this raises a variety of

quite di¤erent issues central to a distinct literature on panel unit root testing surveyed by Trapani

(2004). The parameter of interest is the mean e¤ect �: The estimators we consider di¤er in how
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they deal with: a) unobserved heterogeneity, b) error cross-section dependence and c) dependence

between xit and uit induced by latent common factors: These issues are discussed below.

3.2 Pooled OLS (POLS)

This approach simply pools the data and ignores parameter heterogeneity. It estimates

yit = �+ �xit + eit; eit s iid(0; �2); i = 1; :::; N; t = 1; :::; T; (9)

by OLS. The POLS residuals measure eit = uit + ��i + ��ixit where uit is the true disturbance.

Even if homogeneity is wrongly imposed, there is no correlation between eit and xit because ��i

and ��i are independent of xit; so the �̂
POLS

estimator is unbiased and consistent provided that xit

and uit are not in�uenced by the same factor. But if 
i 6= 0 and �i 6= 0 then POLS is inconsistent.

For non-stationary variables that cointegrate homogeneously (��i = 0), the POLS estimator is

T
p
N -consistent. For the I(1) error case (no cointegration), Phillips and Moon (1999) show that

POLS is
p
N -consistent for a long run average, namely, the ratio of the expected (over i = 1; :::; N)

long-run covariance between yit and xit to the expected long-run variance of xit. In their particular

random coe¢ cients setting, the latter is di¤erent from the average long run de�ned as the expected

(over i = 1; :::; N) value of the ratio of the long-run covariance over the variance.

3.3 Individual �xed e¤ects (FE)

The FE approach introduces dummies to allow the intercepts to di¤er by unit and estimates

yit = �i + �xit + eit; eit s iid(0; �2); (10)

by OLS. This amounts to regressing (yit � yi) on (xit � xi) where yi = T�1
PT

t=1 yit and xi =

T�1
PT

t=1 xit are the unit means. The issues discussed above for the POLS estimator regarding

non-stationary variables and I(0) or I(1) errors apply equally to this estimator as does inconsistency

when regressors and disturbances are in�uenced by the same latent factor.

3.4 Two-way �xed e¤ects (2FE)

This approach allows the intercepts to di¤er, both by unit and time period, and estimates

yit = �i + �t + �xit + eit; eit s iid(0; �2); (11)
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by OLS or equivalently, a regression of (yit � yi � yt + y) on (xit � xi � xt + x) where yt =

N�1PN
i=1 yit are the time means and y = (NT )

�1PT
t=1

PN
i=1 yit is the overall mean and sim-

ilarly for x: If the true country slopes and variances are homogeneous (�i = �; �2i = �2) and there

is a single unobserved factor ft that has an identical in�uence on each unit, then this is captured

by the time e¤ects (�t = 
ft) and the estimator �̂
2FE

is unbiased and e¢ cient.

If 
i 6= 0 and �i 6= 0 so that regressors and errors are correlated, the 2FE estimator remains

unbiased as long as 
i and �i are independent since 2FE amounts to FE for the demeaned data

~yit = yit��yt and ~xit = xit��xt: For equations (5) and (6), assuming �xi = �ui = 0 for simplicity, we

have ~xit = (�i��)ft+( i� )�t+("x;it� "xt) and ~uit = (
i�
)ft+("u;it� "ut): The covariance

between ~xit and ~uit; equal to Ef(�i � �)(
i � 
)f2t g; is zero if �i and 
i are independent.

3.5 Fixed e¤ects with principal components (FE-PC)

Coakley, Fuertes and Smith (2002) suggest estimating individual OLS regressions of yit on xit to

extract the residual PCs as proxies for the latent factors. The second stage consists of estimating

yit = �i + �xit + c
0zt + eit; eit s iid(0; �2) (12)

where c = (c1; :::; cJ)0 and zt = (z1t; :::; zJt)0 are the J < N largest PCs of the �rst-stage standard-

ized residuals. Factor-model information criteria, such as those derived by Bai and Ng (2002), can

be used to choose J . The estimator of � in (12), called FE-PC, is consistent if regressors and errors

in (4) are uncorrelated and more generally (
i 6= 0 and �i 6= 0), provided that ft can be perfectly

measured by the cross-section mean of the regressor ( i = 0) as noted by Pesaran (2004a).

3.6 Mean group (MG)

None of the above estimators allows for heterogeneity in the slopes. Pesaran and Smith (1995)

propose a MG approach which does so by estimating individually (OLS) the equations

yit = �i + �ixit + eit; eit s iid(0; �2i ); (13)

and de�ne the estimator �̂
MG

= N�1PN
i=1

b�i with variance V (�̂MG
) = 1

N(N�1)
PN

i=1(
b�i � �)2.

Hsiao and Pesaran (2004) review this and other RCM estimators.

If the variables are I(1) and cointegrated, then b�i is superconsistent (rate T ) for the long-run
coe¢ cient �i: However, the estimates b�i will be spurious if eit is I(1). But again, as with POLS
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and FE, averaging over the units will attenuate the noise allowing a consistent estimator of � for

large N: The response surface estimates in Coakley, Fuertes and Smith (2001) suggest that the

dispersion of �̂
MG

falls at rate
p
N in the I(1) error case; just like that of POLS and FE.

3.7 SUR mean group (SUR-MG)

In the SUR approach introduced by Zellner (1962), the individual OLS residuals are used to con-

struct a covariance matrix estimate which, in turn, facilitates the FGLS estimate �̂ � (�̂1; :::; �̂N )0:

The SUR-MG estimator is de�ned as the average of �̂i; i = 1; :::; N . When regressors and errors are

uncorrelated (�i = 0), the SUR-MG estimator is unbiased and more e¢ cient than MG because it

accounts for the non-zero cross section covariances. However, it does not fully use the information

that the latter arise from a factor structure, so there may be more e¢ cient estimators:

If the same latent factor a¤ects regressors and errors (
i 6= 0 and �i 6= 0); then SUR is no

longer consistent. The bias of SUR-MG will generally di¤er from that of MG. One might expect

the former to be smaller because SUR gives less weight than individual OLS to observations with

large variances, those where the factors are important. Moreover, the SUR approach is infeasible

for N > T because the estimated covariance matrix cannot be inverted. Robertson and Symons

(1999) suggest exploiting the factor structure to tackle this problem. But their estimator is quite

complicated and will not be consistent if the unobserved factors are correlated with the regressors.

3.8 Demeaned mean group (DMG)

Another approach is to demean the data for the OLS estimation of the individual regressions

~yit = �i + �i~xit + eit; eit s iid(0; �2i ); (14)

where ~yit = yit � yt and yt = N�1P
i yit. The DMG estimator is de�ned as the average of the b�i.

For the RCM with one factor (and �ui = 0 for simplicity) we have yit = �i+�ixit+
ift+"u;it with

time means yt = �+�xt+
ft+"ut+N
�1PN

i=1 ��ixit+���. Noting that �ixit��xt = �i~xit+��ixt;

it follows that the true relation between the demeaned variables ~yit and ~xit is

~yit = ��i + �i~xit + ~"u;it + vit; (15)

where ~"u;it = "u;it � "ut, vit = (
i � 
) ft + ��ixt � N�1PN
i=1 ��ixit and �� ' 0. Hence, the

residuals from (14) measure eit = ~"u;it + vit. If the latent factors have identical e¤ects on each

9



unit (�
 = 
i = 
); demeaning removes the cross-section dependence because (
i � �
) ft = 0 but it

adds new error terms due to the slope heterogeneity (��i 6= 0). If in addition, there is a regressor-

speci�c factor ( i 6= 0), demeaning removes it and so the regressor variance in (14) falls which

may adversely a¤ect the estimation e¢ ciency. Since the DMG and 2FE approaches only di¤er in

that the latter imposes slope and error variance homogeneity, they raise similar issues. As with

2FE, if disturbances and regressor are correlated (
i 6= 0 and �i 6= 0); the DMG estimator remains

unbiased as long as 
i and �i are mutually independent.

3.9 Mean group with principal components (MG-PC)

The homogeneity restriction in the FE-PC approach can be relaxed by individually estimating

yit = �i + �ixit + c
0
izt + eit; eit s iid(0; �2i );

by OLS. The MG-PC estimator is de�ned as the average of the individual �̂i estimates. This

has similar properties to FE-PC, namely, it is consistent when a common factor drives errors and

regressors provided that  i = 0. Telser (1964) noted that SUR-GLS could be implemented by

augmenting each equation with the OLS residuals from the remaining N � 1 equations. This is

not feasible for N > T but including the J < N largest residual PCs provides a parsimonious

approximation to it. Hence, if regressors and errors are uncorrelated (�i = 0), the consistent

MG-PC estimator can be seen as a feasible alternative to SUR-GLS in large N and T panels.

3.10 Common correlated e¤ects mean group (CMG)

Pesaran (2004a) suggests including the cross-section averages of the observed variables as proxies

for the latent factors, that is, the mean e¤ect � is estimated through the augmented regression

yit = �i + �ixit + c1iyt + c2ixt + eit; eit � iid(0; �2i ); (16)

where, although �yt and eit are not independent, their correlation goes to zero as N !1. For the

RCM with ��i = 0; �xi = 0 and �ui = 0 without loss of generality, we have yt = �+�xt+
ft+"u;t

which suggests that yt��xt can capture the e¤ect of ft for large N as long as 
 6= 0. Pesaran shows

that this estimator is consistent for � in a RCM with general cross-section dependence such as

that implied by (5)-(6) with 
i 6= 0; �i 6= 0 and  i 6= 0: The consistency proof holds for any linear
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combination of the variables, i.e. �yt =
P

i wiyit and xt =
P

i wixit subject to the assumptions

(a) wi = O

�
1

N

�
; (b)

NX
i=1

j wi j< K; (c)
NX
i=1

wi
i 6= 0;

where K is a �nite constant. These clearly hold for the arithmetic mean since wi = 1=N;PN
i=1 jwij = 1 and N�1PN

i=1 
i = 
. Here we focus on a cross-sectionally augmented MG estima-

tor (referred to as CMG) de�ned as the average of the individual OLS estimates from regression

(16). Pesaran discusses the latter and a one-way �xed e¤ects variant also.

3.11 Between or cross-section (CS)

Pesaran and Smith (1995) noted that the OLS estimator of the between or cross-section regression

yi = �+ �xi + ei; ei s iid(0; �2); i = 1; :::; N; (17)

remains consistent for the mean e¤ect � in the presence of I(1) errors. This requires the RCM

assumptions and strict exogeneity. Furthermore, if the data are generated by (4) with error cross-

section dependence due to a latent factor that in�uences the regressors also, this between estimator

is unbiased provided that the regressor and error loadings (�i and 
i) are mutually independent.

4 Small sample properties

4.1 Monte Carlo design

The purpose of this section is to compare the small sample properties of the ten estimators discussed

above in settings with error cross-section dependence. The errors may be either I(0) or I(1)

processes. Each experiment involves 5,000 replications of (N;T + T0) observations where the �rst

T0 = 50 observations are discarded for each time series to minimize the (zero) initialization e¤ects.

We employ (N;T ) = f(30; 100); (20; 30)g which roughly typify macroeconomic panels of quarterly

and annual frequency, respectively. In both cases T > N so that SUR estimation is feasible.

The data generating process (DGP) for the experiments is

yit = �i + �ixit + uit, i = 1; :::; N; t = 1; :::; T; (18)

uit = �uiuit�1 + 

0
ift + "u;it; "u;it � iidN(0; �2ui); (19)

xit = �xixit�1 + �
0
ift +  i�t + "x;it; "x;it � iidN(0; �2xi); (20)
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where ft = (f1t; f2t)0; 
i = (
1i; 
2i)
0 and �i = (�1i; �2i)

0. The factors are generated as

fmt = �mfm;t�1 + "fmt
; "fmt

� iidN(0; �2fm); m = 1; 2; (21)

�t = ���t�1 + "�t; "�t � iidN(0; �2�): (22)

Thus the Monte Carlo design resembles the setup in Section 2.1 but is more general in that it

allows for one or two common factors, fmt, driving both errors and regressors.

Heterogeneous intercepts are generated as �i � iidU [�0:5; 0:5] such that � � E(�i) = 0. We

focus on the homogenous slope case, �i = �; and set �i = 1: Experiments using �i � iidU [0:5; 1:5]

such that � � E(�i) = 1 gave quite similar results on parameter bias but had e¤ects on estimated

standard errors and e¢ ciency ranking as noted below. Throughout, the factors have di¤erent

e¤ects (loadings) on each unit,  i � iidU [0:5; 1:5], 
mi � iidU [0:5; 1:5] and �mi � iidU [0:5; 1:5],

m = 1; 2: We use �2ui = �2f1 = �2f2 = �2� = 1 but the regressor variance di¤ers randomly across

units, �xi � iidU [0:5; 1:5]; so that the FE and MG estimators are not identical. Two speci�cations

are considered when the same factor in�uences errors and regressors: a) �i is drawn independently

from 
i for each i; b) independence is introduced simply by using �i = 
i for all i:

Each experiment is summarized by the sample mean (SM) and standard deviation (SSD) of

�̂ and the sample mean of the estimated standard error of b� (denoted by SE) over replications:
These can be used to gauge the bias and variance of b�; and the reliability of the conventional
standard errors. In some settings, e.g. I(1) disturbances, we already know that the conventional

standard errors of particular estimators will be misleading. These issues are discussed below.

By varying the parameter speci�cations in (19)-(22) we have several settings which di¤er ac-

cording to: i) the stationarity properties of variables, factors and errors ii) the number of common

factors, iii) whether errors and regressors are independent, iv) whether the factor loadings in errors

and regressors are independent, v) whether there is a regressor-speci�c factor. The analysis focuses

on the two extreme cases of stationarity and unit root autocorrelation. In the stationary settings

below we focus on �ui = �xi = �m = �� = 0 but results (available upon request) using autocorre-

lation of 0:3 are very similar. For the non-stationary settings, the variables are I(1) throughout

and the latent factors can be I(0) or I(1). The average absolute cross-section correlation (uit) is

in the 0.5-0.8 range for all experiments (except the baseline). The reported results for FE-PC and

MG-PC are based on J = 1 but those for J = 2 are very similar: The settings are as follows:
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i) Stationary settings

Case a (baseline): 
i = �i = 0;  i = 0. No cross-section dependence.

Case b: 
2i = 0;�i = 0. Factor f1t drives the errors. Factor �t drives the regressors.

Case c: 
2i = �2i =  i = 0. Factor f1t drives both the errors and the regressors.

Case ec: Like c but with 
1i = �1i for all i to introduce factor-loading dependence.

Case d: 
2i = �2i = 0: Factor f1t drives errors and regressors. Factor �t drives the regressors.

Case e:  i = 0: Two factors, ft = (f1t; f2t)
0; drive both the errors and the regressors.

Case ee: Like e but with 
i = �i for all i: Factor-loading dependence.
Case f: Two factors, ft; drive errors and regressors. Factor �t drives the regressors.

ii) Non-stationary settings

Case A (baseline): �ui = 0;
i = �i = 0;  i = 0. Cointegration. No cross-section dependence.

Case B: �ui = 1;
i = �i = 0;  i = 0: No cointegration. No cross-section dependence.

Case C: �ui = 1; 
2i = 0;�i = 0. No cointegration. An I(0) factor f1t drives the errors. An I(0)

factor �t drives the regressors.

Case D: �ui = 1; 
2i = �2i =  i = 0: No cointegration. An I(0) factor f1t drives the errors and

the regressors.

Case eD: Like D but with 
1i = �1i for all i. Factor-loading dependence.

Case E: �ui = 0; 
2i = �2i =  i = 0: Cointegration. An I(0) factor f1t drives errors and regressors.

Case F: �ui = 1; 
2i = �2i = 0: No cointegration. An I(0) factor f1t drives errors and regressors.

An I(0) factor �t drives the regressors.

Case G: �1 = �� = 1; �xi = �ui = 0; 
2i = �2i = 0: No cointegration. An I(1) factor f1t drives

both the errors and the regressors. An I(1) factor �t drives the regressors.

4.2 Monte Carlo results

i) Stationary settings

The results for the experiments on stationary data are summarized in Tables 2(I) and 2(II) for the

N = 30; T = 100 and N = 20; T = 30 panels, respectively.

[Table 2 around here]
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The baseline results (Case a) for the two panel dimensions are similar except that the estimates

from the larger sample have smaller standard errors. Since �i = � was used in generating the data,

the estimators that allow for heterogeneous �i su¤er quite large losses of e¢ ciency. For instance, in

the small panel the reported SSD of the MG and FE estimators is 0.0536 and 0.0396, respectively.

In contrast, the MG estimator is more e¢ cient when �i s iidU [0:5; 1:5] in (18) instead. For

instance, the SSD of MG and FE is 0.080 and 0.087, respectively. Similarly, since there is no

cross-section dependence in the disturbances, estimators that allow for it lose e¢ ciency.

When two independent common factors drive errors and regressors, respectively (Case b),

there is cross-section dependence but since the errors are independent from the regressors, all

the estimators remain unbiased. They di¤er in their e¢ ciency as one would expect. Among the

estimators that impose homogeneous slopes; 2FE is the most e¢ cient whereas CS is the least

e¢ cient because by averaging xit over time, the regressor variance falls. Among the MG variants,

the MG-PC is more e¢ cient than SUR-MG because it explicitly accounts for the factor structure.

When the same factor in�uences the errors and the regressors but there is independence between

their loadings (Case c), the conventional POLS, FE and MG estimators are substantially biased.

Their mean is about 1:5 rather than 1. The SUR-MG bias at about 0.4 is smaller as one would

expect. The FE-PC and MG-PC approaches reduce the bias to about 0.15. In sharp contrast, the

2FE, DMG, CMG and CS estimators are unbiased. But when the factor loadings of errors and

regressors are dependent (Case ec); the 2FE, DMG and CS estimators show biases of the order

of 0:08 whereas CMG remains unbiased. Additionally including a regressor-speci�c factor (Case

d) gives similar results, except that all the biases, given by Cov(xit; eit)=V (xit) where eit is the

regression error, tend to be smaller because V (xit) has now increased.

When ft in�uences regressors and errors and �i and 
i are drawn independently (Case e), then

2FE, DMG, CMG and CS are all unbiased. Hence, adding a second factor does not change the

results as long as there is independence between the factor loadings of errors and regressors. Absent

the latter in a two-factor setting (Case ee), all the estimators are now biased but the smallest bias is
clearly that of CMG. Hence, the factor loading dependence in a multiple-factor setting appears to

cause di¢ culties for the CMG. But this could potentially be dealt with by using as augmentation

terms in (16) other weighted averages of the observed variables. Adding a regressor-speci�c factor

(Case f) gives very similar results but again all the biases are now smaller.
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In sum, these results suggest that the CMG estimator is quite robust. It is unbiased unless

there are multiple common factors in disturbances and regressors together with factor-loading

dependence. However, even in the latter case its bias is relatively small and it is clearly the

most e¢ cient estimator. The 2FE, DMG and CS estimators do quite well provided that there is

factor-loading independence, but it would be di¢ cult to judge a priori whether this is a plausible

assumption in empirical applications. The CS estimator is also unbiased under factor-loading

independence but it has very large variance.

ii) Non-stationary settings

The results for the non-stationary panels are summarized in Tables 3(I) and 3(II).

[Table 3 around here]

We �rst examine the baseline cointegration case with cross-sectional independence in regressors

and errors (Case A). All the estimators are unbiased and, compared to the stationary counterpart

case, their dispersion is substantially reduced because of the larger variance of the I(1) regressor.

For instance, in the small panel the SSD of FE (the e¢ cient estimator) falls from 0.0396 to 0.0178.

The improvement in the CS estimator is even more noticeable from 0.4596 to 0.0109.

The I(1) disturbances setting (Case B) implies a substantial dynamic misspeci�cation and

the appropriate model is one in �rst di¤erences. However, as established by Phillips and Moon

(1999), averaging across spurious regressions produces unbiased estimates. Unsurprisingly, the I(1)

errors lead to much larger sampling variation. For instance, in the small panel the SSD of FE has

increased from 0.0178 to 0.1387. Conventional standard errors are very misleading except those

for the MG estimator (and variants) because they are based on the distribution of the individualb�i, and for the CS estimator because it averages out the time variation in the data.
When an I(0) factor f1t is introduced in the errors and another I(0) factor �t in the regressors

(Case C), all the estimators remain unbiased despite the lack of cointegration. This is because

errors and regressors are uncorrelated. The theory in Phillips and Moon (1999) builds on the

assumption of cross-section independence so this design (and others that follow) is of particular

interest. The cross-section dependence induced by f1t substantially increases the SSD of the FE

and MG estimators but not so for the estimators that control for it. An exception to the latter is
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SUR-MG (and the parsimonious approximation to it, MG-PC) whose SSD increases from 0.1482

to 0.2019. The most e¢ cient estimator is CMG closely followed by 2FE.

In a non-cointegration setting with an I(0) common factor that drives errors and regressors

(Case D), all estimators but 2FE, DMG, CMG and CS are biased, as in the stationary counterpart

case, because errors and regressors are correlated. The FE-PC and MG-PC estimators do rather

badly because the I(1) dynamics of the residuals makes it di¢ cult to extract the I(0) factor.

However, this problem could be tackled by deploying a modi�ed version of these estimators where

the residual PC extraction is based on di¤erencing (and recumulating) as proposed by Bai and

Ng (2004) to estimate factors consistently whether they are I(0), I(1) or a mixture. Interestingly,

POLS with a bias of only 0.058 does well relative to FE with a bias of 0.390, having similar

variances. This is because the bias inversely depends on the regressor variance and, by taking

deviations from unit means in the FE approach, the regressor variance falls and the bias increases.

If dependence between the factor loadings of errors and regressors is introduced (Case eD), only
the CMG remains unbiased as in the stationary case.

We then consider the cointegration setting where an I(0) factor a¤ects errors and regressors

(Case E). Here the biases are rather small (particularly for the large T = 100 panel) because

the correlation between the I(1) regressor and the I(0) disturbance goes to zero with T . With no

cointegration and an I(0) factor driving errors and regressors and a regressor-speci�c I(0) factor

(Case F) the results are similar to Case D where the latter is absent. But the biases are now

somewhat smaller because the regressor variance has increased. Finally, we simulate the factors

f1t and �t as I(1) processes (Case G). Again the 2FE, DMG, CMG and CS estimators remain

unbiased with CMG the most e¢ cient. But the biases of the remaining estimators are now larger,

particularly for POLS, FE, MG and SUR-MG, due to the I(1) dynamics of the factors.

We carried out experiments for other I(1) factor settings and the results also suggest that the

CMG estimator is the most robust. For instance, if another I(1) factor f2t is included, the only

issue is that the biases above increase further � in the large panel the mean for FE, MG and

SUR-MG is 1.77, 1.92 and 1.84, respectively. With factor-loading dependence (
1i = �1i) in Case

G, there are now biases in the 2FE, DMG and CS estimators but not in CMG � in the large panel

the means are 1.24 (2FE), 1.34 (DMG), 1.39 (Between) and 1.00 (CMG).
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5 Concluding remarks

We have considered the estimation of the mean slope coe¢ cient in a linear heterogeneous panel

regression where the disturbances are correlated across units due to unobserved factors, such as

global shocks, that may also in�uence the regressors. The disturbances can be I(1) as well as I(0)

processes. The analysis is motivated by the need to tackle both error cross-section dependence

and persistent autocorrelation found in three empirical macroeconomic examples. We discuss

the impact of these phenomena on ten alternative estimation approaches. Their small sample

properties are compared through Monte Carlo experiments. It turns out that in panels one can

obtain unbiased estimates of average long-run parameters even in the context of I(1) disturbances.

Overall, the novel CMG estimator stands out as the most robust in the sense that it is the pre-

ferred choice in rather general (non) stationary settings where regressors and errors share common

factors and their factor loadings are possibly dependent. It is based on the common-correlated-

e¤ects approach of Pesaran (2004a) which simply augments the regression of interest with the

time means of the variables to approximate the factor structure that induces the cross-section de-

pendence. Other approaches which perform reasonably well include 2FE, DMG and CS but they

are relatively less e¢ cient than CMG. These estimators show essentially zero bias in most of the

experiments except when there is factor-loading dependence. Under several of the factor structures

considered, the remaining estimators are inconsistent although POLS and FE-PC exhibit less bias

than FE, MG, SUR-MG and MG-PC.

The theoretical literature on cross-section dependence is growing rapidly but many issues await

further research. As yet there is a relatively small empirical literature that deals with cross section

dependence and so it is unclear which of the available estimators is most appropriate. The answer

depends on what the true data generating process is. Application of these methods to our three

empirical examples is a matter for further research which will have to consider a number of other

speci�cation issues. In particular, our assumption that the parameters are randomly distributed

may not be appropriate for those examples. The analysis in this paper assumed a static relationship

between (non-)stationary variables. The dynamic case, including I(0) or I(1) unobserved common

factors, raises a number of di¤erent issues and warrants consideration in a separate paper.
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T���� 1

S������ �	�	
�	
��

Levels regression First-difference regression

yit xit ê
OLS

it
ê
2FE

it
∆yit ∆xit ê

OLS

it
ê
2FE

it

a) Purchasing power parity

ave(|ρij |) 0.5845 0.8421 0.6717 0.5994 0.5547 0.2762 0.5546 0.5550
ave(ρij) 0.3422 0.0588 0.6717 0.5764 0.5547 0.2656 0.5546 0.5550

%V1 0.5602 0.8554 0.7244 0.6486 0.6411 0.3355 0.6401 0.6419

%V2 0.3768 0.0910 0.1031 0.1795 0.0969 0.1355 0.0946 0.0964

¯tADF -1.618(1) -2.195(4) -2.047(1) -1.923(1) -7.586(1) -2.644(4) -7.649(1) -7.678(1)

b) Fisher relationship

ave(|ρij |) 0.6152 0.6682 0.5542 0.5272 0.3068 0.1724 0.2827 0.3008
ave(ρij) 0.5558 0.6680 0.5440 0.4891 0.3053 0.1616 0.2796 0.2991

%V1 0.6558 0.7070 0.6144 0.5758 0.3774 0.2342 0.3484 0.3717

%V2 0.1776 0.0930 0.1154 0.1775 0.1003 0.1031 0.1062 0.1016

¯tADF -1.072(1) -2.539(4T) -2.043(1) -1.912(1) -6.759(1) -4.999(4) -6.680(1) -6.823(1)

c) Feldstein-Horioka puzzle

ave(|ρij |) 0.3752 0.3479 0.2617 0.3579 0.0998 0.1166 0.1004 0.1047
ave(ρij) 0.2522 0.2357 0.1709 0.2558 0.0368 0.0913 0.0177 0.0185

%V1 0.3971 0.4088 0.2935 0.4009 0.1400 0.1841 0.1595 0.1633

%V2 0.2317 0.2507 0.2325 0.2282 0.1343 0.1186 0.1172 0.1167

¯tADF -1.809(1) -1.627(1) -2.093(1) -1.811(1) -6.089(1) -5.661(1) -6.003(1) -6.026(1)

ave(|ρij |) is the average absolute cross-section correlation and ave(ρij) is the average correlation. %Vj is the proportion

of variability explained by the jth principal component (j=1,2) extracted from the relevant correlation matrix. êOLS and

ê
2FE

are the individual OLS and 2-way FE residuals, respectively. ¯tADF is the mean ADF statistic for the unit root null;

the lag order is in parentheses and T denotes a time trend.



T���� 2(�)
S��������	 P����: N = 30, T = 100

Case a Case b Case c Case c̃ Case d Case e Case ẽ Case f

SM SSD SM SSD SM SSD SM SSD SM SSD SM SSD SM SSD SM SSD

Estimator SE SE SE SE SE SE SE SE

POLS 1.000 .0191 1.001 .0269 1.454 .0515 1.495 .0512 1.420 .0475 1.610 .0470 1.661 .0434 1.572 .0458

.0183 .0220 .0162 .0159 .0156 .0144 .0137 .0142

FE .9999 .0186 1.002 .0239 1.457 .0515 1.497 .0512 1.422 .0474 1.613 .0470 1.663 .0432 1.574 .0458

.0178 .0213 .0159 .0155 .0153 .0142 .0134 .0140

2FE .9998 .0186 1.001 .0170 .9990 .0227 1.072 .0245 1.001 .0204 1.000 .0254 1.134 .0285 1.000 .0228

.0181 .0172 .0180 .0180 .0167 .0181 .0179 .0167

FE-PC .9999 .0186 1.000 .0170 1.082 .0343 1.157 .0391 1.072 .0296 1.197 .0642 1.304 .0568 1.165 .0519

.0177 .0165 .0165 .0163 .0154 .0159 .0154 .0150

MG .9994 .0215 1.001 .0294 1.499 .0557 1.499 .0483 1.483 .0533 1.648 .0499 1.666 .0416 1.624 .0491

.0211 .0293 .0423 .0378 .0431 .0380 .0301 .0400

SUR-MG .9989 .0237 1.001 .0237 1.274 .0449 1.284 .0442 1.266 .0429 1.388 .0486 1.437 .0510 1.374 .0481

.0229 .0235 .0367 .0839 .0368 .0383 .0389 .0396

DMG .9996 .0213 1.001 .0201 .9982 .0277 1.086 .0282 .9999 .0274 1.000 .0311 1.156 .0324 1.000 .0294

.0208 .0207 .0267 .0259 .0260 .0298 .0289 .0282

MG-PC .9989 .0217 1.000 .0206 1.115 .0403 1.140 .0416 1.108 .0370 1.242 .0713 1.312 .0600 1.215 .0620

.0218 .0210 .0247 .0271 .0238 .0308 .0317 .0295

CMG .9996 .0215 1.001 .0207 .9990 .0214 1.002 .0218 1.001 .0216 1.000 .0274 1.084 .0298 1.000 .0256

.0212 .0207 .0210 .0211 .0204 .0261 .0274 .0251

Between 1.050 .5580 .9768 .5143 .9983 .5582 1.071 .5604 .9843 .4923 1.005 .5390 1.131 .5434 .9999 .5049

.5612 .5191 .5453 .5451 .5135 .5290 .5286 .4948

SM and SSD are the sample mean and standard deviation of ˆβ over 5,000 replications. SE is the sample mean of the estimated standard error.



T���� 2(��)
S��������	 P����: N = 20, T = 30

Case a Case b Case c Case c̃ Case d Case e Case ẽ Case f

SM SSD SM SSD SM SSD SM SSD SM SSD SM SSD SM SSD SM SSD

Estimator SE SE SE SE SE SE SE SE

POLS .9976 .0407 1.004 .0514 1.450 .0780 1.486 .0847 1.389 .0765 1.601 .0778 1.652 .0730 1.546 .0757

.0410 .0507 .0366 .0356 .0346 .0326 .0309 .0318

FE .9974 .0396 1.003 .0526 1.458 .0781 1.493 .0849 1.395 .0829 1.608 .0776 1.659 .0725 1.553 .0756

.0405 .0509 .0361 .0351 .0342 .0322 .0304 .0315

2FE .9972 .0400 1.002 .0382 .9984 .0434 1.072 .0478 .9990 .0367 1.000 .0472 1.134 .0510 1.001 .0407

.0412 .0380 .0414 .0412 .0364 .0414 .0410 .0371

FE-PC .9975 .0399 1.002 .0381 1.135 .0743 1.213 .0854 1.099 .0557 1.300 .1329 1.400 .1165 1.230 .0997

.0400 .0359 .0365 .0357 .0328 .0340 .0326 .0318

MG .9987 .0536 1.002 .0683 1.503 .0843 1.501 .0800 1.470 .0965 1.649 .0817 1.667 .0689 1.615 .0774

.0497 .0676 .0593 .0546 .0640 .0533 .0439 .0559

SUR-MG .9982 .0581 1.001 .0621 1.390 .0760 1.397 .0768 1.360 .0836 1.518 .0813 1.557 .0745 1.490 .0763

.0546 .0619 .0569 .0560 .0587 .0527 .0489 .0548

DMG .9982 .0513 1.003 .0492 1.000 .0520 1.085 .0550 .9992 .0444 .9994 .0548 1.154 .0575 1.001 .0502

.0481 .0464 .0508 .0500 .0476 .0528 .0515 .0490

MG-PC .9983 .0545 1.002 .0512 1.183 .0871 1.217 .0934 1.149 .0776 1.361 .1443 1.425 .1204 1.301 .1158

.0523 .0488 .0510 .0531 .0494 .0526 .0514 .0511

CMG .9979 .0554 1.001 .0521 .9998 .0513 1.002 .0518 .9964 .0432 .9985 .0540 1.083 .0571 1.002 .0512

.0510 .0484 .0496 .0494 .0482 .0522 .0529 .0499

Between 1.017 .4596 1.019 .3894 .9782 .4379 1.074 .4407 .9915 .2814 1.009 .4283 1.116 .4284 1.004 .3748

.4302 .3905 .4163 .4194 .3883 .4102 .4110 .3771

See footnote in Table 2(I).



T���� 3(�)
N��-S��������	 P����: N = 30, T = 100

Case A Case B Case C Case D Case D̃ Case E Case F Case G

SM SSD SM SSD SM SSD SM SSD SM SSD SM SSD SM SSD SM SSD

Estimator SE SE SE SE SE SE SE SE

POLS 1.000 .0053 1.002 .1545 .9926 .1578 1.111 .1605 1.182 .1757 1.004 .0052 1.109 .1525 1.394 .2109

.0019 .0179 .0182 .0177 .0173 .0024 .0166 .0117

FE 1.000 .0044 1.004 .1046 .9946 .1545 1.397 .1878 1.440 .1903 1.016 .0093 1.362 .1787 1.682 .1534

.0043 .0176 .0229 .0163 .0157 .0046 .0156 .0104

2FE 1.000 .0045 1.005 .1057 1.002 .1144 .9982 .1145 1.071 .1232 1.000 .0045 1.006 .1075 .9945 .0648

.0044 .0180 .0173 .0182 .0181 .0045 .0168 .0122

FE-PC 1.000 .0044 1.004 .1045 .9984 .1169 1.310 .2252 1.373 .2190 1.008 .0059 1.264 .2067 1.400 .2288

.0043 .0177 .0173 .0161 .0156 .0033 .0152 .0107

MG .9999 .0072 .9992 .1308 .9926 .1779 1.493 .2050 1.503 .1869 1.026 .0125 1.470 .1903 1.900 .1105

.0067 .1294 .1740 .1064 .1005 .0067 .1049 .0768

SUR-MG 1.000 .0081 .9998 .1173 .9940 .1557 1.464 .1938 1.475 .1772 1.008 .0065 1.441 .1787 1.781 .1515

.0074 .1159 .1528 .0989 .0939 .0050 .0975 .0682

DMG .9999 .0071 .9994 .1336 1.003 .1288 .9922 .1294 1.088 .1367 1.000 .0065 1.008 .1245 .9921 .0830

.0067 .1279 .1270 .1263 .1257 .0066 .1214 .0764

MG-PC .9999 .0074 .9968 .1077 .9925 .1281 1.468 .2765 1.507 .2403 1.010 .0073 1.424 .2589 1.664 .2275

.0069 .1076 .1270 .1064 .0977 .0047 .1032 .0582

CMG .9999 .0084 1.002 .1045 .9973 .1012 .9897 .1072 1.002 .1058 .9999 .0075 1.004 .0996 1.000 .0201

.0079 .1022 .0991 .1013 .1016 .0077 .0981 .0198

Between .9999 .0065 1.002 .1836 .9925 .1869 .9866 .1909 1.067 .2031 1.000 .0063 1.005 .1839 .9958 .1351

.0062 .1863 .1768 .1840 .1820 .0060 .1729 .1122

SM and SSD are the sample mean and standard deviation of ˆβ over 5,000 replications. SE is the sample mean of the estimated standard error.



T���� 3(��)
N��-S��������	 P����: N = 20, T = 30

Case A Case B Case C Case D Case D̃ Case E Case F Case G

SM SSD SM SSD SM SSD SM SSD SM SSD SM SM SM SSD SM SSD

Estimator SE SE SE SE SE SE SE SE

POLS .9998 .0097 1.001 .2041 1.005 .2055 1.058 .1980 1.131 .2216 1.007 .0103 1.045 .2008 1.243 .2022

.0054 .0395 .0389 .0403 .0394 .0070 .0365 .0242

FE 1.001 .0178 1.002 .1387 .9969 .1841 1.390 .1946 1.436 .2082 1.051 .0346 1.357 .1894 1.568 .1790

.0181 .0404 .0502 .0369 .0357 .0189 .0345 .0271

2FE 1.001 .0182 1.003 .1422 .9949 .1355 .9872 .1361 1.070 .1487 .9998 .0184 .9881 .1231 .9982 .0569

.0186 .0414 .0384 .0414 .0413 .0185 .0375 .0306

FE-PC 1.001 .0178 1.003 .1393 .9924 .1408 1.297 .2260 1.366 .2363 1.024 .0233 1.262 .2191 1.314 .2175

.0181 .0403 .0392 .0361 .0351 .0137 .0333 .0262

MG 1.002 .0279 .9999 .1637 .9987 .2288 1.487 .2190 1.497 .2079 1.081 .0462 1.468 .2077 1.726 .1631

.0277 .1604 .2113 .1315 .1235 .0263 .1294 .0806

SUR-MG 1.002 .0300 .9999 .1482 .9990 .2019 1.459 .2067 1.471 .1980 1.051 .0350 1.440 .1964 1.619 .1693

.0310 .1454 .1873 .1231 .1160 .0244 .1206 .0734

DMG 1.003 .0264 1.001 .1614 .9930 .1559 .9897 .1654 1.084 .1647 .9994 .0275 .9887 .1482 1.002 .0674

.0272 .1559 .1502 .1545 .1536 .0265 .1439 .0648

MG-PC 1.002 .0286 1.008 .1427 .9900 .1711 1.460 .2728 1.493 .2592 1.032 .0298 1.423 .2682 1.473 .2508

.0289 .1375 .1573 .1320 .1213 .0194 .1284 .0648

CMG 1.003 .0330 .9998 .1318 .9938 .1333 .9948 .1412 1.001 .1304 .9998 .0335 .9961 .1230 1.004 .0457

.0329 .1264 .1199 .1243 .1262 .0322 .1163 .0465

Between .9999 .0109 1.002 .2356 1.012 .2341 .9919 .2254 1.068 .2517 .9997 .0103 .9858 .2304 1.004 .1419

.0102 .2278 .2189 .2341 .2286 .0099 .2105 .1137

See footnote in Table 3(I).


