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Abstract

Recently, the large T panel literature has emphasized unobserved, time-varying heterogeneity
that may stem from omitted common variables or global shocks that affect each individual
unit differently. These latent common factors induce cross-section dependence and may lead
to inconsistent regression coefficient estimates if they are correlated with the explanatory
variables. Moreover, if the process underlying these factors is nonstationary, the individual
regressions will be spurious but pooling or averaging across individual estimates still permits
consistent estimation of a long-run coefficient. The need to tackle both error cross-section
dependence and persistent autocorrelation is motivated by the evidence of their pervasiveness
found in three well-known, international finance and macroeconomic examples. A range of
estimators is surveyed and their finite-sample properties are examined by means of Monte
Carlo experiments. These reveal that a mean group version of the common-correlated-effects
estimator stands out as the most robust since it is the preferred choice in rather general (non)
stationary settings where regressors and errors share common factors and their factor loadings
are possibly dependent. Other approaches which perform reasonably well include the two-way
fixed effects, demeaned mean group and between estimators but they are less efficient than

the common-correlated-effects estimator.

Keywords: Factor analysis; global shocks; latent variables
JEL Classification: C32; F31

1 Introduction

Panel or longitudinal data which have observations on cross-section units ¢ = 1,2, ..., N, such as
individuals, firms or countries, over time periods t = 1,2,...,T" enable one to model a variety of

forms of unobserved heterogeneity in regression models. The standard panel literature, developed
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for cases where N is large and T is small, emphasizes unit-specific heterogeneity such as unobserved
ability in earnings equations. When T is large, one can allow for such unit-specific heterogeneity by
estimating a separate time-series equation for each unit. Recent years have witnessed increasing
interest in panel data models with unobserved time-varying heterogeneity induced by common
shocks that influence all units, perhaps to different degrees. This is particularly important in
international finance and macroeconomics where long runs of data are available for many countries,
each of which may be subject to global shocks. Such heterogeneity will introduce cross-section
dependence or correlation between the errors of different units and will render the conventional
estimators inconsistent if the global shocks are correlated with the regressors.

It is also quite plausible that these unobserved factors, such as technology shocks in a production
function or financial innovation in a money demand function, may need first differencing to achieve
stationarity. Such I(1) shocks cause the variables not to cointegrate and the regression to be
spurious, that is, the covariance between the I(1) error and the I(1) regressor does not go to
zero even as T — oo and so the estimator does not converge to the true parameter value but to
a random variable. However, Phillips and Moon (1999, 2000) and Kao (1999) show that panels
make it possible to obtain consistent estimators (as N — o) of a long-run average parameter even
when each of the individual time-series regressions is spurious. The averaging over N attenuates
the noise in the individual estimators and thus facilitates a consistent estimator of the mean effect.

In the panel time-series literature where both N and T are large, the usual approach has been
either to ignore the possibility of cross-section dependence produced by time-specific heterogeneity
or deal with it by including period dummies or fixed effects. But this assumes that the global shocks
have identical effects on each unit which seems quite restrictive. When N is of the same order of
magnitude or greater than 7', the traditional SUR-GLS approach for dealing with cross-section de-
pendence breaks down because the estimated contemporaneous variance-covariance matrix cannot
be inverted. If T is only slightly greater than N, estimation is feasible but it will be unreliable.

However, assuming cross-section independence seems restrictive for many applications in macro-
economics and finance and neglecting it may be far from innocuous as has been clear in the
purchasing power parity (PPP) debate (see O’Connell, 1998). Phillips and Sul (2003) note that
pooling may provide little gain in precision over single-equation estimation if there is substantial

cross-section dependence. In addition, many theoretical results have been derived under the as-



sumption of independence (Phillips and Moon, 2000). As Phillips and Moon (1999: p1092) put it
“...quite commonly in panel data theory, cross-section independence is assumed in part because of
the difficulties of characterizing and modelling cross-section dependence.”

In spatial econometrics, quite popular in urban economics and regional science, a natural
way to model cross-section dependence is in terms of distance (see Baltagi, 2001). But for most
economic problems there is no obvious distance measure. In recent years, characterizing cross-
section dependence by means of a factor structure has attracted a lot of attention (Robertson and
Symons, 1999; Bai and Ng, 2002; Coakley, Fuertes and Smith, 2002; Phillips and Sul, 2003; Moon
and Perron, 2004; Pesaran 2004a). Accordingly, the disturbances are assumed to contain one or
more unobserved (latent) factors which may influence each unit differently.

This paper examines the consequences of time-varying heterogeneity that arises from unob-
served factors, which are possibly (1) processes, and the relative effectiveness of various approaches
in dealing with this phenomenon. The focus of the analysis is on estimation issues rather than
inference. Section 2 provides an empirical illustration of the problems. It shows that three stan-
dard bivariate economic relations involve substantial cross-section dependence and the residuals
resemble (1) series. Section 3 discusses a range of possible estimators. Since we want to make the
paper accessible to a wide audience, we indicate the nature of the issues rather than provide formal
proofs or derivations. Section 4 provides Monte Carlo evidence on the finite sample properties of

these estimators under various data generation processes and Section 5 concludes.

2 Empirical illustrations

We take three standard applications to assess the extent of the two problems, cross-section depen-
dence and I(1) errors, and to help in designing our Monte Carlo experiments. The applications
are PPP, the Fisher relationship and the Feldstein-Horioka (FH) puzzle. Each of them involves a
simple bivariate linear relationship that should hold in the long run.

Let s;+ be the logarithm of the nominal exchange rate and d;+ = p;; —p; the log price differential
between country i and the base country (the US) at period ¢. According to PPP, exchange rates

should reflect price fluctuations in the long-run so in the regression

Sit = o + Bidip + e, (1)



the restriction 5, = 1 should hold. Boyd and Smith (1999) and Coakley, Flood, Fuertes and Taylor
(2004) provide further discussion.

Let il;; denote the annualized long-term nominal interest rate and 7;; the log annual inflation
rate. Assuming E;(m; ++1) = i, the ex ante real interest rate is rl;; = il;; — m;;. The Fisher effect

suggests that nominal interest rates fully reflect inflation expectations in the long-run. Thus in
ilip = o + B;mit + €, (2)

the restriction 8; = 1 should hold. Coakley, Fuertes and Wood (2004) discuss this in more detail.
In both examples, one might expect common (across countries) factors to be present. These would
include base country effects, oil price shocks and the long swings in the real dollar rate for PPP
and movements in the world real interest rate for the Fisher equation.

Let I;; be the share of domestic fixed investment in GDP and S;; the share of savings. In
a world of free capital mobility, national saving would flow to the countries offering the highest

returns and domestic investment would be financed from global capital markets. Thus in
Iit = a; + B,;Sit + €it, (3)

B; = 0 should hold. The puzzle is that Feldstein and Horioka (1980) found the average 5, for OECD
countries to be close to unity, the expected value under no capital mobility. Coakley, Kulasi and
Smith (1996, 1998) and Coakley, Fuertes and Spagnolo (2004) provide further discussion.

The analysis for the PPP and Fisher equations is based on quarterly data for 18 countries (Aus-
tralia, Austria, Belgium, Canada, Denmark, France, Germany, Ireland, Italy, Japan, Netherlands,
New Zealand, Norway, South Africa, Sweden, Switzerland, UK and US) over the 1973Q1-1998Q4
period. The panel dimensions for the PPP analysis are N = 17 (US is excluded) and T' = 104 while
those for the Fisher regression are N = 18 (US is included) and T = 100 (four observations are
lost in calculating the annual inflation series ;s = p;s — p; +—4). Nominal exchange rates and prices
are scaled (1995=100) to remove the effect of units of measurement on the intercepts. Long-term
interest rates are average yields to maturity on bellwether government bonds with residual matu-
rities between 9 and 10 years. All the price indexes are CPI series except for Australia where the
PPI is used due to data unavailability. The FH regression is based on quarterly national saving,
domestic investment and GDP observations for 12 OECD economies (Australia, Canada, Finland,

France, Italy, Japan, Netherlands, Norway, Spain, Switzerland, UK and US) over 1980Q1-2000Q4.



Table 1 gives various summary statistics for the variables and two sets of residuals coming
from individual OLS and from two-way fixed effects (2FE). Both levels and first differences are
considered. The 2FE estimator imposes slope coefficient (and error variance) homogeneity but

allows for country effects «; and time effects a;. The latter may pick up any common factor.
[Table 1 around here]

On the one hand, Table 1 reports the average (absolute) correlation as an indication of the degree of
cross-section dependence — Pesaran (2004b) proposes a test for cross-section dependence based on
the average correlation of the residuals and compares it with the Breusch-Pagan (1980) test based
on the average of the squared correlations. On the other hand, Table 1 reports the proportion of
the variance accounted for by the first two principal components (PCs), as an indication of how
well a factor structure works, and the average ADF t¢-statistic of Im, Pesaran and Shin (2003)
[IPS] as an indication of the possibility of a unit root. The PCs are the linear combinations of
the standardized time series that account for the maximal amount of the total variation. The
eigenvectors of the relevant correlation matrix are the weights and the ordered eigenvalues over
the cumulated eigenvalues give the variance proportions. The first PC often has roughly equal
weights and so it is close to the cross-section mean of the data for each time period.

The average absolute correlations between OLS residuals are 0.67 for PPP, 0.55 for Fisher and
0.26 for FH. Using the 2FE estimator reduces the average absolute correlation in the PPP and
(somewhat in) Fisher but not the FH case. There is little difference between the average absolute
correlation and the average correlation (except for FH) since the residuals are mainly positively
correlated. This is not always the case for the variables. In particular, the log price differential
has an average absolute correlation of 0.84 but an average correlation of only 0.06 because large
positive and negative correlations cancel out. The first PC accounts for 72% of the OLS residual
variance in the PPP case, 61% in Fisher and 29% in FH and similarly for the 2FE residuals. In
the PPP and Fisher cases, the first two factors explain about 80% of the total residual variation.

The IPS test is designed for variables (not residuals) and it assumes cross-section independence.
Therefore, the average ADF statistics should be treated as descriptive rather than as formal tests.
The fact that these statistics are rather small (around -2) suggests that a unit root is likely to

be present in the disturbances for many of the countries. There is slightly more evidence for a



unit root in the residuals from 2FE than in those from individual OLS, which is the reverse of
what one would expect if there was an I(1) factor that the time fixed effects have removed. The
first-differenced series yield much larger (absolute) average ADF statistics, as expected, and lower
cross-section correlations. However, the residual dependence is still quite marked in the PPP and
Fisher cases. This analysis illustrates that both cross-section dependence and potentially (1)

errors are a pervasive feature of the levels regressions (1)-(3).

3 Alternative panel estimators

3.1 The model

Suppose that the data generating process is a linear heterogeneous panel model
Yit :ai+ﬁimit+uita i = 1)7Na t:17"'7Ta (4)

where the parameters are distributed randomly over units, a; = a +1,,; and 8; = 8 + ng; with
Nei ~ 1d(0,02) and 14, ~ iid(0, O’%), and independently of z;; and u;;. Such random coefficient
models (RCM) are discussed by Hsiao (2003) and Hsiao and Pesaran (2004). The variables and

disturbances may be I(1) or I(0). The cross-section and time dependence structure is given by

Uip = Puilit—1 + Vift + Euits Euyit ~ 1d(0,02;), (5)

Tit = PuiTit—1+ Pift +ViXs + Exjity Ewyit ~ iid(QO—ii)v (6)

where iid denotes independence across ¢t and i. Both f; and x, are latent common factors such
that f; may influence both errors (loading +,) and regressors (loading ¢,) whereas ¥, is regressor
specific. If v, # 0 and ¢, # 0, the error and regressor in (4) are correlated. We assume that &, ;;

and &, ;; are independently distributed. The factors may be I(0) or I(1) processes such as

fo = ppficitep, ep~iid(0,0%), (7)

Xe = Py Xi—1TExts Ext™ #id(0, Ui)’ (8)

where €5, and ¢, are independently distributed.
We do not consider lagged dependent variables as regressors because this raises a variety of
quite different issues central to a distinct literature on panel unit root testing surveyed by Trapani

(2004). The parameter of interest is the mean effect 5. The estimators we consider differ in how



they deal with: a) unobserved heterogeneity, b) error cross-section dependence and ¢) dependence

between x;; and wu;; induced by latent common factors. These issues are discussed below.

3.2 Pooled OLS (POLS)

This approach simply pools the data and ignores parameter heterogeneity. It estimates
Yir = @ + Bri + e, e ~iid(0,0%), i=1,..,N, t=1,..,T, (9)

by OLS. The POLS residuals measure e;z = it + 1,; + 1g;Tit Where u;; is the true disturbance.
Even if homogeneity is wrongly imposed, there is no correlation between e;; and x;; because 7,
and 7y, are independent of z;¢, so the BPOLS estimator is unbiased and consistent provided that x;;
and u;; are not influenced by the same factor. But if v; # 0 and ¢, # 0 then POLS is inconsistent.

For non-stationary variables that cointegrate homogeneously (14, = 0), the POLS estimator is
T\/N-consistent. For the I(1) error case (no cointegration), Phillips and Moon (1999) show that
POLS is v/ N-consistent for a long run average, namely, the ratio of the expected (overi=1,...,N)
long-run covariance between y;; and x;; to the expected long-run variance of x;;. In their particular
random coeflicients setting, the latter is different from the average long run defined as the expected

(over ¢ = 1,..., N) value of the ratio of the long-run covariance over the variance.

3.3 Individual fixed effects (FE)
The FE approach introduces dummies to allow the intercepts to differ by unit and estimates
Yir = i + Brip + eqr, e ~ iid(0,07), (10)

by OLS. This amounts to regressing (y;; —¥;) on (x;; — T;) where 5, = T~} Zthl yir and T; =
7! ZtT:l x;; are the unit means. The issues discussed above for the POLS estimator regarding
non-stationary variables and I(0) or I(1) errors apply equally to this estimator as does inconsistency

when regressors and disturbances are influenced by the same latent factor.

3.4 Two-way fixed effects (2FE)

This approach allows the intercepts to differ, both by unit and time period, and estimates

Yit = a; + oy + Brir + e, eqr ~ iid(0,0%), (11)



by OLS or equivalently, a regression of (y;: —¥; — ¥, +7) on (zjy — T; — Ty +T) where g, =
N1 Zfil y; are the time means and 7 = (NT) ' Zle Zfil ¥+ is the overall mean and sim-
ilarly for z. If the true country slopes and variances are homogeneous (3; = 3; 0? = 02) and there
is a single unobserved factor f; that has an identical influence on each unit, then this is captured
by the time effects (a; = vf;) and the estimator BQFE is unbiased and efficient.

If v, # 0 and ¢; # 0 so that regressors and errors are correlated, the 2FE estimator remains
unbiased as long as 7, and ¢, are independent since 2FE amounts to FE for the demeaned data
Uit = Yit —Yr and Ty = x4 — T¢. For equations (5) and (6), assuming p,,;, = p,; = 0 for simplicity, we
have & = (¢; — @) fr + (¥; — ) x; + (Ex.it — Ewe) and Gy = (v; —7) ft + (€w,it — Eur). The covariance

between Z;; and @;s, equal to E{(¢; — ¢)(v; — ) f?}, is zero if ¢; and v, are independent.

3.5 Fixed effects with principal components (FE-PC)

Coakley, Fuertes and Smith (2002) suggest estimating individual OLS regressions of y;; on x; to

extract the residual PCs as proxies for the latent factors. The second stage consists of estimating
Yir = i + By + €'z + ey, ey ~ iid(0,07) (12)

where ¢ = (¢1,...,cy) and z; = (214, ..., 25¢)" are the J < N largest PCs of the first-stage standard-
ized residuals. Factor-model information criteria, such as those derived by Bai and Ng (2002), can
be used to choose J. The estimator of 8 in (12), called FE-PC, is consistent if regressors and errors
in (4) are uncorrelated and more generally (v, # 0 and ¢; # 0), provided that f; can be perfectly

measured by the cross-section mean of the regressor (¢, = 0) as noted by Pesaran (2004a).

3.6 Mean group (MG)

None of the above estimators allows for heterogeneity in the slopes. Pesaran and Smith (1995)

propose a MG approach which does so by estimating individually (OLS) the equations

Yir = o + B, + e, e ~ iid(0, U?)> (13)

~MG ~ ~MG ~ —
and define the estimator ﬁM = NN B, with variance V(ﬁM ) = m SN - B~

Hsiao and Pesaran (2004) review this and other RCM estimators.
If the variables are I(1) and cointegrated, then BZ is superconsistent (rate T') for the long-run

coefficient ;. However, the estimates Bl will be spurious if e;; is I(1). But again, as with POLS



and FE, averaging over the units will attenuate the noise allowing a consistent estimator of § for

large N. The response surface estimates in Coakley, Fuertes and Smith (2001) suggest that the
MG

dispersion of 8 falls at rate v N in the I(1) error case, just like that of POLS and FE.

3.7 SUR mean group (SUR-MG)

In the SUR approach introduced by Zellner (1962), the individual OLS residuals are used to con-
struct a covariance matrix estimate which, in turn, facilitates the FGLS estimate 8 = (3, ..., Bx ).
The SUR-MG estimator is defined as the average of Bi,i =1,..., N. When regressors and errors are
uncorrelated (¢; = 0), the SUR-MG estimator is unbiased and more efficient than MG because it
accounts for the non-zero cross section covariances. However, it does not fully use the information
that the latter arise from a factor structure, so there may be more efficient estimators.

If the same latent factor affects regressors and errors (y; # 0 and ¢; # 0), then SUR is no
longer consistent. The bias of SUR-MG will generally differ from that of MG. One might expect
the former to be smaller because SUR gives less weight than individual OLS to observations with
large variances, those where the factors are important. Moreover, the SUR approach is infeasible
for N > T because the estimated covariance matrix cannot be inverted. Robertson and Symons
(1999) suggest exploiting the factor structure to tackle this problem. But their estimator is quite

complicated and will not be consistent if the unobserved factors are correlated with the regressors.

3.8 Demeaned mean group (DMG)
Another approach is to demean the data for the OLS estimation of the individual regressions
Git = i + B%a + €qr, e ~ iid(0,07), (14)

where §;; = yit — 9, and j, = N1 >, Yit- The DMG estimator is defined as the average of the BZ
For the RCM with one factor (and p,; = 0 for simplicity) we have y;; = a;+ 3;Tit +7; ft +€u,it With
time means 7, = a+ BT +7fi+Eus + N1 vazl NgiTit+7,- Noting that 8,2 — BTy = B,Ti+15,Tt,

it follows that the true relation between the demeaned variables 7;; and Z;; is
Uit = Noi + BiTit + Euit + Vit, (15)

_ _ _ _ 1N _
where &yt = €uit — Eut, Vit = (Vi —7) fe + 15T — N DI ngizie and 7, ~ 0. Hence, the

residuals from (14) measure e;; = &, + v. If the latent factors have identical effects on each



unit (§ =7, = 7), demeaning removes the cross-section dependence because (y; — ) f; = 0 but it
adds new error terms due to the slope heterogeneity (nm #0). If in addition, there is a regressor-
specific factor (1), # 0), demeaning removes it and so the regressor variance in (14) falls which
may adversely affect the estimation efficiency. Since the DMG and 2FE approaches only differ in
that the latter imposes slope and error variance homogeneity, they raise similar issues. As with
2FE, if disturbances and regressor are correlated (7y; # 0 and ¢, # 0), the DMG estimator remains

unbiased as long as v; and ¢; are mutually independent.

3.9 Mean group with principal components (MG-PC)

The homogeneity restriction in the FE-PC approach can be relaxed by individually estimating
Yit = o + BT + Cizy + €3, iy ~ 1d(0, U?),

by OLS. The MG-PC estimator is defined as the average of the individual B@ estimates. This
has similar properties to FE-PC, namely, it is consistent when a common factor drives errors and
regressors provided that ¢, = 0. Telser (1964) noted that SUR-GLS could be implemented by
augmenting each equation with the OLS residuals from the remaining N — 1 equations. This is
not feasible for NV > T but including the J < N largest residual PCs provides a parsimonious
approximation to it. Hence, if regressors and errors are uncorrelated (¢, = 0), the consistent

MG-PC estimator can be seen as a feasible alternative to SUR-GLS in large N and T panels.

3.10 Common correlated effects mean group (CMG)

Pesaran (2004a) suggests including the cross-section averages of the observed variables as proxies

for the latent factors, that is, the mean effect 5 is estimated through the augmented regression
Yir = i + Bimit + 13l + 2T + e, ey ~ 1id(0, 07), (16)

where, although 7; and e;; are not independent, their correlation goes to zero as N — oo. For the
RCM with ng, =0, p,; = 0 and p,,; = 0 without loss of generality, we have ¥, = @+ STt +7 ft +Eu.t
which suggests that 3, — 8%, can capture the effect of f; for large NV as long as 7 # 0. Pesaran shows
that this estimator is consistent for § in a RCM with general cross-section dependence such as

that implied by (5)-(6) with v, # 0, ¢; # 0 and 1, # 0. The consistency proof holds for any linear

10



combination of the variables, i.e. 7; = ZZ w;y;r and T, = ZZ w;xi; subject to the assumptions

1 al a
(a) w1:O<N>7 (b) ;lwz |< K, (C) ;wi'yi?éoa

where K is a finite constant. These clearly hold for the arithmetic mean since w; = 1/N,
Zi]\il |w;| =1 and N~1 Zfil v, = 7. Here we focus on a cross-sectionally augmented MG estima-
tor (referred to as CMG) defined as the average of the individual OLS estimates from regression

(16). Pesaran discusses the latter and a one-way fixed effects variant also.

3.11 Between or cross-section (CS)

Pesaran and Smith (1995) noted that the OLS estimator of the between or cross-section regression
U, = a+ BT + e, e ~iid(0,0%), i =1,...,N, (17)

remains consistent for the mean effect 5 in the presence of I(1) errors. This requires the RCM
assumptions and strict exogeneity. Furthermore, if the data are generated by (4) with error cross-
section dependence due to a latent factor that influences the regressors also, this between estimator

is unbiased provided that the regressor and error loadings (¢; and +,) are mutually independent.

4 Small sample properties

4.1 Monte Carlo design

The purpose of this section is to compare the small sample properties of the ten estimators discussed
above in settings with error cross-section dependence. The errors may be either I(0) or I(1)
processes. Each experiment involves 5,000 replications of (N, T + Ty) observations where the first
Ty = 50 observations are discarded for each time series to minimize the (zero) initialization effects.
We employ (N, T') = {(30,100), (20, 30)} which roughly typify macroeconomic panels of quarterly
and annual frequency, respectively. In both cases T' > N so that SUR estimation is feasible.

The data generating process (DGP) for the experiments is

Yit = ai+ﬁi$it+uit, ’L: 1,...,N, t= 1,...,T, (18)
Uit = Pullit—1 + Vift + €uits Euie ~ 1dN(0,07%,;), (19)
Tit - pzixitfl + ¢;ft + szt + Em,ita sm,it ~ “dN(Ov O—ii); (20)

11



where i = (f1¢, for)', i = (Y14, V2;)" and @; = (d1;, Po;)’- The factors are generated as

fmt = pmf77l7t—1 + Efmt’ Efmt ~ Z"I:dN(O,CT?m), m = 17 2a (21)

Xt = PyXe—1tExts, Ext~ iidN(OJi). (22)

Thus the Monte Carlo design resembles the setup in Section 2.1 but is more general in that it
allows for one or two common factors, f,,:, driving both errors and regressors.

Heterogeneous intercepts are generated as a; ~ #4dU[—0.5,0.5] such that a« = E(a;) = 0. We
focus on the homogenous slope case, 3, = 5, and set 5, = 1. Experiments using 3, ~ 4dU|0.5, 1.5]
such that 8 = E(8;) = 1 gave quite similar results on parameter bias but had effects on estimated
standard errors and efficiency ranking as noted below. Throughout, the factors have different

effects (loadings) on each unit, ¢, ~ #idU[0.5,1.5], 7,,; ~ 4idU[0.5,1.5] and ¢

2
ut

~ #dU[0.5,1.5],

mi
m = 1,2. We use 0., = O'?cl = 0?2 = oi = 1 but the regressor variance differs randomly across
units, o; ~ dU[0.5,1.5], so that the FE and MG estimators are not identical. Two specifications
are considered when the same factor influences errors and regressors: a) ¢; is drawn independently
from -y, for each i; b) independence is introduced simply by using ¢, = -y, for all s.

Each experiment is summarized by the sample mean (SM) and standard deviation (SSD) of
B and the sample mean of the estimated standard error of B (denoted by SE) over replications.
These can be used to gauge the bias and variance of B, and the reliability of the conventional
standard errors. In some settings, e.g. I(1) disturbances, we already know that the conventional
standard errors of particular estimators will be misleading. These issues are discussed below.

By varying the parameter specifications in (19)-(22) we have several settings which differ ac-
cording to: 1) the stationarity properties of variables, factors and errors 4i) the number of common
factors, ii1) whether errors and regressors are independent, iv) whether the factor loadings in errors
and regressors are independent, v) whether there is a regressor-specific factor. The analysis focuses
on the two extreme cases of stationarity and unit root autocorrelation. In the stationary settings

below we focus on p,; = p,; = p,, = p,, = 0 but results (available upon request) using autocorre-

Tl
lation of 0.3 are very similar. For the non-stationary settings, the variables are I(1) throughout
and the latent factors can be I(0) or I(1). The average absolute cross-section correlation (u;) is

in the 0.5-0.8 range for all experiments (except the baseline). The reported results for FE-PC and

MG-PC are based on J =1 but those for J = 2 are very similar. The settings are as follows:

12



i) Stationary settings

Case a (baseline): v, = ¢, = 0,9, = 0. No cross-section dependence.

Case b: 7,5, = 0,¢, = 0. Factor fi; drives the errors. Factor x, drives the regressors.

Case c: 7v,; = ¢9; = ¥; = 0. Factor fi; drives both the errors and the regressors.

Case c: Like ¢ but with ,; = ¢,; for all ¢ to introduce factor-loading dependence.

Case d: vy, = ¢y; = 0. Factor fi; drives errors and regressors. Factor x, drives the regressors.
Case e: ¢, = 0. Two factors, f; = (f1s, f2:)’, drive both the errors and the regressors.

Case e: Like e but with «; = ¢, for all i. Factor-loading dependence.

Case f: Two factors, f;, drive errors and regressors. Factor x, drives the regressors.

i1) Non-stationary settings

Case A (baseline): p,; = 0,7, = ¢, = 0,7, = 0. Cointegration. No cross-section dependence.
Case B: p,; = 1,7, = ¢, = 0,79, = 0. No cointegration. No cross-section dependence.

Case C: p,; = 1,75, = 0,¢; = 0. No cointegration. An I(0) factor fi; drives the errors. An I(0)
factor x, drives the regressors.

Case D: p,;, = 1,7y, = ¢9; = ¢, = 0. No cointegration. An I(0) factor fi; drives the errors and
the regressors.

Case D: Like D but with ~v1; = ¢4, for all i. Factor-loading dependence.

Case E: p,; = 0,7,; = ¢5; = ¥, = 0. Cointegration. An I(0) factor fi; drives errors and regressors.
Case F: p,; = 1,7,; = ¢5; = 0. No cointegration. An I(0) factor fi; drives errors and regressors.
An I(0) factor x, drives the regressors.

Case G: p; = p, = 1,p,; = py; = 0,72; = ¢; = 0. No cointegration. An I(1) factor fi; drives

both the errors and the regressors. An I(1) factor x, drives the regressors.

4.2 Monte Carlo results

i) Stationary settings

The results for the experiments on stationary data are summarized in Tables 2(T) and 2(II) for the

N = 30,7 =100 and N = 20,7 = 30 panels, respectively.

[Table 2 around here]

13



The baseline results (Case a) for the two panel dimensions are similar except that the estimates
from the larger sample have smaller standard errors. Since 3, =  was used in generating the data,
the estimators that allow for heterogeneous 3, suffer quite large losses of efficiency. For instance, in
the small panel the reported SSD of the MG and FE estimators is 0.0536 and 0.0396, respectively.
In contrast, the MG estimator is more efficient when 8, ~ #dU[0.5,1.5] in (18) instead. For
instance, the SSD of MG and FE is 0.080 and 0.087, respectively. Similarly, since there is no
cross-section dependence in the disturbances, estimators that allow for it lose efficiency.

When two independent common factors drive errors and regressors, respectively (Case b),
there is cross-section dependence but since the errors are independent from the regressors, all
the estimators remain unbiased. They differ in their efficiency as one would expect. Among the
estimators that impose homogeneous slopes, 2FE is the most efficient whereas CS is the least
efficient because by averaging z;; over time, the regressor variance falls. Among the MG variants,
the MG-PC is more efficient than SUR-MG because it explicitly accounts for the factor structure.

When the same factor influences the errors and the regressors but there is independence between
their loadings (Case c), the conventional POLS, FE and MG estimators are substantially biased.
Their mean is about 1.5 rather than 1. The SUR-MG bias at about 0.4 is smaller as one would
expect. The FE-PC and MG-PC approaches reduce the bias to about 0.15. In sharp contrast, the
2FE, DMG, CMG and CS estimators are unbiased. But when the factor loadings of errors and
regressors are dependent (Case ¢), the 2FE, DMG and CS estimators show biases of the order
of 0.08 whereas CMG remains unbiased. Additionally including a regressor-specific factor (Case
d) gives similar results, except that all the biases, given by Cov(x;t,e;t)/V (zi:) where e;; is the
regression error, tend to be smaller because V(x;;) has now increased.

When f; influences regressors and errors and ¢, and -, are drawn independently (Case e), then
2FE, DMG, CMG and CS are all unbiased. Hence, adding a second factor does not change the
results as long as there is independence between the factor loadings of errors and regressors. Absent
the latter in a two-factor setting (Case €), all the estimators are now biased but the smallest bias is
clearly that of CMG. Hence, the factor loading dependence in a multiple-factor setting appears to
cause difficulties for the CMG. But this could potentially be dealt with by using as augmentation
terms in (16) other weighted averages of the observed variables. Adding a regressor-specific factor

(Case f) gives very similar results but again all the biases are now smaller.
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In sum, these results suggest that the CMG estimator is quite robust. It is unbiased unless
there are multiple common factors in disturbances and regressors together with factor-loading
dependence. However, even in the latter case its bias is relatively small and it is clearly the
most efficient estimator. The 2FE; DMG and CS estimators do quite well provided that there is
factor-loading independence, but it would be difficult to judge a priori whether this is a plausible
assumption in empirical applications. The CS estimator is also unbiased under factor-loading

independence but it has very large variance.

it) Non-stationary settings

The results for the non-stationary panels are summarized in Tables 3(I) and 3(II).
[Table 3 around here]

We first examine the baseline cointegration case with cross-sectional independence in regressors
and errors (Case A). All the estimators are unbiased and, compared to the stationary counterpart
case, their dispersion is substantially reduced because of the larger variance of the I(1) regressor.
For instance, in the small panel the SSD of FE (the efficient estimator) falls from 0.0396 to 0.0178.
The improvement in the CS estimator is even more noticeable from 0.4596 to 0.0109.

The I(1) disturbances setting (Case B) implies a substantial dynamic misspecification and
the appropriate model is one in first differences. However, as established by Phillips and Moon
(1999), averaging across spurious regressions produces unbiased estimates. Unsurprisingly, the I(1)
errors lead to much larger sampling variation. For instance, in the small panel the SSD of FE has
increased from 0.0178 to 0.1387. Conventional standard errors are very misleading except those
for the MG estimator (and variants) because they are based on the distribution of the individual
Bl—, and for the CS estimator because it averages out the time variation in the data.

When an I(0) factor fi; is introduced in the errors and another I(0) factor x, in the regressors
(Case C), all the estimators remain unbiased despite the lack of cointegration. This is because
errors and regressors are uncorrelated. The theory in Phillips and Moon (1999) builds on the
assumption of cross-section independence so this design (and others that follow) is of particular
interest. The cross-section dependence induced by fi; substantially increases the SSD of the FE

and MG estimators but not so for the estimators that control for it. An exception to the latter is
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SUR-MG (and the parsimonious approximation to it, MG-PC) whose SSD increases from 0.1482
to 0.2019. The most efficient estimator is CMG closely followed by 2FE.

In a non-cointegration setting with an I(0) common factor that drives errors and regressors
(Case D), all estimators but 2FE, DMG, CMG and CS are biased, as in the stationary counterpart
case, because errors and regressors are correlated. The FE-PC and MG-PC estimators do rather
badly because the I(1) dynamics of the residuals makes it difficult to extract the I(0) factor.
However, this problem could be tackled by deploying a modified version of these estimators where
the residual PC extraction is based on differencing (and recumulating) as proposed by Bai and
Ng (2004) to estimate factors consistently whether they are 1(0), I(1) or a mixture. Interestingly,
POLS with a bias of only 0.058 does well relative to FE with a bias of 0.390, having similar
variances. This is because the bias inversely depends on the regressor variance and, by taking
deviations from unit means in the FE approach, the regressor variance falls and the bias increases.
If dependence between the factor loadings of errors and regressors is introduced (Case f)), only
the CMG remains unbiased as in the stationary case.

We then consider the cointegration setting where an I(0) factor affects errors and regressors
(Case E). Here the biases are rather small (particularly for the large T = 100 panel) because
the correlation between the I(1) regressor and the I(0) disturbance goes to zero with 7. With no
cointegration and an I(0) factor driving errors and regressors and a regressor-specific 1(0) factor
(Case F) the results are similar to Case D where the latter is absent. But the biases are now
somewhat smaller because the regressor variance has increased. Finally, we simulate the factors
fit and x, as I(1) processes (Case G). Again the 2FE, DMG, CMG and CS estimators remain
unbiased with CMG the most efficient. But the biases of the remaining estimators are now larger,
particularly for POLS, FE, MG and SUR-MG, due to the I(1) dynamics of the factors.

We carried out experiments for other I(1) factor settings and the results also suggest that the
CMG estimator is the most robust. For instance, if another I(1) factor fa: is included, the only
issue is that the biases above increase further — in the large panel the mean for FE, MG and
SUR-MG is 1.77, 1.92 and 1.84, respectively. With factor-loading dependence (vy;; = ¢;,) in Case
G, there are now biases in the 2FE, DMG and CS estimators but not in CMG — in the large panel
the means are 1.24 (2FE), 1.34 (DMG), 1.39 (Between) and 1.00 (CMG).
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5 Concluding remarks

We have considered the estimation of the mean slope coefficient in a linear heterogeneous panel
regression where the disturbances are correlated across units due to unobserved factors, such as
global shocks, that may also influence the regressors. The disturbances can be I(1) as well as 1(0)
processes. The analysis is motivated by the need to tackle both error cross-section dependence
and persistent autocorrelation found in three empirical macroeconomic examples. We discuss
the impact of these phenomena on ten alternative estimation approaches. Their small sample
properties are compared through Monte Carlo experiments. It turns out that in panels one can
obtain unbiased estimates of average long-run parameters even in the context of I(1) disturbances.

Overall, the novel CMG estimator stands out as the most robust in the sense that it is the pre-
ferred choice in rather general (non) stationary settings where regressors and errors share common
factors and their factor loadings are possibly dependent. It is based on the common-correlated-
effects approach of Pesaran (2004a) which simply augments the regression of interest with the
time means of the variables to approximate the factor structure that induces the cross-section de-
pendence. Other approaches which perform reasonably well include 2FE, DMG and CS but they
are relatively less efficient than CMG. These estimators show essentially zero bias in most of the
experiments except when there is factor-loading dependence. Under several of the factor structures
considered, the remaining estimators are inconsistent although POLS and FE-PC exhibit less bias
than FE, MG, SUR-MG and MG-PC.

The theoretical literature on cross-section dependence is growing rapidly but many issues await
further research. As yet there is a relatively small empirical literature that deals with cross section
dependence and so it is unclear which of the available estimators is most appropriate. The answer
depends on what the true data generating process is. Application of these methods to our three
empirical examples is a matter for further research which will have to consider a number of other
specification issues. In particular, our assumption that the parameters are randomly distributed
may not be appropriate for those examples. The analysis in this paper assumed a static relationship
between (non-)stationary variables. The dynamic case, including 7(0) or I(1) unobserved common

factors, raises a number of different issues and warrants consideration in a separate paper.
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TABLE 1
SUMMARY STATISTICS

Levels regression First-difference regression
sOLS ;2FE SOLS ;2FE
Yit Tyt €t €3 Ayt Az € €

a) Purchasing power parity

ave(|,0ij ) 0.5845 0.8421 0.6717 0.5994 0.5547 0.2762 0.5546 0.5550
ave(pij) 0.3422 0.0588 0.6717 0.5764 0.5547 0.2656 0.5546 0.5550
%V 0.5602 0.8554 0.7244 0.6486 0.6411 0.3355 0.6401 0.6419
%Va 0.3768 0.0910 0.1031 0.1795 0.0969 0.1355 0.0946 0.0964
tapF L618(1)  -2.195(4)  -2.047(1) -1.923(1)  -7.586(1) -2.644(4) -7.649(1) -7.678(1)
b) Fisher relationship

ave(|,0ij ) 0.6152 0.6682 0.5542 0.5272 0.3068 0.1724 0.2827 0.3008
ave(pij) 0.5558 0.6680 0.5440 0.4891 0.3053 0.1616 0.2796 0.2991
%y 0.6558 0.7070 0.6144 0.5758 0.3774 0.2342 0.3484 0.3717
%oVa 0.1776 0.0930 0.1154 0.1775 0.1003 0.1031 0.1062 0.1016
tapr -1.072(1)  -2.539(4T) -2.043(1) -1.912(1)  -6.759(1) -4.999(4) -6.680(1) -6.823(1)
¢) Feldstein-Horioka puzzle

ave(|,0ij ) 0.3752 0.3479 0.2617 0.3579 0.0998 0.1166 0.1004 0.1047
ave(pij) 0.2522 0.2357 0.1709 0.2558 0.0368 0.0913 0.0177 0.0185
%V, 0.3971 0.4088 0.2935 0.4009 0.1400 0.1841 0.1595 0.1633
%V 0.2317 0.2507 0.2325 0.2282 0.1343 0.1186 0.1172 0.1167
ey -1.809(1)  -1.627(1)  -2.003(1) -1.811(1)  -6.089(1) -5.661(1) -6.003(1) -6.026(1)
ave(|,0ij |) is the average absolute cross-section correlation and ave(pij) is the average correlation. %VJ is the proportion

of variability explained by the jth principal component (j=1,2) extracted from the relevant correlation matrix. 69LS and

E2FE 416 the individual OLS and 2-way FE residuals, respectively. £ 4pp is the mean ADF statistic for the unit root null;

the lag order is in parentheses and T denotes a time trend.



TABLE 2(1)
STATIONARY PANEL: N = 30,7 =100

Case a Case b Case ¢ Case ¢ Case d Case e Case é Case f

SM SSD SM SSD SM SSD SM SSD SM  SSD SM  SSD  SM  SSD  SM SSD
Estimator SE SE SE SE SE SE SE SE

POLS 1.000 .0191 1.001 .0269 1.454 .0515 1.495 .0512 1.420 .0475 1.610 .0470 1.661 .0434 1.572 .0458

L0183 .0220 L0162 .0159 L0156 0144 .0137 0142
FE 9999 0186 1.002 .0239 1.457 .0515 1.497 .0512 1.422 .0474 1.613 .0470 1.663 .0432 1.574 .0458
L0178 0213 L0159 .0155 L0153 L0142 0134 L0140
2FE 9998 0186 1.001 .0170 .9990 .0227 1.072 .0245 1.001 .0204 1.000 .0254 1.134 .0285 1.000 .0228
L0181 0172 L0180 .0180 0167 L0181 .0179 0167
FE-PC 9999 0186 1.000 .0170 1.082 .0343 1.157 .0391 1.072 .0296 1.197 .0642 1.304 .0568 1.165 .0519
0177 0165 L0165 .0163 L0154 L0159 0154 L0150
MG 9994 .0215 1.001 .0294 1.499 .0557 1.499 .0483 1.483 .0533 1.648 .0499 1.666 .0416 1.624 .0491
L0211 0293 L0423 .0378 L0431 .0380 .0301 L0400
SUR-MG .9989 .0237 1.001 .0237 1.274 .0449 1.284 .0442 1.266 .0429 1.388 .0486 1.437 .0510 1.374 .0481
L0229 0235 L0367 .0839 L0368 L0383 .0389 .0396
DMG 9996 .0213 1.001 .0201 .9982 .0277 1.086 .0282 .9999 .0274 1.000 .0311 1.156 .0324 1.000 .0294
L0208 0207 L0207 .0259 .0260 L0298 .0289 L0282
MG-PC 9989 .0217 1.000 .0206 1.115 .0403 1.140 .0416 1.108 .0370 1.242 .0713 1.312 .0600 1.215 .0620
L0218 0210 L0247 0271 L0238 L0308 0317 L0295
CMG 9996 .0215 1.001 .0207 .9990 .0214 1.002 .0218 1.001 .0216 1.000 .0274 1.084 .0298 1.000 .0256
L0212 0207 L0210 0211 L0204 L0201 .0274 L0251
Between  1.050 .5580 .9768 .5143 .9983 .5582 1.071 .5604 .9843 .4923 1.005 .5390 1.131 .5434 .9999 .5049
L9612 0191 L5453 5451 L5135 5290 .5286 4948

SM and SSD are the sample mean and standard deviation of 6 over 5,000 replications. SF is the sample mean of the estimated standard error.



TABLE 2(11)

STATIONARY PANEL: N = 20,7 =30

Case a Case b Case ¢ Case ¢ Case d Case e Case € Case f

SM SSD SM SSD SM SsD SM SSD SM  SSD SM  SSD SM  SSD  SM  SSD

Estimator SE SE SE SE SE SE SE SE
POLS 9976 .0407 1.004 .0514 1.450 .0780 1.486 .0847 1.389 .0765 1.601 .0778 1.652 .0730 1.546 .0757
L0410 L0507 .0366 .0356 L0346 L0326 .0309 L0318
FE 9974 0396 1.003 .0526 1.458 .0781 1.493 .0849 1.395 .0829 1.608 .0776 1.659 .0725 1.553 .0756
L0405 L0509 L0361 .0351 L0342 L0322 .0304 L0315
2FE 9972 .0400 1.002 .0382 .9984 .0434 1.072 .0478 .9990 .0367 1.000 .0472 1.134 .0510 1.001 .0407
L0412 L0380 0414 0412 L0364 L0414 .0410 L0371
FE-PC 9975 .0399 1.002 .0381 1.135 .0743 1.213 .0854 1.099 .0557 1.300 .1329 1.400 .1165 1.230 .0997
.0400 L0359 L0365 .0357 L0328 L0340 .0326 L0318
MG 9987 .0536 1.002 .0683 1.503 .0843 1.501 .0800 1.470 .0965 1.649 .0817 1.667 .0689 1.615 .0774
L0497 0676 L0598 .0546 .0640 L0538 .0439 L0559
SUR-MG .9982 .0581 1.001 .0621 1.390 .0760 1.397 .0768 1.360 .0836 1.518 .0813 1.557 .0745 1.490 .0763
L0546 L0619 L0569 .0560 L0587 L0527 .0489 L0548
DMG 9982 .0513 1.003 .0492 1.000 .0520 1.085 .0550 .9992 .0444 .9994 .0548 1.154 .0575 1.001 .0502
L0481 L0464 L0508 .0500 L0476 L0528 .0515 .0490
MG-PC 9983 .0545 1.002 .0512 1.183 .0871 1.217 .0934 1.149 .0776 1.361 .1443 1.425 .1204 1.301 .1158
.0523 L0488 L0510 .0531 L0494 L0526 .0514 L0511
CMG 9979 .0554 1.001 .0521 .9998 .0513 1.002 .0518 .9964 .0432 .9985 .0540 1.083 .0571 1.002 .0512
L0510 L0484 .0496 .0494 L0482 L0522 .0529 .0499
Between 1.017 .4596 1.019 .3894 .9782 4379 1.074 .4407 .9915 .2814 1.009 .4283 1.116 .4284 1.004 .3748
4302 .3905 4163 4194 L3883 .4102 4110 L3771

See footnote in Table 2(I).



TABLE 3(1)

NON-STATIONARY PANEL: N = 30,7 =100

Case A Case B Case C Case D Case D Case E Case F Case G
SM SSD SM SSD SM SsD SM SSD SM  SSD SM  SSD SM  SSD  SM SSD
Estimator SE SE SE SE SE SE SE SE
POLS 1.000 .0053 1.002 .1545 .9926 .1578 1.111 .1605 1.182 .1757 1.004 .0052 1.109 .1525 1.394 .2109
.0019 L0179 L0182 0177 L0178 L0024 .0166 0117
FE 1.000 .0044 1.004 .1046 .9946 .1545 1.397 .1878 1.440 .1903 1.016 .0093 1.362 .1787 1.682 .1534
L0043 L0176 L0229 L0163 L0157 L0046 0156 .0104
2FE 1.000 .0045 1.005 .1057 1.002 .1144 .9982 .1145 1.071 .1232 1.000 .0045 1.006 .1075 .9945 .0648
L0044 L0180 0178 L0182 L0181 L0045 .0168 L0122
FE-PC 1.000 .0044 1.004 .1045 .9984 .1169 1.310 .2252 1.373 .2190 1.008 .0059 1.264 .2067 1.400 .2288
L0043 0177 0178 L0161 L0156 L0038 L0152 L0107
MG 29999 .0072 .9992 .1308 .9926 .1779 1.493 .2050 1.503 .1869 1.026 .0125 1.470 .1903 1.900 .1105
L0067 1294 1740 .1064 .1005 L0067 .1049 L0768
SUR-MG 1.000 .0081 .9998 .1173 .9940 .1557 1.464 .1938 1.475 .1772 1.008 .0065 1.441 .1787 1.781 .1515
L0074 1159 L1528 .0989 .0939 .0050 L0975 L0682
DMG 9999 .0071 .9994 .1336 1.003 .1288 .9922 .1294 1.088 .1367 1.000 .0065 1.008 .1245 .9921 .0830
L0067 L1279 L1270 L1263 L1257 .0066 1214 L0764
MG-PC 9999 .0074 .9968 .1077 .9925 .1281 1.468 .2765 1.507 .2403 1.010 .0073 1.424 .2589 1.664 .2275
.0069 L1076 L1270 .1064 L0977 L0047 L1032 L0582
CMG 9999 .0084 1.002 .1045 .9973 .1012 .9897 .1072 1.002 .1058 .9999 .0075 1.004 .0996 1.000 .0201
L0079 .1022 .0991 L1018 L1016 0077 L0981 .0198
Between .9999 .0065 1.002 .1836 .9925 .1869 .9866 .1909 1.067 .2031 1.000 .0063 1.005 .1839 .9958 .1351
.0062 L1863 L1768 .1840 L1820 .0060 1729 L1122

SM and SSD are the sample mean and standard deviation of 6 over 5,000 replications. SF is the sample mean of the estimated standard error.



TABLE 3(11)

NON-STATIONARY PANEL: N = 20,7 =30

Case A Case B Case C Case D Case D Case E Case F Case G

SM SSD SM SSD SM SSD SM SSD SM SSD  SM SM SM SSD SM  SSD

Estimator SE SE SE SE SE SE SE SE
POLS 9998 .0097 1.001 .2041 1.005 .2055 1.058 .1980 1.131 .2216 1.007 .0103 1.045 .2008 1.243 .2022
L0054 L0395 L0389 .0403 .039) .0070 L0365 L0242
FE 1.001 .0178 1.002 .1387 .9969 .1841 1.390 .1946 1.436 .2082 1.051 .0346 1.357 .1894 1.568 .1790
L0181 L0404 L0502 .0369 L0357 L0189 L0345 L0271
2FE 1.001 .0182 1.003 .1422 .9949 .1355 .9872 .1361 1.070 .1487 .9998 .0184 .9881 .1231 .9982 .0569
L0186 0414 L0384 L0414 L0413 L0185 L0375 L0306
FE-PC 1.001 .0178 1.003 .1393 .9924 .1408 1.297 .2260 1.366 .2363 1.024 .0233 1.262 .2191 1.314 .2175
L0181 .0403 L0392 .0361 L0351 0187 L0338 L0262
MG 1.002 .0279 .9999 .1637 .9987 .2288 1.487 .2190 1.497 .2079 1.081 .0462 1.468 .2077 1.726 .1631
L0277 1604 2118 L1315 L1235 L0263 1294 L0806
SUR-MG 1.002 .0300 .9999 .1482 .9990 .2019 1.459 .2067 1.471 .1980 1.051 .0350 1.440 .1964 1.619 .1693
L0310 1454 1878 L1231 L1160 0244 L1206 0734
DMG 1.003 .0264 1.001 .1614 .9930 .1559 .9897 .1654 1.084 .1647 .9994 .0275 .9887 .1482 1.002 .0674
L0272 .1559 L1502 1545 L1536 L0265 .1439 L0648
MG-PC 1.002 .0286 1.008 .1427 .9900 .1711 1.460 .2728 1.493 .2592 1.032 .0298 1.423 .2682 1.473 .2508
L0289 L1375 1578 L1320 L1218 L0194 1284 L0648
CMG 1.003 .0330 .9998 .1318 .9938 .1333 .9948 .1412 1.001 .1304 .9998 .0335 .9961 .1230 1.004 .0457
L0329 1264 .1199 L1243 L1262 L0322 1163 L0465
Between .9999 .0109 1.002 .2356 1.012 .2341 .9919 .2254 1.068 .2517 .9997 .0103 .9858 .2304 1.004 .1419
L0102 2278 2189 2341 2286 .0099 2105 1137

See footnote in Table 3(T).



