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Abstract

In the study of depth functions it is important to decide whether we want such a
function to be sensitive to multimodality or not. In this paper we analyze the Delaunay
depth function, which is sensitive to multimodality and compare this depth with others, as
convex depth and location depth. We study the stratification that Delaunay depth induces
in the point set (layers) and in the whole plane (levels), and we develop an algorithm
for computing the Delaunay depth contours, associated to a point set in the plane, with
running time O(n log2 n). The depth of a query point p with respect to a data set S in
the plane is the depth of p in S ∪ {p}. When S and p are given in the input the Delaunay
depth can be computed in O(n log n), and we prove that this value is optimal.

Key words : Tukey depth, halfspace depth, convex depth, Delaunay depth, depth contours,
layers.

1 Introduction

In multivariate analysis classical parametric methodologies are sensitive to outlying data points
and rely on assumptions about the underlying distribution (as normality or some kind of sym-
metry). Data depth has been considered as a measure of how deep or central a given point is
with respect to a multivariate distribution. Recently nonparametric methods have been devel-
oped based on the concept of data depth [LPS99]. The affine invariance property of data depth
and the spatial ordering of the sample points leads to the introduction of different methods
for analyzing multivariate distributional characteristics. A survey of statistical applications of
multivariate data depth may be found in [LPS99]. Several different notions of depth have been
considered, as for instance: location depth, also known by halfspace depth or Tukey depth [Tu75],
convex depth or convex hull peeling depth [Hu72], [Ba76], Delaunay depth [Gre81], Oja depth
[Oja83], simplicial depth [Liu90] and regression depth [RH99]. We can see a classification of
multivariate data depths based on their statistical properties in [ZS00].

Every notion of depth of a point with respect to a point set S gives rise to a partition of
the set S into layers and also to a partition of the whole plane into levels. The layers are the
subsets of points of S having the same depth. The levels are the regions of points in the plane
with the same depth with respect to S (the depth of a point p with respect to S is the depth
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of p in S ∪{p}). The boundaries of the levels are known by depth contours and provide a quick
and informative overview of the shape and some properties of the point set. For this reason,
Tukey suggested the use of depth contours as a nice tool for data visualization [Tu75].

Obviously, for any specific purpose of a given statistical analysis, certain notions of depth
may be more suitable than others. In [OBS92](pg. 363) Okabe et al. mention the interest of
comparing Delaunay depth with respect to other depths. In this paper we focus on Delaunay
depth and compare the properties of layers and levels associated to finite sets of points in the
plane to the case of convex depth, location depth. A thorough study is presented in [Cla04].

A main concern in current theoretical research on data depth is to find the depth contours
and central regions by which the underlying distribution may be characterized. In the dis-
crete geometry literature, the center is any point with location depth greater than or equal to
⌈n/(d+1)⌉ in R

d. The center is a point with global maxima depth in the case of location depth
or convex depth and the region of centers is a connected set; the situation is differently for
Delaunay depth, as shown later, yet it may be desirable to consider the local maxima keeping
in mind the multimodality features of the underlying set of points. Delaunay depth works well
on general distributions and is better than others depths in some respects since it is sensitive
to the existence of clusters and neighborhood relations between the points. Many interpolation
methods are based on Voronoi diagrams and Delaunay triangulations as a natural neighbor in-
terpolation method [Sib81]. A selection of clustering methods is presented in [SHR97]. Different
schemes have been proposed for cluster representation; for example, in [Epps97] a hierarchical
clustering algorithm is developed, and in [NTM01] another clustering algorithm based on closest
pairs is described.

For every notion of depth, the median is defined as a point with maximal depth. When
this point is not unique, the median is often taken to be the centroid of the deepest region.
In particular, and regarding the applications to statistics, several medians have been explicitly
considered: the Tukey median, the convex depth median, the maximum simplicial depth median,
and the minimum Oja depth median, as well as a line or a flat with maximum regression depth.
An overview of several multivariate medians and their basic properties can be found in [Sma90].
The Tukey median can be used as a point estimator for the data set, and it is robust against
outliers, does not rely on distances, and is invariant under affine transformations. The location
depth and the corresponding median have good statistical properties as well [BH99]. Rousseeuw
and Struyf present a complete survey about depth, median, and related measures in [RS04].

After introducing the basic definitions in Section 2, we give an algorithm in Section 3 for
computing the Delaunay depth contours (boundaries of the levels), associated to a point set in
the plane. Therefore, we will know the Delaunay median after computing all the levels within
the running time of the algorithm, which is O(n log2 n) (where n is the number of points in
the input). We also study and compare the complexity of the layers and levels of the convex,
location and Delaunay depths. In particular, we see that the depth of a point p with respect
to a set of data S = {s1, · · · , sn} can be found in O(n logn) time. Lower bounds for this kind
of problems have attracted significant attention, and in Section 4 we carry out a study similar
to those by Aloupis et al. in [ACG+02] and [AMcL04], proving an Ω(n logn) lower bound for
Delaunay depth computation.

2 Preliminaries

Let S be a set of n points in the plane, CH(S) the convex hull of S and p any point of S.
Any generic depth of p with respect to S is denoted by dS(p) and the levels and layers of S
by Levi(S) and Layi(S), respectively. For the specific cases we study we add superscripts as

2



dS(p) (Depth) Layi(S) (Layer i) Levi(S) (Level i)

Convex if p ∈ CH(S), dS(p) = 1

else

dS(p) = dS\CH(S)(p) + 1

Layi(S) = CH(Si)

Si = {x ∈ S/dS(x) = i} Depth of a point

Location dS(p) = j, j ≤ ⌊|S|/2⌋ ⇔ relative to a set S
some line through p leaves d(p, S) = dS∪{p}(p)

exactly j − 1 points on one

side, none leaves less

Levi(S)=

Delaunay if p ∈ CH(S), dS(p) = 1 {x ∈ R
2/d(x, S) = i}

else Layi(S) =subgraph of
dS(p) = distance from p DT (S) induced by Si

to CH(S) +1, in DT (S) Si = {x ∈ S|dS(x) = i}

Table 1: Definitions

indicted in the following paragraphs.

The convex depth of p, is defined recursively as follows: if p ∈ CH(S), dCS (p) = 1, else
dCS (p) = dC

S\CH(S)(p) + 1. For values of j ≤ ⌊n/2⌋ we say that the location depth of p is

dLS(p) = j if and only if there is a line through p leaving exactly j − 1 points on one side, but
no line through p separates a smaller subset. The Delaunay depth of p, dDS (p), is defined to
be d + 1 when the graph theoretical distance from p to CH(S) in the Delaunay triangulation
DT (S) of S is d. In all three cases we call depth of S the depth of its deepest point.

The i-th layer of S, Layi(S), is defined for convex depth as well as for location depth by
LayCi (S) = LayLi (S) = CH(Si), where Si = {x ∈ S | dS(x) = i}, (Figures 1 and 2). For the
Delaunay depth, LayDi (S) is the subgraph of DT (S) induced by Si, (Figure 3).

Let p be any point in the plane. For the three depths considered, the depth of p relative
to the set S is d(p, S) = dS∪{p}(p) and the i-th level for the set S is defined by Levi(S) =
{x ∈ R

2|d(x, S) = i}. The concept of k-hull introduced by Cole, Sharir and Yap in [CSY87]
corresponds to

⋃
j≥k Levj(S), also know by kth depth region Dk.

Table 1 shows all these definitions together.

3 Point set stratification

Given a set S of n points in the plane the convex layers can be constructed with Chazelle’s
optimal O(n log n) algorithm [Cha85]. Convex layers form a sequence of nested convex polygons
defining a partition of the plane into regions, which coincide with the levels, (Figures 1 and
4). Therefore layers and levels have linear complexity in the convex depth case and can be
constructed in optimal O(n log n) time.

As for location depth, a worst case optimal algorithm for computing all LevSi (S), (where
n/3 ≤ i ≤ n/2) in O(n2) time is obtained by using topological sweep in the dual arrangement
of lines (see [Cla04], [MRR+03]). The boundaries of the levels, in this case, form a sequence of
nested convex polygons. Points of LaySi (S) are in convex position and belong to the boundary
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Figure 1: Convex layers.
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Figure 2: Location layers.

of LevSi (S), but this boundary can also have other vertices not in S, (Figure 5). Some layers
can be empty and different layers can cross each other (Figure 2). While the complexity of
levels may reach O(n2), the size of the layers is O(n). The layers in the location depth case can
be computed using the mentioned O(n2) sweep algorithm yet, to our knowledge, it is an open
problem to construct them in less time or to prove a quadratic lower bound for the problem.

Much less has been studied to Delaunay depth, which we explore sistematically in the rest
of this section.

In the Delaunay depth case, all the layers LayDi (S), i ≤ n/3, can easily be found by visiting
DT (S) in linear time once constructed, which requires O(n logn) time (Figure 3). Notice that
one layer can have more than one connected component. Next, we study the Delaunay layers.
First, we show some properties of Delaunay layers which allow us to obtain the levels easily
and also to prove other results as that the

⋃
LevDi (S) are nested sets. Next, we will study the

number of connected components that we can have in the
⋃
LayDi (S).

Proposition 3.1 Let S be a set of Delaunay depth greater than one. The points of S, in the
interior of any cycle Ci of Lay

D
i (S), have depth greater than i.

Proof. Let p ∈ S be, which is in the interior of a cycle Ci of Lay
D
i (S). From the definition of

Delaunay depth, we know that p must have some adjacency of depth dDS (p) − 1. The points
adjacent to p are points of Ci or they are in the interior of Ci.
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Figure 3: Delaunay layers.
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Figure 4: Convex levels.

If we suppose the assertion of the proposition is false, dDS (p) ≤ i. Then there exists a point
q adjacent to p, with dDS (q) = dDS (p)− 1 and interior of Ci. Recursively it follows that there is
at least a point of depth equal to 1 in the interior of Ci, which is impossible. Then we conclude
that all points of S which are in the interior of Ci have depth greater than i.

✷

Lemma 3.1 Let S be a set of Delaunay depth greater than one. Any cycle of LayDi (S) without
chords, does not contain more than one connected components of LayDi+1(S) in its interior.

Proof. Let Ci be a cycle of LayDi (S) formed by points without chords.

Suppose, contrary to our claim, that there are more than one connected component of
LayDi+1(S) in the interior of Ci. By the above assumption, we first prove that there is a vertice
vi ∈ Ci which is adjacent to some points of different connected components of LayDi+1(S) in
the interior of Ci (Figure 8). Let v1i , v

2
i , · · · , v

n
i be the points of Ci sorted by adjacencies. We

study the adjacencies of these points in the interior of Ci. Note that this adjacencies have depth
equal to i+1 (we apply that their depth cannot differ more than one of i and Proposition 3.1);
furthermore, all the points of LayDi+1(S) in the interior of Ci must have at least one adjacency
in Ci.

We move along Ci following the adjacencies: while the adjacencies are of the same connected
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Figure 5: Location levels.
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Figure 6: Delaunay levels.

component we are changing of point in Ci. We want to find different connected components in
the adjacencies. There are two possibilities:

1. There is a point vji which is adjacent to some points of different connected components
of LayDi+1(S) in the interior of Ci.

2. There are vji and vj+1
i , for some j, whose adjacencies are in different components of

LayDi+1(S) (Figure 7).

But in the second case, we can see that the point vji or vj+1
i must also have adjacencies in

different components of Layi(S) (is a point like in the first case). In order to prove that, we
can consider the point which forms a triangle in the DT (S) with vji and vj+1

i . This point can

only be of depth i + 1; it cannot be i because then vji v and vj+1
i v would be chords, contrary

of the hypothesis of the proposition. Hence, v ∈ LayDi+1(S) but, v cannot belong at the same

time to the different connected components where vji and vj+1
i have adjacencies.

We have proved that vi ∈ Ci exists with two adjacencies of different components of LayDi+1(S),
we denote them by p1i+1, p

2
i+1 like Figure 8. Then there is a path in the DT (S) between p1i+1 and

p2i+1 formed by a sequence of vertices of triangles which all they have vi as point in common.
Note that this sequence only can be formed by points of depth i + 1: there is no point with
depth i+2 because this point is adjacent to vi, of depth i and also there is no a point of depth
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vvi i

i+1 i+1p p1 2

. .

. .
iC

j j+1

.

Figure 7: The points vji and vj+1
i of Ci have adjacencies of different components of LayDi+1(S).

v
i

i+1 i+1p p1 2. .

.
iC

Figure 8: There is a point vi ∈ Ci adjacent to some points of different connected component of
LayDi+1(S) in the interior of Ci.

equal to i because this point with vi would be a chord which contradicts the assumptions. The
LayDi+1(S) is formed by the subgraph induced in the DT (S) by the points with the same depth,
so all the points adjacents to vi, between p1i+1 and p2i+1, are in the same connected component,
a contradiction.

Hence we conclude that any cycle of LayDi (S) without chords, does not contain more than
one connected component of LayDi+1(S) in its interior.

✷

Lemma 3.2 Let S be a set of points in the plane. Let p ∈ LayDi+2(S) and let Ci be a cycle of
LayDi (S) that contains p in its interior. Then there is a cycle of LayDi+1(S) containing p in its
interior.

Proof. Let pi+2 ∈ D-Layi+2(S) be a point in the interior of Ci. From Lema 3.1 we know that
there is only one connected component of D-Layi+1(S) in Ci.

When we consider a connected graph without cycles embedded in the plane, there is only
a single infinite region, complementary to the graph. If the graph has some cycles, then we
distinguish the bounded regions enclosed by the edges of the cycles. We will prove that the
graph G formed by the points with depth i + 1 inside Ci must be a graph with cycles. Its
unbounded region contains Ci. Each point of the considered graph G has depth i+ 1 and it is
adjacent to one of the Ci. We consider the Delaunay triangles with at least one vertex in Ci.
The point pi+2 cannot be vertex of any of those triangles (the depths cannot differ in more than
one unit). The union of those triangles does not contain pi+2 because the Delaunay triangles
do not contain points of S in their interior. Only if G has some cycles, there can be other
points placed in the bounded regions delimited by them. Therefore, if there exists a point of
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D-Layi+2(S) in the interior of Ci, then there exists too a cycle of D-Layi+1(S) containing such
point in its interior.

✷

Proposition 3.2 Let S be a set of points in the plane. If the Delaunay depth of a point p with
respect to S is j + 1, there is a cycle of LayDj (S) containing p in its interior.

Proof. Every point p whose depth with respect to S equals 2, is contained in the interior of
LayD1 (S) = CH(S).

If the depth of p is 3, there exists a cycle of LayD2 (S) containing p in its interior. In order
to prove that, we apply Lemma 3.2 to a cycle of points of depth 1 that contains p (this cycle
exists because LayD1 (S) = CH(S)).

If the depth of p is 4, there is a point of LayD3 (S) adjacent to p. We apply Lemma 3.2 to
this point of depth 3. Then there is a cycle of LayD2 (S) that contains this point of depth 3, and
must contain its adjacencies, like p. We apply lemma 3.2 to this last cycle and there is a cycle
of LayD3 (S) that contains p.

Recursively we prove the proposition for p of depth j + 1 ∀j, j ≤ f − 1 (f being the depth
of S).

✷

As a consequence of Proposition 3.2, the number of levels for Delaunay depth is equal to
the number of layers or to the number of layers plus one.

Proposition 3.3 Let S be a set of n points. The maximum number of connected components
of the

⋃
LayDi (S) is decreasing on the depth of S. This maximum is ⌊(n−m+ 2)/2⌋, where

m is the depth of S, which is tight.

Proof. We want to see that c, the number of connected components of
⋃
LayDi (S), is bounded

by (n−m+ 2)/2 or, equivalently, n ≥ 2c+m− 2.

If all the related connected components have a minimum of 2 points, then n ≥ 2c. If
there are isolated points in LayDi+1(S), each one of them is contained in a cycle without chords
(Proposition 3.2). We associate each isolated point with a point of the corresponding cycle in
this way: two isolated points cannot be associated to the same point. This is possible because
the maximum number of the isolated points of LayDi+1(S), contained in a connected component
of LayDi (S), is at most the number of chords plus one (Lemma 3.1). Moreover, the number of
chords in a connected component of ni points is at most ni − 3 so there are no points of depth
i in the interior of a cycle of LayDi (S) (Proposition 3.1).

Then, there are at least two points in each component that are not associated to any of the
possible isolated points. Thus we can assure n ≥ 2c.

In general, if the depth of S is m, there exist at least m− 1 nested cycles, without chords,
of which m− 2 don’t contain any component of a single point. The connected component that
contains one of the previous cycles have, at most, ni − 3 isolated points. Therefore, there are
at least m− 2 connected components with three points or more. Then n ≥ 2c+m− 2.

The next example proves that the previous upper bound is tight.

First we describe the example for m = 2. Let n = 2k + 2 be the number of points that we
have. We distinguish two chains in the CH(S): in one of them (for example the lower chain)
we put k + 1 of the points of S and in the other (the upper chain) we put only one point. We
can place the points in this way: for every pair of points formed with the upper chain point
and any lower chain point, there must be an empty circle that circumscribes them. Finally, we

8



put each one of the other k points of S between two of the previous circles like in Figure 9.
These k points are each one of them one connected component of LayD2 (S), so the

⋃
LayDi (S)

has k + 1 = ⌊n/2⌋ connected components.

. .

.

. .

1

1 1
2 21

.
Figure 9: This is a example in which n = 2k + 2 points. The

⋃
LayDi (S) has k + 1 connected

components.

Let m be greater than 2. First we put 3(m − 1) points in a sequence of nested triangles
and one more point in the innest one. The rest of the points of S, at most n − 3m + 2, are
distributed in pairs between the m layers. We place each pair of the points in contiguous layers
so one of them breaks a cycle in two and the other one is an isolated point in the new cycle. In
figure 10, the n− 3m+ 2 points have been placed in the layers LayD1 (S) and LayD2 (S).

. .

.

. .

1

1 1

2 2

1

. .
1

.2.
1

2.
1

.
1

2.

22

2

...
..

.m

...A

C

Figure 10: Point A is replaced by configuration C. The set of points S has depth equal to m.
The

⋃
LayDi (S) has ⌊(n−m+ 2)/2⌋ connected components.

✷

Delaunay layers are not necessarily polygons, however they form a structure based in nested
cycles of points of the same depth.

The depth of a point relative to a set S depends on the Delaunay circles (i.e., circumcircles

9



of Delaunay triangles) that contain the point, therefore the arrangement of Delaunay circles
contains all the information about Delaunay levels, (Figure 6). As the arrangement has size
O(n2) and can be constructed in O(n2 logn) time one can obtain the Delaunay levels within
this time. Nevertheless, in the following theorem we prove that in order to obtain all LevDi (S)
it is not necessary to construct the whole arrangement of circles.

Observation 3.3 Let C be a circle having exactly two points u and v of S on its boundary and
containing no points of S in its interior. Then any circle crossing the two arcs determined by
u and v in the boundary of C contains some interior point from S.

Theorem 3.4 Let S be a set of points in the plane and let be f its Delaunay depth. The union⋃
j≥k Lev

D
j (S), k = 1, · · · , f forms a sequence of sets nested by inclusion. The boundaries

between LevDj (S) and LevDj+1(S), for 2 ≤ j ≤ f , are curves composed by arcs of the Delaunay

circles determined by two points u, v of LayDj (S) and one point w of LayDj−1(S).

Proof. We proceed to determine the boundary between the consecutive levels of S, LevDj (S) =

{x ∈ R
2/d(x, S) = j}, and LevDj+1(S), for 2 ≤ j ≤ f . Every point q of depth equal to j, relative

to a set S, has at least one element p ∈ S which is adjacent in DT (S ∪{q}) and has depth j− 1
(in both DT (S) and DT (S ∪ {q})), and there must be an empty circle through p and q and no
point of S with depth smaller than j − 1. Hence we can describe the LevDj (S) as the union of
all Delaunay circles that circumscribe a point of depth j − 1 (that we denote by

⋃
Cj−1,−,−),

minus the union of all Delaunay circles that circumscribe a point of depth smaller than j − 1
(that we denote by

⋃
C<j−1,−,−); this is

LevDj (S) =
⋃

Cj−1,−,− \
⋃

C<j−1,−,−.

Applying Proposition 3.2, which proves that for every point of depth equal to j there is
a cycle of LayDj−1(S) that contains it in its interior, we see that LevDj (S) is contained in the

interior of the cycles of LayDj−1(S). Furthermore we also get the following properties: (a) If
some layer has no cycles then there are no points for this level or the next ones; (b) the sets⋃

j≥k Lev
D
j (S), k = 1, · · · , f form a sequence of nested sets.

We find circles Cj,j,j−1 ∈
⋃

C<j,−,− intersecting the cycles of LayDj (S). The circles Cj,j,j−1

pass through pairs of points which are the endpoints of every non-chord edge of a cycle γ in
LayDj (S) (see the cycle of LayD3 (S) enclosing the dark region to the left of Figure 11).

These pairs of points divide the circle Cj,j,j−1 into two arcs: one exterior to the cycle γ,
one interior. There may be other circles of

⋃
C<j,−,− that also cross the circle Cj,j,j−1, yet

any circle of
⋃
C<j,−,− has in the boundary one point exterior to the cycle γ and, applying

Observation 3.3, it cannot cross both arcs of a circle Cj,j,j−1.

Therefore the boundary between LevDj (S) and LevDj+1(S) is only determined by the arcs of
the circles Cj,j,j−1 (see Figure 12 for an illustration).

✷

Theorem 3.4 proves that the overall size of the Delaunay levels is O(n) and justifies the
steps of the following algorithm.

Algorithm 3.1 Computation of Delaunay depth contours of S, Delaunay levels.

Input: Set of points S.

Output: Delaunay depth contours of S.

1. Compute DT (S).
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Figure 11: The Delaunay circles C3,3,2 defined by two points of LayD3 (S) and one point of
LayD2 (S), determine the boundary between LevD3 (S) and LevD4 (S), which consists of the inner
boundary of the union of C3,3,2. Notice that chord ab has been “discarded”, as unuseful for
obtaing the level.

2. Compute the Delaunay depths for all points in S.

3. Compute the boundaries of the levels as follows: LevD1 (S) is the convex hull of S; for every
j ≥ 2, construct the inner boundary of the union of Delaunay circles Cj,j,j−1 defined by
two points u, v of LayDj (S) and one point w of LayDj−1(S) (Figure 12).

DT (S) can be computed in O(n logn) time and Step 2 takes O(n) additional time. Every
boundary in Step 3 can be computed in O(t log2 t) time, where t is the number of Delaunay
circles Cj,j,j−1 considered in the currently computed layer, by using the algorithm described in
[AS00] (pg. 97). Taking into account that the total number of Delaunay circles is O(n), Step 3
takes O(n log2 n) global time, which is also the overall time for the algorithm. Notice that the
expected time for Step 3 is O(n logn) [AS00], and therefore, the expected running time for the
entire algorithm is O(n log n).

The algorithm 3.1 compute all levels of S in O(n log2 n) time, therefore it also yields the
Delaunay median in this time. In Figure 13 we can see an illustration where the inner level,
LevD6 (S), has two connected components: the centroids of each one of these regions are the
Delaunay median of S.

As a consequence of the preceding paragraphs we can state the following theorem.

Theorem 3.5 The Delaunay levels of a set of n points in the plane can ce constructed within
O(n log2 n) time.
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Figure 12: The shaded region is LevDj+1(S).

4 Computing Delaunay depth

The depth of a point p with respect to a data set S = {s1, · · · , sn} in the plane is defined as
the depth of p in S∪{p}, and its computation is a problem which has deserved much attention.
When S and p are the entry data, the Tukey depth of p, its simplicial depth and its Oja depth
can be computed in O(n log n) [RR96]. In [ACG+02] it was proved that this value is also a
tight bound for the first two cases and recently it has been proved an identical result for the
Oja depth [AMcL04] .

The convex depth of p can be easily computed in O(n log n) time, since it suffices to find
the layers of S ∪ {p}, and it is easy to see that this value is tight. The Delaunay depth can also
be found in O(n log n), since it suffices to build DT (S ∪ {p}) and then find the depth of p in
additional O(n) time. We will next show that this is tight.

We will reduce the problem of uniqueness of numbers to the problem of finding the Delaunay
depth. It is known that the problem of deciding if, given n real numbers, all of them are distinct,
has complexity Ω(n logn) when the model of computation is the algebraic decision tree [DL76]
and [BO83]. We will see that if certain computations are made in O(n) and then the Delaunay
depth of an adequate point is found, we can decide the uniqueness of n given real numbers.
This implies that the computation of the Delaunay depth requires Ω(n logn) time.

Let us consider a set A = {x1, · · · , xn} of real numbers; without loss of generality we
can assume that they are all positive. For each value xi ∈ A, we construct the points
(xi, 0), (−xi, 0), (0, xi) and (0,−xi). We denote by S the union of these points and let p = (0, 0)
be the origin. The Delaunay triangulation DT (S ∪ {p}) is as shown in Figure 14, from which
we have omitted the diagonals of the trapezium (any of the two diagonals in a trapezium gives
a Delaunay triangulation and the depths of the points remain unaltered by the choice). The
presence of the edges of slopes ±1 is immediate: for example, (xi, 0) is adjacent to (0, xi) since
the circle of center (xi, xi) and radius xi covers only these two points of S ∪ {p}.

Evidently, the depth of p in S ∪ {p} equals n + 1 if, and only if, all the elements of A are
distinct. This completes the proof. It has thus been established the following result:

Theorem 4.1 The depth of a point p with respect to a data set S = {s1, · · · , sn} can be found
in O(n log n) time, and this value is optimal.
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Figure 13: Top: A point set S. Bottom: Levels of S. The boundaries of the levels are the
Delaunay depth contours.

If we admit an additional preprocess to the given point set, we have different alternatives
for computing the level of a new point. For example the preprocessing might consist of comput-
ing the Delaunay triangulation, or even the arrangement of the Delaunay circles; nevertheless
the most natural approach is to compute the Delaunay levels in a first step, which requires
O(n log2 n) time; as this gives a plane subdivision of size O(n), standard point-location meth-
ods can then be used. In particular, the approach in [ST86] can be easily adapted and allows
O(log n) query time.

It is also natural to consider how strong the change in the Delaunay depths of a point set
can be after the insertion of a new point. This is the issue we study next.

Proposition 4.1 Let S be a set of n points of depth equal to f . The insertion of one point in
S can change the depth of another point in at most ⌊n/3⌋− 2 units and the depth of the set can
vary by ⌊n/3⌋ − 3. These bounds are tight.

Proof. One point can vary its depth when its set of neighbors varies (for instance when p is

13
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Figure 14: Set of points A and its Delaunay layers.

a new neighbor) or some of its neighbors changes its depth. The insertion of one point in S
can produce at most a change of depth equal to f − 2 units, if and only if some of the deepest
points is a neighbor of the least deep one.

Let us see now an example of a point set S with depth n/3, in which the insertion of a
suitable point modifies the depth of a certain point from f = n/3 to 2. Let us consider two
triangles homothetic from their common circumcenter such that the circumcircle C of the inner
triangle Tintcrosses twice each edge of the outer triangle Text(see Figure 15). Then S is defined
by taking the six vertices of the triangles and placing evenly points in the segments s1 s2 and s3)
that join corresponding vertices of both triangles. Notice that the interior of the disk bounded
by C is empty of points of S and that part of it is outside CH(S). The Delaunay layers of S
are triangles and the depth of S is n/3; layers and levels are shown in Figure 16 (top).

C

1s

sss

sss2

3

Figure 15: The points of S lie on the segments s1, s2 and s3.

We insert now a point p (refer to Figure 16) which is exterior to CH(S) and interior to the
disk bounded by C. In this way, p is adjacent to the three vertices of Tint and to all points
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placed on the two closest segments si, let them be, for example, s1 and s2. Hence p is adjacent
to points of depth n/3 in S (the vertices of Tint) and to points of depth 1 (the vertices of Text).

Let us compute the depths in the S∪{p}. The point p has depth 1 (it is exterior to CH(S))
and any of its neighbors that is not in that hull has now depth 2. Therefore, at least one point
of depth equal to n/3 in S, has depth 2 in S ∪ {p}, a change as claimed.

The points of depth 1 and 2 in S have still the same depth in S ∪ {p}. The edges of
DT (S ∪ {p}) with an endpoint in s3 are the same as in DT (S); only edges between s1 and
s2 have changed. As a consequence, the point of LayD2 (S) from s3 and the neighbors of p in
LayD2 (S ∪ {p}) determine a cycle of LayD2 (S ∪ {p}) (Figure 16, bottom, left). The other points
that remain on s3 are of depth 3. Therefore, after the insertion of p, de depth of S changes
from n/3 to 3.

C

p

Figure 16: Delaunay layers and levels of the sets of points S (at the top) and S ∪ {p} (at the
bottom).

✷

5 Conclusion

In this work we have studied the Delaunay depth function, the stratification that this depth
induces in the point set (layers) and in the whole plane (levels), and developed algorithms for
computing the Delaunay depth contours and the depth of any query point set with respect to
the given point set. The stratification suggests that Delaunay depth may be more suitable than
others for cluster detection and visualization.
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As for open problems, let us mention that we don’t know whether a Delaunay median, i.e.,
a point of maximal depth, can be computed directly, escaping depth computation for the whole
point set.
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